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Multi-Sensor-Based Predictive Control for
Autonomous Parking in Presence of Pedestrians

David Pérez-Morales1, Olivier Kermorgant2, Salvador Domı́nguez-Quijada3 and Philippe Martinet4

Abstract— This paper explores the feasibility of a Multi-
Sensor-Based Predictive Control (MSBPC) approach in order
to have constraint-based backward non-parallel (perpendicular
and diagonal) parking maneuvers capable of dealing with
moving pedestrians and, if necessary, performing multiple
maneuvers. Our technique relies solely in sensor data expressed
relative to the vehicle and therefore no localization is inherently
required. Since the proposed approach does not plan any
path and instead the controller maneuvers the vehicle directly,
the classical path planning related issues are avoided. Real
experimentation validates the effectiveness of our approach.

I. INTRODUCTION

Even though the research on autonomous parking started
more than 20 years ago, leading to a quite extensive literature
[1] and in spite of the fact that the automobile industry has
already started to roll out some commercial implementations
of active parking assistants capable of actively controlling
acceleration, braking and steering [2], the research interest in
the topic remains strong. Path planning approaches have been
heavily investigated in recent years. Among the different
planning techniques it is possible to distinguish between
geometric approaches, with either constant turning radius
[3], [4] using saturated feedback controllers or continuous-
curvature planning using clothoids [5], [6], using continuous
curvature rate steering functions based on cubic spirals [7];
heuristic approaches [8] and machine learning techniques [9].

A well-known drawback of path planning is that it is nec-
essary to have knowledge about the free and occupied space
of the whole environment beforehand if online replanning
is not feasible, potentially leading to costly infrastructure re-
quirement. Furthermore, the tracking performance of a given
path is highly dependent on the localization performance
which might get degraded on certain environments (e.g. un-
derground parking lots without any special infrastructure) or
after a few maneuvers leading to non-negligible differences
between the planned path and the performed one [5], [6].

An interesting alternative is the use of a sensor-based
control approach. It has been proven to be valid for naviga-
tion [10], dynamic obstacle avoidance [11] and for parking
applications [12], [13]. It should be noted that an important
limitation of a purely sensor-based control approach is the
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possibility of getting trapped in local minima i.e. if the car
is not able to park in one maneuver from the initial pose
then the parking maneuver won’t be successful.

A natural goal for a human driver when parking would be
to try to make the vehicle’s longitudinal axis to be collinear to
the main axis of the parking spot (i.e. to be centered lateral-
wise) and finish the maneuver at a certain distance from the
rear boundary of the parking spot while avoiding collision
with surrounding obstacles during the whole maneuver.

Assuming that the vehicle is capable of perceiving sur-
rounding free parking spots and pedestrians, it is possible to
park without any path planning using a MSBPC approach by
minimizing the error between the current value of a certain
set of sensor features (i.e. a line collinear to the parking
spot’s main axis and another collinear to the rear boundary
of the parking spot) and its desired value while avoiding
collision by imposing certain constraints on another set of
sensor features (lines defining the boundaries of the parking
spot, points at the corners of said spot, etc.). It is worth noting
that, since the presented approach is based on the features
perceived at each time instant and a certain desired fixed
value for each feature, no localization is inherently required
for it to be stable in spite of the prediction step considered.

The contribution of this paper is the exploration of a
MSBPC approach in order to have constraint-based park-
ing maneuvers capable of dealing with moving pedestrians.
By extending our previous work [13], now considering
an additional auxiliary subtask and a predictive approach,
the presented technique is capable of performing multiple
maneuvers (if necessary) in order to park successfully in
constrained workspaces. The auxiliary subtask is key since it
allows to account for the potential motions that go essentially
against the final goal (i.e drive the vehicle away from the
parking spot) but that in the end allow to park successfully.
Moreover, by formalizing pedestrians as constrained moving
sensor features, our approach is able to adjust itself to the
motion of the moving obstacle in order to avoid colliding
with it. Finally, real experimentation demonstrates that our
MSBPC technique is able to perform safe parking maneuvers
without any path planning, even when a pedestrian purpose-
fully interferes with the vehicle’s motion.

