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How to minimally modify a dynamical system when
constructing flat inputs?

Florentina Nicolau∗, Witold Respondek †, and Jean-Pierre Barbot ‡

Abstract

In this paper, we study the problem of constructing flat inputs for multi-output
dynamical systems, in particular, we address the issue of the minimal modification of the
initial dynamical system (the measure of modification being the number of equations that
have to be changed by adding flat inputs). We show that in the observable case, control
vector fields that distort m equations only (where m is the number of measurements) can
always be constructed (and this is the minimal possible number of equations that have to
be modified by adding flat inputs), while in the unobservable case, the best that we can
hope for is that m+ 1 equations only are modified such that they involve flat inputs. We
discuss when the original output is a flat output of minimal possible differential weight
for the minimally modified control system (where by the differential weight, we mean
the minimal number of derivatives of components of a flat output needed to express all
states and controls). We propose a solution for constructing flat inputs leading to a
minimally modified control system consistent with the minimal differential weight and,
moreover, for which the observable part is affected by the minimal possible number of
controls (this last property being important in applications). We show that, in that case,
at least 2m− 1 equations have to be affected by the flat inputs.

Keywords: flat inputs, flatness, observed dynamical systems, minimal modification,
constructing control vector fields.

1 Introduction

Flat inputs have been introduced by Waldherr and Zeitz [32, 33] and are objects dual to
flat outputs. Their construction can been seen as a dual problem to that of constructing
a flat output. More precisely, given a nonlinear observed dynamics of the form:

Σ : ẋ = f(x), y = h(x), (1)

with x ∈ X, an n-dimensional manifold (in particular, X = Rn or X is an open subset of
Rn) and y ∈ Rm the measurements (supposed independent everywhere), the problem of
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constructing flat inputs consists in finding control vector fields g1, . . . , gm (or equivalently,
to place the actuators or the inputs) such that the control-affine system

Σc : ẋ = f(x) +
m∑
i=1

gi(x)ui,

associated to Σ, is flat with the original measurements (h1, . . . , hm) being a flat output.
The vector fields f , gi and the functions hi, for 1 ≤ i ≤ m, are supposed C∞-smooth.
The inputs u1, . . . , um multiplying, resp., g1, . . . , gm, are called in [32, 33] flat inputs.
The single-output case has been considered in [32], while the observable multi-output
case has been discussed in [33], see also [7] for another approach based on the notion
of unimodularity. In the recent papers [19, 20] (see also [6]), the authors solved the
unobservable case for which locally, around any point of an open and dense subset of the
state space, we constructed control vector fields g1, . . . , gm such that the control-affine
system Σc is flat with h being a flat output.

One of the motivations to construct a flat input for a given output is that with such
an input, the tracking problem for that output can be solved with no need to calculate
the zero dynamics (see, e.g., [10, 28]) but constructing flat inputs may be useful for
other problems as well, like parameter identification [27] or private communication [21]
using chaotic systems (see also [2], for a related approach using the design of nonlinear
observers with unknown inputs, and [4, 30, 31], where left invertibility and flatness of
switched linear discrete-time systems is applied to private communication and crypto-
graphic applications). Similarly to the construction of a flat output (that can be seen as
a problem of sensors placement in order to achieve flatness of the resulting input-state-
output system) for which, from a technological point of view, it is not always possible to
place the sensors exactly where we want them, for constructing flat inputs it may also
be technologically difficult to place the actuators at the right place. Nevertheless, as
mentioned above, the flat inputs approach can be very useful in applications, in the pro-
cess design of an optimal closed loop feedback control. By adding flat inputs, we change
the original dynamics ẋ = f(x) of the system and therefore, some of its properties. For
some applications, it may be important to modify the original system in a minimal way,
namely when certain properties of the original dynamical system have to be preserved
for the flat control system. For instance, in the context of private communication, the
chaotic behavior of the original dynamics is crucial and has to be preserved by adding
the modification u1g1(x) + · · ·+ umgm(x) to f(x). Therefore, it is important to modify
the original chaotic system (corresponding to the transmitter dynamics) in a minimal
way, see also [15].

A measure of modification that we propose is the number of equations of Σ that we
have to change by adding flat-inputs, or equivalently, the number of nonzero components
of the control vector fields g1, . . . , gm that render (Σc, h) flat (each modified equation
is supposed to be affected by one flat input only). The control vector fields g1, . . . , gm
have together at least m nonzero components (at least one for each gi), so at least m
equations of the original dynamical system have to be modified to achieve flatness. We
show that in the observable case, we can construct vector fields that distort m equations
only, while in the nonobservable case, the best that we can hope for (if we require to
respect the decomposition into observable and completely unobservable subsystems) is
that only m+ 1 equations involve the control.

The main results of the paper are based, similarly to those of [20], on two normal
forms NFmin and NF∗min (for both h is a flat output) describing the unobservable case.
The first normal form NFmin is minimally modified (m + 1 equations only are affected
by the controls) and only one linking term (that is, only one non-constant component of
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one control vector field is used to render the system observable by linking the originally
observed, via the given output h, subsystem and the unobserved one) is needed. The
differential weight of h (which is the minimal number of time-derivatives of hi’s needed
to express all states x and controls u) as a flat output of NFmin is however far (except
for two very particular cases) from being the minimal possible (and it is always, except
for those two cases, greater than that of h as a flat output of the forms provided by [20]).
Moreover the original observed (via the given output h) subsystem is affected by m− 1
different flat inputs (which is the maximal possible), while the unobserved one is affected
by one control only. From the point of view of applications to secure communication, the
unobserved part plays the role of a second level of security and we would like it to involve
the maximal number of inputs. This leads to the problem of constructing a normal form
of, first, minimal differential weight and, second, unobserved part affected by m − 1
controls. The second result of the paper is a construction of the consistent normal form
NF∗min (where by consistent we mean throughout respecting these two requirements). The
form NF∗min has 2m − 1 modified equations and we show that for a consistent minimal
modification this is the minimal possible. For NF∗min we need an (m− 1)-tuple of linking
terms (satisfying, as for NFmin, some particular properties).

Both normal forms are local. The nature of the nominal point around which we work
(equilibrium or not) plays an important role in our study. If x0 is not an equilibrium
point of the original system, then NFmin and NF∗min can always be constructed as assured
by Theorems 3.2 and 3.3, respectively. Necessary and sufficient conditions for the case
of an equilibrium f(x0) = 0 are also given in Theorems 3.2 and 3.3.

Each of the normal forms has its interest. If the goal is to modify the original Σ in
the simplest possible way (without asking for h to be of minimal differential weight, or
imposing any constraints on the number of flat inputs that are added to the observed
part), then NFmin is such a construction. If, on the other hand, it is important to obtain
a flat control system minimally modified and simultaneously with the differential weight
of h as its flat output being the minimal possible, or with a minimal number of inputs
affecting the observed subsystem, then NF∗min provides such a construction.

The paper is organized as follows. In Section 2, we recall the definitions of flatness and
of differential weight of a flat system as well as the notions of observability quasi-indices
and partial observability quasi-indices (simply called OQI’s, resp., POQI’s) introduced
in [20] and that will be used in the paper. In Section 3, we give our main results and
compare them to those of [20]. We deal with the observable case in Theorem 3.1. We
propose the local minimally modified normal form NFmin in Theorem 3.2 and consistent
normal form NF∗min in Theorem 3.3. We provide an example illustrating the differences
between NFmin and NF∗min at the end of Section 3.2.1. We discuss the problem of a
global construction of control vector fields that minimally modify the original dynamics
in Section 3.4. Finally, in Section 4, we analyze from the point of view of a minimal
modification the solution proposed in [20] for an application to private communication
and provide proofs in Section 5.

2 Definitions and notations

Consider a nonlinear control system of the form Ξ : ẋ = f(x) +
∑m

i=1 gi(x)ui, where
x ∈ X, u ∈ Rm and the vector fields g1, . . . , gm are independent.

