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STANDARD CONJECTURES FOR ABELIAN FOURFOLDS

GIUSEPPE ANCONA

Abstract. Let A be an abelian fourfold in characteristic p. We prove
the standard conjecture of Hodge type for A, namely that the intersec-
tion product

Z2
num(A)Q ×Z2

num(A)Q −→ Q
is of signature (ρ2 − ρ1 + 1; ρ1 − 1), with ρn = dimZn

num(A)Q. (Equiva-
lently, it is positive definite when restricted to primitive classes for any
choice of the polarization.) The approach consists in reformulating this
question into a p-adic problem and then using p-adic Hodge theory to
solve it.

By combining this result with a theorem of Clozel we deduce that
numerical equivalence on A coincides with `-adic homological equiva-
lence on A for infinitely many prime numbers `. Hence, what is missing
among the standard conjectures for abelian fourfolds is `-independency
of `-adic homological equivalence.

June 5, 2020
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1. Introduction

In this paper we prove that the standard conjecture of Hodge type holds
for abelian fourfolds. This is the first unconditional1 result on the conjecture
since its formulation. Before giving the precise statement and a sketch of
the proof, we briefly recall the history of the problem.

In this introduction X will be a smooth, projective and geometrically
connected variety over a base field k of characteristic p ≥ 0. We denote by
Znnum(X)Q the space of algebraic cycles of codimension n with Q-coefficients
modulo numerical equivalence. This is a finite dimensional Q-vector space
and its dimension will be denoted by

(∗) ρn = dimZnnum(X)Q.

Brief historical panorama. The history of the problem starts with the
so called Hodge index theorem.

Theorem 1.1. Suppose that X has dimension two. Then the intersection
product

Z1
num(X)Q ×Z1

num(X)Q −→ Q
is of signature (s+; s−) = (1; ρ1 − 1).

When the characteristic p is zero, the above theorem was proved by Hodge
by relating the intersection product to the cup product in singular cohomol-
ogy through the cycle class map [Hod33]. An algebraic proof, valid in any
characteristic, was found by Segre [Seg37] and Bronowski [Bro38].

Elaborating on an argument of Mattuck–Tate [MT58], Grothendieck re-
alized that the Lang–Weil estimate for the number of rational points on a
smooth and projective curve C over a finite field follows from the Hodge
index theorem applied to the surface X = C×C [Gro58]. He then proposed
a program to show the Weil conjectures for varieties of higher dimension
based on a conjectural generalisation of the Hodge index theorem, known
as the standard conjecture of Hodge type. Together with the three other
standard conjectures (and the resolution of singularities), it was considered
by Grothendieck as the most urgent task in algebraic geometry [Gro69].

This conjecture is connected with other arithmetic contexts such as the
conjectural description of the rational points on a Shimura variety over a
finite field [LR87] and the weight-monodromy conjecture [Sai].

The four standard conjectures imply that the category of numerical mo-
tives is semisimple and polarizable just as the category of Hodge structures of
smooth projective complex varieties [SR72]. Surprisingly enough, Jannsen
proved semisimplicity unconditionally and independently of the standard
conjectures [Jan92]. Polarizability is still open and it is intimately related
to the standard conjecture of Hodge type.

1Milne showed that the Hodge conjecture for complex abelian varieties implies the
standard conjecture of Hodge type for abelian varieties over any field [Mil02].
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As a conclusion of this historical panorama, let us mention that Gillet
and Soulé have proposed an arithmetic version of the standard conjectures
(i.e. over a ring of integers) [GS94]. Some results on the arithmetic standard
conjecture of Hodge type can be found in [Kün95, Kün98, KM00, KT01].

Main results. Let us now recall the formulation of the standard conjecture
of Hodge type.

Conjecture 1.2. Let d be the dimension of a smooth, projective and ge-
ometrically connected variety X and fix a hyperplane section L of X. For

n ≤ d/2 define the space of primitive cycles Zn,prim
num (X)Q as

Zn,prim
num (X)Q = {α ∈ Znnum(X)Q, α · Ld−2n+1 = 0 in Zd−n+1

num (X)Q}
and define the pairing

〈·, ·〉n : Zn,prim
num (X)Q ×Zn,prim

num (X)Q −→ Q
via the intersection product

α, β 7→ (−1)nα · β · Ld−2n.

The standard conjecture of Hodge type predicts that this pairing is positive
definite.

The evidences for Grothendieck were the case n = 1 (which can be shown
by reducing it to Theorem 1.1) and the case p = 0. Indeed, in characteristic
zero, one can use the cycle class map to relate the quadratic form 〈·, ·〉n to
the quadratic form given by the cup product on singular cohomology. Then
this kind of positivity statements can be deduced from positivity statements
in cohomology, such as the Hodge–Riemann relations in Hodge theory.

The following is our main theorem.

Theorem 1.3. The standard conjecture of Hodge type holds for abelian
fourfolds in positive characteristic.

It turns out that this statement is equivalent to the following, which is
maybe a more direct formulation (see also Proposition 3.15).

Theorem 1.4. Let X be an abelian fourfold. Then the intersection product

Z2
num(X)Q ×Z2

num(X)Q −→ Q
is of signature (s+; s−) = (ρ2 − ρ1 + 1; ρ1 − 1), with ρn as in (∗).

This formulation should be reminiscent of the Hodge index theorem.

Remark 1.5. As we explained above, the standard conjecture of Hodge type
is known in characteristic zero. Hence Theorem 1.3 is new only for those
algebraic classes that cannot be lifted to characteristic zero. We discuss the
existence of such classes in Appendix A.

By combining Theorem 1.3 with a theorem of Clozel [Clo99] we deduce
the following.
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Theorem 1.6. Let X be an abelian fourfold. Then numerical equivalence
on X coincides with `-adic homological equivalence on X for infinitely many
prime numbers `.

The fact that homological and numerical equivalence should always coin-
cide is also one of the four standard conjectures. The two others (namely
Künneth and Lefschetz) being known for abelian varieties, Theorems 1.3
and 1.6 imply that in order to fully understand the standard conjectures
for abelian fourfolds what is missing is `-independency of `-adic homological
equivalence.

Idea of the proof. The starting point of the proof2 of Theorem 1.3 is a
classical product formula from the theory of quadratic forms: let q be a
Q-quadratic form, if we know q ⊗Q` for all prime numbers ` then we have
information on the signature of q, more precisely we know the difference
s+ − s− modulo 8. When q is the quadratic form 〈·, ·〉n as above, then one
can hope to compute q ⊗Q` through the cycle class map.

In characteristic p = 0 one computes q ⊗R by directly embedding it into
singular cohomology. Our strategy should be thought as a way of circum-
venting the impossibility (when p > 0) of embedding q ⊗ R in some Weil
cohomology by instead embedding all the other completions of q in Weil
cohomologies.

In order to deduce the full signature from the information modulo 8 one
needs to be sure that the rank of q is small. Hence, one cannot apply
this strategy to the whole space of algebraic cycles but rather one first
decomposes it into smaller quadratic subspaces and then computes q ⊗ Q`

for each of those.
To do so, one first reduces the question to varieties defined over a finite

field (this is a classical specialization argument) where abelian varieties are
known to always admit complex multiplication [Tat66]. Then one uses com-
plex multiplication to decompose the space of algebraic cycles into smaller
quadratic subspaces. Finally, it turns out that when the abelian variety
has dimension four then the subspaces constructed are of rank two (at least
those where the problem is not trivial).

Technically speaking, we do not compute q⊗Q` directly, but rather con-
struct another Q-quadratic form q̃ and try to compare these two. This
quadratic form q̃ is constructed as follows. First, the abelian fourfold X
admits a lifting X̃ to characteristic zero on which complex multiplication
still acts (Honda–Tate). The action of complex multiplication decomposes

the singular cohomology H4
sing(X̃,Q) into subspaces. Those are quadratic

subspaces endowed with the cup product. To a given factor q of Z2
num(X)Q

2An idea of the strategy is also presented in the report [Anc16].
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one associates the factor q̃ of H4
sing(X̃,Q) which is (roughly speaking) the

same irreducible representation for the action of complex multiplication.

The comparison q ⊗ Q`
∼= q̃ ⊗ Q` holds for all ` 6= p by smooth proper

base change in `-adic cohomology. On the other hand one computes q̃ ⊗ R
using the Hodge–Riemann relations; it is negative definite if and only if the
Hodge types appearing in the Hodge structure q̃ are odd.

Now the theory of quadratic forms (in particular the product formula on
Hilbert symbols) tells us that the positivity of q ⊗ R is equivalent to the
following statement. The quadratic forms q⊗Qp and q̃⊗Qp are not isomor-
phic precisely if the Hodge types of q̃ are odd. (Note that this equivalence
holds because our quadratic spaces have rank two.)

This formulation translates the problem into a question in p-adic Hodge
theory. To solve it we use the p-adic comparison theorem which gives a
canonical isomorphism (q⊗Qp)⊗Bcrys

∼= (q̃⊗Qp)⊗Bcrys over a Qp-algebra
Bcrys. The strategy then consists in writing explicitly the matrix of the
isomorphism with respect to well chosen bases of the two Qp-structures (i.e.
computing the p-adic periods) and then exploit this explicit isomorphism to
determine whether the two quadratic forms are isomorphic also over Qp.

The reason for which a p-adic period is in general more computable than
a complex one is that it comes equipped with some extra structures (in
particular the action of an absolute Frobenius and the de Rham filtration)
which sometimes characterize it3. Moreover, in our particular situation,
these extra structures are particularly simple: the absolute Frobenius must
act trivially (because q ⊗ Qp is spanned by algebraic cycles) and the only
non-trivial subspace appearing in the de Rham filtration is a line (as these
quadratic spaces have rank two).

Once the matrix f ∈M2×2(Bcrys) of p-adic periods is explicitly computed
we exploit the relation (q ⊗ Bcrys) = (q̃ ⊗ Bcrys) ◦ f . Even though in this
equality we only know f , this information is enough to determine whether
the two quadratic forms q⊗Qp and q̃⊗Qp have the same discriminant and
represent the same elements of Qp. Again because we are in rank two these
properties control whether q ⊗Qp and q̃ ⊗Qp are isomorphic.

Organisation of the paper. In Section 3 we recall the standard conjecture
of Hodge type and present some first reduction steps, among which the fact
that it is enough to work over a finite field. We state Theorem 1.3 (Theorem
3.18 in the text) and deduce from it Theorem 1.6 (Theorem 3.20 in the text).
In Section 4 we recall classical results on the motive of an abelian variety.
In Section 5 we show that Theorem 3.18 holds true for Lefschetz classes on
abelian varieties, i.e. those algebraic classes that are linear combinations of
intersections of divisors. In Section 6 we recall that an abelian variety X

3For example, an element of Bcrys which is invariant under the Frobenius and sits in
the zeroth step of the filtration must be an element of Qp [Fon94, Theorem 5.3.7].
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over a finite field admits complex multiplication and use this to decompose
its motive. We also recall that X together with its complex multiplication
lifts to characteristic zero, hence its motivic decomposition lifts too. In
Section 7 we study the interesting subfactors of this decomposition and we
call them exotic. By definition, they are those containing algebraic classes
which are not Lefschetz classes. The main result of the section says that if
X has dimension four then exotic motives have rank two (in the sense that
their realizations are cohomology groups of rank two).

From there a somehow independent text starts, in which abelian varieties
are not involved anymore: we study motives of rank two, living in mixed
characteristic and having algebraic classes in positive characteristic. The
main result (Theorem 8.1) predicts the signature of the intersection product
on those algebraic classes. In Section 8 we put all pieces together and explain
how Theorem 8.1 implies Theorem 3.18. In Section 9 we recall classical facts
from the theory of quadratic forms and use them to reduce Theorem 8.1 to
a p-adic question. The tool to attack this p-adic question is p-adic Hodge
theory which we recall in Section 10. In Section 11 we describe the extra-
structures (Frobenius and filtrations) on the p-adic periods appearing and
we uniquely characterize them with respect to these extra-structures. This
characterization is essential to be able to determine them. We will compute
them in Section 12. The proof of Theorem 8.1 is concluded in Section 13.

Appendix A contains exemples of exotic motives and in particular of those
having algebraic classes that cannot be lifted to characteristic zero.
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2. Conventions

Throughout the paper we will use the following conventions.

(1) A variety will mean a smooth, projective and geometrically con-
nected scheme over a base field k.
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(2) Let k be a base field and F be a field of coefficients of characteristic
zero, we will denote by

CHM(k)F

the category of Chow motives over k with coefficients in F . (The
subscript F may sometimes be omitted.) For generalities, we refer
to [And04] in particular to [And04, Definition 3.3.1.1] for the no-
tion of Weil cohomology and to [And04, Proposition 4.2.5.1] for the
associated realization functor.

We will denote by

h : Vark −→ CHM(k)op
F

the functor associating to each variety its motive.
We will work also with homological and numerical motives.

The motive of a variety X in these categories will still be denoted
by h(X). We will denote by

NUM(k)F

the category of numerical motives over k with coefficients in F .
Finally, we will need also to work with relative motives as de-

fined for example in [O’S11, §5.1]. The relative situation that will
appear in this paper will always be over the ring of integers W of
a p-adic field. We will use analogous notation as in the absolute
setting, for example Chow motives over W will be denoted by

CHM(W ).

(3) By classical realizations4 we will mean Betti realization

RB : CHM(C)Q −→ GrVecQ,

`-adic realization (when ` is invertible in k)

R` : CHM(k)Q −→ GrVecQ`

de Rham realization (when k is of characteristic zero)

RdR : CHM(k)Q −→ GrVeck

and crystalline realization (when k is perfect and of positive charac-
teristic)

Rcrys : CHM(k)Q −→ GrVecFrac(W (k)).

For generalities see [And04, §3.4.2 and Proposition 4.2.5.1].
The realization functor are sometimes used in their enriched form,

i.e. RB provides Hodge structures, R` provides Galois representa-
tions, RdR provides filtered vector spaces and Rcrys provides absolute
Frobenius actions, see [And04, §7.1].

4We tried to distinguish the properties which hold true for any realization and those
which are known only for classical realizations. In any case, the main results of the paper
only make use of classical realizations and the reader can safely think only about them.
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(4) Let W be the ring of integers of a p-adic field K with residue field
k (then Frac(W (k)) is the maximal unramified subfield of K). We
will denote by

MOD

the category of admissible filtered ϕ-modules [BO83, HK94, DN18].
Recall that an element in MOD is, in particular, a finite dimen-

sional Frac(W (k))-vector space V , together with a decreasing fil-
tration Fil∗ on V ⊗Frac(W (k)) K and a (Frac(W (k))/Qp)-semilinear
endomorphism ϕ of V , usually called absolute Frobenius, verifying
some compatibilities between Fil∗ and ϕ.

There is a Hyodo-Kato realization functor

RHK : CHM(W )→ MOD

such that, after forgetting the absolute Frobenius, it coincides with
de Rham realization of the generic fiber RHK(·)⊗K = RdR(·|K) and,
after forgetting the filtration, it coincides with crystalline realization
of the special fiber RHK(·) = Rcrys(·|k).

(5) The unit object in one of the above categories of motives (Chow,
homological or numerical motives) over a base S is the motive h(S)
and it will be denoted by

1 := h(S).

When S = Spec(k) we have the identification

End(1) = Q.

(6) An algebraic class of a motive T is a map

α ∈ Hom(1, T ).

The realization of an algebraic class gives a map

R(α) : F −→ R(T ),

where F is the field of coefficients of the realization. The map R(α)
is characterized by its value at 1 ∈ F . An element of the cohomology
group R(T ) of this form

R(α)(1) ∈ R(T )

will be called an algebraic class of R(T ). By abuse of language, an
algebraic class of the cohomology group R(T ) may also be called an
algebraic class of the motive T .

Finally, we may sometimes ignore Tate twists and say that T has
algebraic classes when T (n) does. For example, for a variety X, the
cohomology group H2n(X) may have algebraic classes, although,
strictly speaking, these classes belong to H2n(X)(n). Hopefully this
will not bring confusion as we will work with motives whose realiza-
tion is concentrated in one single cohomological degree.
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(7) An algebraic class α of a motive T is numerically trivial if, for all
β ∈ Hom(T,1), the composition β ◦α is zero. Two algebraic classes
are numerically equivalent if their difference is numerically trivial.
(This recovers the classical definition [AK02, 7.1.2].)

(8) Let X be a variety. The space of algebraic cycles on X with coeffi-
cients in F modulo numerical equivalence will be denoted by

Znnum(X)F = HomNUM(k)F (1, h(X)(n)).

Similarly, for a fixed Weil cohomology, Znhom(X)F will denote the
space of algebraic cycles on X with coefficients in F modulo homo-
logical equivalence.

