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We investigate the forcing strength needed to sustain a flow using linear forcing. A critical Reynolds number
Rc is determined, based on the longest wavelength allowed by the system, the forcing strength and the viscosity.
A simple model is proposed for the dissipation rate, leading to a closed expression for the kinetic energy of the
flow as a function of the Reynolds number. The dissipation model and the prediction for the kinetic energy are
assessed using direct numerical simulations and two-point closure integrations. An analysis of the dissipation-
rate equation and the triadic structure of the nonlinear transfer allows to refine the model in order to reproduce
the low-Reynolds-number asymptotic behavior, where the kinetic energy is proportional to R − Rc.
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I. TRANSITION AND INSTABILITY IN ISOTROPIC
TURBULENCE

Transition in shear flows and the modeling of isotropic
turbulence are two seemingly different research subjects. Re-
cently, however, it was realized that isotropic turbulence and
the laminar-turbulent transition in wall-bounded shear flows
share certain features [1]. For instance, it was shown that
relaminarization, a feature generally associated with shear
flows [2] such as flow through pipes driven by a pressure
gradient, can also be observed in statistically isotropic peri-
odic box turbulence. In Ref. [1] the forcing that was used
to excite the Navier-Stokes equations allowed the existence
of large-scale, linearly stable, and spatially simple solutions.
When turbulence was triggered through the initial conditions
(or a finite amplitude perturbation), the distribution of turbu-
lent lifetimes before the flow “relaminarizes” was observed to
be exponential and the characteristic timescale increased su-
perexponentially with the Reynolds number, as is also the case
in pipe flow. These observations established a phenomeno-
logical connection between isotropic turbulence and certain
wall-bounded shear flows.

In the present investigation we further explore the transi-
tional dynamics of isotropic turbulence. The dynamics of the
system we consider, using a distinct forcing, is different in
nature from the transition observed in Ref. [1]. We thereby
illustrate that in isotropic turbulence the transition from a
laminar to a turbulent state is not universal and can depend
on the type of forcing. In particular, we will show that in the
case of linear forcing [3] a critical Reynolds number exists
above which turbulence can be sustained. The quantity that
we will evaluate is the kinetic energy of the flow and the
present approach is thereby related to the classical energy
stability approach [4]. The originality in the present work is
that we do not only determine the critical Reynolds number
below which energy always decays, but that we also model the
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dependence of the kinetic energy on the Reynolds number, for
all Reynolds numbers from the onset up to the fully developed
turbulent regime.

In periodic or closed systems, the global kinetic energy
is fully determined by the production and dissipation mech-
anisms. In linearly forced flow the production mechanism
is a closed (linear) function of the kinetic energy itself, but
the dissipation term is unclosed and, if one wants to predict
the behavior of the kinetic energy, this term needs to be
modeled. We use an existing model for the dissipation and
obtain thereby a closed expression for the kinetic energy as a
function of the Reynolds number. The predictions are tested
using direct numerical simulations (DNS) and numerical inte-
gration of closure equations. It is observed that the model for
the kinetic energy gives only a rough description of the data.
Subsequently we show how analytical considerations allow to
refine the model in order to get a correct description of the
energy balance near the critical Reynolds number.

In the following section we discuss linearly forced tur-
bulence and give a first estimate of the kinetic energy as a
function of the Reynolds number involving two model con-
stants. Then in Sec. III we consider the Fourier-spectra of
the kinetic energy and show how we can determine these
model constants. We then present numerical results in Sec. IV.
Unexpected observations in these results are explained in
Sec. V where a refined model is proposed to describe the
data accurately. In Sec. VI we discuss the results and suggest
that the understanding of the kinetic energy balance near the
onset might prove important in order to better understand the
physics of transition in certain shear flows.

II. LINEARLY FORCED FLOW

The system we consider is

∇ · u = 0,

∂t u + u · ∇u = −∇P + ν�u + αu, (1)
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where u is the velocity, P pressure (divided by density), ν the
kinematic viscosity, the last term being the linear forcing term
introduced in Ref. [3] and further investigated in the context of
high-Reynolds-number turbulence in Refs. [5,6]. The physical
interest of this term can be seen if one considers the evolution
of velocity fluctuations in the presence of a mean shear. In
that case, the equation for the fluctuations u′, contains a force
term u′ · ∇u, where ∇u is the mean velocity gradient. The
linear forcing can be seen as a way to investigate such a
natural manner of forcing in the context of isotropic turbu-
lence, avoiding thus the complexity induced by anisotropy and
inhomogeneity. The parameter α in the forcing can then be
associated with the strength of the mean-velocity gradient ∇u
in more realistic shear flows, even though in such flows the
forcing term has in general a tensorial structure.