In the next section the kinematic model of the vehicle
and the multi-sensor modeling are presented. Section III
describes the interaction model allowing to formalize the
parking tasks and the constraints for collision avoidance.
Afterwards, the controller is presented in Section IV. The
obtained results are presented in Section V. Finally, some
conclusions are given in Section VI.
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Fig. 1. (a) Kinematic model diagram for a car-like rear-wheel driving
robot. (b) Robotized Renault ZOE used for real experimentation

II. MODELING AND NOTATION

Given that parking maneuvers are low-speed motions, a
kinematic model can be considered as accurate enough.

A. Car-like robot model and notation

Considering the well-known kinematic model of a car
with rear-wheel driving [14], the vehicle’s twist is defined
by the following column vector (elements separated by a
semicolon):

vm = [vxm ; θ̇m], (1)

where vxm and θ̇m are, respectively the longitudinal (along
xm) and rotational velocities expressed in the moving base
frame Fm. Additionally, one can link the steering angle φ
to θ̇m using the following equation:

θ̇m =
vxm

tanφ

lwb
. (2)

Therefore, it is possible to consider as control input of the
robotized vehicle the following expression:

vr = [vxm ;φ] (3)

Finally, the turning radius ρm around the instantaneous
center of rotation (ICR) can be defined as:

ρm =
lwb

tanφ
. (4)

It should be noted that, thanks to the multi-sensor-based
formalism considered (introduced in the next subsection), our
closed-loop control law does not need to have any knowledge
about the Cartesian pose of the vehicle (x,y,θ).

The vehicle used for experimentation and simulation,
represented by its bounding rectangle in Fig. 1a, is a Renault
ZOE (Fig. 1b). Its relevant dimensional parameters are
presented in Table I.

TABLE I
DIMENSIONAL VEHICLE PARAMETERS

Parameters Notation Value
Wheelbase: Distance between the front and
rear wheel axles

lwb 2.588 m

Rear overhang: Distance between the rear
wheel axle and the rear bumper

lro 0.657 m

Total length of the vehicle lve 4.084 m
Total width of the vehicle wve 1.945 m
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Fig. 2. Multi-sensor model

B. Multi-sensor modeling

For the sake of clarity, the considered multi-sensor mod-
eling (detailed in [15]) is recalled in this subsection.

1) Kinematic model: Let us consider a robotic system
equipped with k sensors (Fig. 2) that provide data about the
environment. Each sensor Si gives a signal (sensor feature)
si of dimension di with

∑k
i=1 di = d.

In a static environment, the sensor feature derivative can
be expressed as follows:

ṡi = L̆iv̆i = L̆i
iT̆mv̆m (5)

where L̆i is the interaction matrix [16] of si
(dim(L̆i) = di × 6) and iT̆m is the 3D screw
transformation matrix that expresses the sensor twist v̆i

(which is expressed in its corresponding frame Fi) with
respect to the robot twist v̆m (expressed in the control
frame Fm).

Denoting s = (s1; . . . ; sk) the d-dimensional signal of the
multi-sensor system, the signal variation over time can be
linked to the moving vehicle twist:

ṡ = L̆sv̆m (6)

with:
L̆s = L̆T̆m (7)

where L̆ and T̆m are obtained by concatenating either
diagonally or vertically, respectively, matrices L̆i and

i
T̆m

∀ i ∈ [1 . . . k].
Planar world assumption: Assuming that the vehicle

to which the sensors are rigidly attached evolves in a plane
and that the sensors and vehicle have vertical parallel z axes,
all the twists are reduced to [vxi ; vyi ; θ̇i] hence the reduced
forms Ľ, Ľs, Ľi, v̌m and iŤm of, respectively, L̆, L̆s, L̆i,
v̆m and iT̆m are considered. Ľi is of dimension di × 3,
v̌m = [vxm

; vym
; θ̇m] and iŤm is defined as:

iŤm =

 cos(mθi) sin(mθi) xi sin(mθi)− yi cos(mθi)

− sin(mθi) cos(mθi) xi cos(mθi) + yi sin(mθi)

0 0 1


(8)

where mti = [xi; yi] and mθi are, respectively, the position
and orientation of Si (frame Fi) with respect to Fm ex-
pressed in Fm. Furthermore, since in the considered model
the control frame Fm is attached to the vehicle’s rear axle



(a) Task features (b) Constrained features illustration

(c) Sensors configuration

(d) Parking environment example

Fig. 3. (a) Features considered for the parking task. (b) Example of the constrained sensor features. (c) General sensors’ configuration and sensor features.
(d) Example of a parking environment. The green rectangle denotes the parking spot into which the car should park. Red areas are considered forbidden
zones, as such the vehicle should never go into them. Furthermore, it is considered that parking maneuvers can only start inside the transitable area and
if no portion of the vehicle is inside any of the forbidden zones.

with origin at the point M (Fig. 1a), the robot twist v̌m can
be further reduced to (1). Thus, it is possible to write:

ṡ = Ls vm (9)

where Ls is composed of the first and third columns of Ľs.