3. Standard conjecture of Hodge type

In this section we recall some classical conjectures (due to Grothendieck)
and give some reformulations of those. We state our main result (Theorem
3.18) and prove a consequence (Theorem 3.20).

Throughout the section, k is a base field, H∗ is a fixed classical Weil
cohomology and R is the associated realization functor (see Conventions).
We fix a variety X over k of dimension d and an ample divisor L on X.
We will write h(X) for its homological motive (with respect to H∗). The
section is written under the Assumption 3.4 (which is satisfied in particular
by abelian varieties).

Conjecture 3.1. (Standard conjecture of Künneth type)
There exists a decomposition

h(X) =
2d⊕
n=0

hn(X)

such that R(hn(X)) = Hn(X) and hn(X) = h2d−n(X)∨(−d).

Conjecture 3.2. (Standard conjecture of Lefschetz type)
For all n ≤ d, there is an isomorphism

hn(X)
∼−→ h2d−n(X)(d− n)

induced by the cup product with Ld−n. Moreover, the Künneth decomposi-
tion can be refined to a decomposition

hn(X) = hn,prim(X)⊕ hn−2(X)(−1)

which realizes to the primitive decomposition of Hn(X).

Remark 3.3. By the work of Lieberman and Kleiman the two conjectures
above are known for abelian varieties [Kle68, Lie68], see also Theorem 4.1.

Assumption 3.4. From now on we will assume that X verifies the Conjec-
tures 3.1 and 3.2.
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Remark 3.5. Conjectures 3.1 and 3.2 induce an isomorphism

hn(X)
∼−→ hn(X)∨(−n).

By adjunction this gives a pairing

qn : hn(X)⊗ hn(X) −→ 1(−n).

By construction the Lefschetz decomposition

hn(X) = hn,prim(X)⊕ hn−2(X)(−1)

is orthogonal with respect to this pairing.

Definition 3.6. For n ≤ d, we define the pairing

〈·, ·〉n,mot : hn(X)⊗ hn(X) −→ 1(−n)

recursively on n, by slightly modifying the pairing qn of the above remark.
We impose that the Lefschetz decomposition

hn(X) = hn,prim(X)⊕ hn−2(X)(−1)

is still orthogonal, we impose the equality 〈·, ·〉n,mot = 〈·, ·〉n−2,mot(−2) on
hn−2(X)(−1) and finally on hn,prim(X) we define

〈·, ·〉n,mot = (−1)n(n+1)/2qn.

Remark 3.7. If k is embedded in C, the Betti realization of 〈·, ·〉n,mot is a
polarization of the Hodge structure Hn(X).

Definition 3.8. We define the space Zn,prim
num (X)Q and the pairing 〈·, ·〉n.

(1) For n ≤ d/2, we define the pairing

〈·, ·〉n : Znhom(X)Q ×Znhom(X)Q −→ Q = End(1)

as follows. For α, β ∈ Znhom(X)Q = Hom(1, h2n(X)(n)) consider

(α⊗ β) ∈ Hom(1, h2n(X)⊗ h2n(X)(2n))

and define

〈α, β〉n = 〈·, ·〉2n,mot(2n) ◦ (α⊗ β).

(2) For n ≤ d/2, define Zn,prim
num (X)Q ⊂ Znnum(X)Q as

Zn,prim
num (X)Q = HomNUM(k)Q(1, h2n,prim(X)(n)).

We will keep the same notation as in (1) for the induced pairing

〈·, ·〉n : Zn,prim
num (X)Q ×Zn,prim

num (X)Q −→ Q.

Remark 3.9. The above definition is equivalent to the one given in the
introduction, namely

Zn,prim
num (X)Q = {α ∈ Znnum(X)Q, α · Ld−2n+1 = 0 in Zd−n+1

num (X)Q}.

Moreover, for α and β in Zn,prim
num (X)Q, we have the equality

〈α, β〉n = (−1)nα · β · Ld−2n.
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Notice that in the introduction we did not make the Assumption 3.4. Instead
Definition 3.6 cannot be formulated without the Assumption 3.4.

Conjecture 3.10. (Standard conjecture of Hodge type)
For all n ≤ d/2, the pairing

〈·, ·〉n : Zn,prim
num (X)Q ×Zn,prim

num (X)Q −→ Q

of Definition 3.8 is positive definite.

Proposition 3.11. The kernel of the pairing 〈·, ·〉n on the vector space
Znhom(X)Q is the space of algebraic classes which are numerically trivial.

The analogous statement holds true for Zn,prim
hom (X)Q.

Proof. This is a direct consequence of a general fact. Let T be a homological
motive and suppose that it is endowed with an isomorphism f : T

∼−→ T∨.
Call q : T ⊗ T → 1 the pairing induced by adjunction. In analogy to
Definition 3.8, q induces a pairing 〈·, ·〉 on the space Hom(1, T ). First, notice
that this pairing can also be described in the following way

〈α, β〉 = α∨ ◦ f ◦ β.

This equality holds for formal reasons in any rigid category (alternatively, for
homological motives, one can check it after realization). Using this equality
one has that β is in the kernel of the pairing if and only if (α∨ ◦f)◦β = 0 for
all α. As f is an isomorphism, this is equivalent to the fact that γ ◦ β = 0
for all γ ∈ Hom(T,1). This means precisely that β is numerically trivial.

To conclude, notice that, by construction, one can apply this general fact
to T = h2n(X)(n) or T = h2n,prim(X)(n). �

Corollary 3.12. The pairing 〈·, ·〉n is perfect on Znnum(X)Q. Moreover the
pairing is positive definite on Znnum(X)Q if and only if it is positive semidef-

inite on Znhom(X)Q. The analogous statements hold true for Zprim,n
num (X)Q.

Remark 3.13. If k is embedded in C and if we work with Betti cohomology
(cf. Remark 3.7), the Hodge–Riemann relations imply that 〈·, ·〉n is positive
definite on (n, n)-classes, hence on Znhom(X)Q. In particular the standard
conjecture of Hodge type holds true.

Moreover, homological and numerical equivalence coincide (recall that
we work under the Assumption 3.4). The argument is due to Liebermann
[Lie68] (see also [And04, Corollary 5.4.2.2]) and we recall it here.

If α ∈ Znhom(X)Q is a nonzero class in codimension n ≤ d/2 the inequal-
ity 〈α, α〉n > 0 implies that α is not numerically trivial. On the other
hand, the iterated intersection product with the hyperplane section L in-
duces an isomorphism Znhom(X)Q ∼= Zd−nhom (X)Q. Hence the intersection

product Znhom(X)Q × Zd−nhom (X)Q → Q is non-degenerate in one variable if
and only if it is non-degenerate in the other, which implies that homological
and numerical equivalence must coincide also in codimension n ≥ d/2.
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Together with the case of characteristic zero (see the above remark), the
following is the only known result on the standard conjecture of Hodge type
[And04, 5.3.2.3].

Theorem 3.14. The pairing 〈·, ·〉1 on Z1
num(X)Q is positive definite. Equiv-

alently, the pairing

Z1
num(X)Q ×Z1

num(X)Q −→ Q D,D′ 7→ D ·D′ · Ld−2

is of signature (s+; s−) = (1; ρ1 − 1) with ρ1 = dimZ1
num(X)Q.

Proposition 3.15. The standard conjecture of Hodge type for a fourfold X
is equivalent to the statement that the intersection product

Z2
num(X)Q ×Z2

num(X)Q −→ Q

is of signature (s+; s−) = (ρ2 − ρ1 + 1; ρ1 − 1) with ρn = dimZnnum(X)Q.
In particular the conjecture does not depend on the ample divisor L cho-

sen.

Proof. By Theorem 3.14 the standard conjecture of Hodge type holds true
for divisors. Hence we have to study codimension 2 cycles. Consider the
decomposition

Z2
num(X)Q = Z2,prim

num (X)Q ⊕ L · Z1
num(X)Q

induced by the Lefschetz decomposition

h4(X) = h4,prim(X)⊕ h2(X)(−1).

It is orthogonal with respect to the intersection product as the Lefschetz
decomposition is orthogonal with respect to the cup product (already at
homological level).

We claim that the intersection product on L · Z1
num(X)Q is of signature

(1; ρ1 − 1). Assuming the claim notice that the intersection product is pos-

itive definite on Z2,prim
num (X)Q if and only if the intersection product of the

total space Z2
num(X)Q has the predicted signature.

For the claim, consider α = L ·D an element of L · Z1
num(X)Q. Then we

have α · α = D ·D · L2 hence the claim follows from Theorem 3.14. �

Proposition 3.16. Let X0 be a specialization of X. Suppose that X0 as well
satisfies the Assumption 3.4 (with respect to the specialization of L). Then
the standard conjecture of Hodge type for X0 implies the standard conjecture
of Hodge type for X.

Proof. Consider the canonical inclusion Zn,prim
hom (X)Q ⊂ Zn,prim

hom (X0)Q in-
duced by smooth proper base change in `-adic cohomology. Then, if the

pairing 〈·, ·〉n is positive semidefinite on Zn,prim
hom (X0)Q it must be so for

Zn,prim
hom (X)Q. On the other hand, by Corollary 3.12, this semipositivity

property is a reformulation of the standard conjecture of Hodge type. �
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Remark 3.17. The above proposition reduces the standard conjecture of
Hodge type to varieties defined over a finite field. Such reduction step is
classical, see for example [And04, Remark 5.3.2.2(2)].

The following is our main result. It is shown at the end of Section 8.

Theorem 3.18. The standard conjecture of Hodge type holds for abelian
fourfolds in positive characteristic.

Corollary 3.19. Let A and A0 be two abelian fourfolds and suppose that A0

is a specialization of A. Let us fix a prime number `. If `-adic homological
equivalence on A0 coincide with numerical equivalence on A0 then the same
holds true for A.

Proof. First, notice that the question whether homological and numerical

equivalence coincide only matters for Z2,prim
hom (A)Q. Indeed, homological and

numerical equivalence coincide for divisors [Mat57] (see also [And04, Propo-
sition 3.4.6.1]). This implies that they coincide also on dimension one cycles,
as the standard conjecture of Lefschetz type holds true for abelian varieties.
Finally, consider the decomposition

Z2
hom(A)Q = Z2,prim

hom (A)Q ⊕ L · Z1
hom(A)Q,

and notice that on the complement of Z2,prim
hom (A)Q the equivalences again

coincide, as a consequence of the case of divisors.

Now, by smooth proper base change we have Z2,prim
hom (A)Q ⊂ Z2,prim

hom (A0)Q.
If homological and numerical equivalence coincide on A0 then the pairing

〈·, ·〉2 on Z2,prim
hom (A0)Q is positive definite by Theorem 3.18. Hence it is

also positive definite on Z2,prim
hom (A)Q. By Proposition 3.11, this means that

there are no nonzero algebraic classes in Z2,prim
hom (A)Q which are numerically

trivial. �

Theorem 3.20. Let A be an abelian fourfold. Then numerical equivalence
on A coincides with `-adic homological equivalence on A for infinitely many
prime numbers `.

Proof. When A is defined over a finite field, this result is due to Clozel
[Clo99]. (Clozel’s result actually holds true without the dimensional restric-
tion.) We can reduce to the finite field case by Corollary 3.19. �

Remark 3.21. The fact that homological and numerical equivalence should
always coincide is also one of the four standard conjectures. The two others,
namely Künneth and Lefschetz, being known for abelian varieties, Theo-
rems 3.18 and 3.20 imply that in order to fully understand the standard
conjectures for abelian fourfolds what is missing is `-independency of `-adic
homological equivalence.
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4. The motive of an abelian variety

In this section we recall classical results on motives of abelian type. We
will work with the category of Chow motives CHM(k)F , we fix a Weil co-
homology H∗ together with its realization functor R. Generalities on this
category can be found in the Conventions.

Theorem 4.1. Let A be an abelian variety of dimension g. Let End(A) be
its ring of endomorphisms (as group scheme) and h(A) ∈ CHM(k)F be its
motive. Then the following holds:

(1) [DM91] The motive h(A) admits a Chow–Künneth decomposition

h(A) =

2g⊕
n=0

hn(A)

natural in End(A) and such that

R(hn(A)) = Hn(A).

(2) [Kün94] The intersection product induces a canonical isomorphism
of graded algebras

h∗(A) = Sym∗h1(A).

(3) [Kin98, Proposition 2.2.1] The action of End(A) on h1(A) (coming
from naturality in (1)) induces an injective morphism of algebras

End(A)⊗Z F ↪→ EndCHM(k)F (h1(A))

and if A is isogenous to B × C then h1(A) = h1(B)⊕ h1(C).
(4) [Kün93] The Chow–Lefschetz conjecture holds true for A. In par-

ticular, the classical isomorphism in `-adic cohomology induced by a
polarization H1

` (A) ∼= H1
` (A)∨(−1) lifts to an isomorphism

h1(A) ∼= h1(A)∨(−1).

Remark 4.2. We will need the above results also in a slightly more general
context, namely over the ring of integers of a p-adic field. Nowadays these
results are known over very general bases, see [O’S11, Theorem 5.1.6] or
[AHPL16, Theorem 3.3].

Definition 4.3. A motive is called of abelian type if it is a direct factor of
the motive of an abelian variety (up to Tate twist).

We say that a motive of abelian type T is of rank d if the cohomology
groups of R(T ) are all zero except in one degree and in that degree the
cohomology group is of dimension d. In this case we will write dimT = d.

Remark 4.4. For motives of abelian type this definition is known to be in-
dependent of R, see for example [Jan07, Corollary 3.5] and [Ancar, Corollary
1.6].
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Proposition 4.5. Let T be a motive of abelian type of dimension d. Con-
sider its space of algebraic classes modulo numerical equivalence

VZ = VZ(T ) = HomNUM(k)Q(1, T ).

Then the inequality dimQ VZ ≤ d holds.
Moreover, if the equality dimQ VZ = d holds then we have the following

facts:

(1) All realizations of T are spanned by algebraic classes.
(2) Numerical equivalence on HomCHM(k)Q(1, T ) coincides with homo-

logical equivalence (for all cohomologies).
(3) Call L the field of coefficients of the realization R, then the equality

VZ ⊗Q L = R(T ) holds.

Proof. Let us consider n elements v̄1, . . . , v̄n which are linearly independent
in VZ and fix v1, . . . , vn ∈ HomCHM(k)Q(1, T ) which are liftings of those.
By definition of numerical equivalence, there exist n elements f1, . . . , fn in
HomCHM(k)Q(T,1) such that fi(vj) = δij . By applying a realization we get

R(fi)(R(vj)) = δij which implies the inequality n ≤ dimR(T ) = d.
When n = d, the argument just above shows that R(v1), . . . , R(vd) form

a basis of Hom(R(1), R(T )), which means that R(T ) is spanned by the
algebraic classes R(v1)(1), . . . , R(vd)(1), hence we have (1).

Fix an element v ∈ HomCHM(k)Q(1, T ) and write its realization in the pre-

vious basis R(v) = λ1R(v1) + . . .+ λdR(vd). Consider now the composition
fi(v). On the one hand, it is a rational number, on the other hand it equals
λi. This means that any algebraic class is a rational combination of the
basis R(v1)(1), . . . , R(vd)(1). This implies the points (2) and (3). �

5. Lefschetz classes

The standard conjecture of Hodge type is known for divisors (Theorem
3.14). In this section we explain how this implies the standard conjecture
of Hodge type for algebraic classes on abelian varieties that are linear com-
binations of intersections of divisors. This has been already pointed out by
Milne [Mil02, Remark 3.7] using a different argument.

Throughout the section A is a polarized abelian variety of dimension g.
We will work with the motive hn(A) from Theorem 4.1 and the pairing
〈·, ·〉n,mot from Definition 3.6.

Definition 5.1. Let Q[Z1
num(A)Q] be the subalgebra of Z∗num(A)Q generated

by Z1
num(A)Q. An element of Q[Z1

num(A)Q] is called a Lefschetz class. The
subspace of Lefschetz classes in Znnum(A)Q is denoted by Ln(A).

Remark 5.2. Given two positive integers a, b such that a · b ≤ g we have
the canonical inclusions

(5.1) ha·b(A) = Syma·bh1(A) ⊂ (Symah1(A))⊗b = ha(A)⊗b.

induced by Theorem 4.1(2). In particular any pairing on the right hand side
induces a pairing on the left hand side.
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Lemma 5.3. Fix an integer n such that 2 ≤ 2n ≤ g. Then the three mo-
tivic pairings 〈·, ·〉⊗2n

1,mot, 〈·, ·〉
⊗n
2,mot and 〈·, ·〉2n,mot on h2n,prim(A) ∈ NUM(k)Q

coincide up to a positive rational scalar. Moreover, for each of these pair-
ings, the Lefschetz decomposition h2n(A) = h2n,prim(A)⊕ h2n−2,prim(A)(−1)
is orthogonal.