Definition 2.1. The control system Ξ is x-flat around x0, generically with respect to u,
if there exist m smooth functions ϕi = ϕi(x), 1 ≤ i ≤ m, defined in a neighborhood O
of x0, having the following property: there exist an integer s ≥ 1 and smooth maps
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(γ, δ) : Õ × Rm(s−1) → Rn × Rm such that

x = γ(ϕ, ϕ̇, . . . , ϕ(s−1)) and u = δ(ϕ, ϕ̇, . . . , ϕ(s)) (2)

for any Cs−1-control u(t) and corresponding trajectory x(t) that satisfy (x(t), u(t)) ∈ Õ,
where either Õ = O × Rm or Õ is a subset of O × Rm such that for any x ∈ O, the set
{u : (x, u) ∈ Õ} is open and dense in Rm. The m-tuple ϕ = (ϕ1, . . . , ϕm) is called a flat
output.

It is commonly accepted [5, 16] that flatness is a generic property, that is, even if
all functions ϕi(x) are defined globally, the desired description (2) is local and holds
out of singular states and singular values of controls. In the first case, corresponding to
Õ = O × Rm, representation (2) is global with respect to the controls. In the second
case, for each x ∈ O, the set of controls u for which representation (2) holds, is open and
dense in Rm (and the pairs (x, u) 6∈ Õ form singularities of flatness because (2) fails to
hold). From now on, when we say that a control system is x-flat (or simply flat) at x0,
we mean that it is x-flat at x0, generically with respect to u (i.e., satisfies Definition 2.1).

There exists a more general notion of flatness for which the functions ϕi may depend
on the control and its successive time-derivatives up to a certain order q, i.e., ϕi =
ϕi(x, u, u̇, . . . , u

(q)). We do not need this general notion since, in our study, all functions
ϕi depend on the state x only and singularities depend on x and/or u (but never on
derivatives of u). We send the reader to [8], where a generalized definition of flat inputs
is proposed that allows affine injections of the input and its derivatives in both the
dynamics and the output equation.

The minimal number of derivatives of components of a flat output, needed to express x
and u, is called the differential weight of that flat output [18, 25] and is formalized as
follows. By definition, for any flat output ϕ of Ξ there exist integers s1, . . . , sm such that

x = γ(ϕ1, ϕ̇1, . . . , ϕ
(s1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(sm)
m )

u = δ(ϕ1, ϕ̇1, . . . , ϕ
(s1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(sm)
m ).

Moreover, we can choose (s1, . . . , sm), γ and δ such that (see [25]) if for any otherm-tuple
(s̃1, . . . , s̃m) and functions γ̃ and δ̃, we have

x = γ̃(ϕ1, ϕ̇1, . . . , ϕ
(s̃1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(s̃m)
m )

u = δ̃(ϕ1, ϕ̇1, . . . , ϕ
(s̃1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(s̃m)
m ),

then si ≤ s̃i, for 1 ≤ i ≤ m. We will call
∑m

i=1(si + 1) = m +
∑m

i=1 si the differential
weight of ϕ. A flat output of Ξ is called minimal if its differential weight is the lowest
among all flat outputs of Ξ. The differential weight of a flat system Ξ is equal to the
differential weight of a minimal flat output, and is at least n+m, since we have to express
n states and m independent controls and in order to do that, we need at least n + m
derivatives (taking into account also those of order zero).

Flatness is a property of the state-space dynamics ẋ = f(x) +
∑m

i=1 gi(x)ui of a con-
trol system. It can also be described as a property of the input-state-output map for
a dummy output y. In fact, x-flatness is equivalent to the existence of an Rm-valued
dummy output y = ϕ(x) that renders ẋ = f(x) +

∑m
i=1 gi(x)ui observable [13, 14, 34]

and left-invertible [24]. Indeed, expressing the state as x = γ(ϕ, ϕ̇, . . . , ϕ(s−1)) and the
control as u = δ(ϕ, ϕ̇, . . . , ϕ(s)) corresponds, resp., to observability and left-invertibility.

Consider the dynamical system Σ whose state x ∈ X, an n-dimensional manifold,
together with the output y = h(x) ∈ Rm, given by (1). Most of the results of the paper
are local, so X can be simply taken as an open subset of Rn. In order to emphasize the
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fact that the system is observed, we will use the notation (Σ, h). When we say that the
dynamical system Σ is observed, this does not mean that Σ is necessarily observable with
respect to the output h. The problem of constructing flat inputs consists of finding inde-
pendent control vector fields g1, . . . , gm (whose inputs u1, . . . , um are called flat inputs)
such that the control-affine system Σc, associated to Σ, and given by

Σc : ẋ = f(x) +
m∑
i=1

gi(x)ui,

is x-flat with respect to the the original output (h1, . . . , hm). In that case, we will say
that the pair (Σc, h) is x-flat. As we have already noticed, flatness, and therefore the
problem of constructing flat inputs, is closely related to observability. We denote by H(x)
the observability codistribution (see, e.g., [13])

H(x) = span {dLj−1
f hi(x), j ≥ 1,1 ≤ i ≤ m} (3)

associated with the output h. Clearly, observability rank condition [13] simply means
dimH(x) = n. Similarly to [20], we will distinguish the observable case dimH(x) = n
and the unobservable case dimH(x) = k < n. In [19, 20], we defined the notions
of observability quasi-indices for the observable case (see also [33, 14, 3] for related
concepts) and respectively, of partial observability quasi-indices for the unobservable
one. We briefly recall and discuss them below.

Definition 2.2 (OQI’s and POQI’s definition [20]). Consider the observed system (Σ, h)
and let x0 ∈ X. If the system (Σ, h) satisfies, in a neighborhood of x0,

dimH(x) = const. = k and

dim span {dLj−1
f hi(x), 1 ≤ j ≤ ρi, 1 ≤ i ≤ m} =

m∑
i=1

ρi = k,

then (Σ, h) is said to have partial observability quasi-indices (ρ1, . . . , ρm), shortly POQI’s,
at x0 if k < n, and observability quasi-indices, shortly OQI’s, if k = n. Since POQI’s
and OQI’s may depend on a point, we say that quasi-indices (ρ1, . . . , ρm) are uniform in
an open subset X of X if (ρ1, . . . , ρm) form quasi-indices at any x0 ∈ X.

Whenever we refer to observability or (local observability), we will mean that the
observability rank condition dimH(x) = n holds around x0 implying that we can distin-
guish any two points of a neighborhood of x0 (which is called strong local observability
in [23] because it is stronger than the classical notion of local weak observability of [13]
that requires to distinguish x0 from its neighbors). By the unobservable case, we mean
that dimH(x) < n. All results hold for systems that possess OQI’s (the observable case)
or POQI’s (the unobservable case).

The existence of OQI’s at x0 implies local observability of (Σ, h). Conversely, if (Σ, h)
satisfies dimH(x) = n for any x in X, i.e., is locally observable everywhere on X, then it
possesses OQI’s on an open and dense subset of X, see Lemma 2.1 below. The definition
of POQI’s is more restrictive than just the lack of observability at a point: we require
the system to be nowhere observable on a whole neighborhood of x0 and, moreover, its
observability defect has to be constant on that neighborhood (so only k directions, with
k < n constant, can be observed around any point of that neighborhood). Similarly to
OQI’s, it turns out that on an open and dense subset of X, the lack of observability and
the existence of POQI’s coincide. Notice that if OQI’s or POQI’s exist at x0 then, in
general, they are not unique. From now on, we will denote by calligraphic X (sometimes
with suitable indices) open and dense subsets of X and by X just open subsets of X.
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Lemma 2.1 (Genericity of constant rank [20]). For any observed dynamics (Σ, h) there
exists an open and dense subset X ⊂ X on which dimH(x) is locally constant and on
each connected component Xc of X , where dimH(x) = const. = k (the value of k may
depend on the component), POQI’s exist at any x0 ∈ Xc, if k < n, or OQI’s exist at any
x0 ∈ Xc, if k = n.