III. INTERACTION MODEL

For the interaction model, we rely on the perception of
several lines Lj and points from several (virtual) sensors
placed at convenient frames in order to simplify the sensor
features definitions and their interaction matrices. The use-
fulness of virtual sensors can be exemplified as follows: if
the car is parking into perpendicular spot with a backward
motion (Fig. 3a), the risk of collision with the obstacle on
the left is the highest for the car’s rear left corner, therefore it
would be convenient to have a virtual sensor (S6) placed on
said corner to express directly the distance to left boundary
(6L3) of the parking spot.

The virtual sensor’s placement can be seen in Fig. 3c. S1

and S2 are placed along xm and at a certain distance of the
rear vehicle’s axle towards the front and rear respectively.
S3 to S6 are placed on the corners of the car’s bounding
rectangle and have the same orientation as the control frame.

As it can be seen in Fig. 3a, points ip1 to ip4 correspond to
the corners of the parking spot while ip5 and ip6 are, respec-
tively, the midpoints between (ip1,

ip4) and (ip2,
ip3). Line

iL1 is placed along the main axis of the parking spot while
lines iL2 to iL4 are placed around the edges of the parking
spot, leaving one side open from where the vehicle to park
can enter the spot (denoted by iL5). Line iL2 corresponds
to the rear boundary of the parking spot. Lines iL3 and iL4

correspond to the lateral boundaries. Additionally, iLoff
1 and

iLoff
5 are simply offsets of, respectively, iL1 and iL5 away

from the parking spot. All the lines are parametrized using
normalized Plücker coordinates.

A. Line parametrization

Given two distinct 3D points ipf and ipg expressed in
frame Fi of sensor Si in homogeneous coordinates, with

ipf = [iXf ; iYf ; iZf ; iWf ] (10a)

ipg = [iXg; iYg; iZg; iWg], (10b)

a line passing through them (expressed in the same frame Fi)
can be represented using normalized Plücker coordinates as
a couple of 3-vectors [17]:

iLj = [iuj ;
ihj ] (11)

where iuj = iuj/||iuj || (with iuj 6= 0) describes the
orientation of the line and ihj = irj/||iuj || where irj
encodes the position of the line in space. Additionally, ihj

is orthogonal to the plane containing the line and the origin
(interpretation plane). The two 3-vectors iuj and irj are
defined as [18]:

iuj = iWf [iXg; iYg; iZg]− iWg[iXf ; iYf ; iZf ] (12a)

irj = [iXf ; iYf ; iZf ]× [iXg; iYg; iZg] (12b)

Due to the planar world assumption considered, the third
element of iuj and the first and second elements of ihj are
equal to zero, i.e. iuj,3 = ihj,1 = ihj,2 = 0 while, for the
same reason, ihj,3 can be interpreted as the signed distance
from the origin to the line. Considering this and for the sake
of clarity, for the remaining of this article it would be deemed
ihj ≡ ihj,3. As such, the sensor signal si,j and interaction
matrix ĽiLj

for the line iLj observed by Si are defined
respectively as:

si,j =
[
iuj,1; iuj,2; ihj

]
, (13)

ĽiLj
=

 0 0 iuj,2
0 0 −iuj,1

−iuj,2
iuj,1 0

 (14)



B. Task sensor features

The set of task sensor features st (task superscript t

not to be confused with transpose T) corresponding to the
positioning is composed of two opposing tasks subsets: the
main task st2 - used to actually drive the car into the parking
spot, and the auxiliary task st1 - used to drive the car away
from it. It is defined as:

st = [st2; st1] = [st2,1; st2,2; st1,1off ; s
t
1,5off ] (15)

The reasoning for this is that, in practice, often is neces-
sary to perform motions that go against the final goal (i.e
drive the vehicle away from the parking spot) but that in the
end will allow to have a successful parking maneuver.