Proof. Our statement holds true even at homological level and not just nu-
merically. For this, it is enough to check the statement after realization, for

instance on the cohomology group H2n,prim
` (A).

To do this, take the moduli space of polarized abelian varieties (in mixed
characteristic, with some fixed level structure). These pairings are defined
on the relative cohomology of the abelian scheme. Recall that the Zariski
closure of the monodromy group associated to this relative cohomology is

GSp2g = GSp(H1
` (A)) and that H2n,prim

` (A) ⊂ H2n
` (A) = Λ2nH1

` (A) is a
geometrically irreducible representation. This implies that these pairings
coincide up to a scalar, by Schur’s lemma. As these pairings are also de-
fined on Betti cohomology this scalar must be rational. Moreover, they
are polarizations of the underlying Hodge structure, so this scalar must be
positive.

For the orthogonality part, the argument is the same. If, for a fixed pair-
ing, the decomposition was not orthogonal, we would have a nonzero map be-

tween H2n,prim
` (A) and H2n−2

` (A)(−1)∨ which would be GSp2g-equivariant.
This is impossible again by Schur’s lemma. �

Proposition 5.4. Fix an integer n such that 2 ≤ 2n ≤ g. The pairings
〈·, ·〉⊗2n

1,mot, 〈·, ·〉
⊗n
2,mot and 〈·, ·〉2n,mot on Znnum(A)Q are positive definite if and

only if anyone of them is so. Moreover, they are positive definite on Ln(A).

Proof. By Lemma 5.3 the Lefschetz decomposition

h2n(A) = h2n,prim(A)⊕ h2n−2,prim(A)(−1)

is orthogonal with respect to any of these pairings, so, arguing by induction
on n, it is enough to check positivity on algebraic classes of h2n,prim(A).
Again by Lemma 5.3 the positivity on the primitive part does not depend
on the pairing.

The argument just above works also for Lefschetz classes, indeed each
component in the Lefschetz decomposition of a Lefschetz class is again a
Lefschetz class [Mil99, p. 640]. Hence we can check positivity for one of
the pairings, we will do it for 〈·, ·〉⊗n2,mot. Notice that, by construction, the

restriction of 〈·, ·〉⊗n2,mot to algebraic classes is 〈·, ·〉⊗n1 , see Definition 3.8.

Now, by (5.1), we have the inclusion

Znnum(A)Q = HomNUM(k)Q(1, h2n(A)(n)) ⊂ HomNUM(k)Q(1, (h2(A)(1))⊗n).

Moreover Theorem 4.1(2) implies the equality

Ln(A)Q = Znnum(A)Q ∩ Z1
num(A)⊗nQ

where the intersection is taken inside HomNUM(k)Q(1, (h2(A)(1))⊗n).
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On the other hand, the pairing 〈·, ·〉1 on

Z1
num(A)Q = HomNUM(k)Q(1, h2(A)(1))

is positive definite by Theorem 3.14. Hence the pairing 〈·, ·〉⊗n1 on

Z1
num(A)⊗nQ = HomNUM(k)Q(1, h2(A)(1))⊗n

is positive definite as well. In particular its restriction to Ln(A)Q will also
be positive definite. �

6. Abelian varieties over finite fields

We start by recalling classical results on abelian varieties over finite fields
and afterwards we draw some consequences on motives and algebraic cycles.
The abundance of endomorphisms (due to Tate) will allow to decompose
the motive of such an abelian variety in small factors. The main results are
Proposition 6.8 and Corollary 6.12 which will be essential to apply Theorem
8.1 to abelian varieties. The latter says that such a decomposition lifts to
characteristic zero and the former that each factor of the decomposition
either does not contain algebraic classes (hence it is not interesting for our
problem) either it is spanned by algebraic classes.

Throughout the section, we consider an abelian variety A of dimension g
over a finite field k. We denote by End(A) the ring of endomorphisms of A
and by FrobA the Frobenius of A. We write End0(A) for End(A)⊗Z Q, and
∗ for the Rosati involution on it (induced by a polarization).

Theorem 6.1. (Tate) A maximal commutative Q-subalgebra of End0(A)
has dimension 2g [Tat66]. There exist maximal commutative Q-subalgebras
of End0(A) which are the product of CM fields [Tat71, Lemma 2].

Remark 6.2. Any maximal commutative Q-subalgebra of End0(A) must
contain FrobA as the latter is contained in the center of End0(A).

Definition 6.3. When A is a simple abelian variety over k a CM-structure
for A is the choice of a maximal CM field in End0(A).

For a general A the choice of a decomposition of A in the isogeny category
as a product of simple abelian varieties A1×· · ·×At and a CM-structure Li
for each Ai induce a maximal commutative Q-subalgebra B = L1 × · · · × Lt
of End0(A). An algebra B constructed as above is called a CM-structure
for A. If such an algebra is ∗-stable we will say that the CM-structure is
∗-stable.

Remark 6.4. We will see (Corollary 6.11) that given a CM-structure there
exists (possibly after a finite extension of the base field k and after isogeny)
a polarization for which the CM-structure is ∗-stable.

Notation 6.5. Let B be a CM-structure for A. We write

B = L1 × · · · × Lt
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as a product of CM fields. Let L be the number field which is the Galois
closure (over Q) of the compositum of the fields Li, it is a CM number field
as well [Shi71, Proposition 5.12]. Let Σi be the set of morphisms from Li to
L and Σ be the disjoint union

Σ = Σ1 ∪ · · · ∪ Σt.

Write ·̄ for the action on Σ induced by composition with complex conjuga-
tion. We will use the same notation for the induced action on subsets of
Σ.

Proposition 6.6. Let L and Σ be as in Notation 6.5. Then, in CHM(k)L,
the motive h1(A) decomposes into a sum of 2g motives

h1(A) =
⊕
σ∈Σ

Mσ,

where the action of b ∈ Li on Mσ induced by Theorem 4.1(3) is given by mul-
tiplication by σ(b) if σ ∈ Σi and by multiplication by zero otherwise. More-
over, each motive Mσ is of rank one (in the sense of Definition 4.3). Finally,
if the CM-structure is ∗-stable, the isomorphism p : h1(A) ∼= h1(A)∨(−1) of
Theorem 4.1(4) restricts to an isomorphism

Mσ
∼= M∨σ̄ (−1)

for all σ ∈ Σ, and to the zero map

Mσ
0−→M∨σ′(−1)

for all σ′ 6= σ̄.

Proof. This is [Ancar, Corollary 3.2], we recall here the argument. Consider
the inclusion L1 × · · · × Lt ↪→ End0(A). By Theorem 4.1(3), we deduce an
inclusion (

∏
i Li)⊗L ↪→ EndCHMab(k)L

(h1(A)). Each projector of the product

of fields (
∏
i Li)⊗ L ∼=

∏
i L

Σi defines a factor Mσ.
Let us now consider the last part of the statement. First, it can be checked

after realization [Ancar, Corollary 1.12]. Secondly, Rosati involution acts
as complex conjugation on CM fields [Mum08, pp. 211-212]. Then the
statement follows by the very definition of Rosati involution. �

Proposition 6.7. In the setting of Notation 6.5 and Proposition 6.6 the
following holds:

(1) In CHM(k)L the motive hn(A) decomposes into a sum

hn(A) =
⊕

I⊂Σ,|I|=n

MI ,

with MI = ⊗σ∈IMσ. Each motive MI is of rank one (in the sense
of Definition 4.3).

Moreover, if the CM-structure is ∗-stable, then the motives MI

and MJ are mutually orthogonal in NUM(k)L with respect to 〈·, ·〉⊗n1,mot

(Definition 3.6) except if I = J .
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(2) In CHM(k)Q the motive hn(A) decomposes into a sum of motives

hn(A) =
⊕
MI ,

whereMI is spanned by the factors of the form Mg(I), with g varying
in Gal(L/Q).

Moreover, if the CM-structure is ∗-stable, this decomposition in
NUM(k)Q is orthogonal with respect to 〈·, ·〉⊗n1,mot (Definition 3.6).

Proof. Part (2) follows from part (1). For the latter, Proposition 6.6 gives
the case n = 1. Using Theorem 4.1(2) we deduce the result for higher n. �

Proposition 6.8. Let MI ∈ CHM(k)Q be a direct factor of h2n(A) as
constructed in Proposition 6.7(2). Then the following holds:

(1) If the vector space HomNUM(k)Q(1,MI(n)) is not zero then

dimQ HomNUM(k)Q(1,MI(n)) = dimMI .

In this case homological and numerical equivalence coincide on MI

and the realizations of MI are spanned by algebraic classes.
(2) If the vector space HomNUM(k)Q(1,MI(n)) contains a nonzero Lef-

schetz class (Definition 5.1), then all algebraic classes in it are Lef-
schetz.

Proof. As numerical equivalence commutes with extension of scalars over Q
[And04, Proposition 3.2.7.1], we have

dimQ HomNUM(k)Q(1,MI(n)) = dimL HomNUM(k)L(1,MI(n)).

On the other hand, by construction of MI (see Proposition 6.7(2)), we
have that the space HomNUM(k)L(1,MI(n)) is generated by the spaces
HomNUM(k)L(1,Mg(I)(n)), with g varying in Gal(L/Q).

Moreover, as Gal(L/Q) acts on the space of algebraic cycles modulo nu-
merical equivalence, we have

dimL HomNUM(k)L(1,MI(n)) = dimL HomNUM(k)L(1,Mg(I)(n)),

for all g ∈ Gal(L/Q).
Now, by Proposition 6.7(1), the motives MI ∈ CHM(k)L are of rank one

hence, by Proposition 4.5, the above dimension is either zero or one. This
implies the equality in part (1). The rest of part (1) follows from Proposition
4.5 as well.

For part (2), the proof just goes as part (1) as all the properties of mo-
tives and algebraic classes that we used hold true for Lefschetz motives and
Lefschetz classes by [Mil99, p. 640]. �

Remark 6.9. The previous proposition is not accessible if one replaces
numerical with homological equivalence as it is not known that homological
equivalence commutes with extension of scalars. One finds the same issues
in [Clo99]. This is the crucial reason for which the main results in this paper
are in the setting of numerical equivalence.
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Theorem 6.10 ([Tat71, Theorem 2]). For any CM-structure B for A (Def-
inition 6.3), the pair (A,B) lifts to characteristic zero. More precisely there
exists a p-adic field K with ring of integers W whose residue field k′ is a
finite extension of k, and there is an abelian scheme A over W together with
an embedding B ↪→ End0(A), such that A×W k′ is isogenous to A×k k′ (and
the isogeny is B-equivariant).

Corollary 6.11. There exists a polarization on the abelian scheme A for
which the CM-structure is ∗-stable

Proof. Consider the decomposition A = A1×· · ·×At in product CM simple
abelian schemes given from the choice of the CM-structure (Definition 6.3).
Choose the polarization to be the product of a polarization on each factor.
The statement then reduces to the case when A is simple and it is enough to
check it on the generic fiber, hence in characteristic zero. On the other hand
the endomorphism algebra of a simple CM abelian variety in characteristic
zero cannot be bigger than the CM-structure itself [Mum08, §22], hence the
∗-stability is automatic. �

Corollary 6.12. The decompositions of h(A ×k k′) in Proposition 6.7 lift
to decompositions of h(A) ∈ CHM(W ). Moreover, if the CM-structure of
A is ∗-stable (and if the polarisation lifts as well) then the orthogonality
statement in Proposition 6.7 holds true in CHM(W ) as well.

Proof. The proof of Proposition 6.7 is a formal combination of Theorem 4.1
together with the CM-structure. It works also over W because of Remark
4.2 and Theorem 6.10. �

7. Exotic classes

In this section we fix an abelian variety A of dimension four over a fi-
nite field k (and we fix an algebraic closure k̄ of k). After choosing a
CM-structure for A (Definition 6.3), Proposition 6.7(2) constructs motives
MI ∈ CHM(k)Q which are direct factors of the motive h4(A). Some of them,
that we will call exotic, are essential in the proof of the standard conjecture
of Hodge type for A. The main result of the section (Proposition 7.3) tells
us that they are of rank two (in the sense of Definition 4.3).

Definition 7.1. Let MI ∈ CHM(k)Q be a direct factor of h4(A) as con-
structed in Proposition 6.7(2). The motiveMI is called exotic if the space of
algebraic classes HomNUM(k)Q(1,MI(2)) is nonzero and it does not contain

any nonzero Lefschetz class (Definition 5.1).
An element in the Q-vector space HomNUM(k)Q(1,MI(2)) will be called

an exotic class.

Remark 7.2. Notice that, by Proposition 6.8(1), any exotic motive verifies
the equality

(#) dimQ HomNUM(k)Q(1,MI(2)) = dimMI .
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Examples of exotic classes on abelian fourfolds (and especially of those that
cannot be lifted to characteristic zero) will be discussed in Appendix A.

Proposition 7.3. Suppose that A has dimension four. Then there exist a
finite extension k′ of k and a CM-structure for A×k k′ such that any exotic
motive MI ∈ CHM(k′)Q of h4(A×k k′) has dimension two.

The proof is decomposed in a series of lemmas and will take the rest of
the section. We first fix notation and assumptions that will be used for the
lemmas below.

Notation 7.4. Let Σ be as in Notation 6.5. Consider the decomposition
h1(A) =

⊕
σ∈ΣMσ from Proposition 6.6. (Recall that Frobenius acts on each

of the eight Mσ, see Remark 6.2.) Let us denote ασ ∈ Q the eigenvalues for
the action of Frobenius on Mσ. We will denote by ·̄ the action of complex
conjugation on Σ (or on the set of parts of Σ, or on Q).

Assumption 7.5. We will suppose that all the algebraic classes Z∗num(Ak̄)Q
are defined over k.

Remark 7.6. Note that the assumption above always holds after a finite
extension of k. Notice also that, under this assumption, a class which be-
comes Lefschetz after a finite extension of the base field must be already
Leftschetz. Hence, a motive which is exotic over the base field will still be
exotic after a finite extension.

Lemma 7.7. Let q be the cardinality of k and let MI be an exotic motive.
Then we have the relation

(7.1)
∏
σ∈I

ασ = q2.

Moreover, we have the property

(7.2) ασ · ατ 6= q, ∀σ 6= τ, σ, τ ∈ I.
Proof. By Proposition 6.8(1) the `-adic realization of MI is spanned by
algebraic cycles hence Frobenius acts on it by multiplication by q2. On the
other hand, by construction (see Proposition 6.7(1)), Frobenius acts on the
line MI ⊂MI via the multiplication by

∏
σ∈I ασ. This gives (7.1).

Suppose now that (7.2) is not satisfied. Then (7.1) would force the set
{ασ}σ∈I to be of the form α, q/α, β, q/β. Each of the pairs (α, q/α) and
(β, q/β) would correspond to a Frobenius invariant class in H2

` (A)(1). As the
Tate conjecture for divisors on abelian varieties is known [Tat66, Theorem
4], each of these pairs corresponds to the class of a divisor, hence MI would
contain a Lefschetz class. �

Definition 7.8. A subset I of Σ of cardinality 4 verifying (7.1) and (7.2) is
called an exotic subset.

Remark 7.9. Lemma 7.7 implies that the dimension of the space of exotic
classes is at most the number of exotic subsets. The Tate conjecture for A
predicts that this inequality should actually be an equality.
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Lemma 7.10. The following holds.

(1) Let I be an exotic subset, then the pair (I, Ī) forms a partition of Σ.
(2) Any Gal(Q/Q)-conjugate of an exotic subset is again exotic.
(3) Any exotic motive is even dimensional.

Proof. Recall that the Weil conjectures imply ᾱ = q/α. Then property
(7.2) gives the first part. The second part follows from the very definition of
exotic subset. Altogether complex conjugation acts without fixed points on
the Gal(Q/Q)-conjugates of I, hence the cardinality of the orbit of I under
the action of Gal(Q/Q) is even. On the other hand, this cardinality is the
dimension of MI (see Proposition 6.7), this concludes the last part. �

Lemma 7.11. Under the Assumption 7.5, an exotic subset I verifies

(7.3) (ασ · ατ )n 6= qn, ∀σ 6= τ, σ, τ ∈ I
(for all positive integer n).

Proof. If we extend the scalars to Fqn the motive MI will still be exotic (Re-
mark 7.6). The eigenvalues of Frobenius become {αnσ}. Hence, by applying
(7.2) over this new base field we deduce (7.3). �

Lemma 7.12. Under the Assumption 7.5, two exotic subsets cannot inter-
sect in exactly two elements.