In the analytic case, the dimension k is the same on all components Xc but it may
vary from one Xc to another in the C∞-case (this does not affect our constructions below,
that are local, so given on an arbitrary but fixed connected component). We send the
reader to [20] for the proof, other discussions, and examples illustrating Lemma 2.1.

Assumption and notation for X . Throughout the paper, we suppose that (Σ, h)
is either locally observable everywhere on X (i.e., dimH(x) = n for any x ∈ X implying
that OQI’s (ρ1, . . . , ρm) exist on an open and dense subset X ∈ X) or nowhere observable
(i.e., dimH(x) = k < n for any x ∈ X implying that POQI’s (ρ1, . . . , ρm) exist on an
open and dense subset X ∈ X).

For both cases, observable and non observable, locally around x0 ∈ X , introduce
coordinates

wji = Lj−1
f hi, 1 ≤ j ≤ ρi, 1 ≤ i ≤ m, (4)

in which the system Σ can be locally transformed into

ẇji = wj+1
i , 1 ≤ j ≤ ρi − 1,

ẇρii = ai(w), 1 ≤ i ≤ m, (5)

ż = b(w, z), (6)

where (h1, . . . , hm) = (w1
1, . . . , w

1
m) and either

(i) dimw = n and the z-subsystem is absent so we are in the observable case (i.e., Σ
is locally transformed into (5))

or

(ii) dimw = k < n and dimw+ dim z = n so we are in the unobservable case, where z
consists of any coordinates completing w to a coordinate system (for instance, z
can be taken as well chosen original coordinates xi1 , . . . , xin−k).

In the unobservable case, representation (5)-(6) will be called observed-unobserved form.
The w-coordinates are the states observed with the help of the output h and its successive
derivatives, and there are k of them. The z-coordinates correspond to the unobserved
directions, there are n − k (which is the observability defect) of them and they may be
affected by w, see Figure 1.

z w
h(w)

Figure 1: Observed-unobserved variables.
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3 Main results

When constructing flat inputs, we modify the original dynamics ẋ = f(x) of the system
(by adding to f the sum Σm

i=1uigi) and therefore we change some of its properties. For
some applications, it may be important to modify the original system in a minimal way,
namely when some of its properties have to be preserved for the associated flat control
system. The issue that we address in this paper is the minimal modification of the
original dynamics.

From now on, we work around points of the open and dense subset X of Lemma 2.1
(on which (Σ, h) admits either OQI’s or POQI’s) and when we refer to w-coordinates,
we mean the w-variables locally defined by (4), with (ρ1, . . . , ρm) being either OQI’s or
POQI’s.

Definition 3.1 (Measure of modification). Consider the observed system (Σ, h) in
(w, z)-coordinates, where z consists of variables completing the wji ’s to a coordinate
system (respectively, are absent in the observable case). The measure of modification
of (Σ, h) by adding flat inputs is the number of nonzero components in the (w, z)-
coordinates (respectively, in the w-coordinates in the observable case) of the control
vector fields g1, . . . , gm that render (Σc, h) flat.

Equivalently, the measure of modification is the number of equations of (5)-(6) (where
subsystem (6) is absent in the observable case), that we have to change by adding the
flat-inputs u1, . . . , um (each modified equation is supposed to be affected by one flat input
only, which is the case for all constructions of [20]).

The control vector fields g1, . . . , gm have together at least m nonzero components (at
least one for each gi), so at least m equations of the original dynamics (5)-(6) have to
be modified to achieve flatness. We will see that we can always construct control vector
fields that distort m equations only (which is the minimal possible) if (Σ, h) is observable
(Theorem 3.1), while in the unobservable case, the best that we can hope for is to modify
m + 1 equations only to involve controls (Theorem 3.2). All results (except for those
whose proofs are immediate) are proved in Section 5.

Theorem 3.1. Consider the observed system (Σ, h) around x0 ∈ X . There locally exist
control vector fields g1, . . . , gm that have together, in the (w, z)-coordinates, with w given
by (4), the minimal possible, which is m, nonzero components and render (Σc, h) flat
at x0 if and only if (Σ, h) is locally observable at x0 (and thus z-coordinates are, actually,
absent and Σ can be locally brought into (5)).

Proof. The proof, based on Remark 3.2 below, is given in Section 5.1.

Remark 3.1 (Single-output case). In the single-output case (i.e., m = 1 and y = h(x) ∈
R), a flat input can be constructed if and only if the system Σ together with its output h
is locally observable [32]. Thus if (Σ, h) can be rendered flat, then in the w-coordinates,
the vector field g1 (there is only one since m = 1) leading to a flat (Σc, h) can always be
chosen with one nonzero component only.

The above theorem recalls very much Theorem 2.1 of [20] stating that the observed
system (Σ, h) can be made flat of differential weight n+m (which is the minimal possible
differential weight of a flat system with n states and m controls) if and only if it admits
OQI’s.

Remark 3.2 (Minimally modified normal form and minimal differential weight). If
(Σ, h) admits OQI’s (ρ1, . . . , ρm) at x0, then Σ can be locally brought into (5) (the
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z-subsystem (6) being absent in the observable case). For form (5), we define the control
vector fields gi(w) = ∂

∂w
ρi
i

, 1 ≤ i ≤ m, that have together the minimal possible, which
is m, nonzero components and for which the corresponding control system is given by

NF obsmin :

{
ẇji = wj+1

i , 1 ≤ j ≤ ρi − 1,
ẇρii = ai(w) + ui, 1 ≤ i ≤ m, (7)

with h = (w1
1, . . . , w

1
m) a flat output of differential weight n + m, the minimal possi-

ble. Notice that the minimal modification of Σ is compatible with flatness of minimal
differential weight. So in the observable case, we can always render the system (Σ, h)
flat of minimal differential weight n + m by modifying m equations only of the original
system (5) when adding flat inputs. Moreover, the associated control vector fields can
be computed with the following system of algebraic equations.

Corollary 3.1. In a local coordinate system x = (x1, . . . , xn), form the n×n-matrix H(x)
whose first n −m rows are the differentials dLj−1

f hi(x), 1 ≤ j ≤ ρi − 1, and the last m
rows are the differentials dLρi−1

f hi(x), 1 ≤ i ≤ m, where (ρ1, . . . , ρm) are OQI’s at x0.
Then around x0 the matrix H(x) is invertible, and the control vector fields leading to a
minimally modified flat control system can be computed by

g(x) = (H(x))−1 ·
(

0
Im

)
,

where g(x) = (g1(x) . . . gm(x)), 0 = 0(n−m)×m and Im is the identity m×m-matrix.

Proof. Follows directly from Theorem 3.1 and Remark 3.2.

Finally, observe that in the case characterized by Theorem 3.1 and leading to the flat
control system (NFobs

min,h), even if the construction of the control vector fields g1, . . . , gm
is local around a given x0, description (2) for (NFobs

min,h) is always global with respect to
the control u, so we never face flatness singularities in the control space.

The following result is a direct consequence of Theorem 3.1.

Corollary 3.2. Suppose that (Σ, h) is not locally observable at x0 and that it admits
POQI’s at x0. If (Σ, h) has flat inputs at x0, then any choice of control vector fields
g1, . . . , gm leading to a flat control system (Σc, h) have together, in (w, z)-coordinates,
with z consisting of any variables completing w = (wji ) to a coordinate system, at least
m+ 1 nonzero components.

Proof. Follows directly from Theorem 3.1.

Remark 3.3. According to the above corollary, in the unobservable case, the best we
can hope for is that only m + 1 equations involve the control. However, in many cases,
we can obtain from (Σc, h) by rectifying the control vector fields g1, . . . , gm (if possible,
i.e., if the distribution spanned by them is involutive) a feedback equivalent flat control
system (Σ̃c, h) with m modified equations only, see Corollary 3.5 in Section 3.3.2. Notice,
however, that in order to get (Σ̃c, h), the distribution G = span {g1, . . . , gm}, which is
not given a priori, must be known. So first, we have to compute in an optimal way
g1, . . . , gm via our constructions (explained in Theorems 3.2 and 3.3 below) and only
then, to introduce new coordinates, necessarily mixing the observed w-variables and the
unobserved z-variables, in which the control vector fields are rectified.
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z w
h(w)

(a) Link needed for observability.

z w
h(w)

(b) No link between the w- and the z-subsystems.

z w
h(w)

u1

 
u2,..., um

(c) Observability obtained with the gi’s defined
in [20].

z w
h(w)

u1

 u2,..., um-1um

(d) Observability obtained with the gi’s defined
by Theorem 3.2.

