
HAL Id: hal-02933689
https://hal.science/hal-02933689v1

Preprint submitted on 8 Sep 2020 (v1), last revised 13 Oct 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Semi-supervised Stacked Autoencoder Approach for
Network Traffic Classification

Ons Aouedi, Kandaraj Piamrat, Dhruvjyoti Bagadthey

To cite this version:
Ons Aouedi, Kandaraj Piamrat, Dhruvjyoti Bagadthey. A Semi-supervised Stacked Autoencoder
Approach for Network Traffic Classification. 2020. �hal-02933689v1�

https://hal.science/hal-02933689v1
https://hal.archives-ouvertes.fr

A Semi-supervised Stacked Autoencoder Approach
for Network Traffic Classification

Ons Aouedi and Kandaraj Piamrat
University of Nantes, LS2N (UMR 6004)

2 Chemin de la Houssinière
Nantes, France

{firstname.lastname}@ls2n.fr

Dhruvjyoti Bagadthey
Department of Electrical Engineering (IIT Madras)

Chennai 600036
Chennai, India

djbagadthey@gmail.com

Abstract—Network traffic classification is an important task in
modern communications. Several approaches have been proposed
to improve the performance of differentiating among applica-
tions. However, most of them are based on supervised learning
where only labeled data are used. In reality, a lot of datasets are
partially labeled due to many reasons and unlabeled portions
of the data, which can also provide informative characteristics,
are ignored. To handle this issue, we propose a semi-supervised
approach based on deep learning. We deployed deep learning
because of its unique nature for solving problems, and its ability
to take into account both labeled and unlabeled data. Moreover,
it can also integrate feature extraction and classification into a
single model. To achieve these goals, we propose an approach
using stacked sparse autoencoder (SSAE) accompanied by de-
noising and dropout techniques to improve the robustness of
extracted features and prevent the over-fitting problem during
the training process. The obtained results demonstrate a better
performance than traditional models while keeping the whole
procedure automated.

Index Terms—Traffic classification, Feature extraction, Deep
learning, Machine learning , Stacked Autoencoder, Stacked De-
noising Autoencoder, Dropout, Semi-supervised learning.

I. INTRODUCTION

Traffic classification is one of the principal issues in au-
tomated intrusion detection systems since learning user be-
haviors can help network operators to know what is flowing
in their network so they can provide appropriate services.
Therefore, traffic classification has profound implications on
network management for Internet Service providers (ISP) [1].
According to the latest Cisco forecast, by 2022 the number
of devices connected to mobile networks will exceed the
world’s population, reaching 12.3 billion. Meanwhile, mobile
data traffic will be 77 exabytes per month, which is 7 times
that in 2017 [2]. Traditional techniques such as port-based
classification and deep packet inspection are becoming less
efficient to handle and classify this heterogeneous traffic (i.e.
application).

Over the past few years, machine learning (ML) and
especially deep learning (DL) have advanced considerably
and being widely adopted in several domains. In contrast to
traditional ML models that rely heavily on features defined by

domain experts, DL algorithms can extract knowledge from
data through multiple layers of nonlinear processing units.
Also, in most research on traffic classification, only the labeled
data can be used, while many unlabeled data (i.e unknown
applications) are not considered. In fact, it is difficult and
time-consuming to label all the existing applications of the
dataset manually; therefore, there may exist a large number
of unlabeled instances within the dataset. At the same time,
as new applications emerge every day, it is also not possible
to have all the flow labeled in a real-time manner. Within the
field of ML/DL, a broad distinction could be made between
supervised, unsupervised, and semi-supervised learning. The
main idea behind supervised learning is to identify a mapping
from the input features to an output class. On the other hand,
for unsupervised learning the objective is to find a structure
(i.e. pattern) in the inputs without the output class. Semi-
supervised is a combination of supervised and unsupervised
approaches and is used when the dataset consists of input-
output pairs but the outputs values are not known for certain
observations. This reflects the situation of most of the network
datasets. To handle this important issue, this paper presents
a stacked sparse autoencoder (SSAE) based semi-supervised
deep learning model for traffic classification. In this context,
unsupervised feature extraction and a supervised classification
algorithm are combined so as to utilize information from both
unlabeled and labeled data. In brief, the advantages of our
approach compared to other schemes are stated as follows.