Proof. Suppose that there are two exotic subsets I and J whose intersection
has cardinality two. Let us call α, β the two Frobenius eigenvalues corre-
sponding to I − I ∩ J and γ, δ those corresponding to J − I ∩ J . Property
(7.1) gives

α · β = γ · δ
and property (7.2) gives (after reordering if necessary)

α = q/γ , β = q/δ.

Putting these relations together we have α2 = q2/β2. This equality gives a
contradiction by applying (7.3) to I for n = 2. �

Lemma 7.13. Under the Assumption 7.5, the dimension of the space of
exotic classes is zero, two or four. More precisely, there are either zero, two
or four exotic subsets. In case they are two, they are complex conjugate to
each other. In case they are four, they are of the form I, Ī, J, J̄ , with I ∩ J
of cardinality three.

Proof. The statement on exotic classes is implied by the statement on exotic
subsets. Indeed, the dimension of the space of exotic classes is even (Lemma
7.10 together with the relation (#) in Remark 7.2) and it is at most the
number of exotic subsets (Remark 7.9).

Let us now show the statement on exotic subsets. We have already pointed
out in the proof of Lemma 7.10 that complex conjugation acts without fixed
points on the exotic subsets. Suppose now that there are at least four such
subsets, call them I, Ī, J, J̄ . Then one subset among J and J̄ intersects I in
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at least two elements. Without loss of generality we suppose it is J . Then
by Lemma 7.12, I ∩ J must be of cardinality three.

If there were more than four exotic subsets, then, by the same arguments
there would be an exotic subset K intersecting I in exactly three elements.
Then the intersection of J and K would have exactly two elements. This is
impossible by Lemma 7.12. �

Lemma 7.14. Suppose that there are four exotic subsets and that the As-
sumption 7.5 is satisfied. Then, after extending k = Fq to its quadratic
extension Fq2, the abelian fourfold A becomes isogenous to E × X where
X is an abelian threefold and E is a supersingular elliptic curve on which
Frobenius acts as q · id.

Proof. We keep notation from Lemma 7.13. If the element of I − I ∩ J is
σ then the element of (J − I ∩ J) = J ∩ Ī must be σ̄ because of Lemma
7.10(1). Let α be the Frobenius eigenvalue for the action on Mσ, then (7.1)
applied to I and J implies α = ᾱ, hence α2 = q.

Let us now extend the field of definition to Fq2 . Among the eight eigen-
values of Frobenius we will find q, which means that there is a nonzero
Frobenius-equivariant map between the Tate module of the supersingular
elliptic curve E and the Tate module of A. This implies the statement by
[Tat66, Theorem 4]. �

Lemma 7.15. We keep Notation 7.4 and Assumption 7.5. Consider on the
base field k = Fq2 a supersingular elliptic curve E on which Frobenius acts
as q · id. Let A be an abelian fourfold of the form A = E×X, let ΣX and ΣE

be CM-structures for X and E and define Σ = ΣX ∪ ΣE. Then, any exotic
subset I verifies that I ∩ ΣX has cardinality three. Moreover, the motive
MI∩ΣX

∈ CHM(k)Q, direct factor of h3(X) as constructed in Proposition
6.7, is of dimension two.

Finally, if the space of exotic classes on A is four dimensional, it is con-
tained in the four dimensional motive MI∩ΣX

⊗ h1(E).

Proof. First recall that the pair (I, Ī) forms a partition of Σ by Lemma
7.10(1). As ΣX has cardinality six and is stable by the action of complex
conjugation one must have that I ∩ ΣX has cardinality three.

Consider the subsets K ⊂ ΣX (of cardinality three) verifying

(7.4)
∏
σ∈K

ασ = q3

(7.5) ασ · ατ 6= q2, ∀σ 6= τ, σ, τ ∈ K
and

(7.6) ασ 6= q, ∀σ ∈ K
Clearly the relations (7.1) and (7.2) for I imply that K = I ∩ΣB verifies

(7.4),(7.5) and (7.6). Conversely, the relations (7.4),(7.5) and (7.6) for K
imply that I = K ∪{σ} verifies (7.1) and (7.2) for any σ ∈ ΣE . As there are



24 GIUSEPPE ANCONA

at most four exotic subsets for A, there must be at most two subsets of ΣX

verifying (7.4),(7.5) and (7.6). On the other hand I∩ΣX and Ī∩ΣX are two
of those, which implies that there are exactly two subsets of ΣX verifying
(7.4),(7.5) and (7.6). Finally, as the Galois group Gal(Q̄/Q) acts on those
subsets then the motive MI∩ΣX

has dimension two. The rest follows from
the construction of MI∩ΣX

. �

Lemma 7.16. Consider an abelian fourfold of the form A = E ×X, where
E is a supersingular elliptic curve such that dimQ End(E) ⊗Z Q = 4. Fix
a CM-structure for X and consider a direct factor of h3(X) of the form
MI ∈ CHM(k)Q, as constructed in Proposition 6.7. Suppose that MI has
rank two and that the motive MI ⊗ h1(E) is spanned by algebraic classes.
Then there exists a CM structure for E (write ΣE = {σ, σ̄}) such that the
motive MI ⊗h1(E) decomposes in the category CHM(k)Q as the sum of two
motives of rank two

MI ⊗ h1(E) =MI∪σ ⊕MI∪σ̄

via Proposition 6.7(2).

Proof. By construction of MI (Proposition 6.7(2)) we can find a quadratic
number field F such that the motiveMI decomposes in the category CHM(k)F
into the sum

MI = MI ⊕MĪ

of two motives of rank one. In order to conclude, it is enough to show
that also h1(E) decomposes in the category CHM(k)F into the sum of two
motives of dimension one.

This fact is equivalent to saying that F can be embedded in the division
algebra End(E) ⊗Z Q. As this algebra splits at all primes except infinity
and the characteristic of the base field (call it p), we have to show that the
embeddings F ⊂ R and F ⊂ Qp cannot exist. Indeed, as the degree of
F over Q is the same as the index of the central Q-algebra End(E) ⊗Z Q
(namely two), the inclusion F ⊂ End(E)⊗Z Q is equivalent to the fact that
End(E) ⊗Z F is a matrix algebra. By the Albert–Brauer–Hasse–Noether
theorem this can be checked locally. As End(E) ⊗Z Q` is already a matrix
algebra it is enough to check at p and at infinity. Now if F does not embed
in R and Qp then F ⊗Q R and F ⊗Q Qp are quadratic field extensions of R
and Qp. As End(E) ⊗Z Q has invariant 1/2 at p and infinity it becomes a
matrix algebra after tensoring with these quadratic extensions.

We will give two proofs of the non existence of the embeddings F ⊂ R
and F ⊂ Qp.

A first proof uses that these motives lift to characteristic zero (Proposition
6.12). Now if F was contained in R then the Betti realization of the lifting
of MI would respect the Hodge symmetry. This is impossible as it is one
dimensional and of weight three. Similarly, if F was contained in Qp then
the Hyodo-Kato realization of MI and MĪ would be two filtered ϕ-modules
of dimension one with different filtrations (again because the weight ofMI is
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three). This implies that det(MI⊗h1(E)) and det(MĪ⊗h1(E)) would realize
in two filtered ϕ-modules of dimension one and different filtrations. On the
other hand absolute Frobenius acts on both in the same way (namely by
multiplication by p4) because they are spanned by algebraic classes. This
implies that at least one of the two filtered ϕ-modules is not admissible
and concludes the proof as all filtered ϕ-modules coming from geometry
(in particular filtered ϕ-modules that are realizations of motives) must be
admissible.

We give an alternative proof, which does not use the lifting to character-
istic zero. We write it for Qp, it works in the same way for R. If F was
contained in Qp then the motive MI ⊗ h1(E) would live in CHM(k)Qp . On
such a motive the division algebra End(E) ⊗Z Qp acts hence it acts also
on the Qp vector space spanned by the algebraic classes of the motive. On
the other hand, as this motive is spanned by algebraic classes, the division
algebra End(E) ⊗Z Qp would act on a Qp-vector space of dimension two.
This gives a contradiction as such an action cannot exist. �

Proof of Proposition 7.3. This is a combination of the last four lemmas. �

8. Orthogonal motives of rank 2

We start by stating our main technical result, Theorem 8.1. The remark
and proposition right after will hopefully give some intuitions on the hypoth-
esis of the statement. We conclude the section by showing that Theorem
8.1 implies Theorem 3.18. The proof of Theorem 8.1 will take the rest of
the paper and will be ended in Section 13.

Theorem 8.1. Let K be a p-adic field, W its ring of integers and k its
residue field. Let us fix an embedding σ : K ↪→ C. Let

M ∈ CHM(W )Q

be a motive in mixed characteristic and consider the motives induced by
pullbacks M|C ∈ CHM(C)Q and M|k ∈ CHM(k)Q. Consider VB and VZ the
two Q-vector spaces defined as

VB = RB(M|C) and VZ = HomNUM(k)Q(1,M|k).

Let q be a quadratic form on M , by which we mean a morphism in
CHM(W )Q of the form q : Sym2M −→ 1. Consider the two Q-quadratic
forms induced by q on VB and VZ respectively,

qB = RB(q) and qZ(·) = (q|k ◦ Sym2(·)).

Suppose that the following holds:

(1) The two Q-vector spaces VB and VZ are of dimension 2.
(2) The pairing qB on VB is a polarization of Hodge structures.

Then the quadratic form qZ is positive definite.
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Remark 8.2. (1) The main example of such a motive M we have in
mind is an exotic motive of an abelian fourfold (see Section 7). An-
other example coming from geometry is given in Proposition A.9.

(2) One can actually make the hypothesis a little bit more flexible and
work with homological motives instead of Chow motives. This will
not matter for our application to abelian varieties.

Proposition 8.3. Under the hypothesis of Theorem 8.1 the following holds:

(1) The quadratic form qZ on VZ is non-degenerate.
(2) Given a classical realization R, the vector space R(M|k) is of dimen-

sion two.
(3) Given a classical realization R, the vector space R(M|k) is spanned

by algebraic classes.
(4) Numerical equivalence on HomCHM(k)Q(1,M|k) coincides with the

homological equivalence for any classical cohomology.
(5) Fix a classical realization R and call L the field of coefficients of R.

Then the equality VZ ⊗Q L = R(M) holds.

Proof. Let us start with (2). By the comparison theorem between sin-
gular and `-adic cohomology, we have dimQ VB = dimQ`

R`(M|C), for all
primes `, including ` = p. Then, by smooth proper base change we have
dimQ`

R`(M|C) = dimQ`
R`(M|k) for all ` 6= p and finally by the p-adic com-

parison theorem we have dimQp Rp(M|C) = dimFrac(W (k))Rcrys(M|k). This
concludes (2) as, by hypothesis, dimQ VB = 2.

The proof of (3)-(5) goes as in Proposition 4.5. There, the hypothesis
that the motive was of abelian type5 was used to ensure that all realizations
have the same dimension (see Remark 4.4). Here, this is replaced by part
(2).

Let us now show part (1). First notice that it is enough to show that
R(q|k) is non-degenerate (for some classical realization) because of parts
(2)-(5). Then, again by using the comparison theorems, this is equivalent to
the fact that RB(q) is non-degenerate. On the other hand this is the case
as RB(q) is a polarization of Hodge structures. �

Proof of Theorem 3.18. Let A be an abelian fourfold and L be a hyperplane
section. By Proposition 3.16 we can suppose that A and L are defined over
a finite field k = Fq. Notice that, in order to prove Theorem 3.18, we can
(and will) replace k by a finite extension.

Consider now the decomposition from Proposition 6.7(2) and, among the
factors of this decomposition, consider those that are exotic (Definition 5.1).
Then there exist a finite extension k′ of k and a CM-structure for A ×k k′
such that any exotic motive of h4(A×k k′) has dimension two (Proposition
7.3). By Theorem 6.10, the CM-structure can be lifted to characteristic zero.
Moreover, by Proposition 3.15, it is enough to work with a single L for a

5For our main application the motive M will be anyway of abelian type.
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given abelian fourfold. By Corollary 6.11 we can choose such an L so that it
lifts to characteristic zero and the CM-structure is ∗-stable (Definition 6.3).

Now, by Lemma 5.3 we can work with the pairing 〈·, ·〉⊗4
1,mot instead of

〈·, ·〉4,mot. For this pairing, the decomposition from Proposition 6.7(2) is
orthogonal, hence we can work with a single motive of the decomposition.
By Propositions 5.4 and 6.8(2) we are reduced to motives that are exotic.

Finally, those exotic motives MI are settled by Theorem 8.1 by setting
M = MI(2). Notice that all the hypothesis of Theorem 8.1 are satisfied.
Indeed, the motive lives in mixed characteristic (Corollary 6.12), together
with its quadratic form (because L lifts to characteristic zero). The space
VB is clearly of dimension two; so it is VZ by Proposition 6.8(1). Last,
the quadratic form qB = RB(〈·, ·〉⊗4

1,mot) is a polarization as RB(〈·, ·〉1,mot) is
so. �

9. Quadratic forms

We recall here some classical facts on quadratic forms. They will allow
us to reduce Theorem 8.1 to a p-adic question (Proposition 9.6). For sim-
plicity, we will work only in the context we will need later, namely with
non-degenerate Q-quadratic forms of rank 2. In what follows Qν denotes
the completion of Q at the place ν.

Definition 9.1. Let q be a Q-quadratic form of rank 2. Define εν(q), the
Hilbert symbol of q at ν, as +1 if the equation

x2 − q(y, z) = 0

has a nonzero solution in x, y, z ∈ Qν , and as −1 otherwise. Depending on
the context we may write εp(q) or εR(q).

Remark 9.2. Let q be a Q-quadratic form of rank 2. It is positive definite
if and only if its discriminant is positive and εR(q) = +1 and it is negative
definite if and only if its discriminant is positive and εR(q) = −1.

Proposition 9.3 ([Ser77, §2.3]). Let p be a prime number and q1 and q2

two non-degenerate Q-quadratic forms of rank 2. Then

q1 ⊗Qp
∼= q2 ⊗Qp

if and only if the discriminants of q1 and q2 coincide in Q∗p/(Q∗p)2 and

εp(q1) = εp(q2).

Theorem 9.4 ([Ser77, §3.1]). Let q be non-degenerate Q-quadratic form of
rank 2 and εν(q) be as in Definition 9.1. Then for all but finite places ν the
equality εν(q) = +1 holds. Moreover, the following product formula running
on all places holds ∏

ν

εν(q) = +1.
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Corollary 9.5. Let q1 and q2 be two non-degenerate Q-quadratic forms of
rank 2 and let p be a prime number. Suppose that, for all primes ` different
from p, we have

q1 ⊗Q`
∼= q2 ⊗Q`.

Then q1 is positive definite if and only if one of the following two cases
happens:

(1) The quadratic forms q1 ⊗ Qp and q2 ⊗ Qp are isomorphic and q2 is
positive definite.

(2) The quadratic forms q1⊗Qp and q2⊗Qp are not isomorphic and q2

is negative definite.

Proof. The `-adic hypothesis implies in particular that the discriminants of
q1 and q2 coincide in Q∗`/(Q∗` )2 for all ` 6= p. This implies that they coincide
in Q∗/(Q∗)2 by [IR82, Theorem 3 in 5.2].

If the discriminants are negative, none of the conditions in the statement
holds and the equivalence is clear. From now on we suppose that the dis-
criminants are positive. By Remark 9.2, q1 is positive definite if and only
εR(q1) = +1.

There are then two cases, namely q2 is positive definite, respectively q2 is
negative definite. Again by Remark 9.2 they are equivalent to εR(q2) = +1,
respectively εR(q2) = −1.

Now, Theorem 9.4 implies that
∏
ν εν(q1) =

∏
ν εν(q2). Combining this

with the `-adic isomorphisms we deduce

εR(q1)εp(q1) = εR(q2)εp(q2).

This means that q1 is positive definite if and only if

εp(q1) = εR(q2)εp(q2).

This relation is equivalent to the fact that one of the following two situations
hold:

(1) q2 is positive definite and εp(q1) = εp(q2).
(2) q2 is negative definite and εp(q1) 6= εp(q2).

As the discriminant of q1 and q2 coincide, the equality εp(q1) = εp(q2) is
equivalent to the fact that q1⊗Qp and q2⊗Qp are isomorphic (Proposition
9.3). �

Proposition 9.6. Let us keep notation from Theorem 8.1. Let p be the
characteristic of k and i be the unique non-negative integer such that the
Hodge structure VB is of type (i,−i) and (−i, i). Then, the quadratic form
qZ is positive definite if and only if the following holds:

(1) When i is even: the quadratic forms qB ⊗ Qp and qZ ⊗ Qp are iso-
morphic.