It is the simplicity of the present approach, compared to
forcing by shear, which is important in the present study,
since it allows one to obtain a deeper understanding of the
influence of purely linear mechanisms on the transition to
turbulence in the geometrically simplest setting of isotropic
turbulence. Even though this forcing is clearly not representa-
tive of all possible physical forcing mechanisms, the profound
understanding of the role of linear forcing on isotropic turbu-
lence can then inspire investigations of more complex flows.

For instance, in channel flow an ongoing question is the
precise role of linear mechanisms in the generation and sus-
tainment of the turbulent fluctuations and the formation of
coherent structures [7–9]. Another issue is the transition to
turbulence in such flows on which we will come back later.
Further motivations, beyond its resemblance with natural forc-
ing by shear and the simplicity of the approach, can be found
in the original work by Lundgren [3].

We write the kinetic energy balance for (1),

dK

dt
= P − ε, (2)

where the kinetic energy K , production P and dissipation ε are
defined by

K = 〈‖u‖2〉/2, (3)

ε = −ν〈u · �u〉, (4)

P = 2αK, (5)

and where the brackets denote an ensemble average. A rea-
sonable estimate of the dissipation, both for low and for high
Reynolds numbers [10], is

ε = K3/2

L

(
Cν

RK
+ Cε

)
, (Model 1) (6)

where

RK = LK1/2

ν
, (7)

and L is a typical length scale, characterizing the large flow
scales. In the following, expression (6) will be denoted by
Model 1. The model contains two terms. The first, linear term,
contains the constant Cν , and is dominant for low values of
the kinetic energy. The constant Cν will be shown to set the
critical Reynolds number below which kinetic energy will

always decay. At large values of RK , the influence of this
term disappears and the other term dominates. The constant
Cε in this nonlinear contribution sets the asymptotic value of
the normalized dissipation rate εL/K3/2 [11] and represents
thereby the dissipative anomaly [12], i.e., a nonvanishing dis-
sipation when the viscosity tends to zero.

It is indeed observed that εL/K3/2 tends to a constant
at high Reynolds numbers for a given flow [13], but its
value can depend on the large-scale structure of the energetic
scales [14], the presence of helicity [15], or the instation-
arity (as observed in Ref. [16] and explained in Ref. [17]).
Model 1 was rigorously derived as an upperbound for turbu-
lent dissipation in the Navier-Stokes equations both for static
forcing [18,19] and dynamic forcing [15]. The low Reynolds
limit of Model 1 was shown to quite accurately describe
the results of simulations and closure in references [10,14].
Furthermore, the same expression was proposed in Ref. [20]
in order to better understand the dynamics of Taylor-Couette
flows and accretion disks. A refinement of this expression,
adding terms proportional to R−2

K was proposed in Ref. [21], in
the context of magnetohydrodynamic turbulence and we will
come back to possible refinements in section V.

Using Model 1 for the dissipation in the energy balance (2)
we find

dK

dt
=

(
2α − Cν

ν

L2

)
K − Cε

K3/2

L
. (8)

We can readily determine the steady state solutions of this
equation. One solution is K = 0 and the other solution is

K

(αL)2
= 4

C2
ε

(
1 − Rc

R

)2

, (9)

where

R = αL2

ν
and Rc = Cν/2. (10)

The independent control parameter of our system is therefore
the Reynolds number R. Beyond a critical value, R > Rc,
only solution (9) is linearly stable and the kinetic energy will
become nonzero in the presence of infinitesimal perturba-
tions. We observe thus a bifurcation in this isotropic system
on the level of the volume-averaged or ensemble-averaged
quantities. The solution depends on the parameters L, α, ν

and contains the constants Cν and Cε . The influence of the
three parameters on the turbulence is combined in the forcing-
based Reynolds number, which is the control parameter of our
system. The physical interpretation of the two model constants
is discussed in the following section. Indeed, these constants
are related to a critical Reynolds number determined by the
domain size and the Kolmogorov constant, respectively.