Figure 2: Rendering the system observable.

3.1 Constructing flat inputs for a minimal modification of Σ

From now on, we assume that m ≥ 2 and that (Σ, h) is nowhere observable, so by
Lemma 2.1, POQI’s (ρ1, . . . , ρm), with ρ1 + . . .+ρm = k < n, exist on an open and dense
subset X ∈ X, on which we work. Two questions arise:

Question 3.1. How can the original (Σ, h) be minimally modified in (w, z)-variables
(i.e., m+ 1 modified equations) by adding flat inputs around x0?

Question 3.2. Can we always construct flat inputs minimally modifying (Σ, h) at x0?

Theorem 3.2 (which, together with Theorem 3.3, is the main result of the paper)
answers these questions and gives conditions allowing the construction of vector fields
g1, . . . , gm modifyingm+1 equations only, which is the minimal possible in the unobserv-
able case (instead of m in the observable case). A comparison between Theorem 3.2 and
the results of [20] is discussed in Section 3.2. Theorem 3.2 uses a normal form, denoted
NFmin, and the construction of NFmin is based, as that of the forms of [20], on the follow-
ing idea: a flat system is observable (with respect to its flat output and independently of
the applied input signal), so we have to render the original system (Σ, h) observable. For
observability we need a link from the z-subsystem towards the observed w-subsystem,
but for Σ there is no such a link, see the observed-unobserved form (5)-(6). It follows
that we have to create a link assuring observability with the help of the control vector
fields, see Figure 2, where Π stands for products of some z-variables and u1. Notice
also that it is crucial to distinguish the observability (or unobservability) of controlled
systems from observability of uncontrolled ones (recall that for nonlinear systems, the
observability property depends on the control [9, 11]). Here we deal with unobservable
uncontrolled systems that become (at least) locally observable due to a suitable design
of flat inputs.

For 1 ≤ i ≤ m, the variables wji , 1 ≤ j ≤ ρi, define the wi-chain. The z-variables of
NFmin are indexed z = (z1, . . . , zn−k). The following notations will be used in condition
(M3) of Theorem 3.2. Suppose that x0 ∈ X is an equilibrium, that is, f(x0) = 0, and
consider the w-coordinates, given by (4) and completed by z to a local coordinate system
(w, z). Represent the system in (w, z)-coordinates (ẇ, ż) = (a(w), b(w, z)) and define the
matrix

A =
∂b

∂z
(w0, z0). (8)
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Theorem 3.2. Consider the observed system (Σ, h) around any x0 ∈ X , that is, (Σ, h)
admits POQI’s (ρ1, . . . , ρm) at x0.

(M1) Suppose that there exists a smooth function ψ : Ox0 7→ R, where Ox0 is a neigh-
borhood of x0, completing h to a new output h1 = (h1, . . . , hm, ψ) such that (Σ, h1)
is locally observable at x0 and admits OQI’s (ρ1, . . . , ρm, n − k) at x0. Then there
exist local coordinates (w, z), with w given by (4) and z consisting of

zq = Lq−1
f ψ(x), 1 ≤ q ≤ n− k, (9)

that bring (Σ, h) into (5)-(6) with the unobserved subsystem (6) given by:{
żq = zq+1, 1 ≤ q ≤ n− k − 1,
żn−k = bn−k(w, z),

(10)

where bn−k is a smooth function. For this form, we can always locally construct
g1, . . . , gm that have together the minimal possible, which ism+1, number of nonzero
components, and such that (Σc, h) is x-flat at x0, and in (w, z)-coordinates is given
by the following form:

NFmin


ẇji = wj+1

i , ẇjm = wj+1
m ,

ẇρii = ai(w) + ui, ẇρmm = am(w) + z1u1,

1 ≤ i ≤ m− 1, żq = zq+1,
żn−k = bn−k(w, z) + um,

where 1 ≤ j ≤ ρi − 1, 1 ≤ q ≤ n− k − 1, and h = (w1
1, . . . , w

1
m) is a flat output of

differential weight at least n+m+ (n− k).

(M2) If f(x0) 6= 0, then a smooth function ψ satisfying the assumption of condition (M1)
always exists and, therefore, we can always locally construct the minimally modified
flat control system NFmin.

(M3) If f(x0) = 0, then the existence of a function ψ satisfying condition (M1) is equiv-
alent to the existence of a row vector C ∈ R1×(n−k) such that

rk


C
CA
...

CAn−k−1

 = n− k, (11)

in which case a solution of (M1) is ψ = Cz.

Proof. The proof, based on the following algorithm, is given in Section 5.2.

Remark 3.4 (Singularities in the control space). We would like to emphasize that sin-
gularities in the control space are unavoidable (recall that we defined flatness at x0 as a
generic property with respect to the control u, see Definition 2.1). Indeed, if the system
(Σ, h) is not observable, we add to f the sum Σm

i=1uigi to render it observable. Now it
is clear that if the components of u, that form a link between the originally observable
and unobservable subsystems, are zero, then the link is broken, the system (Σc, h) looses
its observability and, as a consequence, is not flat for those control values. In the above
form only the vector field g1 (and thus only the input u1) is used for the link between
the observed w-subsystem and the unobserved z-subsystem, see Figure 2d, while the
remaining u2, . . . , um affect the observed w-subsystem only. Hence it is clear that any
control u = (u1, u2, . . . , um), for which u1 = 0, creates singularities of observability (and
thus of flatness).
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3.1.1 Algorithm for constructing g1, . . . , gm of the normal form NFmin

Consider the system (Σ, h) around any x0 ∈ X , so (Σ, h) admits POQI’s (ρ1, . . . , ρm)
at x0. Suppose that there exists a smooth function ψ satisfying the assumption of (M1).
It follows that dLq−1

f ψ(x), for 1 ≤ q ≤ n− k, are independent at x0 modulo H(x0), thus
(w, z), with w and z given, respectively, by (4) and (9), is a valid change of coordinates
around x0 bringing the system (Σ, h) into the observed-unobserved form (5)-(6) with the
unobserved subsystem being of form (10). For that form define the control vector fields:

g1 =
∂

∂wρ11

+ z1 ∂

∂wρmm
, gi =

∂

∂wρii
, for 2 ≤ i ≤ m− 1, and gm =

∂

∂zn−k
, (12)

that have together m + 1 nonzero components. The associated control system is in the
form NFmin which is clearly x-flat at x0 with h = (w1

1, . . . , w
1
m) being a flat output of

differential weight at least n + m + (n − k) since u1 is differentiated (n − k)-times and,
perhaps, some other controls as well (see the last paragraph of Section 3.1.2 where this
is discussed in details). C

The above algorithm provides an explicit construction, that uses differentiation and
algebraic operations only, of gi’s, given by the following proposition.

Proposition 3.1. Consider the observed dynamical system (Σ, h) around any x0 ∈ X
and suppose that a function ψ satisfying the assumption of Theorem 3.2 (M1) exists.
Denote ψq = Lq−1

f ψ, for 1 ≤ q ≤ n − k, and ϕji = Lj−1
f hi, for 1 ≤ j ≤ ρi, 1 ≤ i ≤ m.

Vector fields g1, . . . , gm such that the x-flat control system (Σc, h) is minimally modified
can be constructed by

< dϕji , gl >= 0, 1 ≤ i, l ≤ m, 1 ≤ j ≤ ρi − 1, (13)

< dϕρii , gl >=


δil, 1 ≤ i, l ≤ m, (i, l) 6= (m, 1), (m,m),
ψ1, (i, l) = (m, 1),
0, (i, l) = (m,m),

(14)

and

< dψq, gl >=

{
0, 1 ≤ l ≤ m, 1 ≤ q ≤ n− k, (q, l) 6= (n− k,m),
1, (q, l) = (n− k,m),

(15)

where δil = 1, if i = l, and 0, otherwise.