(2) When i is odd: the quadratic forms qB ⊗ Qp and qZ ⊗ Qp are not
isomorphic.
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Proof. By Proposition 8.3(5), we have that qZ ⊗ Q` = R`(q|k). By the
comparison theorem, we have qB⊗Q` = R`(q|C). Combining these equalities
with smooth proper base change in `-adic cohomology we deduce that

qB ⊗Q` = qZ ⊗Q`.

On the other hand, by hypothesis, qB is a polarization for the Hodge struc-
ture VB hence it is positive definite if i is even and negative definite if i
is odd. We can now conclude by applying Corollary 9.5 to q1 = qZ and
q2 = qB. �

10. The p-adic comparison theorem

We keep notation from Theorem 8.1 and Proposition 9.6. The aim of this
and next sections is to compare the two Qp-quadratic spaces of rank two

(VB,p, qB,p) := (VB, qB)⊗Q Qp and (VZ,p, qZ,p) := (VZ , qZ)⊗Q Qp

and deduce from this study Theorem 8.1 (via Proposition 9.6).
The core of the proof is in the next sections, we give here some preliminary

results. We start by recalling the p-adic comparison theorem (Theorem 10.2)
and then we apply it to our geometric situation.

Recall that K denotes the p-adic field over which the motive M from
Theorem 8.1 is defined.

Theorem 10.1. [Fon82] There are two integral Qp-algebras

Bcrys ⊂ BdR

the first endowed with actions of the Galois group GalK and of the absolute
Frobenius ϕ and the second endowed with a discrete valuation,

ν : BdR −→ Z ∪ {+∞}
hence in particular endowed with a decreasing filtration

FiliBdR = {x ∈ BdR, ν(x) ≥ i}
verifying

Fili · Filj ⊂ Fili+j .

The Qp-algebra BdR contains Qp, an algebraic closure of Qp, and the inter-

section Bcrys ∩Qp is the biggest non-ramified extension of Qp inside Qp.
Finally, the following equality holds [Fon94, Theorem 5.3.7]

(10.1) (Bϕ=id
crys ∩ Fil0BdR) = Qp.

Theorem 10.2 ([FM87, Fal89, CF00]). There is an equivalence of Qp-linear
rigid categories

D : REP −→ MOD

between the category REP of crystalline GalK-representations and the cat-
egory MOD of admissible filtered ϕ-modules (see Convention (4)). This
equivalence verifies the following properties:
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(1) There is a canonical identification

V ⊗Bcrys = D(V )⊗Bcrys

which is GalK-equivariant and ϕ-equivariant. Moreover, the induced
isomorphism

V ⊗BdR = D(V )⊗BdR

respects the filtrations.
(2) The functor D is given by

V 7→ D(V ) = (V ⊗Bcrys)
GalK

and its inverse is given by

[W ⊗Bcrys]
ϕ=id ∩ Fil0[W ⊗BdR]←[ W.

(3) The equivalence D is compatible with the two realization functors6

Rp((·)|K) : CHM(W ) → REP and RHK(·) : CHM(W ) → MOD,
namely we have

RHK(·) = D ◦Rp((·)|K).

Corollary 10.3. There are canonical identifications (commuting with the
extra structures):

(10.2) (VB,p, qB,p) = [(VZ,p, qZ,p)⊗Bcrys]
ϕ=id ∩ Fil0[(VZ,p, qZ,p)⊗BdR].

(10.3) (VB,p, qB,p)⊗Bcrys = (VZ,p, qZ,p)⊗Bcrys.

(10.4) (VB,p, qB,p)⊗BdR = (VZ,p, qZ,p)⊗BdR.

Moreover, under these identifications, the equality of Qp-algebras

(10.5) EndGalK (VB,p) = Endϕ,Fil∗(VZ,p ⊗ Frac(W (k)))

holds.

Proof. Proposition 8.3(5) gives the identification

VZ,p ⊗ Frac(W (k)) = Rcrys(M|k).

and we have the identification Rcrys(M|k) = RHK(M), see Convention (4).
On the other hand, we have the equality

VB,p = Rp(M|K)

because of the comparison theorem between singular and p-adic cohomology.
Finally, Theorem 10.2(3) implies

D(Rp(M|K)) = RHK(M).

6This last fact is already present in the original works in p-adic Hodge theory although
they are not written down in the motivic language. A reference is [Niz09, Theorem 1.2],
which can be immediately translated in our setting by [And04, Proposition 4.2.5.1]. This
fact appears also in [And04, 3.4.5] and it is implicitly used in [And04, 7.4.1]. Nowadays
much more general results are known, for instance this comparison of realization functors
is available for mixed motives (i.e. motives of varieties which are not necessarely smooth
and projective), see [DN18, 4.15].
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Altogether we have the equality

D(VB,p) = VZ,p ⊗ Frac(W (k)).

Notice that these identifications are compatible with the quadratic forms
as realization functors and the equivalence D are tensor functors. Hence
Theorem 10.2(2) gives (10.2) and Theorem 10.2(1) gives (10.3) and (10.4).
The identification (10.5) follows from the fact that D is an equivalence of
Qp-linear categories. �

The following proposition settles Theorem 8.1 in the case where VB is
of type (0, 0). It turns out that this case is easier than the others as the
quadratic spaces qB,p and qZ,p are not only isomorphic (as predicted by
Proposition 9.6) but also equal (through the identification (10.3)).

Proposition 10.4. Suppose that the Hodge structure VB is of type (0, 0),
then qB,p and qZ,p are isomorphic, hence Theorem 8.1 holds true in this case.

Proof. First notice that Frobenius acts trivially on VZ,p because the latter
is spanned by algebraic classes. Second, the hypothesis on the Hodge types
gives Fil0(VZ,p ⊗K) = VZ,p ⊗K. Hence the relation (10.2) implies

(VB,p, qB,p) = (VZ,p, qZ,p)⊗ (Bϕ=id
crys ∩ Fil0BdR).

Using (10.1) we deduce the equality qB,p = qZ,p. Theorem 8.1 then follows
using Proposition 9.6. �

Remark 10.5. (1) This proposition (together with the arguments of
the previous sections) gives a full proof of Theorem 3.18 for ordi-
nary abelian fourfolds. Indeed, in the ordinary case, all Galois in-
variant classes lift to (0, 0)-classes as it can be shown with Shimura–
Taniyama formula [Tat71, Lemma 5]. See Appendix A for related
discussions.

(2) The hypothesis that VB is of type (0, 0) corresponds to the only case
where one can hope that the algebraic classes in VZ might be lifted
to characteristic zero, in which case Theorem 8.1 would follow from
the Hodge–Riemann relations. We find an amusing coincidence that
this conjecturally easier case corresponds to an easier p-adic analysis.

(3) The proof of the above proposition shows that, under the comparison
isomorphisms of Corollary 10.3, one has the equality of Qp-vector
spaces VB,p = VZ,p. The Hodge conjecture predicts that actually
also the two Q-structures VB and VZ should coincide as well. Is it
possible to show the equality VB = VZ without assuming the Hodge
conjecture? We do not know.

An analogous question can be formulated in the `-adic setting.
Consider an ordinary abelian variety A (of any dimension) together

with its canonical lifting Ã. Fix an algebraic class on A. Does it
corresponds to a Hodge class on Ã? This is a priori weaker than the
Hodge conjecture: we do not ask that the algebraic cycle does lift
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to an algebraic cycle. Notice that if the answer to the question was
affirmative then one would have a proof of the standard conjecture
of Hodge type for A.

Thank to Proposition 10.4 we are reduced to the case where VB is of type
(−i, i), (i,−i), for a positive integer i. It turns out that the only case which
is interesting for the application to abelian fourfold is i = 1, see Remark
A.8(2). We decided to work with a general i > 0 to keep the possibility
of applying Theorem 8.1 to varieties other than abelian fourfolds, but the
reader might find useful to think of the case i = 1 in what follows.

Assumption 10.6. From now on we will suppose that the Hodge structure
VB is not of type (0, 0). Equivalently there is a well-defined positive integer
i such that Fili(VZ ⊗K) is a K-line and Fili+1(VZ ⊗K) = 0.

Lemma 10.7. Under Assumption 10.6 the line Fili(VZ ⊗K) is isotropic.

Proof. As the quadratic form q is motivic its de Rham realization must
respect the filtration, so RdR(q)(Fili(VZ⊗K)) ⊂ Fil2iRdR(1). As i is positive
Fil2iRdR(1) = 0. �

Proposition 10.8. Under Assumption 10.6 the Qp-algebra EndGalK (VB,p)
is a field F such that [F : Qp] = 2. Moreover, for all v ∈ VB,p and all f ∈ F ,
we have the equality

(10.6) qB,p(f · v) = NF/Qp
(f)qB,p(v).

Proof. Consider the (Qp-points of the) orthogonal group G = SO(qB,p). We
claim that the Qp-algebra

F := Qp[G] ⊂ End(VB,p)

satisfies all the properties of the statement. First, notice that this algebra
is commutative and has dimension two by construction.

As the quadratic form is induced by an algebraic cycle, the Galois group
GalK must act on VB,p through G. Hence we have the inclusions

Qp[GalK ] ⊂ F ⊂ End(VB,p).

Let us show that Qp[GalK ] is not of dimension one. If it were so, the
algebra EndGalK (VB,p) would be isomorphic to M2×2(Qp). By (10.5) the
algebra Endϕ,Fil∗(VZ,p⊗Frac(W (k))) would also be M2×2(Qp), which would
imply that VZ,p ⊗ Frac(W (k)) would be decomposed into the sum of two
isomorphic filtered ϕ-modules. This is impossible as it would in particular
imply that the filtration on VZ,p⊗Frac(W (k)) would be a one step filtration,
hence contradicting Assumption 10.6.

As the Qp-algebra Qp[GalK ] is not of dimension one, we deduce that the
inclusion Qp[GalK ] ⊂ F is an equality. The commutator of F being F itself,
we also have F = EndGalK (VB,p).
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Let us show that the algebra F is not isomorphic to Qp × Qp. If it were
so, arguing as before, we would have a decomposition of filtered ϕ-modules
(VZ,p⊗Frac(W (k)) = W⊕W ′ and each of the lines W,W ′ would be isotropic.

On the other hand the line Fili(VZ ⊗ K) is also isotropic (Lemma 10.7),
hence, we would have the equality

W ⊗K = Fili(VZ ⊗K)

after possibly replacing W with W ′.
Now, as W must be admissible, for any nonzero vector w of W , the scalar

α such that ϕ(w) = αw has p-adic valuation equal to i. On the other hand,
as VZ,p is spanned by algebraic classes, there is a nonzero vector of W which
is fixed by ϕ. As i 6= 0 by Assumption 10.6, we deduce a contradiction.

As it is not isomorphic to Qp×Qp the algebra F = Qp[SO(qB,p)] must be a
quadratic field extension of Qp. The vector space VB,p can be identified with
F and the action of F on it can be identified with the (left) multiplication.
Under this identification we have NF/Qp

(f) = det(f ·) and the relation (10.6)
follows. �

Remark 10.9. When the motive M from Theorem 8.1 is an exotic motive
(Section 7), the action of F is induced by algebraic correspondences. The
Hodge conjecture predicts that this should always be the case. Indeed,
arguing as in the proof of Proposition 10.8, one can check that E = Q[SO(Q)]
acts on VB respecting the Hodge decomposition and that F = E ⊗Qp.

Corollary 10.10. Keep Assumption 10.6 and let F be the field of Propo-
sition 10.8. Then F acts on VZ,p and the equality (10.2) is F -equivariant.
Moreover, for all v ∈ VZ,p and all f ∈ F we have the equality

(10.7) qZ,p(f · v) = NF/Qp
(f)qZ,p(v).

Proof. If one replaces VZ,p by VZ,p ⊗ Frac(W (k)) the statement is a com-
bination of Corollary 10.3 and Proposition 10.8. As F commutes with the
action of ϕ and VZ,p ⊂ VZ,p ⊗ Frac(W (k)) is precisely the space of vectors
which are fixed by ϕ, we deduce that VZ,p is stable by F and the statement
follows. �

Corollary 10.11. Keep Assumption 10.6 and let F be the field of Proposi-
tion 10.8. The following statements are equivalent:

(1) The quadratic forms qB,p and qZ,p are isomorphic.
(2) There exists a pair of nonzero vectors vB ∈ VB,p and vZ ∈ VZ,p such

that qB,p(vB) and qZ,p(vZ) are equal in Q∗p/NF/Qp
(F ∗).

(3) For any pair of nonzero vectors vB ∈ VB,p and vZ ∈ VZ,p we have
that qB,p(vB) and qZ,p(vZ) are equal in Q∗p/NF/Qp

(F ∗).

Proof. This is a formal consequence of formulas (10.6) and (10.7). �
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Remark 10.12. By the very construction of F , there are two actions of F
on VZ,p ⊗ F and this allows us to write the decomposition

VZ,p ⊗ F = VZ,+ ⊕ VZ,−
where VZ,+ is the line where the two actions coincide and VZ,− is the line
where the two actions are permuted by the non-trivial element of Gal(F/Qp).
Using (10.7), we see that VZ,+ and VZ,− are also the two isotropic lines
of the hyperbolic plane VZ,p ⊗ F . Notice that there is also an analogous
decomposition

VB,p ⊗ F = VB,+ ⊕ VB,−
with analogous properties and that these decompositions are respected by
Corollary 10.3.

Finally, as FiliVZ,p⊗K is an isotropic line (Lemma 10.7) it must coincide
with VZ,+ or VZ,− (after extension of scalars to a field containing F and K).

We decide that the identification of F and K with a subfield of Qp is made
to have the equality

FiliVZ,p ⊗Qp = VZ,+ ⊗Qp.

11. Characterization of p-adic periods

This section continues the comparison between the two quadratic spaces
(VB,p, qB,p) and (VZ,p, qZ,p) which we initiated in the previous section. We
keep notation from there, in particular we work under the Assumption 10.6
which gives a well defined positive integer i and we will make constant use
of the field F constructed in Proposition 10.8.

The goal is to study the period matrix (relating the two quadratic spaces
VB,p and VZ,p) given by Corollary 10.3. We compute the filtration and the
action of the Frobenius on these periods. Most importantly, we show that
the elements of Bcrys having the same behavior with respect to filtration
and Frobenius are essentially unique (this fact characterizes the periods
involved).

We divide the analysis in two cases, depending whether F is unramified
or not.

Unramified case. In this subsection we work under Assumption 10.6 and
we assume moreover that the field F constructed in Proposition 10.8 is
unramified over Qp. This means that we have the inclusion F ⊂ Bcrys and
that the absolute Frobenius ϕ of Bcrys restricted to F is the non-trivial
element of Gal(F/Qp).

Definition 11.1. We define the F -vector subspace Pi = Pi(F ) of Bcrys as
the set of λi ∈ Bcrys verifying the following properties:

(1) ϕ2(λi) = λi.
(2) λi ∈ FiliBdR.
(3) ϕ(λi) ∈ Fil−iBdR.
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Proposition 11.2. The F -vector space Pi(F ) is of dimension one. More-
over a nonzero element λi ∈ Pi verifies the following properties.

(1) λi · ϕ(λi) ∈ Q∗p.
(2) λi and ϕ(λi) are invertible in Bcrys.

(3) λ ∈ FiliBdR − Fili+1BdR.
(4) ϕ(λ) ∈ Fil−iBdR − Fil−i+1BdR.

Proof. By construction of Pi we have λi · ϕ(λi) ∈ (Bϕ=id
crys ∩ Fil0BdR) and on

the other hand we have (Bϕ=id
crys ∩ Fil0BdR) = Qp, see Theorem 10.1. What

is missing to show (1) is that λi · ϕ(λi) 6= 0. It will follow from part (2).
Consider the Qp-vector space N = Q2

p with basis e1, e2 endowed with

(11.1) ϕ =

(
0 1
1 0

)
as Frobenius and with the following filtration

Fil−iN = N,Fil−i+1N = FiliN = Qp · e2,Fili+1N = 0.

Let us check that N is an admissible filtered ϕ-module. The action of ϕ
on detN , the maximal exterior power of N , is by multiplication by −1,
which has valuation equal to 0, and the only non trivial step of the induced
filtration on detN is at 0 as well. There are two lines stable by ϕ and none
of those is Qp · e2 hence the only non trivial step of the induced filtration on
these lines is at −i. On the other hand the action of ϕ on these lines is by
multiplication by ±1, which has valuation equal to 0. As i is positive, the
required inequality −i ≤ 0 holds true.