III. SPECTRAL ANALYSIS OF THE SYSTEM

We consider a cubic periodic domain, of size LD = 2π ,
so that the smallest wave number is κ0 = 1. The energy
spectrum is defined as the three-dimensional shell-averaged
kinetic energy density so that its integral is

∫ ∞
0 E (κ ) dκ = K

and its dynamics is given by Lin’s equation (see, for instance,
Ref. [22] for a derivation),

∂t E (κ ) = F (κ ) + T (κ ) − 2νκ2E (κ ). (11)

033105-2



LINEARLY FORCED ISOTROPIC TURBULENCE AT LOW … PHYSICAL REVIEW E 102, 033105 (2020)

The three terms on the right-hand side represent produc-
tion, spectral transfer and dissipation, respectively. The
production is

F (κ ) = 2αE (κ ). (12)

The integral of (11) yields (2), since∫ ∞

0
T (κ ) dκ = 0 (13)

by energy conservation and∫ ∞

0
2νκ2E (κ ) dκ = ε. (14)

A. Low Reynolds number

Let us first discuss the viscous limit. When the Reynolds
number is small enough, the nonlinear transfer is smaller than
the viscous term for all modes,

|T (κ )| � 2νκ2E (κ ). (15)

Clearly, the most unstable mode is the mode with the smallest
wave number κ0, so that, ignoring the transfer and focusing on
the most unstable mode,

∂t E (κ0) ≈ 2
(
α − νκ2

0

)
E (κ0). (16)

We have thus energy growth for

α

νκ2
0

> 1, (17)

or, introducing an arbitrary length scale L,

αL2

ν
> (Lκ0)2 ≡ Rc. (18)

In the following we will choose the characteristic length scale
as L = κ−1

0 , which sets the critical Reynolds number Rc = 1
and therefore the value of Cν in expression Model 1 [expres-
sion (6)] and in Eq. (10) is Cν = 2. [Note that if instead we
use the domain size L = LD, the value of the critical Reynolds
number would change to Rc = (2π )2 and the value of Cν ≡
2Rc would change accordingly.]

The spectral analysis has therefore allowed to determine
one of the two model constants. We have thereby obtained
a dissipation model which depends only on the constant Cε ,
which is determined by the high-Reynolds-number dynamics,
which we will consider now.

B. High Reynolds number

At very high Reynolds numbers, a Kolmogorov spectrum
will develop,

E (κ ) = CKε2/3κ−5/3g(κζ ), (19)

with ζ = ν3/4ε−1/4 the Kolmogorov length scale, CK the Kol-
mogorov constant, and g(x) a function which tends to g(x) =
1 for x � 1 and which drops to zero rapidly for x > 1. Since
in a steady state the production equals the dissipation, and
the production is given by 2αK , we find for large Reynolds
numbers by integrating (19) from κ = κ0 to κ = ζ−1,

K ≈ 3
2CK (2αK )2/3κ

−2/3
0 . (20)

so that the steady-state kinetic energy is given by

K = 27

2
C3

K

(
α

κ0

)2

. (21)

The normalized dissipation is

εL

K3/2
=

(
3

2
CK

)−3/2

Lκ0. (22)

This relation states that for the choice L = κ−1
0 , the value

of Cε = ( 3
2CK )

−3/2
. This expression assumes that the Kol-

mogorov spectrum starts directly at κ0. We will see that this is
not exactly the case, so that this relation between Cε and CK ,
is only approximately valid. However, it is expected that the
normalized dissipation tends to a constant and that its order of
magnitude is given by (22).

IV. NUMERICAL RESULTS

In order to assess expression (9), we carry out both direct
numerical simulations of periodic box turbulence and numer-
ical integration of the eddy-damped quasinormal Markovian
(EDQNM) closure equations. We will first discuss the numer-
ical method and parameters and after that we will present the
results.

A. Numerical methods and setup

We perform a series of 17 direct numerical simulations
of Eqs. (1) in a cubic three-dimensional periodic domain of
size 2π , using a standard pseudospectral solver. Dealiasing is
performed by applying the 2/3-rule and the time integration is
performed using a third-order Adams-Bashforth scheme with
exact integration of the viscous and forcing terms. The initial
velocity field consists of incompressible random noise with an
initial value of the kinetic energy of K = 20. The parameters
of our simulations and steady-state values of certain quantities
are summarized in Table I.