Considering the definition of iL1 and iL2, a sensible
choice would be for iL∗1 to be collinear with the vehicle’s
xm-axis and iL∗2 to be parallel to ym-axis at a safe distance
from the rear boundary. Moreover, since the objective of the
auxiliary task is to pull the vehicle away from the parking
spot, the desired values 1Loff∗

1 and 1Loff∗
5 are chosen to be

collinear with the xm-axis. The conflicting goals for the
orientations of these features are exploited by adapting their
influence in function of the current sensor features’ values.
The consistency of the complete task is ensured by means
of the weighting approach introduced in the next section.

The interaction matrix Ľt
2 for the features observed by S2

is computed by a 2nd order approximation [19] of the form:

Ľt =
ĽL + Ľ∗L

2
(16)

where ĽL = [ĽiL1
; ĽiL2

] and Ľ∗L is equal to the value of
ĽL at the desired pose. As it has been shown previously
[13], [20], the use of an interaction matrix of the form (16)
for the parking task induces a rather interesting and useful
behavior: whenever there is a large error in orientation and
positioning (regarding iL1 for the latter) the vehicle steers
away from the parking spot initially giving itself more room
to afterwards steer into the parking spot. Since this behavior
is not as interesting for the auxiliary task and for simplicity
reasons, the interaction matrix Ľt

1 for the features observed
by S1 is computed at each iteration and is defined by (14).

C. Constrained sensor features

Let us consider Fig. 3d as an example of a parking
environment in the vicinity of a straight road with the road
being labeled as transitable area. On the lower section of
the figure one can see a row of parking spots. Among these
parking spots, the chosen one to park the vehicle is denoted
by a green rectangle and its boundaries are denoted by yellow
lines leaving one side open from where the vehicle can
enter the spot. The sections colored in red denote forbidden
zones, i.e. areas that the vehicle should never go into. These
forbidden zones may be comprised of other parking spots
which may or may not be already occupied (like those on
the sides of the selected parking spot and on the top section
of the figure) as well as walls, sidewalks, bushes, etc., and
thus not actually being part of the road anymore. Given that
for parking scenarios one can often expect to have static

Fig. 4. Perceived pedestrian and its estimated orientation.

obstacles in the red regions of Fig. 3d, it is possible to avoid
collision by constraining certain sensor features such that
the vehicle is able to move only inside the transitable area
and the chosen parking spot. Assuming a straight road, the
necessary constraints can be defined considering only sensor
features related to the parking spot as shown in this section.

To define the constraints, three other types of features are
considered in addition to iLj : the X and Y coordinates of a
given point ipa (iXa, iYa) - which typically are used for the
vertices of the parking spot closest to the transitable area,
and the difference of radii (shown in Fig. 3b):

idlata = iρpa
− ρlat, (17)

where:
iρpa

=
√

(iXa + xi)2 + (iYa + yi − ρm)2, (18)

ρlat = |ρm| −
wve

2
. (19)

Since (17) already depends on the control input, there
is no need to define any interaction matrix for them and
instead one can compute/predict such features directly from
their definition. The interaction matrices ĽiXa

and ĽiYa

associated, respectively, to iXa and iYa are:

ĽiXa
=
[
−1 0 iYa

]
, (20)

ĽiYa
=
[

0 −1 −iXa

]
. (21)

Considering that for this type of maneuvers the rear
side of the vehicle has to enter first into the parking spot,
the majority of the constrained sensor features should be
observed by the sensors placed at the rear corners of the
vehicle, thus sc is defined as follows:

sc = [sc1; . . . ; sc14] = [sc3; sc4; sc5; sc6] (22)

with
sc3 = [3h2; 3h4; 3h5; 3X2; 3Y2; 3dlat2 ], (23a)

sc4 = [4h4; 4h5], (23b) sc5 = [5h3; 5h5], (23c)

sc6 = [6h2; 6h3; 6h5; 6X3]. (23d)

If the appropriate considerations are taken in the inter-
action model, sensor-based control strategies are capable
of tracking moving targets [21], or as in our case, impose
constraints on them to avoid collision. (6) can be modified
to account for the velocity of a moving obstacle as follows:

ṡ = L̆s(v̆m − v̆mo) (24)

where v̆mo is the twist of the moving obstacle expressed in
the vehicle frame (estimated by an extended Kalman filter
with constant velocity in the fixed frame).