As N is an admissible ϕ-module, by Theorem 10.2 there exists a unique
GalQp-representation V such that N = D(V ). Consider the identification
V ⊗Bcrys = N ⊗Bcrys given by Theorem 10.2. It allows to write an element

of V with respect to the basis e1, e2. Let

(
α
β

)
be a fixed nonzero vector in

V . As the Frobenius must act trivially on it we get from (11.1) the relations

α = ϕ(β), β = ϕ(α)

which give the equality

(11.2) α = ϕ2(α).

On the other hand, again by Theorem 10.2, the vector

(
α
β

)
lies in

Fil0[M ⊗ BdR]. This means that it can be written as a linear combina-
tion γn+ δe2 with γ ∈ FiliBdR, δ ∈ Fil−iBdR and n ∈ N , which implies that
α ∈ FiliBdR and β ∈ Fil−iBdR.

Altogether we have α ∈ Pi and in particular Pi is a non empty space.

Moreover, arguing as above, one sees that for all t ∈ Pi the vector

(
t

ϕ(t)

)
is in the vector space V = [N ⊗ Bcrys]

ϕ=id ∩ Fil0[N ⊗ BdR]. This gives an
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isomorphism of Qp-vector spaces between V and Pi. As V has dimension 2
the space Pi is an F -vector space of dimension one.

Now notice that the one dimensional Qp-vector space of p-adic periods
relating detN to detV is generated by an element in Bcrys of the form
αβ(f−ϕ(f)), for any fixed f ∈ F−Qp. As detN⊗Bcrys and detV ⊗Bcrys are
free Bcrys-modules of rank one the element αβ(f −ϕ(f)) must be invertible
in Bcrys, hence α and β are invertible as well.

Finally, let us consider the valuation ν from Theorem 10.1 associated to
the filtration. We have showed the inequalities ν(α) ≥ +i and ν(β) ≥ −i.
On the other hand, as the only non trivial step of the filtration on detM is
0, we deduce that ν(αβ(f − σ(f))) = 0 and hence ν(αβ) = 0. This implies
that the above inequalities are actually equalities. �

Definition 11.3. Consider VZ,+ and VB,+ as constructed in Remark 10.12
and consider them as F -vector subspaces of VZ,p ⊗Bcrys via Corollary 10.3.
We define the F -vector subspace Q = Q(M) of Bcrys as the set of λ ∈ Bcrys

such that
λ · VB,+ ⊂ VZ,+.

Remark 11.4. The notation Q(M) would like to suggest that the definition
of Q depends a priori on the motive M from Theorem 8.1. It will turn out
that it actually only depends on i and F .

Proposition 11.5. The F -vector subspaces Pi, Q ⊂ Bcrys introduced in
Definitions 11.1 and 11.3 coincide and they have dimension one.

Proof. Following Remark 10.12 we have

(11.3) VB,+ ·Bcrys = VZ,+ ·Bcrys.

As the F -vector spaces VB,+ and VZ,+ have dimension one then Q ⊂ Bcrys

must have dimension one as well.
Fix a nonzero element λ ∈ Q. By definition of Q there are nonzero vectors

vB ∈ VB,+ and vZ ∈ VZ,+ such that

(11.4) λ · vB = vZ

which implies

(11.5) ϕ(λ) · ϕ(vB) = ϕ(vZ).

Now ϕ acts trivially on VB,p and, because of the presence of algebraic classes,
also on VZ,p. Hence ϕ acts as the non-trivial element of Gal(F/Qp) on
VB,p ⊗ F and VZ,p ⊗ F . This implies that

(11.6) ϕ(vB) ∈ VB,− and ϕ(vZ) ∈ VZ,−
as well as

(11.7) ϕ2(vB) = vB and ϕ2(vZ) = vZ .

We claim that the above relations (through Corollary 10.3) imply that λ
verifies conditions (1),(2) and (3) from Definition 11.1. Indeed (11.4) gives
(2), (11.5) and (11.6) give (3) and finally (11.7) gives (1).
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Hence, we have showed the inclusion Q ⊂ Pi. For dimensional reasons
(Proposition 11.2) it is actually an equality. �

Proposition 11.6. Consider a nonzero element λi ∈ Pi, and recall that
λi · ϕ(λi) ∈ Q∗p (Proposition 11.2). Then the quadratic forms qB,p and qZ,p
are isomorphic if and only if

λi · ϕ(λi) ∈ NF/Qp
(F ∗).

Proof. Let vB ∈ VB,+ and vZ ∈ VZ,+ as in the proof of Proposition 11.5. By
(11.7) we have

(11.8) vB + ϕ(vB) ∈ VB,p and vZ + ϕ(vZ) ∈ VZ,p.

Write 〈·, ·〉? for the bilinear form associated to the quadratic form q?.
Then we have

qB,p(vB+ϕ(vB)) = 2〈vB, ϕ(vB)〉B,p and qZ,p(vZ+ϕ(vZ)) = 2〈vZ , ϕ(vZ)〉Z,p
because vB, vZ , ϕ(vB) and ϕ(vZ) are isotropic vectors (see Remark 10.12 and
(11.6)). Hence, using relations (11.4), (11.5), together with (10.3), we have

λi · ϕ(λi) · qB,p(vB + ϕ(vB)) = qZ,p(vZ + ϕ(vZ)).

We can conclude thanks to Corollary 10.11. �

Ramified case. In this subsection we work under the Assumption 10.6
and we assume moreover that the field F constructed in Proposition 10.8
is ramified over Qp. Define σ to be the non-trivial element of Gal(F/Qp)
and Bcrys,F ⊂ BdR as the smallest subring containing F and Bcrys. The
inclusions Bcrys ⊂ Bcrys,F and F ⊂ Bcrys,F induce an identification

F ⊗Qp Bcrys = Bcrys,F .

This allows to extend σ and ϕ to two endomorphisms of Qp-algebras

σ, ϕ : Bcrys,F −→ Bcrys,F

which commute.

Definition 11.7. We define the F -vector subspace Pi = Pi(F ) of Bcrys,F as
the set of λ ∈ Bcrys,F verifying the following properties.

(1) λ ∈ FiliBdR.
(2) σ(λ) ∈ Fil−iBdR.
(3) ϕ(λ) = λ.

Proposition 11.8. The F -vector space Pi(F ) is of dimension one. More-
over a nonzero element λi ∈ Pi verifies the following properties.

(1) λi · σ(λi) ∈ Q∗p.
(2) λi and σ(λi) are invertible in Bcrys,F .

(3) λi ∈ FiliBdR − Fili+1BdR.
(4) σ(λi) ∈ Fil−iBdR − Fil−i+1BdR.
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Proof. By construction of Pi we have that λi · ϕ(λi) is invariant under σ

hence it is in Bcrys. Moreover it verifies λi · ϕ(λi) ∈ (Bϕ=id
crys ∩ Fil0BdR) and

on the other hand we have (Bϕ=id
crys ∩Fil0BdR) = Qp, see Theorem 10.1. What

is missing to show (1) is that λi · ϕ(λi) 6= 0. It will follow from part (2).
Consider the Qp-vector space N = Q2

p endowed with the identity as Frobe-
nius. Let L be a line in N ⊗ F which is not stable under σ. Define the
following filtration

Fil−iN ⊗ F = N ⊗ F,Fil−i+1N ⊗ F = FiliN ⊗ F = σ(L),Fili+1N = 0.

Let us check that N is an admissible filtered ϕ-module. The action of ϕ
on detN , the maximal exterior power of N , is by multiplication by +1,
which has valuation equal to 0, and the only non trivial step of the induced
filtration on detN is at 0 as well. Consider a line L′ in N . The action of
ϕ on it is again by multiplication by +1, which has valuation equal to 0,
and the only non trivial step of the induced filtration on it is at −i because
L′ 6= σ(L). As i is positive, the required inequality −i ≤ 0 holds true.

As N is an admissible ϕ-module, by Theorem 10.2 there exists a unique
GalQp-representation V such that N = D(V ). Consider the action of f ∈ F
on N ⊗ F given by multiplication by f on L and by multiplication by σ(f)
on σ(L). It descends over Qp and gives an action of F on N . Moreover this
action respects the filtration. By Theorem 10.2, the field F acts on V as well
and the identification V ⊗Bcrys = N ⊗Bcrys is F -equivariant. In particular
there are eigenvectors m ∈ L and v ∈ V ⊗ F and a scalar α ∈ Bcrys,F such
that

α ·m = v

and hence σ(α) · σ(m) = σ(v).
As the Frobenius acts trivially on V and N we deduce that it acts as the

identity on α and σ(α) as well. Moreover, the inclusion V ⊂ Fil0N ⊗ BdR

implies α ∈ FiliBdR − Fili+1BdR and σ(α) ∈ Fil−iBdR − Fil−i+1BdR.
Altogether we have α ∈ Pi and in particular Pi is a non empty space.

Moreover, arguing as above, one sees that for all t ∈ Pi the linear combina-
tion t·m+σ(t)·σ(m) is in the vector space V = [N⊗Bcrys]

ϕ=id∩Fil0[N⊗BdR].
This gives an isomorphism of Qp-vector spaces between V and Pi. As V has
dimension 2 the space Pi is an F -vector space of dimension one.

Finally, as v and m generates the same free Bcrys,F -module of rank one,
the scalar α must be invertible in Bcrys,F , and the same argument applies
for σ(α). �

Definition 11.9. Consider VZ,+ and VB,+ as constructed in Remark 10.12
and consider them as F -vector subspaces of VZ,p ⊗ Bcrys,F via Corollary
10.3. We define the F -vector subspace Q = Q(M) of Bcrys,F as the set of
λ ∈ Bcrys,F such that

λ · VB,+ ⊂ VZ,+.

Proposition 11.10. The F -vector subspaces Pi, Q ⊂ Bcrys,F introduced in
Definitions 11.7 and 11.9 coincide and they have dimension one.
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Proof. Analogous to the proof of Proposition 11.5. �

Proposition 11.11. Consider a nonzero element λi ∈ Pi, then

λi · σ(λi) ∈ Q∗p.

Moreover the quadratic forms qB,p and qZ,p are isomorphic if and only if

λi · σ(λi) ∈ NF/Qp
(F ∗).

Proof. Analogous to the proof of Proposition 11.6. �

Remark 11.12. For any i and any F the periods Pi(F ) appear in the
realization of a motive Mi,F . Indeed, for i = 1 this comes from Proposition

A.1, see also Remark A.2(3). For a different i one can consider Mi,F = M⊗i1,F ,
where the tensor product is done in the F -linear category of motives endowed
with an F -action.

Define P0(F ) = F and P∗(F ) =
⊕

i≥0 Pi(F ). By the very definition of

Pi(F ), the set P∗(F ) is a graded F -algebra. Moreover Propositions 11.2
and 11.8 imply that P∗(F ) is non canonically isomorphic to the polynomial
algebra F [x].

12. Computation of p-adic periods

The aim of this section is to exhibit explicit elements of the space of
periods Pi(F ) introduced in Definition 11.1 when F is unramified and in
Definition 11.7 when F is ramified. This is done with Propositions 11.6 and
11.11 in mind. The construction of these periods is inspired by [Col02, §9].

We will still divide the analysis in two cases, depending whether F is
unramified or not. Moreover the ramified case will need some extra special
cases for p = 2.

Unramified case. In this subsection we work under Assumption 10.6 and
we assume moreover that the field F constructed in Proposition 10.8 is
unramified over Qp. This means that we have the inclusions

F ⊂ Bcrys ⊂ BdR

and that the absolute Frobenius ϕ of Bcrys restricted to F is the non-trivial
element of Gal(F/Qp).

Proposition 12.1. (Lubin–Tate) There is an element t2 ∈ Bcrys which
verifies the following properties:

(1) t2 ∈ Fil1BdR − Fil2BdR.
(2) ϕ(t2) ∈ Fil0BdR − Fil1BdR.
(3) ϕ2(t2) = p · t2.
(4) Both t2 and ϕ(t2) are invertible in Bcrys.
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Proof. This period will appear as the period of an explicit filtered ϕ-module.
Consider the vector space N = Q2

p with basis e1, e2 endowed with the Frobe-
nius

(12.1) ϕ =

(
0 1/p
1 0

)
.

Define the filtration to be Fil−1N = N, Fil0N = Qpe2, Fil1N = 0. This
filtered ϕ-module is admissible. To check so notice that there are no non
trivial submodules of N stable by ϕ hence the admissibility condition has
to be checked only on N . Moreover the action of ϕ on detN , the maximal
exterior power of N , is by multiplication by −1/p, which has valuation equal
to −1, and the only non trivial step of the induced filtration on detN is at
−1 as well.

As N is an admissible ϕ-module, by Theorem 10.2 there exists a unique
GalQp-representation V such that N = D(V ). Consider the identification
V ⊗Bcrys = N ⊗Bcrys given by Theorem 10.2. It allows to write an element

of V with respect to the basis e1, e2. Let

(
α
β

)
be a fixed nonzero vector in

V . As the Frobenius must act trivially on it we get from (12.1) the relations

α = 1/p · ϕ(β), β = ϕ(α),

which give the equality

p · α = ϕ2(α).

We claim that t2 = α and ϕ(t2) = β verify all the properties of the propo-
sition.

By Theorem 10.2 the vector

(
α
β

)
belongs to Fil0[M ⊗BdR]. This means

that it can be written as γn+δe2 with γ ∈ Fil1BdR, δ ∈ Fil0BdR and n ∈ N ,
which implies that α ∈ Fil1BdR and β ∈ Fil0BdR.

Now notice that, for all f ∈ F , the vector

(
f · α
ϕ(f)β

)
is in the vector space

V = [N ⊗Bcrys]
ϕ=id ∩Fil0[N ⊗BdR]. Hence, the one dimensional Qp-vector

space of p-adic periods relating detN to detV is generated by an element in
Bcrys of the form αβ(f − σ(f)), for any fixed f ∈ F −Qp. As detN ⊗Bcrys

and detV ⊗Bcrys are free Bcrys-modules of rank one the element αβ(f−σ(f))
must be invertible in Bcrys, hence α and β are invertible as well.

Finally, let us consider the valuation ν from Theorem 10.1 associated to
the filtration. We have showed the inequalities ν(α) ≥ 1 and ν(β) ≥ 0. On
the other hand, as the only non trivial step of the filtration on detM is −1,
we deduce that ν(αβ(f−σ(f))) = 1 and hence ν(αβ) = 1. This implies that
the above inequalities are actually equalities and concludes the proof. �

Corollary 12.2. Fix a positive integer i and define λi ∈ Bcrys as

λi = (t2/ϕ(t2))i.
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Then λi is a nonzero element of Pi and moreover it verifies

λi · ϕ(λi) = 1/pi.

Proof. All properties follow from Proposition 12.1 by direct calculation. �

Ramified case. In this subsection we work under the Assumption 10.6 and
we assume that the field F constructed in Proposition 10.8 is ramified over
Qp. This subsection is written in analogy to the unramified case, although
some extra computations are needed to deal with the case p = 2.

Define σ to be the non-trivial element of Gal(F/Qp) and Bcrys,F ⊂ BdR as
the smallest subring containing F and Bcrys. The inclusions Bcrys ⊂ Bcrys,F

and F ⊂ Bcrys,F induce an identification

F ⊗Qp Bcrys = Bcrys,F .

This allows to extend σ and ϕ to two endomorphisms of Qp-algebras

σ, ϕ : Bcrys,F −→ Bcrys,F

which commute.
Finally, we will denote by Qpn ⊂ Bcrys the unique unramified field exten-

sion of Qp of degree n.

Proposition 12.3. (Colmez) For each uniformizer π ∈ F there exists an
element tπ ∈ Bcrys,F which verifies the following properties.

(1) tπ ∈ Fil1BdR − Fil2BdR.
(2) σ(tπ) ∈ Fil0BdR − Fil1BdR.
(3) ϕ(tπ) = π · tπ.
(4) Both tπ and σ(tπ) are invertible in Bcrys,F .

Proof. This period will appear as the period of an explicit filtered ϕ-module.
Let x2 + ax + b be the minimal polynomial of 1/π over Qp. Consider the
vector space N = Q2

p with basis e1, e2 endowed with the Frobenius

ϕ =

(
0 −b
1 −a

)
.

Fix an eigenvector m ∈M ⊗ F satisfying

(12.2) ϕ(m) =
1

π
m

and hence ϕ(σ(m)) = 1
σ(π)σ(m). Define the filtration to be

Fil−1(N ⊗ F ) = N ⊗ F, Fil0(N ⊗ F ) = F · (σ(v)), Fil1(N ⊗ F ) = 0.

We claim that this filtered ϕ-module is admissible. To check so notice that
there are no non trivial submodules of N stable by ϕ hence the admissibility
condition has to be checked only on N . Moreover the action of ϕ on detN ,
the maximal exterior power of N , is by multiplication by b, which has valu-
ation equal to −1, as π is a uniformizer of F , and the only non trivial step
of the induced filtration on detN is at −1 as well.