In addition to these simulations we have numerically in-
tegrated the EDQNM model [23]. This closure was recently
used to study linearly forced isotropic turbulence [24] and was
shown to yield correct behavior for this kind of flow at high
Reynolds numbers. We solve equation (11) with

T (κ ) =
∫∫

�

(xy + z3)
(κ, p, q)
E (q)

q

× [κ2E (p) − p2E (κ )]d p dq. (23)

The integration domain � consists of the subspace in the
p-q plane where line segments of length κ , p, q can form a
triangle. The cosines of the angles inside this triangle, oppo-
site to the sides κ , p, q are denoted x, y, z, respectively. The
characteristic triad timescale is


(κ, p, q) = [ν(κ2 + p2 + q2) + η(κ ) + η(p) + η(q)]−1

(24)

with η(κ ) = λD[
∫ κ

0 s2E (s) ds]1/2 and λD a constant, determin-
ing the strength of the eddy damping, and thereby setting
the Kolmogorov constant. The formulation of the model is
standard and we refer to Ref. [25] for details. We have not
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TABLE I. Parameters of the DNSs. The forcing strength is
fixed at α = 1, domain size LD = 2π , reference length scale L =
LD/2π = 1. Resolution is 1283. The numerical value of the Reynolds
number is here therefore R = ν−1. The dissipation in the steady
state is equal to ε = 2αK . The value K = 0 means zero to machine
precision, and K = ∞ means unbounded growth until numerical
instabilities appear.

R K Rλ RK

0.95 0 – –
1.3 ∞ – –
2 9.18 7.8 5.6
2.5 12.8 10.3 8.0
3 16.2 12.7 10.7
4 17.35 15.2 15.6
5 20.07 18.3 21.4
6 18.92 19.5 26.5
8 19.13 22.6 38.0
10 18.81 25.0 50.0
15 18.43 30.4 82.6
20 16.66 33.3 115
30 16.01 40.0 190
40 16.12 46.4 272
50 15.77 51.3 358
60 17 58.3 458
70 16.61 62.3 552

added the influence of the forcing term to the timescale 
,
since this can violate the stability of the closure. An investi-
gation showing how to implement the effect of forcing on the
transfer in Markovian closures would be valuable, but is out-
side the scope of the present investigation. The eddy-damping
parameter is set to λD = 0.42 in order to fit the results for
the kinetic energy at high Reynolds numbers to the DNS.
Simulations were carried out with a logarithmic discretization
with 47 modes per decade on a grid ranging from κ = κ0 = 1
to κζ = 5, with ζ the Kolmogorov length scale (defined in the
previous section). In the following only steady-state results
are reported, which are independent of the initial conditions.
The parameters α and L are set to unity and the Reynolds
number is varied by changing the viscosity from ν = 1 to
0.01, corresponding to Reynolds numbers R = αL2/ν in the
range [1,100]. For comparison with literature, we give the
relation between R and the Taylor-scale Reynolds number,

Rλ =
√

10

3

K1/2

√
αν

=
√

10

3
RK R−1/2, (25)

which is derived assuming a statistically steady state.

B. Results

In Fig. 1(a) we show the DNS results for the time evolution
of the kinetic energy for different values of the Reynolds
number. In particular, we observe for R = 0.95 a decrease of
the kinetic energy. This decrease is observed for all values
of the Reynolds number R < 1. For R = 1.3 we observe an
unbounded increase of the kinetic energy, until numerically
the solution cannot be resolved anymore. This behavior was
not anticipated in the foregoing. For values R > 2, the ki-
netic energy attains a statistically steady state. For long times,
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(R-Rc)
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K

R-Rc

EDQNM
DNS
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(c)

FIG. 1. (a) Time evolution of the box-averaged kinetic energy for
several distinct Reynolds numbers (DNS results). (b) Steady-state
values of the kinetic energy as a function of the Reynolds number
R. All DNS results are measured as averages during the statistically
steady state. Also shown are model prediction (9) and results from
EDQNM closure integration. (c) Same plots as in (b) but in double-
logarithmic representation, plotted as a function of R − Rc.

certain simulations were observed to suddenly blow up. The
reason for this is not completely clear, even though the insta-
bility of the linear forcing scheme was mentioned in previous
investigations and remedies for this were proposed [6]. We
do not implement such remedies, since the linear character of
the forcing scheme is a key issue in the present investigation.
Whether there is a physical reason behind these instabilities,
for instance, the formation of a large-scale two-dimensional
structure, can be an interesting issue for further investigation.
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We managed to obtain converged statistics for all Reynolds
numbers during the intermediate statistically steady state, ex-
cept for the interval 1 < R < 2. The reason for the instability
in this interval will be shown below to be directly related to
the triadic nature of the nonlinearity of turbulence, and the
discretization of the simulations.