Corollary 3.3. In a local coordinate system x = (x1, . . . , xn), form the n × n-matrix

H1(x) =

(
H(x)
Ψ(x)

)
whose first k rows H(x) are the differentials dϕji (x) = dLj−1

f hi(x)

and the last n − k rows Ψ(x) are the differentials dψq = dLq−1
f ψ, where we use the

notations of Proposition 3.1. Then equations (13)-(15) are equivalent to

H1(x) · g(x) = D(x), (16)

where g(x) = (g1(x) . . . gm(x)), and D(x) = (dsi (x)), with dsi , for 1 ≤ s ≤ n, 1 ≤ i ≤ m,
denoting suitable terms of the right hand-side of (13)-(15). If the function ψ satisfies the
assumption of Theorem 3.2 (M1), then the matrix H1(x) is invertible around x0 and

g(x) = (H1(x))−1 ·D(x). (17)

Proof. The proofs of Proposition 3.1 and Corollary 3.3 follow directly from the algorithm
in Section 3.1.1 for constructing g1, . . . , gm of NFmin.
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3.1.2 Discussion of NFmin

In the unobservable case, as asserted by Corollary 3.2, the minimal possible number of
nonzero components of g1, . . . , gm yielding a flat control system (Σc, h) is m+ 1. Indeed,
we necessarily have to invent at least one nonzero component per wi-chain involving the
inputs: we cannot achieve flatness by modifying less that m equations of the w-part
and those equations can involve at most m − 1 different flat inputs (because involving
all m controls would contradict flatness, since dimw = k < n). The remaining inputs
necessarily affect the z-part (there are at least as many modified z-equations as the
number of inputs not involved in the w-subsystem). So, since the goal is to minimally
modify the original dynamics (i.e., the control vector fields should have exactly m + 1
nonzero components in (w, z)-coordinates), the w-subsystem of a minimally modified flat
control system (Σc, h) necessarily contains m modified equations and has to involve the
maximal number of flat inputs, that is, m− 1, implying that only one equation of the z-
part should be modified by adding a control. Moreover, a link between the w-subsystem
and the z-subsystem has to be created and for a minimally modified flat control system
only one w-component of one control vector field among g1, . . . , gm is needed for that
link, that is, has to depend on z (that component will be called a linking term). In
our construction the linking term is defined by the function ψ satisfying the condition
(M1) of Theorem 3.2. By (M1), n − k successive derivatives of ψ along the drift f are
independent modulo H, thus adding ψu1 = z1u1 to ẇρmm = am and ui to ẇρii = ai,
1 ≤ i ≤ m− 1, (actually, instead we can add z1u1 to any equation ẇρll = al, for a certain
1 ≤ l ≤ m, and ui to the remaining ẇρii = ai, i 6= l), render the overall system Σc

observable. The only control affecting the z-structure should appear at the bottom level
(should affect żn−k = d

dt(L
n−k−1
f ψ) only). Notice that adding ψu1 = z1u1 to ẇρmm = am

(and ui to ẇ
ρi
i = ai) renders the control system Σc observable if and only if ψ completes

the original output h to a new output h1 = (h, ψ) that renders the original uncontrolled
system (Σ, h1) locally observable around the nominal point x0, which explains the role
of condition (M1). If we work around a nonequilibrium point x0 (i.e., f(x0) 6= 0), such
a function ψ always exists and can be explicitly computed (see the proof of (M2) in
Section 5.2), and thus we can always locally construct a minimally modified flat control
system (NFmin,h). Necessary and sufficient conditions for the case of an equilibrium
f(x0) = 0 are given by condition (M3) and in this case, the problem of computing ψ
reduces, actually, to a linear one.

It is clear that h = (w1
1, . . . , w

1
m) is a flat output of the form NFmin and its differential

weight is at least n + m + (n − k). Indeed, we have wji = h
(j−1)
i , for 1 ≤ i ≤ m,

1 ≤ j ≤ ρi, and h
(ρi)
i = ẇρii = ai(w) + ui, 1 ≤ i ≤ m − 1, from which we express ui, for

1 ≤ i ≤ m− 1. Then, provided that u10 6= 0, the equation h(ρm)
m = ẇρmm = am(w) + z1u1

allows to express z1. By differentiating z1, we get z2, and so on. It follows that u1

necessarily has to be differentiated n− k times in order to express all remaining z-states
and control um with the help the hi’s and their derivatives, and in the best case, it is the
the only input among u1, . . . , um−1 that needs to be differentiated. Notice however that,
in general, the function am(w) depends on all w-coordinates, so when differentiating it,
other inputs among u2, . . . , um−1 and their derivatives may appear (thus increasing the
differential weight of h).

3.2 Comparison with the normal forms of [20]

This section is devoted to discussing NFmin in comparison with the results of [20] (which
are also based on normal forms). In addition to the number of equations modified by
adding flat inputs, we focus namely on three aspects: the construction of the forms and,
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in particular, the choice of the linking terms (i.e., the nonzero components of g1), the
minimal differential weight of h as a flat output of each form and, finally, the number of
flat inputs affecting the z-subsystem for each form.

We start by briefly presenting the three normal forms NF1, NF2 and NF3 of [20] (we
send the reader to the aforementioned paper for algorithms of construction, proofs and
detailed discussions). We distinguish two cases: n − k ≥ m − 1 (corresponding to NF1
and NF2) and n− k < m− 1 (corresponding to NF3).

Normal form NF1 (dim z = n − k ≥ m − 1). The construction of NF1 is per-
formed on an open and dense subset of X and is valid around any point x0 of that set
(equilibrium or not). The idea is to complete the original output h to a new output
h` = (h, ψ1, . . . , ψ`) such that (Σ, h`) is locally observable, where each ψs, 1 ≤ s ≤ `− 1,
denotes an (m− 1)-tuple of functions (ψs2, . . . , ψ

s
m) (the last one ψ` contains m′− 1 func-

tions, with m′ ≤ m) that always exist and can be arbitrarily chosen (provided that they
respect a nonregularity condition). The integers (ρ, ν1, . . . , ν`), where ρ = (ρ1, . . . , ρm)
and νs = (νs2, . . . , ν

s
m), for 1 ≤ s ≤ ` (where m depends on s and equals either m or

m′, see equation (18) below), of NF1 are OQI’s of (Σ, h`). The variables zs,qi of NF1
are suitable successive Lie derivatives of ψsi with respect to f . They form ` blocks, for
s = 1, . . . , `. In each block, the index q corresponds to successive derivatives and the
index s to subsystems. There are ` subsystems, each of them containing m− 1 chains zsi
(indexed by i, for 2 ≤ i ≤ m), with the exception of the `-th subsystem, where there are
m′ − 1 chains zsi (indexed by i, for 2 ≤ i ≤ m′). This justifies the following notation:

m =

{
m, for 1 ≤ s ≤ `− 1,
m′, for s = `,

and ¯̀=

{
`, for 2 ≤ i ≤ m′,
`− 1, for m′ + 1 ≤ i ≤ m. (18)

Finally, for 1 ≤ s ≤ `, denote zs = (zj,qi , 1 ≤ q ≤ νji , 1 ≤ j ≤ s, 2 ≤ i ≤ m), i.e., zs

consists of all components of first s blocks. The normal form (NF1,h) is x-flat at x0 and
is given by:

NF1 :



ẇj1 =wj+1
1 ẇji =wj+1

i

ẇρ11 = a1(w) + u1 ẇρii = ai(w) + z1,1
i u1,

żs,qi =


zs,q+1
i , 1 ≤ q ≤ νsi − 1,

bsi (w, z
s) + zs+1,1

i u1, q = ν1
i , . . . , ν

¯̀−1
i ,

b
¯̀
i(w, z

¯̀
) + ui, q = ν

¯̀
i ,

1 ≤ s ≤ `, 2 ≤ i ≤ m,

where 1 ≤ j ≤ ρi− 1 and h = (w1
1, . . . , w

1
m) is a flat output of differential weight at least

n+m+ max
2≤i≤m

{ν1
i + · · ·+ ν

¯̀
i }.