42 GIUSEPPE ANCONA

As N is an admissible filtered ϕ-module we can apply Theorem 10.2 and
consider the GalQp-representation V which verifies N = D(V ). Now notice
that the action of ϕ on N respects the filtration, this means that the field
F acts on N as filtered ϕ-module. Then Theorem 10.2 implies that F acts
on V as well and that the canonical isomorphism V ⊗ Bcrys = N ⊗ Bcrys is
F -equivariant. In particular we can find an eigenvector v ∈ V ⊗ F and a
scalar α ∈ Bcrys,F such that

(12.3) α ·m = v

and hence σ(α) · σ(m) = σ(v).
As the Frobenius acts trivially on V , relations (12.2) and (12.3) imply

ϕ(α) = π ·α. We claim now that the period tπ = α satisfies all the properties
of the statement. Indeed, as v and m generates the same free Bcrys,F -
module of rank one, the scalar α must be invertible in Bcrys,F , and the same
argument applies for σ(α). As the filtration is trivial on V ⊗ F , relation
(12.3) implies that α ∈ Fil1BdR − Fil2BdR and again the same argument
applies for σ(α). �

Corollary 12.4. Suppose that there is a uniformizer π ∈ F such that

σ(π) = −π.

Let
√
a ∈ Qp2 be an element of the quadratic unramified extension of Qp

such that

ϕ(
√
a) = −

√
a.

Define λi ∈ Bcrys,F as

λi = (
√
a · tπ/σ(tπ))i.

Then λi is a nonzero element of Pi(F ) and moreover it verifies

λi · σ(λi) = ai.

Proof. All properties follow from Proposition 12.3 by direct calculation. �

Remark 12.5. Let us recall the list of quadratic extensions of Qp. If p 6= 2,
and if a is an integer which is not a square modulo p, then Qp(

√
a) is

the unramified quadratic extension, whereas Qp(
√
p) and Qp(

√
ap) are the

two ramified quadratic extensions. If p = 2, Q2(
√

5) is the unramified
quadratic extension, whereas Q2(

√
2),Q2(

√
6),Q2(

√
10),Q2(

√
14),Q2(

√
3)

and Q2(
√
−1) are the six ramified quadratic extensions.

In particular, it is almost always possible to find a uniformizer π ∈ F such
that σ(π) = −π as in Corollary 12.4. The only exceptions are for p = 2 and
F = Q2(

√
3) or F = Q2(

√
−1). What follows treats these two exceptions.

Corollary 12.6. We keep notation from Proposition 12.3 and we work with
p = 2 and the field F = Q2(

√
−1). Let α ∈ Q24(

√
−1) be an element such

that

ϕ(α) =
√
−1 · α.



STANDARD CONJECTURES FOR ABELIAN FOURFOLDS 43

Define λi ∈ Bcrys,F as

λi = (α · t1−√−1/σ(t1−
√
−1))i.

Then λi is a nonzero element of Pi(F ) and moreover it verifies

λi · σ(λi) = (α · σ(α))i.

Proof. All properties follow from Proposition 12.3 by direct calculation. �

Proposition 12.7. (Colmez) For each uniformizer π ∈ F there exists an
element t2,π ∈ Bcrys,F which verifies the following properties.

(1) t2,π ∈ Fil1BdR − Fil2BdR.

(2) σ(t2,π), ϕ(t2,π), ϕ ◦ σ(t2,π) ∈ Fil0BdR − Fil1BdR.
(3) ϕ2(t2,π) = π · t2,π.
(4) The elements t2,π, σ(t2,π), ϕ(t2,π) and ϕ ◦ σ(t2,π) are invertible in

Bcrys,F .

Proof. This period will appear as the period of an explicit filtered ϕ-module.
Let x2 + ax+ b be the minimal polynomial of 1/π over Qp. Define the 2× 2
matrix

C =

(
0 −b
1 −a

)
.

Consider the vector space N = Q4
p endowed with the Frobenius given by the

block matrix

ϕ =

(
02 C
I2 02

)
,

where I2 and 02 are the identity and the zero 2× 2 matrices.
Notice that we have

ϕ2 =

(
C 02

02 C

)
.

Hence the action of ϕ2 induces a decomposition of eigenspaces

N ⊗ F = N1/π ⊗N1/σ(π).

Fix a nonzero eigenvector m ∈ N1/π hence satisfying

(12.4) ϕ2(m) =
1

π
m.

Define the filtration to be

Fil−1(N ⊗F ) = N ⊗F, Fil0(N ⊗F ) = N1/σ(π)⊕F ·ϕ(m), Fil1(N ⊗F ) = 0.

We claim that this filtered ϕ-module is admissible. First notice that there
are no non trivial submodules of N stable by ϕ. Indeed the action of ϕ on
N satisfies the equation x4 + ax2 + b = 0. This polynomial is irreducible
over Qp as it is also the minimal polynomial of 1/

√
π, which has valuation

1/4. We deduce that the admissibility condition has to be checked only on
N . Moreover the action of ϕ on detN , the maximal exterior power of N , is
by multiplication by b, which has valuation equal to −1 and the only non
trivial step of the induced filtration on detN is at −1 as well.



44 GIUSEPPE ANCONA

As N is an admissible filtered ϕ-module we can apply Theorem 10.2 and
consider the GalQp-representation V which verifies N = D(V ). Now notice

that the action of ϕ2 on N respects the filtration, this means that the field
F acts on N as filtered ϕ-module. Then Theorem 10.2 implies that F acts
on V as well and that the canonical isomorphism V ⊗ Bcrys = N ⊗ Bcrys is
F -equivariant. In particular there is a decomposition in eigenspaces

V ⊗ F = V1/π ⊗ V1/σ(π)

and, if we fix a nonzero eigenvector v ∈ V1/π, there exist two periods α, β in
Bcrys,F such that

(12.5) α ·m+ β · ϕ(m) = v.

As the Frobenius acts trivially on V , relations (12.4) and (12.5) imply
ϕ(α) = β and ϕ2(α) = πα . We claim now that the period t2,π = α satisfies
all the properties of the statement.

By Theorem 10.2 we have v ∈ Fil0[N1/π ⊗ BdR]. This means that the

vector v can be written as γn + δϕ(m) with γ ∈ Fil1BdR, δ ∈ Fil0BdR and
n ∈ N1/π, which implies that α ∈ Fil1BdR and β ∈ Fil0BdR.

Now notice that, for all x ∈ Qp2 , the vector xα · m + ϕ(x)ϕ(α) · ϕ(m)

is in the vector space V = [N ⊗ Bcrys]
ϕ=id ∩ Fil0[N ⊗ BdR]. Moreover,

it is in the eigenspace V1/π. Hence, the one dimensional F -vector space
of p-adic periods relating detN1/π to detV1/π is generated by an element
in Bcrys,F of the form αϕ(α)(x − ϕ(x)), for any fixed x ∈ Qp2 − Qp. As
detN1/π ⊗ Bcrys,F and detV1/π ⊗ Bcrys,F are free Bcrys,F -modules of rank
one the element αϕ(α)(x−ϕ(x)) must be invertible in Bcrys,F , hence α and
ϕ(α) are invertible as well.

Finally, let us consider the valuation ν from Theorem 10.1 associated
to the filtration. First of all, as the only non trivial step of the filtra-
tion on detN1/π is −1, we deduce that ν(αϕ(α)(f − σ(f))) = 1 and hence
ν(αϕ(α)) = 1. On the other hand we have showed the inequalities ν(α) ≥ 1
and ν(ϕ(α)) ≥ 0. Combining them with ν(αϕ(α)) = 1 we deduce that these
inequalities are actually equalities.

This shows all the desired properties on α and ϕ(α). To show the analo-
gous properties on σ(α) and ϕ◦σ(α) one applies σ on the relation (12.5) and
argues as above replacing the eigenspacesN1/π and V1/π with the eigenspaces
N1/σ(π) and V1/σ(π). �

Proposition 12.8. (Colmez) Consider the ring Bcrys,F for the prime p = 2

and F = Q2(
√

3). There exists an element tf ∈ Bcrys,F which verifies the
following properties.

(1) tf ∈ Fil1BdR − Fil2BdR.

(2) σ(tf ), ϕ(tf ), ϕ ◦ σ(tf ) ∈ Fil0BdR − Fil1BdR.

(3) ϕ2(tf ) = (1−
√
−1) · tf .

(4) The elements tf , σ(tf ), ϕ(tf ) and ϕ ◦ σ(tf ) are invertible in Bcrys,F .
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Proof. This is a special case of Proposition 12.7 up to a little subtlety.
Consider first the ramified extension F = Q2(

√
−1) and the uniformizer

π = 1−
√
−1. Then Proposition 12.7 will give a period t2,π which verifies all

the properties of the statement except that it is constructed in Bcrys,Q2(
√
−1).

On the other hand we have the equality

Bcrys,Q2(
√
−1) = Bcrys,Q2(

√
3).

Notice though that the two descriptions of this ring exchange the role of σ
with ϕ ◦ σ. As Proposition 12.7 is stable under this exchange, the period
tf = t2,π does satisfy all the desired properties. �

Corollary 12.9. Consider F = Q2(
√

3) and let α ∈ Q24(
√

3) = Q24(
√
−1)

be an element such that
ϕ(α) =

√
−1 · α.

Define λi ∈ Bcrys,F as

λi =

(
α · tf · ϕ(tf )

σ(tf ) · (ϕ ◦ σ)(tf )

)i
.

Then λi is a nonzero element of Pi(F ) and moreover it verifies

λi · σ(λi) = (α · σ(α))i.

Proof. All properties follow from Proposition 12.8 by direct calculation. �

13. End of the proof

We are now ready to show Theorem 8.1 (via Proposition 9.6).

Proof of Theorem 8.1. Thank to Proposition 10.4, we can work under As-
sumption 10.6, and fix the positive integer i as in the assumption as well as
the field F from Proposition 10.8.

Let us first suppose that F is unramified. We can then combine Proposi-
tion 11.6 and Corollary 12.2 to conclude that the quadratic forms qB,p and
qZ,p are isomorphic if and only if 1/pi is a norm. Because of Lemma 13.1,
this is the case if and only if i is even.

Suppose now that F is ramified but it is not Q2(
√

3) nor Q2(
√
−1). Then,

following Remark 12.5, we can combine Proposition 11.11 and Corollary 12.4
to conclude that the quadratic forms qB,p and qZ,p are isomorphic if and only
if ai is a norm. Because of Lemma 13.2, this is the case if and only if i is
even.

If F is Q2(
√
−1) we can combine Proposition 11.11 and Corollary 12.6 to

conclude that the quadratic forms qB,p and qZ,p are isomorphic if and only
if (α · σ(α))i is a norm. Because of Lemma 13.3, this is the case if and only
if i is even.

Finally, if F is Q2(
√

3) we can combine Proposition 11.11 and Corollary
12.9 to conclude that the quadratic forms qB,p and qZ,p are isomorphic if
and only if (α · σ(α))i is a norm. Because of Lemma 13.4, this is the case if
and only if i is even.
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In conclusion, we showed for that, for any possible F , the quadratic forms
qB,p and qZ,p are isomorphic if and only if i is even. This shows Theorem
8.1 via Proposition 9.6. �

Lemma 13.1. The element 1/p ∈ Q∗p does not belong to the group of norms
NQp2/Qp

(Q∗p2).

Proof. For f ∈ Qp2 , the p-adic valuation of f and ϕ(f) coincide, hence a
norm must have even p-adic valuation. �

Lemma 13.2. Suppose that F is ramified but it is not Q2(
√

3) nor Q2(
√
−1).

Let
√
a ∈ Qp2 be as in Corollary 12.4. Then the element a ∈ Q∗p does not

belong to the group of norms NF/Qp
(F ∗).

Proof. This is about finding nonzero solutions x, y ∈ Qp of the equation

(13.1) x2 − π2y2 = a.

We can suppose that a has p-adic valuation zero. Then x has valuation zero
and y has non-negative valuation.

Consider first the case p 6= 2. By reducing modulo p we see that the
existence of a solution (x, y) would imply that a would be a square in Fp
which gives a contradiction.

Consider now the case p = 2. We can then take a = 5 and π2 = 2, 6, 10
or 14, see Remark 12.5. If we reduce modulo 8 the equation (13.1) we see
that the existence of a solution (x, y) would imply that 3, 5 or 7 would be a
square in Z/8Z which gives a contradiction. �

Lemma 13.3. Let α ∈ Q24(
√

3) = Q24(
√
−1) be as in Corollary 12.6.

Then the element α · σ(α) ∈ Q∗2 does not belong to the group of norms
NQ2(

√
−1)/Q2

(Q2(
√
−1)∗).

Proof. Write α = α1 +
√
−1 · α2 with α1, α2 ∈ Q24 , then we have

ϕ(α1) = −α2, ϕ(α2) = α1, α · σ(α) = α2
1 + ϕ(α2

1).

Let us make explicit computations. Fix the presentations

F22 = F2[x]/(x2 + x+ 1) F24 = F22 [y]/(y2 + xy + 1)

and write

Q22 = Q2(
−1 +

√
−3

2
) Q24 = Q22 [y]/(y2 + (

−1 +
√
−3

2
)y + 1).

Then ∆ =

√
(−1+

√
−3

2 )2 − 4 =

√
−1−

√
−3

2 − 4 can be chosen as α1. Thus,

α · σ(α) = ∆2 + ϕ(∆2) = −9.

This is a norm if and only if one can find a nonzero solution u, v ∈ Q2 of
the equation u2 + v2 = −9. This is impossible by looking at the equation
modulo 8. �



STANDARD CONJECTURES FOR ABELIAN FOURFOLDS 47

Lemma 13.4. Let α ∈ Q24(
√

3) = Q24(
√
−1) be as in Corollary 12.9.

Then the element α · σ(α) ∈ Q∗2 does not belong to the group of norms

NQ2(
√

3)/Q2
(Q2(
√

3)∗).

Proof. We argue as in the proof of Lemma 13.3. Write α = α1 +
√
−1 · α2

with α1, α2 ∈ Q24 , then we have

ϕ(α1) = −α2, ϕ(α2) = α1,

Moreover, as the elements fixed by σ are exactly those in Bcrys, we have

σ(
√
−1) = −

√
−1 σ(α1) = α1 σ(α1) = α1

and we deduce that α · σ(α) = α2
1 + ϕ(α2

1). This means that we can use the
same computations as in the proof of Lemma 13.3 and for the same choice
of α in there we have

α · σ(α) = −9.

This is a norm if and only if one can find a nonzero solution u, v ∈ Q2 of
the equation u2 − 3v2 = −9. This is impossible by looking at the equation
modulo 8. �

Remark 13.5. Let us point out that the formulation of Proposition 9.6
does not involve the ring Bcrys. We do not know if there is a way to show
Theorem 8.1 via this proposition without computing explicitly the p-adic
periods.

A. Geometric examples

In this section we discuss several examples to which Theorems 3.18 and
8.1 apply non-trivially. We are particularly interested in exotic classes on
abelian fourfolds (Definition 7.1). The main result is Proposition A.1 where
we discuss the existence of exotic classes that cannot be lifted to algebraic
classes in characteristic zero. The techniques of construction there are in-
spired by [LO74] and [Zar15].

Other examples of exotic classes will be found in Remark A.8. We end
the section with an example (other than abelian fourfolds) for which the
standard conjecture of Hodge type holds true via Theorem 8.1.

Proposition A.1. Let p be a prime number and let K be an imaginary
quadratic number field where p does not split. Then there exists an abelian
fourfold A over Fp verifying the following properties.

(1) The endomorphism algebra is a number field that can be written as
the compositum

End(A)Q = K ·R
where R is a totally real number field such that [R : Q] = 4. (In
particular A is simple and has a unique CM-structure).
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(2) Consider the motivic decomposition from Proposition 6.7(2). Among
the factors MI of h4(A) there exists a (unique) factor M such that
M(2) does not contain any Lefschetz class (Definition 5.1) but it is
Frobenius invariant (for a model of A defined over a finite field).

(3) For any CM-lifting of A to characteristic zero (see Theorem 6.10 and
Corollary 6.12) the Hodge structure RB(M) is of type (3, 1), (1, 3).

(4) For any CM-lifting of A to characteristic zero we have the equality
EndNUM(C)Q(M) = K.

Proof. The proof is decomposed in a series of lemmas. The final step is
Lemma A.7. �

Remark A.2. Let us make some comments on the above proposition.

(1) If (a model of) the fourfold A verifies the Tate conjecture, then M
is an exotic motive in the sense of Section 7. In particular, in each
characteristic, there should be infinitely many non-isogenous abelian
fourfolds having exotic motives.