In Fig. 1(b) we show the steady-state values of the kinetic
energy as a function of the Reynolds number. A first observa-
tion is that the linear forcing scheme leads to large temporal
fluctuations around the statistically steady state (as observed
and analyzed in Ref. [6] at larger Reynolds numbers). These
fluctuations result in substantial error bars. For large values of
R the kinetic energy saturates at a value of K ≈ 16. Further-
more, we see that for low values of R the kinetic energy drops.
However, this drop is not monotonous, but a local maximum
is observed around R = 5. This maximum was not anticipated
in the prediction following from Model 1 [Eq. (9)], which is
also shown in the figure. The model yields by construction
the correct critical Reynolds number and asymptotic large-
Reynolds-number value for K . However, for all intermediate
values the model does not describe the data so well.

Also shown in the figure are closure results which follow
the DNS data quite accurately. Also the EDQNM results dis-
play a bump, but somewhat less pronounced. The EDQNM
results do not blow up for 1 < R < 2, and it is shown in
Fig. 1(c) that the closure results approach the critical Reynolds
number following a linear relation, proportional to (R − Rc),
whereas Model 1 yields a (R − Rc)2 power law in this limit.

In Fig. 2 we show the kinetic energy spectra. The EDQNM
results (a) and DNS results (b) show a very similar behavior.
For the smallest values of the Reynolds number, just beyond
R = 1, the spectrum obtained from the closure integrations
consists of a peak, so that the energy spectrum can be written
in this limit

E (κ ) ≈ Kδ(κ − κ0). (26)

For larger values of R, a broad-band spectrum develops. At the
largest values considered here (R = 100), the beginning of a
small inertial range is observed.

In Fig. 3 we show the normalized dissipation rate, εL/K3/2,
as a function of RK . Note that in the present case, since
ε = 2αK , the normalized dissipation εL/K3/2 = 2αL/K1/2.
We observe that the asymptotic behavior is as expected, with
a low-Reynolds-number scaling ∼Cν/RK , with Cν = 2 and a
constant value Cε ≈ 0.5 for large RK . It is also observed that
the bump noticed in the kinetic energy [Fig. 1(b)] corresponds
to an undershoot below the asymptotic value Cε . Model 1
is shown to give a too gradual transition between the two
asymptotic values, as for the kinetic energy, and does not
capture the undershoot.

In the following we will analytically investigate the de-
tailed dynamics of the system near the onset of turbulence.
This analysis will allow us to

(i) Explain the physical reason for the absence of steady
states in the range 1 < R < 2 for the DNS

(ii) Explain the local maximum (or bump) in the kinetic
energy

(iii) Understand the asymptotic behavior of K for R ↓ Rc

and
(iv) Refine the dissipation model.
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FIG. 2. Steady-state kinetic energy spectra. (a) EDQNM results
for Reynolds numbers [1.01 � R � 100]. For the lowest Reynolds
number the spectrum consists of a peak around κ = κ0 = 1, while
for the largest values of R the beginning of an inertial range starts to
emerge. (b) DNS results for Reynolds numbers [2.5 � R � 60].

V. THE DISSIPATION RATE CLOSE TO THE CRITICAL
REYNOLDS NUMBER

The dissipation model [Model 1, Eq. (6)] was shown not
to accurately fit the data. Indeed its asymptotic behavior is
correct for both low and high Reynolds numbers RK , but for

10-1

100

101

10-1 100 101 102 103

Cν/RK

Cε

εL
/K

3/
2

RK

EDQNM
DNS

Cν/RK+Cε

FIG. 3. Normalized dissipation rate as a function of the kinetic-
energy-based Reynolds number RK (DNS results and EDQNM
results). Also plotted is the approximation resulting from Model 1.
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intermediate values it does not very accurately describe the
current results for linearly forced turbulence. This results in
an incorrect asymptotic behavior of the value of the kinetic
energy for low Reynolds numbers.