Remark 3.5 (Number of modified equations for NF1). The vector fields g1, . . . , gm
modify together m+

∑m
i=2

¯̀
i equations (where ¯̀

i indicates that ¯̀depends on i, see (18))
and since ¯̀≥ 1, for all 2 ≤ i ≤ m, there are at least 2m− 1 modified equations. Notice
that only 2m − 1 equations are modified if ` = 1 (and only in that case!), that is, only
one (m− 1)-tuple of dummy outputs ψ1 = (ψ1

2, . . . , ψ
1
m) is need to achieve observability.

Normal form NF2 (dim z = n− k ≥ m− 1). Recall that dimH(x) = k and let

n− k = p(m− 1) + r and p∗ =

{
p, if r = 0,
p+ 1, if r > 0,

(19)
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be the Euclidean division of n − k (the observability defect) and m − 1 (the number of
output components being m). Define

µi =

{
p, 2 ≤ i ≤ m− r,
p+ 1, m− r + 1 ≤ i ≤ m, and bi =

{
1, i = 2,
0, 3 ≤ i ≤ m, (20)

that will correspond, respectively, to the lengths and to the last components of the zi-
chains of NF2. The normal form NF2 is valid around any x0 ∈ X (not just on an open
and dense subset as NF1 is) satisfying f(x0) 6= 0 and such that (Σ, h) admits POQI’s
(ρ1, . . . , ρm) at x0. The z-variables of NF2 are well chosen coordinates in which the
drift of the unobserved z-part is rectified. (NF2,h) is x-flat at x0 of differential weight
n+m+ p∗, and is given by the following form with h = (w1

1, . . . , w
1
m):

NF2



ẇj1 = wj+1
1 ẇji = wj+1

i

ẇρ11 = a1(w) + u1 ẇρii = ai(w) + z1
i u1

żqi = zq+1
i u1

żµii = bi + ui,
2 ≤ i ≤ m,

where 1 ≤ j ≤ ρi − 1, 1 ≤ q ≤ µi − 1.

Remark 3.6 (Number of modified equations for NF2). The vector fields g1, . . . , gm of
NF2 modify m+ n− k equations of the original dynamics.

Remark 3.7 (Differential weight of h as a flat output of Σc). In [20], we showed that if
there exist g1, . . . , gm such that (Σc, h) is locally x-flat, then the differential weight of h
as a flat output of Σc is at least n+m+ p∗. In particular, the gi’s defining NF2 give the
lowest (minimal possible) differential weight of h among all choices of g1, . . . , gm.

Normal form NF3 (dim z = r < m − 1). The normal forms NF1 and NF2 apply
when the number of unobserved (with respect to the original output h) directions is at
least m− 1. A third normal form NF3 is proposed for the case when dim z = r < m− 1.
NF3 holds around any x0 ∈ X at which (Σ, h) admits POQI’s and is given by

NF3


ẇji = wj+1

i ẇji = wj+1
i

ẇρii = ai(w) + ui, ẇρii = ai(w) + z1
i u1,

1 ≤ i ≤ m′, ż1
i = bi(w, z) + ui,

m′ + 1 ≤ i ≤ m,

where m′ = m− r, z = (z1
m′+1, . . . , z

1
m) are any coordinates completing the w to a local

coordinate system, and bi(w, z) are functions of w and z.

Remark 3.8 (Number of modified equations for NF3). The vector fields g1, . . . , gm of
NF3 modify m+ r equations of the original dynamics.

3.2.1 Linking terms and differential weight

For NFmin and all forms of [20], the link between the observed w-subsystem and the
unobserved z-subsystem is made with the help of the control vector field g1 only and the
remaining inputs appear at the bottom level of each zi-chain. Contrary to NF1 and NF2
for which the z-subsystem is affected bym−1 inputs, for NFmin, one control only appears
in the z-part (recall that, as we have discussed in Section 3.1.2, a minimally modified
flat control system should contain only one z-chain, which is the case of NFmin). The
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construction of the z-variables of NFmin is closely related to the dummy output ψ defining
the linking term between the observed w-subsystem and the unobserved z-subsystem.
For NF1 also, the z-coordinates are constructed with the help of the dummy outputs
ψ1
i , . . . , ψ

`
i defining, respectively, the variables z1,1

i , . . . , z`,1i . These functions are the
linking terms of NF1, they connect the w-subsystem and the first z-block as well as the
z-blocks among them. So for NF1, there are many linking terms and their choice is
far from being unique (they are actually arbitrary functions satisfying a nonregularity
condition).

The form NF3 is similar to NF1, the main difference between them being that the
unobserved z-part of NF3 can be affected by at most r inputs, so the remaining controls
necessarily appear in the w-equations (recalling NFmin). NF3 has r linking terms that
are, like for NF1, arbitrary functions satisfying a nonregularity condition and defining
the z-coordinates.

For NF2, the z-variables are special. Namely, they are coordinates in which the drift
of the unobserved part is rectified (i.e., are given by n− k − 1 independent, modulo dw,
solutions of the first order partial differential equation Lfγ(x) = 0 completed by one
solution of Lfγ(x) = 1), so the linking terms between the w- and the z-subsystems are
not arbitrary either. There is however a significant freedom in choosing the linking terms
of NF2. Indeed, once independent solutions of Lfγ(x) = 0 have been computed, any
m− 1 of them can play the role of linking terms.

For all forms, the components of the vector fields g1, . . . , gm depend on the unobserved
(with respect to the original output h) states only and, for NF2 they are designed to be in
the multi-chained form. This particular form guarantees that the differential weight of h
as a flat output of NF2 is the minimal possible (equal to n+m+ p∗, see Remark 3.7 and
relation (19) defining p∗) among all differential weights of h as a flat output of any Σc.
The differential weight of h = (w1

1, . . . , w
1
m) as a flat output of NF3 is also the minimal

possible n+m+ 1 (because each zi-chain of NF3 is of length one). On the other hand,
there is no reason for all zi-chains of NF1 to be (contrary to those of NF2 or NF3) of
length p or p+ 1, thus the differential weight of h as a flat output of NF1 is, in general,
greater than n+m+ p∗.

The differential weight of h as a flat output of the form NFmin is never (except for
the two extreme cases discussed in Section 3.2.2 below) the minimal possible. Moreover,
the differential weight of h as a flat output of the form NFmin is always (except, again,
for the two extreme cases below) greater than that of h as a flat output of NF1 which,
in turn, is in general greater than n+m+ p∗.

Example 3.1. Consider the following three-output system which is already in the
observed-unobserved form:

ẇji = wj+1
i , 1 ≤ j ≤ ρi − 1,

ẇρii = ai(w), 1 ≤ i ≤ 3,
ż1 = z2,
ż2 = z3 + wρ22 ,
ż3 = z4,
ż4 = z3z4,

(21)

with hi = w1
i , 1 ≤ i ≤ 3, and n− k = 2(m− 1) = 4. It is immediate that for the above

system we can always construct vector fields g1, g2 and g3 such that (Σc, h) is flat of
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differential weight n+m+ p∗ = n+m+ 2, which is the minimal possible, and given by:

ẇj1 = wj+1
1 ẇj2 = wj+1

2 ẇj3 = wj+1
3

ẇρ11 = a1(w) + u1 ẇρ22 = a2(w) + z1
2u1 ẇρ33 = a3(w) + z1

3u1

ż1
2 = z2

2 ż1
3 = z2

3

ż2
2 = z1

3 + wρ22 + u2 ż2
3 = z1

3z
2
3 + u3.