If the Tate conjecture was highly false and no such exotic classes
existed then Theorem 3.18 would follow directly from the arguments
in Section 5.

The Tate conjecture and the standard conjecture of Hodge type
should be thought as two independent and different problems. The
first is about the construction of algebraic classes, the second is about
how they intersect (independently whether there are a lot of alge-
braic classes or not). It seems likely that a solution of one problem
does not imply a solution for the other. For example the proof of
the Tate conjecture for divisors on abelian variety [Tat66, Theorem
4] does not imply the standard conjecture of Hodge type for divisor
on abelian variety (which is known by a different argument).

(2) Because of the Hodge types in part (3), the (expected) algebraic
classes in positive characteristic cannot be lifted to algebraic classes
in characteristic zero.

(3) Notice that the field F = K ⊗Q Qp can be any quadratic extension
of Qp. This field F coincides with the one in Proposition 10.8. This
shows that the different cases studied in Sections 11 and 12 were
needed.

(4) The hypothesis that K is totally imaginary is necessary. If K were
a real quadratic number field, conditions (3) and (4) in Proposition
A.1 would not be compatible (see the proof of Lemma 7.16).

Lemma A.3. Let p and K be as in Proposition A.1. There exists a totally
real number field R such that the following holds:

(1) The prime p does not split in R.
(2) The degree [R : Q] is four.
(3) The field K ⊗Q Qp is embeddable in the field R⊗Q Qp.
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(4) If R̃ is the normal closure of R over Q, then Gal(R̃/Q) = S4. In

particular we have Gal(R̃/R) = S3.

Proof. Same as in [LO74, §3]. �

Lemma A.4. Let R be as in the above lemma. The following holds:

(1) The subfields of the compositum R ·K are Q,K,R and R ·K.
(2) The prime p factorises in R ·K as

p = (p · p̄)e,

where p and p̄ are two prime ideals which are exchanged by complex
conjugation and e is the ramification index.

Proof. Let R̃ be as in Lemma A.3. The equality Gal(R̃/Q) = S4 implies

Gal(R̃ ·K/Q) = S4 × Z/2Z

and similarly Gal(R̃/R) = S3 implies Gal(R̃ ·K/R ·K) = S3. We deduce
that the subfields of R ·K are in bijection with the subgroups of S4×Z/2Z
containing S3. Those are precisely S3,S4,S3×Z/2Z and S4×Z/2Z, which
implies (1).

Note that the equality R ·K ∼= R⊗Q K holds. Hence we have

(R ·K)⊗Q Qp
∼= (K ⊗Q Qp)⊗Qp (R⊗Q Qp) ∼= (R⊗Q Qp)

Gal(K⊗QQp/Qp),

where the last equality comes from Lemma A.3(3). As R⊗Q Qp is a field (by
Lemma A.3(1)), the prime p factorizes in R·K as the product of two different
primes. Moreover, those two primes are exchanged by Gal(K ⊗Q Qp/Qp).
As complex conjugation generates this Galois group it exchanges these two
prime ideals. In particular they must have the same ramification index.
This concludes part (2). �

Lemma A.5. Consider the prime ideals p and p̄ of R · K from the above
lemma. Then there exist an integer n, a p-power q and a q-Weil number
α ∈ R ·K verifying the following properties:

(1) The ideal generated by α factorizes as

(α) = pn · p̄3n.

(2) For any positive integer s, we have the equality

Q(αs) = R ·K.
(3) The norm NR·K/K(α) ∈ K equals q2.

Proof. Consider the ideal I = (p · p̄3)e. We have that I · Ī = p4 by

Lemma A.4(2). Actually, for any g ∈ Gal(R̃ · K/Q), we have the equal-

ity g(I) · g(I) = p4 of ideals in R̃ · K. This follows from the case g = id
together with the explicit description of the Galois group in the proof of the
lemma above (which implies that complex conjugation is in the center of
the Galois group). Hence, we can apply [Hon68, Lemma 1] and deduce that
there exists a q-Weil number α ∈ R ·K verifying (1).
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Let us show (2). Because of Lemma A.4(1), this amounts to showing that
αs does not belong to K nor to R. Now, if αs belongs to K (or to R) then its
factorization in R ·K would have the same exponent in p and in p̄ because
there is only one prime above p in K (or in R); see the hypothesis on K in
Proposition A.1 (respectively by Lemma A.3(1)).

Let us now show (3). If we compute the norm of the ideal (α) we obtain

(NR·K/K(α)) = NR·K/K(pn · p̄3n) = NR·K/K(p)n ·NR·K/K(p̄)3n = p̃m,

where m is an integer and p̃ is the only prime ideal above p in K. Hence,
after possibly replacing α by a power, we obtain that the ideal NR·K/K(α)
is generated by a power of p. For weight reasons we have

(NR·K/K(α)) = (q2).

This is equivalent to the relation NR·K/K(α) = ξ ·q2, where ξ is an invertible
element of the ring of integers of K. As the group of invertible elements of
the ring of integers of an imaginary quadratic field is finite, after replacing
α by a power we get (3). Notice that such a power of α will still have
properties (1) and (2). �

Lemma A.6. Let α be a q-Weil number verifying the properties as in the
above lemma. Let A be an abelian variety over Fq whose isogeny class cor-
responds to α under the Honda–Tate correspondance [Tat71]. Then the fol-
lowing holds:

(1) The dimension of A is four.
(2) A is geometrically simple.
(3) End(A)Q = End(AF̄p

)Q = K ·R.
(4) The slopes of A are (1/4, 3/4)
(5) There are Frobenius invariant classes in H4

` (A) which are not of
Lefschetz type.

Proof. By [Tat66] the division algebra End(A)Q has center equal to Q(α)
which is R·K by Lemma A.5. Moreover, by [Tat71, Theorem 1], this division
algebra splits at every place except possibly at the places p and p̄ above p.
The local invariants there are computed by the formula in [Tat71, Theorem
1], which gives

invp(End(A)Q) =
vp(α)

vp(q)
· [(R ·K)p : Qp] mod Z

and similarly for p̄.
We claim that these local invariants are trivial as well. Indeed, using

the factorisation in Lemma A.5(1), we deduce that
vp(α)
vp(q) = 1

4 . On the other

hand, the degree [(R · K)p : Qp] equals four, because [R · K : Q] = 8 and
the two primes above p are exchanged by complex conjugation (Lemma
A.4(2)). Altogether we have that invp(End(A)Q) = 0 and similarly one
shows invp̄(End(A)Q) = 0
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Because all the invariants of the (R · K)-central algebra End(A)Q are
trivial, we have R ·K = End(A)Q. As [R ·K : Q] = 8 we deduce (1).

Consider now the abelian variety As over Fqs whose isogeny class cor-
responds to αs. Following the Honda–Tate correspondance As is a simple
factor of A ×Fq Fqs . On the other hand, all the arguments above work by
replacing α by αs, because of Lemma A.5(2). In particular, As has also
dimension four and R ·K = End(As)Q. This implies (2) and (3).

One slope has already been computed, namely vP (α)
vP (q) = 1

4 . Duality implies

that there is also the slope 3/4. As A has dimension four there are no more
slopes.

Let us now show (5). The existence of a class such as the ones claimed is
equivalent to the existence of a set I consisting of four Galois conjugates of
α whose product equals q2 and such that I is not stable under the action of
complex conjugation (see the proof of Lemma 7.7 or [Zar15, §2]). We claim
that the relation

NR·K/K(α) = q2

(Lemma A.5(3)) gives precisely the existence of those four Galois conjugates.

Indeed, let R̃ be the normal closure of R over Q, by definition we have

NR·K/K(α) =
∏

g∈HomK(R·K,R̃·K)

g(α).

Hence it is enough to show that complex conjugation does not stabilize the
set J = {g(α)}g∈HomK(R·K,R̃·K). As the set J is of size four and the total

Galois orbit of α is of size 8 there is an element of Gal(R̃ ·K/Q) which does
not stabilize J . On the other hand, thanks to the equality

Gal(R̃ ·K/Q) = Gal(R̃ ·K/K)×Gal(R̃ ·K/R̃)

we have that the total Galois group Gal(R̃·K/Q) is generated by its subgroup

Gal(R̃ · K/K) and complex conjugation. As Gal(R̃ · K/K) stabilizes J ,
complex conjugation cannot stabilize it. �

Lemma A.7. Let A be an abelian fourfold which satisfies the properties of
the lemma above. Then it also satisfies all the conditions of Proposition A.1.

Proof. Part (1) has already been showed. Part (2) follows from Lemma
A.6(5). (Unicity comes from Lemma 7.14.)

Let us now show part (3). Write α, β, γ, δ, q/α, q/β, q/γ, q/δ for the eight
(distinct) Frobenius eigenvalues and consider the decomposition in eigenlines

h1(A) = Vα ⊕ Vβ ⊕ Vγ ⊕ Vδ ⊕ Vq/α ⊕ Vq/β ⊕ Vq/γ ⊕ Vq/δ
as in Proposition 6.6. Among these eight eigenvalues, four have slope 1/4
and four have slope 3/4 and they are exchanged by complex conjugation.

Fix a CM-lifting (Theorem 6.10). The above decomposition in eigenlines
will lift as well (Corollary 6.12). Among the eight lines, four will belong to
H1,0 and four will belong to H0,1 and again they are exchanged by complex
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conjugation. The Shimura–Taniyama formula [Tat71, Lemma 5] implies
that there is exactly one eigenvalue, call it α, whose slope is 1/4 and such
that Vα ⊂ H1,0. Equivalently, there is exactly one eigenvalue, namely q/α,
whose slope is 3/4 and such that Vq/α ⊂ H0,1.

Now decompose M = Mα,β,γ,δ ⊕Mq/α,q/β,q/γ,q/δ via Proposition 6.7. (Af-
ter possibly renaming the eigenvalues.) With this notation we have the
relation

α · β · γ · δ = q2.

By looking at the p-adic valuation we deduce that, among β, γ, δ there is
exactly one eigenvalue of slope 1/4, say β. Hence we have Vβ ⊂ H0,1 and
Vγ , Vδ ⊂ H1,0. Altogether we deduce

Vα ⊗ Vβ ⊗ Vγ ⊗ Vδ ⊂ H3,1

which gives (3).

Let us now show part (4). By construction we can find a quadratic num-

ber field F ⊂ R̃ · K such that the motive M decomposes in the category
CHM(k)F into a sum

MI = MI ⊕MĪ

of two motives of rank one (see Proposition 6.7). We first claim that such
a field F must be imaginary. If F were contained in R then the Betti
realization of the lifting of MI would respect the Hodge symmetry. As
it is one dimensional for weight reasons it would be of type (2, 2). This
contradicts part (3).

By [Jan92], D = EndNUM(C)Q(M) is a division algebra. By construc-
tion, F splits D. We claim that D = F . Otherwise we would have
D ⊗ F ∼= M2×2(F ) which would imply that MI and MĪ are isomorphic
as numerical motives. As homological and numerical equivalence is known
to coincide for complex abelian varieties [Lie68], this would imply that their
Betti realization are isomorphic, which is impossible because of the different
Hodge types.

In conclusion, EndNUM(C)Q(M) is an imaginary quadratic field contained

in R̃ ·K. On the other hand, there is only one such field (namely K) because

of the description of Gal(R̃ ·K/Q) in the proof of Lemma A.4. �

Remark A.8. Let us comment on other examples of exotic motives coming
from abelian fourfolds.

(1) One can construct an abelian fourfold A over a finite field having an
exotic motive whose lifting to C has Betti realization of type (2, 2).
Such a condition means that the CM-lifting of A over C has Hodge
classes which are not Lefschetz. This situation (over C) has been
classified in [MZ95]. So, any reduction modulo p of their examples
will give an abelian fourfold over a finite field of the desired type.
(To avoid that the reduction modulo p creates more Lefschetz classes,
one can take an ordinary prime).
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As already pointed out, these examples are less interesting for the
standard conjecture of Hodge type, see Remark 10.5(2).

(2) There are no exotic motives over Fp (coming from abelian fourfolds)
whose lifting to C have Betti realization of type (4, 0), (0, 4). To show
this, consider a model of the abelian fourfold over a finite field Fq.
Let I be the set of Frobenius eigenvalues such that the corresponding
eigenspaces are lifted into H1,0 and Ī be the set of Frobenius eigen-
values such that the corresponding eigenspaces are lifted into H0,1.
If the cohomology group H4,0 ⊕ H0,4 becomes Frobenius invariant
over Fq, then

∏
α∈I α =

∏
β∈Ī β(= q2). On the other hand, using

the Shimura–Taniyama formula [Tat71, Lemma 5], we have that the
p-adic valuation of

∏
α∈I α is greater than the one of

∏
β∈Ī β, ex-

cept if all Frobenius eigenvalues have the same slopes. In this case
the abelian variety would be isogenous to the forth power of a su-
persingular elliptic curve and hence all algebraic classes would be
Lefschetz.

(3) Having the results of Section 7 in mind, the last example that needs
to be discussed is that of an abelian fourfold with a four dimensional
space of exotic classes. By Lemma 7.14, this reduces to an abelian
fourfold over Fq2 of the form X×E, where X is an abelian threefold
and E is a supersingular elliptic curve on which Frobenius acts as
q · id. Now the equations (7.4) and (7.5) imply that the existence of
an exotic class on X × E is equivalent to the existence of an exotic
class on X2. There are infinitely many such threefolds X, they have
been classified in [Zar15].

Proposition A.9. The standard conjecture of Hodge type holds true for
Fermat’s cubic fourfold X = {x3

0 + · · · + x3
5 = 0} ⊂ P5

k over any field k (of
characteristic different from 3).

Proof. Let us first consider X as variety over C. By [Bea14, Proposition 11]
its Hodge structure decomposes as

H∗B(X,Q) = Q(0)⊕Q(−1)⊕Q(−2)⊕21 ⊕ VB ⊕Q(−3)⊕Q(−4)

where VB is a Q-Hodge structure of rank 2 and of type (3, 1), (1, 3). As the
Hodge conjecture is known for X and its powers [Shi79], this decomposition
holds true at the level of homological motives

M(X) = 1⊕ 1(−1)⊕ 1(−2)⊕21 ⊕ V ⊕ 1(−3)⊕ 1(−4).

This implies that the primitive part of the motive is of the form

h4,prim(X) = 1(−2)⊕20 ⊕⊥ V.

Note that the decomposition is orthogonal with respect to the cup product
as the types of the Hodge structures are different. Finally, as the motive of
X is finite dimensional [BLP18, Lemma 5.2], this decomposition lifts to the
level of Chow motives. (Alternatively, see Remark 8.2(2).)
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Let us now work over Fp. (This is enough for our purpose, thanks to
Proposition 3.16). The positivity of the cup product on algebraic classes on
the factor 1(−2)⊕20 is clear as all these classes come from characteristic zero,
see Remark 3.13. We are reduced to the study of algebraic classes on the
two dimensional motive V . As the characteristic polynomial of Frobenius
acting on V is a rational polynomial of degree two, there are either zero or
two rational solutions. In the first case the space of algebraic classes on V is
reduced to zero hence the standard conjecture of Hodge type holds trivially.
In the second case the Fermat variety is supersingular and V is spanned by
algebraic cycles [SK79]. In this case the standard conjecture of Hodge type
holds true via Theorem 8.1. (Note that there are infinitely many primes for
which the non-trivial case occurs [SK79, Theorem 2.10]). �

Remark A.10. Let us comment on applications and limits of Theorem 8.1.

(1) Theorem 8.1 cannot be applied to show the standard conjecture of
Hodge type for abelian varieties of dimension at least five. Indeed, let
A be a simple abelian variety of dimension g and let MI ⊂ h2i(A) be
a factor as constructed in Proposition 6.7. By its very construction,
the dimension of MI is at least g/i as Gal(Q/Q) acts transitively on
Σ, see Notation 6.5. Hence the rank of MI will never be two (except
possibly in middle degree).

(2) It seems likely that using Theorem 8.1 one can show the standard
conjecture of Hodge type for some special varieties as we did in
Proposition A.9 for Fermat’s cubic fourfold. On the other hand we do
not know examples (other than abelian fourfolds) where this strategy
applies for a whole family of varieties and we expect such examples
to be rare7. It is rather a miracle, based on the computations of
Section 7, that for all abelian fourfolds only motives of rank two
turn out to be significant.
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[Kün94] Klaus Künnemann. On the Chow motive of an abelian scheme. In Motives,
volume 55.1 of Proceedings of Symposia in pure mathematics, pages 189–205.
American mathematical society, 1994.

[Kün95] Klaus Künnemann. Some remarks on the arithmetic Hodge index conjecture.
Compositio Math., 99(2):109–128, 1995.
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