The model contains two terms: a linear term, containing
the constant Cν , which sets the critical Reynolds number,
and a nonlinear contribution, containing Cε , which allows the
saturation of the value of the kinetic energy. In this section we
will first focus on the linear contribution to the dissipation for
small Reynolds numbers. Then we will consider the nonlinear
contribution. It is shown that in order to fit the data more
precisely in this limit, both contributions need to be adapted.
A refined model is proposed which takes into account these
modifications.

A. Low-Reynolds-number behavior of the
dissipation-rate equation

The exact low-Reynolds-number behavior of the dissipa-
tion can be derived by considering the spectral dynamics of
the dissipation rate equation. This equation is obtained by
multiplying the Lin equation (11) by 2νκ2 and integrating,

dtε = 2αε + 2ν

∫ ∞

0
κ2T (κ ) dκ − 4ν2

∫ ∞

0
κ4E (κ ) dκ.

(27)
It was observed in Fig. 2, that near the onset the kinetic energy
spectrum is close to a δ pulse at κ = κ0 [see also Eq. (26)]. If
all energy is concentrated at one single frequency, the nonlin-
ear transfer is small so that during a steady state the first and
the last terms on the right-hand side of Eq. (27) are dominant.
Using expression (26), this yields

ε ≈ 2
ν2

α
κ4

0 K = 2R−1 ν

L2
K. (28)

This expression suggests that close to the onset, the linear
contribution to Model 1 should be modified by a factor R−1,

ε = K3/2

L

(
Cε + C′

ν

RK
R−1

)
, (Model 2a) (29)

with C′
ν = 2R2

c . We further note that the linear part of the
dissipation is negligible for large R so that we will use this
modification for all Reynolds numbers. Model 2a has the
same low and high Reynolds number limits as Model 1, but
refines this expression close to the onset. Using Model 2a the
prediction for the kinetic energy becomes

K

(αL)2
= 4

C2
ε

[
1 −

(
Rc

R

)2
]2

, (30)

where Rc remains thus unity in our setup. The expression is
similar in shape to equation (9), but the factor Rc/R is now
squared. We show the performance of Model 2a in Fig. 4.
Clearly the refinement allows a much better agreement with
the data for Reynolds numbers R − Rc � 1. However, the
bump is absent and the low-Reynolds-number asymptotic
scaling is still not reproduced.
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102

10-1 100 101 102

(R-Rc)

(R-Rc)
2

K

R-Rc

EDQNM
DNS

Model 2

FIG. 4. Comparison of the refined model, Model 2 [resulting
from Eq. (45)] with the DNS and EDQNM results. Also shown are
the results corresponding to Model 2a [Eq. (29), blue dashed line]
and Model 2b [Eq. (43) black dash-dotted line].

B. Triadic interactions near the onset

We saw in Fig. 1(c) that close to the onset K ∼ (R − Rc),
which was not reproduced by the simple model (Model 1).
The refinement proposed in the last section (Model 2a) yields
better agreement with the data, but does not improve the
results on this point. In order to change the low kinetic energy
behavior of the model, it is thus not enough to modify the
linear contribution to the dissipation, but one needs to change
the shape of the nonlinear contribution. In order to understand
the physics behind the low-Reynolds-number asymptotic be-
havior of the kinetic energy, we will assess the quasinormal
approximation near the onset.

Indeed, for K ↓ 0 the EDQNM approximation changes its
nature. In this limit the eddy damping [the η contributions in
expression (24)] becomes negligible compared to the viscous
term. We end up in this limit with a quasinormal approxi-
mation, which should rather accurately describe the statistics
of the low-Reynolds-number Navier-Stokes system, since the
influence of the most drastic assumption, the eddy damping,
becomes negligible in this limit.

In the low-Reynolds number limit, where only the mode
with largest wavelength (or lowest wave number) is unstable,
the spectrum is dominated by a δ peak (see Fig. 2),

E (κ ) = E0(κ ) + Ẽ (κ ), (31)

where
∫ ∞

0 Ẽ (κ ) dκ � K , and

E0(κ ) ≈ Kδ(κ − κ0). (32)

Clearly, if we are interested in nonlinear effects, it is not
enough to consider E0(κ ) only, as was done in the foregoing,
since a single mode cannot lead to nonlinear transfer. We also
need to take into account, to leading order, the interaction
with Ẽ (κ ).