Without entering in matters of social interaction, the
moving obstacle is considered as a pedestrian. Following
a classical model in proxemics [22] where the personal
distance is defined as a circle of radius of ≈ 46 cm around
an individual, a pedestrian modeled as an inflated point ipmo
with a given orientation (Fig. 4). As such, the constrained
sensor features can be defined as:

scmo = [scmo
1 ; . . . ; scmo

8 ] = [scmo
3 ; scmo

4 ; scmo
5 ; scmo

6 ] (25)

with

scmo
3 = [3Xmo; 3Ymo], (26a)

scmo
4 = [4Xmo; 4Ymo], (26b)

scmo
5 = [5Xmo; 5Ymo], (26c)

scmo
6 = [6Xmo; 6Ymo]. (26d)

As it can be noticed, the constraints are imposed on
features perceived by the sensors placed at the corners of the
vehicle’s bounding rectangle. By doing so, one can directly
constrain the (iXmo,

iYmo) coordinates of the point associated
to the moving pedestrian in order to keep it out of the car’s
bounding rectangle (with a given safety margin) and thus
avoid colliding with it.

Since sc may not contain all the elements of each sensor
feature required for performing the prediction (especially true
for constraints on ihj), an extension śc of sc containing all
the necessary elements should be considered. The interaction
matrix associated to śc, which is computed at each iteration,
is denoted as Ĺc

s. The exact definition of the set of con-
strained sensor features sc is now given case by case.

It should be noted that some constraints must be deacti-
vated under certain conditions in order to be able to park
successfully. For instance, the constraints on 3X2 and 6X3

are used to avoid collision, respectively, with points 3p2
and 6p3, but they would prevent the vehicle from entering
the parking spot if they remain active all the time. Thus,
if the vehicle is in a configuration where it can safely
enter the parking spot without colliding with the aforemen-
tioned points, the previously mentioned constraints should
be deactivated. Some other constraints must be deactivated
under certain circumstances in order to ensure a successful,
collision-free parking maneuver. A similar reasoning applies
for the moving obstacle. For example, considering a situation
like in Fig. 4, it is only necessary to maintain active the
constraints that keep the point on the right and front sides
of the vehicle. The equations detailing the deactivation
conditions (relying only on the sensor features and control
signals) used to obtain the results presented in this work can
be found in the appendix.

IV. CONTROL

The presented MSBPC approach is based on the Visual
Predictive Control (VPC) described in [23] with some mod-
ifications to impose an exponential decay of error related to
the main task et2 = st2 − st

∗

2 . Furthermore, considerations
have been made to deal with the nonholonomic constraints
inherent to car-like robots in addition to some other con-
straints (most of them unilateral).

−+
s∗(n)

−+
sd(n)

Optimization System
vr(n)

Model
+−

smp(n)smp(n)ε(n)

s(n)

Fig. 5. Control structure [23]

A. Structure

The control structure is based on the internal-model-
control (IMC) structure [24] (Fig. 5). The System block
contains the robotized vehicle system and sensors whose
input is the control variable vr and output s is the current
value of the sensor features. The reference s∗ is the desired
value of the task sensor features. The error signal ε represents
all the modeling errors and disturbances between the current
features and the values that were predicted from the model:

ε(n) = s(n)− smp(n) (27)

where n is the current time.
The optimization algorithm minimizes the difference be-

tween the desired value sd and the predicted model output
smp. According to Fig. 5:

sd(n) = s∗(n)− ε(n) = s∗(n)− (s(n)− smp(n)), (28)

from where it is possible to deduce

sd(n)− smp(n) = s∗(n)− s(n), (29)

therefore, to track s∗ by s is equivalent to track sd by smp.
To predict the behavior of smp over a finite prediction

horizon Np, the interaction model described in Sec. III is
used. The difference between sd and smp is used to define
a cost function J to be minimized with respect to a control
sequence ṽr over Np. It should be noted that only the first
component vr(n) of the optimal control sequence is actually
applied to the vehicle at each iteration.

B. Constraint handling

Model-predictive-control strategies are capable of explic-
itly take into into account constraints in the control-law
design. As such, in this subsection we present the imposed
constraints.