• Our model takes advantage of both labeled and unlabeled
data to implement a classification task. Making use of
unlabeled data is of significance for the network-traffic
classification.

• By taking advantage of unsupervised learning, our model
can extract robust features automatically; hence, there is
no need for an expert to extract features manually. More-
over, the dropout and denoising coding hyper-parameters
are introduced into the model to avoid the over-fitting
problem and extract robust features.

The rest of the paper is organized as follows. Section II,978-1-7281-6992-7/20/$31.00 ©2020 European Union

provides related works while Section III presents the essen-
tial background on deep learning, autoencoder, and stacked
autoencoder. Section IV introduces our algorithm of traffic
classification based on semi-supervised deep learning. Section
V discusses the details of the experiments, their corresponding
results, and the dataset used during this work. Finally, a
conclusion of this paper is given in section VI.

II. RELATED WORK

As the importance of traffic classification increases, several
techniques have been proposed and used over the years. Some
representative techniques are summarized below.

A. Port based traffic classification

Port-based classification is the most simple technique since
an analysis of the packet header is used to identify only the
port number and its correspondence to the well-known port
numbers. Network applications register their ports via the
Internet Assigned Network Authority (IANA). However, this
approach has limitations, for example, applications can use
dynamic port number or ports associated with other protocols
to hide from network security tools [3].

B. Deep Packet Inspection (DPI)

To avoid total reliance on the semantics of port numbers,
the DPI technique has been proposed to inspect the payload of
the packets searching for patterns that identify the application.
It checks all packets data, which consumes a lot of CPU
resources and can cause a scalability problem. Moreover, it
fails to classify encrypted traffic [4].

C. ML-based traffic classification

The emergence of new applications, as well as the de-
velopment of smart devices, has increased the complexity
and diversity of online applications, which makes the traffic
classification a difficult task. In this context, many research
works have already used ML methods in network application
classification in order to avoid the limitation of DPI and port-
based traffic classification [1]. It is used as an alternative
approach to classify the traffic by exploiting the distinctive
characteristics of applications when they communicate on a
network. Therefore, several works have been done using ML.

In [5], the authors introduced a traffic classification architec-
ture based on software-defined networking (SDN) deployed in
an enterprise network using different ML methods i.e. Random
Forest, Stochastic Gradient Boosting, and Extreme Gradient
Boosting. Before the classification task, they used Principal
component analysis (PCA) as a dimensionality reduction tech-
nique to reduce over-fitting of the classifier. In [6], two feature
selection methods have been used for traffic classification
followed by six supervised learning, which are Naive Bayes,
Bayes Net, Random Forest, Decision Tree, Naive Bayes Tree,
and Multilayer Perceptron. In [7], the authors have used two
common machine learning algorithms, which are C4.5 and
KNN (K-nearest neighbor), for traffic classification. Also,
the authors in [19] used the Symmetric uncertainty feature
selection method then XGBoost for traffic classification.

It can be noticed that many works have been investigated
using ML; however, most of them select the network traffic
features through the conventional feature selection method and
have focused only on labeled data and supervised learning.
In contrast, this paper focuses on semi-supervised learning
to benefit from labeled and unlabeled data and integrates the
feature learning and model training in one architecture to avoid
human intervention and time-wasting as maximum as possible.

III. BACKGROUND

DL is a novel research direction in the ML field, which has
achieved great success in many applications in comparison to
classical ML algorithms. Building models using traditional ML
is bottlenecked by the amount of features engineering required,
there are limits to how much human effort can be thrown at the
problem [8]. In contrast, DL algorithms hierarchically extract
knowledge from raw data through multiple layers of nonlinear
processing automatically, in order to make them flexible in
modeling complex relationships [9]. In recent years, with the
rapid growth of computational power and the availability of
graphical processing units (GPUs), training DL algorithms has
become easier. Here, one of the typical unsupervised feature
learning algorithms, which is Stacked Sparse AutoEncoder
(SSAE), is investigated. For a better understanding, we will
describe in the following some important concepts.

A. Autoencoder

Autoencoder (AE) is one of the several architectures of
artificial neural networks with a symmetrical structure. It is
an unsupervised learning algorithm and can be divided into
three parts (encoder, code, and decoder blocks) as shown in
Fig. 1. More specifically, the encoder obtains the input and
converts it into an abstraction, which is generally known as
a code, then the input can be reconstructed from the code
layer through the decoder. It uses non-linear hidden layers to
perform dimensionality reduction [10].