We decompose the nonlinear transfer into two parts,

T (κ ) = T +(κ ) − T −(κ ), (33)
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where

T +(κ ) =
∫∫

�

f (κ, p, q)
κ2E (q)E (p)

q
d p dq, (34)

T −(κ ) =
∫∫

�

f (κ, p, q)
p2E (q)E (κ )

q
d p dq, (35)

with

f (κ, p, q) = (xy + z3)
(κ, p, q). (36)

The contributions correspond physically to an absorption term
T +(κ ), which represents how mode κ receives energy from
the other modes, and an emission term T −(κ ) associated with
energy transfer from mode κ to the other modes [26]. Typi-
cally, since the dominant energetic mode is E (κ0), it is impor-
tant to know how this mode emits energy to the other modes
associated with Ẽ (κ ), which is represented by the term T −(κ ).

In order to evaluate the low-Reynolds-number behavior of
the kinetic energy, we write therefore the dynamics of E0(κ ),

∂t E0(κ ) ≈ 2αE0(κ ) − 2νκ2E0(κ ) − T −(κ ). (37)

Indeed, it is observed that T +(κ0) does not significantly ex-
change energy with other modes, since the only leading order
terms are κ = p = q = κ0. Physically speaking, the energy
which E0(κ0) receives from Ẽ (κ ) is negligible compared
to the energy E0(κ0) gives to it. The low-Reynolds-number
evolution of the kinetic energy is obtained by integrating
equation (37), using (32), leading to

dt K = 2αK − 2νκ2
0 K − ε0, (38)

where ε0 is given by

ε0 =
∫

T −(κ ) dκ. (39)

We can simplify further. The dominant contribution to ε0

comes from E0(q = κ0) and E0(κ = κ0), yielding

ε0 = K2
∫ ∞

κ0

∫∫
�

f (κ, p, q)
p2δ(q − κ0)δ(κ − κ0)

q
d p dq dκ

= K2
∫ 2κ0

κ0

f (κ0, p, κ0)
p2

κ0
d p. (40)

and the integration domain, where triangles can be formed
with sides κ0, p, κ0 gives possible values of κ0 < p � 2κ0.
The factor f (κ0, p, κ0), in the limit νκ2

0  η(κ ) for all
κ , writes

f (κ0, p, κ0) = (xy + z3)

ν
(
2κ2

0 + p2
) . (41)

Introducing γ = p/κ0 and using the cosine rule, we find the
values x = z = γ /2, y = 1 − γ 2/2, so that

ε0 = K2

8ν

∫ 2

1

γ 3(4 − γ 2)

(γ 2 + 2)
dγ

= C0
K2

ν
(42)

We compute the integral and find C0 = 21/32 −
(3/4) ln(2) ≈ 0.136. This corresponds to an expression

for the dissipation rate,

ε = K3/2

L

(
CνR−1

K + C0RK
)
, (Model 2b) (43)

giving steady-state solutions K = 0 and

K

α2L2
= 2

C0R

(
1 − Rc

R

)
. (44)

This expression, for small values of K , behaves as K ∼ (R −
Rc), as observed in the closure integration. In Fig. 4 we show
that the small-Reynolds-number limit of this model is indeed
correct. We have used the value C0 = 0.22, which is some-
what larger than the analytical value, but which fits the data
better. At large Reynolds numbers, the model obviously fails,
since the influence of nonlinear scrambling (or eddy damping)
η(κ ) cannot be neglected anymore compared to the viscous
damping νκ2.

We close this section by elucidating why the DNS cannot
reproduce steady states for 1 < R < 2. Indeed, it is shown in
expression (40) that the dominant mode E (κ0) can only inter-
act with modes where κ � 2κ0. In the DNS the discretization
of the modes is such that no modes are present in this interval.
The dominant mode can therefore not exchange energy and,
in the absence of nonlinear saturation, the simulation is bound
to blow up. For R = 2 the secondmost unstable mode E (2κ0)
is excited, such that from this point on, nonlinear interactions
are allowed by the system. In the closure, where a continuous
spectrum of modes is considered, this effect is not present and
the kinetic energy can continuously approach zero for R ↓ Rc.
We note here that this discrete nature of the triadic interactions
is also leading to the recently discovered staircase scaling of
short-time energy transfer [27].