The longitudinal velocity vxm and steering angle φ are
bounded by its maximum values as follows:

|vxm
| < vmax, (30a) |φ| < φmax, (30b)

where vmax is an adaptive saturation value imposing a decel-
eration profile based on the velocity profile shown in [4] as
the vehicle approaches the final pose. Furthermore, to avoid
large changes in the control signals at the current iteration n
that may cause uncomfortable sensations for the passengers
or surrounding witnesses and, to consider to some extent the
dynamic limitations of the vehicle, the following constraints
are considered:

|v̇xm
| ≤ v̇max, (31a)

|v̈xm
| ≤ v̈max, (31b)

|φ̇| ≤ φ̇max, (31c)

|φ̈| ≤ φ̈max, (31d)



|
...
φ| ≤

...
φmax. (31e)

The sensor features considered for collision avoidance are
constrained as follows:

scmin ≤ scmp ≤ scmax (32a) scmo
min ≤ scmo

mp ≤ scmo
max (32b)

By writing the constraints (31) and (32) as nonlinear
functions:

C(vr) ≤ 0 (33)

a constraint domain C can be defined.

C. Mathematical formulation

The MSBPC approach can be written in discrete time as
follows:

min J(vr)
ṽr ∈ C

(34)

with

J(vr) =

n+Np∑
j=n+1

(
[sd − stmp(j)]T Q(j) [sd − stmp(j)]

+ vm(j − 1)
T
R(j − 1)vm(j − 1)

) (35)

and

ṽr = {vr(n),vr(n+1), . . . ,vr(n+Nc), . . . ,vr(n+Np−1)}
(36)

subject to

stmp(j) = stmp(j − 1) + Lt
s(j − 1)Tsvm(j − 1), (37a)

ścmp(j) = ścmp(j − 1) + Ĺc
s(j − 1)Tsvm(j − 1). (37b)

scmo
mp (j) = scmo

mp (j−1)+Ľcmo
s (j−1)Ts(v̌m(j−1)−v̌mo(j−1))

(37c)
It should be noted that, from vr(n+Nc) to vr(n+Np−1),

the control input is constant and is equal to vr(n + Nc),
where Nc is the control horizon.

1) Weighting strategy: As mentioned in Sec.III-B, st2
contains the features used to actually drive the car into the
parking spot, thus the minimization of the error et2 = st2−st

∗

2

is what drives the vehicle towards a parked pose, generally
with a backward motion, while et1 = st1 − st

∗

1 would be
generally minimized with opposite directions of motion.
To automatically maneuver the vehicle with the appropriate
direction of motion, the influence of each sensor feature is
regulated by means of the weighted matrix Q, which remains
constant along the prediction horizon. It is defined as:

Q =

[
Q2 W

t
2 06×6

06×6 Q1 W
t
1

]
(38)

with Wt
2 = diag(wt

1, . . . , w
t
6), Wt

1 = diag(wt
7, . . . , w

t
12)

and

Q1 =

{
0 if ‖s2L1 − s∗2,1L1‖ < εL1

and Q2 > 0

1−Q2 otherwise
(39)

where εL1 is a small positive scalar value that serves to
nullify Q1 (and consequently the influence of st1) when

s- s 
s- s 

s+ s 
+

w-

w+

Fig. 6. Generic weighting function w(s)

the vehicle is almost collinear to 2L1. The values of
wt

i ∀i = {1–12} and Q2 are given by the weighting func-
tions wt

i(s,vr(n)) and Q2(s,vr(n)) which are composed
of different combinations of a generic smooth weighting
function w (Fig. 6).

Regarding Wt
2, its role is to prioritize the error in position

by letting the orientation (mostly) free for the most part of
the maneuver and, as the current orientation approaches to
the desired one, smoothly change the priority from position
to orientation. As such, wt

3 and wt
6 can be set to constant

values while the remaining diagonal elements of Wt
2 can be

defined as:

wt
i = w(et6) ∀i ∈ {1, 2, 4, 5}. (40)

As for Wt
1, its role is to induce small corrective motions

if the vehicle is relatively close to be collinear to the main
axis of the parking spot and otherwise try to drive the
vehicle away from the parking spot towards a more suitable
unparked position as a sort of prepositioning/maneuver-
restarting mechanism.