Fig. 1. General autoencoder process

In many cases, Autoencoder outperforms conventional fea-
ture selection methods and linear feature extraction such as
principal component analysis (PCA) since it consists of several
layers with non-linear activation functions to extract features
intelligently [12].

B. Stacked Autoencoder (SAE)

To obtain a better performance than classical autoencoder,
there exists a more complex architecture and training pro-
cedure, known as stacked autoencoder (SAE) [11]. Several
autoencoder layers are stacked together and form an unsuper-
vised pre-training stage where the encoder layer computed by
an autoencoder will be used as the input to its next autoencoder
layer. Each layer in this stage is trained like an autoencoder
by minimizing its reconstructing error. When all the layers are
pre-trained, the network goes into the supervised fine-tuning
stage. At the supervised fine-tuning stage, a softmax layer is
added to the encoding layer of the unsupervised pre-training
stage for the classification task and discarding the decoding
layers of SAE (Fig.2). Since the number of units in hidden
layers is large, we impose a sparse constraint on the hidden
layers to capture high-level representations of the data. A
sparsity penalty term is included in the loss function to prevent
identity mapping by keeping only a selected set of neurons
active at any instance. Hence, each neuron in the hidden layer
typically gets associated with a useful feature of the input.
Generally, we define a neuron as “active” when its output
value is close to 1 and “inactive” when its output value is close
to 0. Consequently, by the use of sparsity constraint, we get
an algorithm known as Stacked Sparse AutoEncoder (SSAE).
Then, to prevent the identity transformation and avoiding the
over-fitting, denoising noise and dropout hyper-parameters can
be used in the SSAE.

Fig. 2. General Stacked AutoEncoder process

C. Dropout

Dropout is a technique that aims to help a neural network
model to learn more robust features and reduces the interde-
pendent learning among the neurons [13]. The term “dropout”
refers to dropping out units in a neural network. By dropping
a unit out, we mean temporarily removing it from the network,
along with all its incoming and outgoing connections, and
the choice of which units to drop is random. In this study,
the dropout technique is applied to train our semi-supervised
learning in order to avoid the extraction of the same features
repeatedly (over-fit). It should be noted that the dropout is
turned off during testing and used just within the training stage.

D. Denoising autoencoder

Denoising autoencoder was proposed in [14] to improve the
robustness of feature representation. It is trained to reconstruct
a clean input from a corrupted version of it. Therefore, similar
to the conventional autoencoder network, it is trained in order
to learn a hidden representation that allows it to reconstruct
its input. However, the main difference with denoising autoen-
coder is that the model should reconstruct the original input
from a corrupted version in order to force even very large
hidden layers to extract more relevant features. This corruption
of the data is done by first corrupting the initial input X
to get a partially destroyed version X ′. By doing so, the
definition of good representation is changed into the following:
”a good representation is one that can be obtained robustly
from a corrupted input and that will be useful for recovering
the corresponding clean input” [14]. The main reasons for
using denoising SSAE are: (i) it is expected that a higher-
level representation should be rather stable and robust under
corruptions of the input, and (ii) performing the denoising can
help our model to capture useful structure in the input data.

IV. METHODOLOGY

In this work, we develop an SSAE based semi-supervised
classification method for traffic classification as shown in
Fig.3. It consists of the unsupervised feature extraction task
and the supervised classification task. Therefore, both unla-
beled and labeled data have been used to extract more valuable
information and make a better classification. We present the
methodology in the following.
A. Data Preprocessing

In order to simulate a partially-labeled dataset, we select
a portion of the known applications randomly and remove
the application labels of their instances. Further, to reduce
impacts from an imbalanced dataset [16], we create a subset
with more balanced data samples for each application. For
that, we have used a random over-sampling technique for the
minority classes and random under-sampling technique for the
majority classes and we got a fair distribution of each class.
In the experiment, we separate the labeled data into training
(80%), validation (10%), and testing (10%).

When the dataset has several features containing different
data types but some ML models can only work with numeric
values, it is necessary to convert or reassign numeric values. In
this work, we have converted initial values of timestamp and
IP address to numerical values. Moreover, when the dataset
consists of different features with values in different scales,
it needs to be scaled and to center the feature values. This
can be done by calculating the standard scores for each data
feature. The standard score x′ of a data feature x is given by:

x′ =
x− µ
σ(x)

where σ(x) is the standard deviation and µ the distribution
mean value for x. Standardized features have approximately
zero mean and unit standard deviation thus eliminating high
variability and scaling effects.