C. Refined model

In order to combine the two dissipation rate expressions
(Model 2a and Model 2b) we write the expression

ε = Cν

ν

L2
R−1K + Cε

K3/2

L

1

C1R−1
K + 1

, (Model 2) (45)

or equivalently, for the normalized dissipation rate

εL

K3/2
= Cν (RK R)−1 + Cε

C1R−1
K + 1

, (46)

with C1 a constant. The solution for the kinetic energy given
by this model is

K

(αL)2
=

{
�(R) +

[
�(R)2 + 2C1

R
�(R)

]1/2
}2

(47)

with

�(R) = 1

Cε

(1 − Rc/R2) (48)

Using the values C1 = 0.7 and Cε = 0.5 (and Cν = 2), it is
observed in Fig. 4 that this model reproduces quite accurately
the kinetic energy for all Reynolds numbers. This model con-
tains the bump in the kinetic energy which is explained as
the intersection of the two asymptotic regimes (30) and (44).
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In particular, near the onset the kinetic energy is given by
K ∼ (R − Rc).

The bump is less pronounced than in the DNS or closure
for the parameters Cε,C1 which give the best fit of the asymp-
totic regimes. Further refinement of the model to improve the
agreement does not seem desirable, since it would probably
require nonlocal-triadic effects and the model would not be
much simpler than the EDQNM closure equations themselves.

VI. CONCLUSION

We have investigated linearly forced isotropic turbulence.
We show that a critical Reynolds number exists, Rc = L2κ2

0 ,
with κ0 the most unstable mode and L a typical length scale.
At this value of the Reynolds number the solution bifur-
cates from zero to nonzero kinetic energy. The transition is
of supercritical nature, where here the base state is a trivial
zero-velocity state. This can be contrasted with the results
of the investigation [1] where the use of localized spectral
forcing leads to a typical subcritical transition. The transition
to turbulence, or the laminarization, in isotropic turbulence is
thus not universal, but depends on the type of forcing.

A detailed analysis of the triad interactions shows that a
single-wave-number energy distribution will allow interac-
tions only with modes of maximum twice the excited wave
number. In pseudospectral DNS, where the discretization is
imposed by the base functions this results in an impossibility
to attain a nontrivial steady state for Reynolds numbers in the
range 1 < R < 2 for linearly forced turbulence.

For the present case of linear forcing, a new dissipation
model is derived and this model, Eq. (45), is shown to give
an improved agreement for the dependence of the dissipation
and the kinetic energy on the Reynolds number. It is perhaps
not the exact form of this model which is the important result
here, but the insight how the kinetic energy behaves close to
the onset, i.e., K ∼ R − Rc.

It should be mentioned that just beyond the critical
Reynolds number, where the energy spectrum is close to a δ

peak, the flow should perhaps not be called turbulent. In our
system, it seems that the development to a broad-band spec-
trum takes place in a continuous way. It would be interesting

to assess in detail the physical-space structure of the flow be-
yond the onset. Indeed, in the case of transitional shear flows
near the onset, such as plane Couette flow, the physical space
structure shows an intricate pattern of stripy turbulent regions
embedded in a laminar flow (see, for instance, Ref. [28] or the
recent review [29]). An investigation of this for the present
case is left as a perspective for further research.

The present findings are interesting in the light of recent
advances on the understanding of transition in shear flow.
Indeed the present work is motivated by the recent insight
that the transition in shear flows bounded from two sides,
such as plane-Poiseuille flow and plane-Couette flow,
might be continuous, and that the discontinuous behavior
around the critical Reynolds number is probably due to
finite-size effects [29–32]. The obtained results in the present
investigation, which are relatively easy to understand, can
then serve as a test case of, perhaps, the simplest possible
turbulent system exhibiting a continuous transition, against
which more complicated flows such as the above mentioned
shear flows can be assessed. For instance, it is observed that
in channel flow in the transitional regime, where laminar
and turbulent flow coexist, the turbulent volume-fraction can
approximately be described by a two-dimensional directed
percolation model [29,31]. However, very close to the onset
this description breaks down [33]. Possibly, the present
approach might be transposable to channel flow, so that in
such flow, at very low Reynolds numbers RK , the kinetic
energy could also be damped by a nonlinear saturation piloted
by a viscous timescale L2/ν, as represented by Model 2b.
Such an investigation is currently in progress.
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