2) Imposing an exponential decay of the error: The
inclusion of the term related to vm as part of the cost function
J allows to impose an exponential decay on the error which
additionally improves the stability of the controller. Never-
theless, this behavior (particularly regarding the longitudinal
velocity) is mostly only desired for the main parking task.
For this purpose, the influence of vxm and θ̇m are regulated
by means of the weighted matrix R, which remains constant
along the prediction horizon. It is defined as:

R =

[
λvQ2 0

0 1

]
. (41)

where λv is a constant gain that regulates how fast the vehicle
decelerates when approaching the desired parked pose.

V. RESULTS

For the results shown in this section, the parameters in
Table II are considered. The value of φmax corresponds to
the maximum steering angle of the real vehicle while the
rest of the parameters required to solve (34) were determined
by empirical testing. The controller is implemented in C++
using the solver NLopt [25] with a Sequential Least Squares
Programming (SLSQP) algorithm [26]. The whole software
architecture (and not only the parking controller) runs on a
dual core Intel Core i5-3610ME.

It can be clearly seen that, in spite of the moving pedes-
trian purposefully disturbing the vehicle, our approach to
park successfully (Figs. 7, 8b) while satisfying the collision
avoidance constraints during the whole maneuver. The final
||et2|| achieved was 0.0396 which if reconstructed translates
to errors of approximately 0.27 cm laterally, −3.94 cm lon-
gitudinally and −0.1° in orientation.



TABLE II
CONTROL-RELATED VEHICLE PARAMETERS

Parameteres Notation Value

Sampling time Ts 0.1 s

Control horizon Nc 10 (1 s)

Prediction horizon Np 25 (2.5 s)

Maximum longitudinal velocity vmax ≤ 0.556m/s

Maximum longitudinal acceleration v̇max 0.3m/s2

Maximum longitudinal jerk v̈max 0.5m/s3

Maximum steering angle φmax 0.5236 rad

Maximum φ velocity φ̇max 0.6981 rad/s

Maximum φ acceleration φ̈max 0.9 rad/s2

Maximum φ jerk
...
φmax 0.9 rad/s3

Longitudinal velocity gain λv 0.1

Threshold value to nullify Q1 εL1 0.125

Fig. 7. Parking in presence of a pedestrian (https://youtu.be/
_Reew0eqg4o)

(a) Control signals (b) et2 = st2 − st
∗
2

(c) Constraints on pedestrian (d) Weights’ evolution

Fig. 8. Constrained real backward ⊥ parking maneuver signals

One can notice that when Q2 is larger than Q1 (Fig. 8d),
the vehicle is moving backwards and when Q1 is larger
the opposite occurs. The main task error et2 (Fig. 8b) is
minimized as the vehicle moves backwards (i.e. towards the
parking spot, Q2 > Q1) while it grows when the vehicle
moves in the opposite direction (i.e. away from the parking
spot). Regarding the main task weights, it can be seen how
the elements related to the orientation have no influence
during the most part of the maneuver and only when the
vehicle is close to the desired pose the priority changes from
position to orientation. As for the auxiliary task weights,
it can be seen how a small weight associated st9 pulls the
vehicle out of the parking spot (Fig. 8d, at ≈ 33 s) while the

weights related to st7 and st8 try to keep the vehicle parallel
to main axis of the parking spot. About the evolution of the
active constraints on the moving pedestrian (Fig. 8c), one
can notice that scmo

6 and scmo
8 (used to keep the pedestrian

on the car’s left side) get close to zero at ≈ 31 s. This
occurred because the pedestrian was purposefully moving
diagonally towards the vehicle at that moment, knowing that
the risk is lower for him in such context due to the lateral
motion limitations of the vehicle. Indeed, if a pedestrian
wants to touch the vehicle, it is possible (especially true if
approaching from the sides). However, as shown in the rest
of the constraints on the pedestrian, the car will always try
to avoid contact.

VI. CONCLUSIONS
We have shown that, by moving the effort from the

motion planning to the control, the need of having knowledge
about the free and occupied space of the whole environment
beforehand is eliminated as well as the classical compromise
between completeness and computational efficiency. Indeed,
thanks to the auxiliary task and the prediction step consid-
ered, the presented MSBPC approach is able to successfully
deal with non-parallel backward parking problems in multi-
ple motions even when surrounding pedestrians purposefully
disturb the vehicle’s motion. Moreover, it has been shown
that in spite of the disturbances, the amount of maneuvers
remains reasonable and the final ||et2|| is rather satisfactory.