Fig. 3. Structure of the semi-supervised network traffic classification model

B. Semi-supervised traffic classification
By taking advantage of supervised and unsupervised learn-

ing, a semi-supervised classification model has been proposed
as illustrated in Fig. 3. Our semi-supervised classification
model consists of (i) the unsupervised feature extraction stage
using unlabeled data, and (ii) the supervised classification
stage using labeled data. To do so, the decoder layers of the
SSAE model have been ignored and we directly linked the
last hidden layer (i.e. code) to a neural network classifier (i.e.
softmax layer); hence, we get a new deep learning model.
Then, the backpropagation algorithm is employed to fine-tune
the parameters of the whole model. In order to find the optimal
model architecture, several experiments have been conducted
with different architectures varying hidden layers and hidden
nodes. Next, to improve the performance of our model, we
also injected and varied hyper-parameters such as denoising
coding and dropout.

C. Evaluation metrics
We evaluated the classification performance of our model

in terms of several metrics: accuracy, precision, recall, and
F-measure, which are calculated respectively as:

Accuracy is the proportion of correct classification (TP and
TN) from the overall number of cases.

Accuracy =
TP + TN

TP + FP + FN + TN
F-measure is the harmonic mean of precision and recall. If,

its value is high and closer to accuracy, the performance of
classification is better.

F −measure = 2× Precision×Recall
Precision+Recall

where:
Precision =

TP

TP + FP

Recall =
TP

TP + FN
To calculate these metrics, there are four important terms:

TP: True Positive, FP: False Positive, TN: True Negative, FN:
False Negative.

There are different evaluation models as training and
testing on the same data: k-fold cross-validation and
train/validation/test split. In this research, we used the
train/validation/test split because it is simple and flexible.

V. EXPERIMENTAL STUDY

The purpose of this experiment is to compare the effect
of our model with different parameters to find the optimal
architecture. In this section, we assess the performance of our
semi-supervised based deep learning against other classifica-
tion algorithms. We have used Scikit-learn and Keras libraries,
and Python as a programming language. The Python scripts
used for implementing our model are made available online
for public access at [18].

A. Dataset

The dataset used in our experiment was presented in a
research project [15]. It consists of 87 features, 3,577,296
instances, and 78 classes (Facebook, Google, YouTube, Yahoo,
Dropbox, and so on). This dataset was collected in a network
section from Universidad Del Cauca, Popayàn, Colombia. It
was constructed by performing packet captures at different
hours, during the morning and afternoon over six days in 2017.
We choose this dataset because it can be useful to find many
traffic behaviors as it is a real dataset and rich enough in
diversity and quantity. However, for facilitating computation,
we have used only the traffic collected from one day, which
is 09/05/2017. Therefore, our sub-dataset consists of 404,528
instances and 54 applications. Then, we have removed the
target label of some traffic in order to be used as unlabeled
data. In this context, we used 283,186 instances (70%) as
labeled data and 121,342 instances (30%) as unlabeled data.

B. SSAE based semi-supervised architecture and hyper-
parameters

Our SSAE based semi-supervised model is a DL approach
that consists of stacked sparse autoencoders and softmax
classifier for unsupervised feature learning and classification,
respectively. Therefore, to find the optimal unsupervised fea-
ture learning model, we need to find different hyper-parameters
that maximize the accuracy of the classification. In this con-
text, several experiments have been done, some of the best
configurations are presented in Table I. For each model, the test
accuracy, the number of hidden layers, as well as the number
of neurons in each layer, are presented.

It can be seen that the configuration in bold text with four
hidden layers (100-200-400-50) obtains the best results with
a learning rate equal to 0.001. Similarly, for the selection