This is, in fact, the normal form NF1, for which we have chosen ψ2 = z1
2 = z1, ψ3 = z1

3 =
z3, with ` = 1 (i.e., there is only one z-block, so the upper index s has been omitted) and
all z-chains of length equal to p = 2 (yielding the minimal possible differential weight).
Notice that 2m−1 = 5 equations have been modified, so the above system can be seen as
an optimal normal form NF1. Namely, its differential weight n+m+2 is minimal and the
number of controls ui affecting the originally unobserved z-subsystem is two (maximal).
So it is, actually, the consistent normal form NF∗min of Theorem 3.3 given in Section 3.3
below.

On the other hand, it is easy to see that the function ψ(w, z) = z1 verifies Theorem 3.2
(M1) around any (w0, z0), and thus we can construct another flat control system (of
differential weight greater than n + m + 2) for which the vector fields g1, g2 and g3

have together m + 1 = 4 nonzero components only. First, introduce new coordinates
zq = Lq−1

f ψ, 1 ≤ q ≤ 4, that transform the unobserved subsystem into żq = zq+1,
1 ≤ q ≤ 3, ż4 = b4(w, z), where b4(w, z) = (z3 − wρ22 )(z4 − a2(w)) + Lfa2(w). For that
form, we construct

ẇji = wj+1
i , 1 ≤ j ≤ ρi − 1, ẇj3 = wj+1

3 , 1 ≤ j ≤ ρ3 − 1,
ẇρii = ai(w) + ui, ẇρ33 = a3(w) + z1u1,

1 ≤ i ≤ 2, żq = zq+1, 1 ≤ q ≤ 3,
ż4 = b4(w, z) + u3,

which is obviously flat with h = (w1
1, w

1
2, w

1
3) being a flat output of differential weight at

least n + m + 4 since we necessarily have to differentiate u1 four times, and depending
on the function a3(w), the control u2 may also need to be differentiated (at most three
times, so the differential weight of h cannot exceed n+m+ 7).

3.2.2 When is (NFmin, h) of minimal differential weight?

First, consider the case m = 2 (i.e., we have only two outputs h1 and h2 and the con-
structed flat control system will be a two-input control-affine system). The z-dimension
n−k can be any. Since m−1 = 1, we have n−k = p ≥ 1, r = 0, p = p∗, and the minimal
differential weight of h as a flat output of Σc is n+m+p∗ = n+2+(n−k). Assume that
a function ψ satisfying Theorem 3.2 (M1) exits around x0 (if x0 is not an equilibrium,
by item (M2), ψ always exists). Then NFmin can be constructed and is given by

ẇj1 = wj+1
1 , ẇj2 = wj+1

2 ,
ẇρ11 = a1(w) + u1, ẇρ22 = a2(w) + z1u1,

żq = zq+1,
żn−k = bn−k(w, z) + u2,

(22)

where 1 ≤ j ≤ ρi − 1, 1 ≤ i ≤ 2, 1 ≤ q ≤ n − k − 1, and h = (w1
1, w

1
2) is of differential

weight n+m+ p∗ = n+ 2 + (n− k), which is the minimal possible.
Observe that in the case m = 2, no matter whether we construct (Σc, h) as (NF1,h),

(NF2,h) or (NFmin,h), the differential weight of h is always minimal, equal to n +
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2 + (n − k), although the three forms, in general, do not coincide. If, however, in the
construction of NF1, we choose the first R-valued (there is only one since m − 1 = 1)
dummy output as ψ1

2 = ψ, with ψ satisfying Theorem 3.2 (M1), then (Σ, h1) is locally
observable and the resulting control system is in the form (22), that is, NF1 and NFmin

coincide and the minimal differential weight of h as a flat output of both of them is
n+m+ p∗ = n+m+ (n− k).

Let us now consider the case when m is any but m ≥ 3, and dim z = n − k = 1
(i.e., z = z1 and is the only variable that cannot be observed with the original output h)
implying that p = 0 and r = 1, thus p∗ = 1 and the minimal differential weight of h
as a flat output of Σc is n + m + p∗ = n + m + 1. If dim z = 1, then a function ψ
satisfying Theorem 3.2 (M1) always exists, independently whether x0 is an equilibrium
or not (simply take any arbitrary function ψ(w, z) such that dψ(w0, z0) 6∈ H(w0, z0), i.e.,
∂ψ
∂z (w0, z0) 6= 0, and put z1 = ψ(x)). Hence NFmin can always be constructed and is
given by

ẇji = wj+1
i , 0 ≤ j ≤ ρi − 1, ẇjm = wj+1

m , 0 ≤ j ≤ ρm − 1,
ẇρii = ai(w) + ui, ẇρmm = am(w) + z1u1,

1 ≤ i ≤ m− 1, ż1 = b1(w, z1) + um.

(23)

The differential weight of h as a flat output of (23) is n+m+ p∗ = n+m+ 1 which is
the minimal possible. Observe that system (23) is also in the form NF3. In fact, in the
case n− k = 1, the forms NF3 and NFmin actually coincide and the minimal differential
weight of h as a flat output of both of them is n+m+ p∗ = n+m+ 1.

To sum up, if n−k = 1 (independently of the value of m) or m = 2 (independently of
the value of n− k), the output h as a flat output of Σc is always of minimal differential
weight n+m+p∗ no matter whether (Σc, h) is constructed as (NF1,h), (NF2,h), (NF3,h)
or (NFmin, h). In all other cases, if there exists a function ψ verifying Theorem 3.2 (it
always exists if x0 is not an equilibrium), flat inputs that minimally modify the original
dynamical system can always be constructed and the corresponding flat control system
is given by (NFmin, h), but the differential weight of h as a flat output of NFmin is always
greater than that of the (in general, nonequivalent) flat control systems obtained either
with (NF1,h) or (NF2,h), if n− k ≥ m− 1, or with (NF3,h), if n− k < m− 1.

3.2.3 The role of the z-subsystem and of the flat inputs affecting it for
the application to private communication

Observe again that, contrary to the forms of [20] whose z-subsystems are affected by
m − 1 (respectively, r if r = n − k < m − 1) inputs, one control only appears in the
z-part of NFmin. Furthermore, when expressing all inputs in terms the flat output h
and its successive derivatives, the z-subsystem of NFmin is used for calculating um only
(u1, . . . , um−1 being expressed with the help of the w-subsystem only). This remark is
extremely important for applications of flat inputs to private communication (see [21, 2,
30]).

For private communication, the flat inputs u1, . . . , um correspond to confidential mes-
sages to be sent to the receiver, (Σ, h) is the transmitter to which

∑m
i=1 uigi is added in

such a way that the obtained (Σc, h) is flat. Both the sender and receiver know com-
pletely the equations of the flat control system Σc and in order to transmit a message
u(t) = (u1(t), . . . , um(t)), the sender chooses an initial condition x0 and calculates the
corresponding output signal y(t) = h(x(t, u(t))), where x(t, u(t)) is the solution corre-
sponding to u(t), and transmits it via the communication multiplexed channel. The
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receiver receives the signal y(t) and knowing the flat system Σc calculates u(t) as a
function of y(t) and its successive time-derivatives.

In the context of private communication, the unobserved z-subsystem plays an im-
portant role for increasing the safety. Indeed, if we consider the system (Σc, h) in (w, z)-
coordinates, the messages that affect the w-part can be expressed with the help of the
w-variables only (we never use the linking terms) and thus the degree of security is sig-
nificantly lower than for those affecting the z-part. Therefore the z-subsystem can be
seen as a second level of security. Moreover, in order to decode the messages associated
to the z-part, we always have to decode beforehand those affecting the w-subsystem. So
for private communication, we would like to have a minimal number of different inputs
involved in the w-equations (they correspond to the confidential messages with a lower
security degree) and thus, a maximal number of different inputs affecting the z-subsystem
(they correspond to the confidential messages with a higher security degree). The min-
imal number of controls appearing in the w-part is either one, if n − k ≥ m − 1 (and
this is the case when the flat control system is constructed as (NF1,h) or as (NF2,h)),
or m− r, if n− k = r < m− 1 (corresponding to the case when a flat control system is
constructed as (NF3,h)).