APPENDIX
The constraints deactivation conditions used to obtain

the results presented in this work are now detailed (Table
III). To simplify the content of the tables, the following
notation is considered: wspot denotes the width of the parking
spot, vabs

max denotes the absolute maximum desired velocity in
m/s, the subscripts min+ and min− denote a minimum radius
or difference of minimum radii when turning with either,
respectively, the maximum or minimum steering angle (φmax
or −φmax), the superscript c(angle) denotes a multiplication of
the base by cos(angle) with angle expressed in degrees and
act(constraint) is a boolean variable that is equal to true
when the constraint is active and false otherwise and, ε1 to
ε5 are small positive values considered for certain constraint
deactivation conditions. The superscripts c− and c+ denote
the constraints, respectively, on the low and on the high
side of the associated sensor feature. It is worth noting that
most sensor features are only constrained on either their low
or high side. Thus, if a given constraint does not appear
on the table it means that it does not exists. Furthermore,
it should be noted that the conditions should be verified
at each prediction step along the whole prediction horizon
with the appropriate predicted value for each feature and
corresponding control signal.
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TABLE III
CONSTRAINTS DEACTIVATION CONDITIONS

Constraint Deactivate if
3hc
−

2 –
3hc
−

4
3Y2 ≥ 0 or 6Y3 ≤ 0 or 3X2 < 0

3hc
−

5
3h4 > ε1 and 3h3 < −ε1

3Xc−
2

4h5 > ε1 or 4h4 < 0 or 3h5 < 0 or 3Y2 < −ε1 or
6Y2 > ε1

3Xc+

2

3X2 < −2vabs
max or 3Y2 < −ε1 or 3h3 > 0 or

(act(3hc
−

5 ) and vxm ≤ 0)

3Y c+

2

3h3 > 0 or(
vxm ≤ 0 and

(
act

(
3hc
−

5

)
or act

(
3dc

+

lat2

)))
or

3Y2 > 0 or 6h4 < 0

3dc
+

lat2

φ ≥ 0 or vxm ≥ 0 or
(
vxm < 0 and 3X2 > |x3|

)
or

3h5 > ρc30
mmin+

or(
|5h4| < ρc45

mmin+
and 3h5 > ρc45

mmin+

)
4hc
−

4
4h5 > ε1 or 4h4 < 0

4hc
−

5
4h4 > ε1 and 4h3 < −ε1 and 3h5 < 4h5

5hc
+

3
3h3 > 0 and 3h5 > ε1

5hc
+

5 –
6hc
−

2 –

6hc
+

3

3Y3 < −ε3 or (6X3 < 0 and 6Y3 < ε3) or (6X3 > 0
and 3Y3 < 0)

6hc
+

5 –
6Xc+

3
3Y3 < −ε1 or 6Y3 > ε1 or

(
3h3 > 0 and 3Y3 < −ε1

)
3Xc+

mo
3Xmo > 0 or 3Ymo < −ε4 or 5Ymo > ε4

3Y c+
mo

3Ymo > 0 or 3Xmo < −ρmmin+
− 1.5vabs

max or
4Xmo > ρmmin+

− 1.5vabs
max or(

3Xmo < −ε4 and (mvxmo ≤ 0 or |mvymo | > |mvxmo |)
)

or(
4Xmo > ε4 and (mvxmo ≥ 0 or |mvymo | > |mvxmo |)

)
or

(
3Xmo > −ε5 and 4Xmo < ε5 and
3Ymo > −ε5 and 6Ymo < ε5

)
4Xc−

mo
4Xmo < 0 or 3Ymo < −ε4 or 5Ymo > ε4

4Y c+
mo !act

(
3Y c+

mo

)
5Xc−

mo !act
(
4Xc−

mo

)

5Y c−
mo

5Ymo < 0 or 3Xmo < −ρmmin+
− 1.5vabs

max or
4Xmo > ρmmin+

− 1.5vabs
max or(

3Xmo < −ε4 and (mvxmo ≤ 0 or |mvymo | > |mvxmo |)
)

or(
4Xmo > ε4 and (mvxmo ≥ 0 or |mvymo | > |mvxmo |)

)
or

(
3Xmo > −ε5 and 4Xmo < ε5 and
3Ymo > −ε5 and 6Ymo < ε5

)
6Xc+

mo !act
(
3Xc+

mo

)
6Y c−

mo !act
(
5Y c−

mo

)
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