TABLE I
CONFIGURATIONS USED IN THE EXPERIMENTATION

SSAE Model #Hidden layers Number of neurons Test accuracy
L1 L2 L3 L4 L5

SSAE 1 2 100 50 - - - 79.4%
SSAE 2 2 100 100 - - - 83%
SSAE 3 2 100 200 - - - 84.2%
SSAE 4 2 100 400 - - - 82%
SSAE 5 2 70 50 - - - 77.4%
SSAE 6 2 70 30 - - - 76.8%
SSAE 7 3 100 200 50 - - 85.4%
SSAE 8 3 100 200 100 - - 85.7%
SSAE 9 3 100 200 200 - - 85.3%
SSAE 10 3 200 400 60 - - 85.2%
SSAE 11 3 100 200 400 - - 85.8%
SSAE 12 4 100 200 400 100 - 86.3%
SSAE 13 4 100 200 400 50 - 86.89%
SSAE 14 5 100 200 400 50 30 84.8%

of the sparsity parameter, we tested different values ranging
from 0 to 0.1 with a step of 0.01. Then, we have selected
the best configuration that maximizes the performance of our
model (we stopped when the performance started to decrease).
Besides, the selected activation of hidden layers is ReLU
(rectified linear unit) because it shows better convergence
performance than sigmoid and tanh [17].

To improve the performance of our model, we combine the
sparse coding with denoising coding in the autoencoder to
learn robust features for the NN classifier (i.e. Softmax layer),
and we used a dropout technique to overcome over-fitting
during the training process. As presented in Fig. 4 and Fig. 5,
we have tested the effect of dropout and corruption noise on
the accuracy of our model. Here, the rate varied between 0 and
0.05 (we stopped when the performance started to decrease).
The results showed that the best classification performance
was obtained at a dropout rate and corruption equal to 0.02
and 0.03 respectively. Based on the results shown in these
figures, we can interpret that heavy corruption noise and too
much dropout can decrease the classification performance.

Fig. 4. Effect of dropout

Moreover, a comparison has been carried out between the
SSAE (used as a baseline) and SSAE+denoising+dropout, as
presented in Fig. 6. It can be seen that the injection of dropout
and denoising hyper-parameters can improve classification
performance. This implies that our model is more stable
and generates more relevant information with these hyper-
parameters.

Fig. 5. Effect of denoising coding

SSAE+denoising+dropout SSAE
0

20

40

60

80

100
89.09 86.89

A
cc

ur
ac

y(
%

)

Fig. 6. Accuracy of our model with/without enforcement (dropout/denoising).

C. Comparison with traditional approaches

To verify the efficiency of our model for traffic classi-
fication, we compared it with three reference classification
algorithms namely decision tree (DT), random forest (RF),
and support vector machine (SVM). These algorithms are built
on top of our SSAE and benefit from its automatic feature
extraction. However, there is no fine-tuning process of features
extracted by SSAE and their learning process only uses labeled
data. In fact, the labeled data is passed through the SSAE to
obtain X ′, the transformed data. Since the last layer of our
model has 50 neurons only, this X ′ has a smaller dimension
than X (i.e 87 features). Finally, these features are used to be

TABLE II
COMPARISON OF ML CLASSIFICATION RESULTS

Model Accuracy (%) Precision (%) Recall (%) F-measure (%)
SSAE+RF 87.13 88.54 87.13 87.49
SSAE+SVM 55 63.22 55 56.79
SSAE+DT 84.37 86.60 84.37 85.13
Our model 89.09 89.51 88.35 89.05

learned with the aforementioned classifiers.
The result shown in Table II that our proposed model

outperforms the others in terms of accuracy, precision, and
recall. Also, it achieves a good tradeoff between precision and
recall (i.e. F-measure). Therefore, this verifies that our model
is stable and can give satisfying results.

D. Discussion

The experimental results presented in the previous sections
demonstrate that the proposed SSAE based semi-supervised
deep learning can outperform the conventional classification
algorithms. The results may be attributed to the layer-wise
pre-training where each single AE is trained to exploit the
relationship between high-level features and target outputs and
helps the deep neural network models to yield much better
local initialization than random initialization. Then, the global
fine-tuning process optimizes the parameters of the entire
model, which greatly improves the classification task. Also, the
integration of dropout and denoising code hyper-parameters
into our model improves the performance of classification
and leads to learn more robust and informative features with
minimal risk of over-fitting. Moreover, our model benefits
from the unlabeled traffic in the training process to improve the
classification performance over other conventional classifiers.
Finally, our model can extract features automatically from
network traffic and discover the nonlinear relationships behind
the data as well as it can help to save the cost of using experts
to extract good features from the traffic, which is one of the
most important contributions of our model.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a stacked sparse auto-
encoder (SSAE) based semi-supervised classification model
for network-traffic classification. This model is closer to reality
as it profits through the use of labeled and unlabeled data. In
this way, an unsupervised algorithm based on the SSAE is first
pre-trained to obtain layer-by-layer initialization parameters.
Then, a supervised neural network classifier is linked to the
code layer of the SSAE and the whole is fine-tuned by
backpropagation. Furthermore, to improve the performance
of the feature extracted through our model and to avoid
over-fitting, we injected dropout and denoising code hyper-
parameters. Experimental results and analysis have shown that
our model outperforms other conventional classifiers while
benefiting from automatic feature extraction.

For future works, we plan to use a much larger amount
of unlabeled data to verify its impact on the classification
performance of our proposed model. Also, we can use other

hyper-parameters to improve our model and test the time
needed for the classification tasks.

REFERENCES

[1] T. T. T. Nguyen and G. Armitage, ”A survey of techniques for internet
traffic classification using machine learning,” IEEE communications
surveys and tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[2] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2017–2022 White Paper, Cisco, 2019.

[3] S. Sen, O. Spatscheck, and D. Wang, ”Accurate, scalable in network
identification of P2P traffic using application signatures,” In WWW2004,
New York, NY, USA, May 2004.

[4] Z. A. Qazi et al., ”Application-awareness in SDN,” In Proceeding
ACMSIGCOMM, Hong Kong, 2013, pp. 487–488.

[5] P. Amaral et al., ”Machine learning in software defined networks: Data
collection and traffic classification”, IEEE International Conference on
Network Protocols (ICNP), Singapore, Nov. 2016, pp.1–5.

[6] P. Perera , YC Tian , C. Fidge, and W. Kelly ”A Comparison of
Supervised Machine Learning Algorithms for Classification of Commu-
nications Network Traffic”. In: Neural Information Processing, Springer,
Cham, Lecture Notes in Computer Science, 2017, pp 445–454,

[7] GD. Gil, AH. Lashkari, M. Mamun, and AA. Ghorbani, ”Character-
ization of encrypted and vpn traffic using time-related features”. In:
Proceedings of the 2nd International Conference on Information Systems
Security and Privacy (ICISSP), 2016, pp 407–414.

[8] N. Ketkar, ”Deep Learning with Python” Apress, pp 159–194, 2017.
[9] G.P. Zhang, ”Neural networks for classification: a survey”, IEEE

Trans.Syst. Man Cybern. C, Appl. Rev., 30, (4), pp. 451–462, 2000.
[10] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M.S. Lew, ”Deep

learning for visual understanding: a review”, Neuro computing 187,
27–48, 2016.

[11] P. Vincent, H. Larochelle, Y. Bengio, and PA. Manzagol, ”Extracting and
composing robust features with denoising autoencoders”. In: Proceed-
ings of the 25th international conference on Machine learning, ACM,
2008, pp 1096–1103.

[12] O. Aouedi, M.A.B. Tobji, and A. Abraham, ”An Ensemble of Deep
Auto-Encoders for Healthcare Monitoring,” in Hybrid Intelligent Sys-
tems. Springer International Publishing, mar 2019, pp. 96–105.

[13] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, ”Dropout: a simple way to prevent neural networks from
overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, 2014, pp. 1929–1958.

[14] P. Vincent, H. Larochelle, I. Lajoie, et al. ”Stacked denoising autoen-
coders: learning useful representations in a deep network with a local
denoising criterion”. Journal of Machine Learning Research, Vol. 11,
2010, p. 3371-3408.

[15] J.S. Rojas, A. Rendon, and J. Corral, ”Personalized Service Degradation
Policies on OTT Applications Based on the Consumption Behavior
of Users”, International Conference on Computational Science and Its
Applications, 2018, pp. 543–557.

[16] H. He and E. A. Garcia, ”Learning from imbalanced data”, IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[17] A. Krizhevsky, I. Sutskever, and G. Hinton, ”Imagenet classification with
deep convolutional neural networks”. In NIPS, 2012.

[18] Dhruvjyoti Bagadthey, Traffic Classification, GitHub, 08
July 2020, [Online]. Available: https://github.com/Dhruvjyoti-
Bagadthey/Traffic Classification

[19] I. L. Cherif and A. Kortebi, ”On using eXtreme Gradient Boosting
(XGBoost) Machine Learning algorithm for Home Network Traffic
Classification,” in 2019 Wireless Days (WD), 2019-April, pp. 1–6