So, for the solution proposed in [20], the number of different flat inputs involved in
the w-subsystem is minimal and moreover, the w-part is minimally modified by adding
flat inputs (onlym equations involve the control and we have seen that we cannot achieve
flatness by modifying less than m w-equations). The w-subsystem of NFmin also pos-
sesses m modified equations, however the number of inputs affecting it is maximal, equal
to m − 1. On the other hand, as discussed in Section 3.2.1, the differential weight of
(NFmin, h) is always (except the two cases, m = 2 or n − k = 1, of Section 3.2.2)
greater than that of the flat control systems obtained either with (NF1,h) or (NF2,h)
or (NF3,h). Given this remark, two natural questions arise:

Question 3.3. What is the minimally modified construction consistent with the minimal
differential weight n+m+ p∗ and the minimal number of different controls affecting the
w-equations (one control, if n− k ≥ m− 1, or r controls, if n− k = r < m− 1)?

Question 3.4. How to choose the corresponding linking terms leading to such a modi-
fication?

3.3 Flat inputs construction for a consistent minimal mod-
ification

Remark 3.9 (∗-Minimal modification). From now on, when we say that a system is
∗-minimally modified (notice the use of the asterisk symbol), we refer to a minimal
modification consistent with the minimal differential weight n+m+ p∗ and the minimal
number of different controls affecting the w-part (one control, if n − k ≥ m − 1, or r
controls, if n− k = r < m− 1).

When constructing a ∗-minimally modified flat control system in the case n − k ≥
m− 1, the best we can hope for is that only 2m− 1 equations involve the input. Indeed,
we necessarily have one for each wi-chain involving one distinguished control, say u1, and
m− 1 equations for the z-subsystem that has to be affected by the remaining inputs ui,
for 2 ≤ i ≤ m. Similarly, it is easy to see that if n − k = r < m − 1, the best we can
hope for is m+ r ∗-minimally modified equations.

Remark 3.10 (When are the constructions of [20] ∗-minimally modified?). Notice that
if n− k = m− 1 (i.e., dim z = m− 1), when constructing the flat control system either
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with (NF1,h) or with (NF2,h), all z-chains are of length one and we always obtain a
∗-minimally modified system containing only 2m − 1 equations involving the input. In
this case, the only difference between both forms is that for NF2 the drift of the z-part is
rectified (i.e., ż1

2 = 1 + u2 and ż1
i = ui, for 3 ≤ i ≤ m), while for NF1, it can be any (i.e.,

ż1
i = b1i (w, z)+ui, for 2 ≤ i ≤ m, where b1i are arbitrary functions). Finally, observe that
the flat control system (NF3,h), corresponding to the case n− k = r < m− 1, is always
∗-minimally modified.

Therefore, from now on, we suppose that n − k > m − 1 (so, in particular, we have
p ≥ 1 and following [20], (Σc, h) may be constructed either as (NF1,h) or as (NF2,h)).
For both forms NF1 and NF2, the w-equations are minimally modified (and moreover,
involve u1 only, the modification being consistent with the minimal number of different
controls affecting the observed w-part) but the z-subsystem of NF2 is maximally modified
since the control appears in each z-equation. Thus, if we want to obtain a ∗-minimally
modified flat control system Σc, then we necessarily have to construct Σc using the
procedure of the normal form NF1. Recall that NF1 is constructed by completing the
original output h with dummy outputs (linking terms) in order to achieve observability
with respect to the new output. The question is actually how to chose the linking terms
for which the z-part is also minimally modified. The following theorem answers it as well
as the related Questions 3.3 and 3.4 above.

Theorem 3.3 states that the existence and construction of a ∗-minimally modified sys-
tem is related to the existence of an (m− 1)-tuple of dummy outputs ψ = (ψ2, . . . , ψm)
completing h to h1 = (h, ψ) that renders the system Σ observable at x0 with well chosen
OQI’s. Around an equilibrium x0 of f , this problem reduces, actually, to a linear one,
as asserted by item (M3)∗ of Theorem 3.3 below. The same notations as those of The-
orem 3.2 (M3), treating the case of an equilibrium point x0 (in particular, the matrix
A defined by (8) just before the statement of Theorem 3.2), will be used in conditions
(M3)∗ and (M4)∗ below.

Theorem 3.3. Consider the observed system (Σ, h) around any x0 ∈ X and let (ρ1, . . . , ρm)
be POQI’s at x0.

(M1)∗ Suppose that there exists an (m−1)-tuple of functions (ψ2, . . . , ψm) completing h to
h1 = (h1, . . . , hm, ψ2, . . . , ψm) such that (f, h1) is observable at x0 and admits OQI’s
(ρ1, . . . , ρm, ν2, . . . , νm) at x0. Then there exist local coordinates (w, z), with w given
by (4) and zqi = Lq−1

f ψi(x), for 1 ≤ q ≤ νi, bringing (Σ, h) into (5)-(6) with the
unobserved subsystem (6) given by:{

żqi = zq+1
i , 1 ≤ q ≤ νi − 1,

żνii = bi(w, z), 2 ≤ i ≤ m. (24)

For this form, we can always locally construct g1, . . . , gm that have together 2m− 1
nonzero components, and such that (Σc, h) is x-flat at x0 and given by the following
form:

NF ∗min



ẇj1 = wj+1
1 , ẇji = wj+1

i ,
ẇρ11 = a1(w) + u1, ẇρii = ai(w) + z1

i u1,

żqi = zq+1
i ,

żνii = bi(w, z) + ui,
2 ≤ i ≤ m,

where 1 ≤ j ≤ ρi − 1, 1 ≤ q ≤ νi − 1, and h = (w1
1, . . . , w

1
m) is a flat output of

differential weight at least n+m+ max2≤i≤m νi.
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(M2)∗ If f(x0) 6= 0, then an (m− 1)-tuple of functions (ψ2, . . . , ψm) satisfying the condi-
tions of (M1)∗ always exists and therefore we can always construct the modified flat
control system NF∗min.

(M3)∗ If f(x0) = 0, then the existence of the (m − 1)-tuple of functions (ψ2, . . . , ψm)
satisfying (M1)∗ is equivalent to the existence of a matrix C ∈ R(m−1)×(n−k) such
that

rk


C
CA
...

CAn−k−1

 = n− k, (25)

in which case a solution of (M1)∗ is (ψ2(w, z), . . . , ψm(w, z)) = Cz.

(M4)∗ The differential weight of h as a flat output of NF ∗min is the minimal possible n +
m + p∗ if and only if the integers νi satisfy (after permuting ψi’s, if necessary)
νi = p + 1, for 2 ≤ i ≤ r + 1, and νi = p, for r + 2 ≤ i ≤ m. Moreover
an (m − 1)-tuple of functions (ψ2, . . . , ψm), satisfying both (M1)∗ and the latter
condition, always exists if f(x0) 6= 0, while for f(x0) = 0, it exists if and only if
there exists a matrix C ∈ R(m−1)×(n−k) such that

rk


C
CA
...

CAp
∗−1

 = n− k. (26)

Proof. The proof, based on the following algorithm, is given in Section 5.3.

3.3.1 Algorithm for constructing g1, . . . , gm of the normal form NF∗min

Consider the system (Σ, h) around any x0 ∈ X , so (Σ, h) admits POQI’s (ρ1, . . . , ρm)
at x0. Suppose that there exists an (m − 1)-tuple of smooth functions (ψ2, . . . , ψm)
satisfying condition (M1)∗. By introducing, around x0, the w-coordinates given by (4)
and the z-coordinates zqi = Lq−1

f ψi, for 1 ≤ q ≤ νi, 2 ≤ i ≤ m, the system (Σ, h) is
brought into the observed-unobserved form (5)-(6) with the unobserved subsystem being
of the form (24). For that form define the control vector fields:

g1 =
∂

∂wρ11

+

m∑
i=2

z1
i

∂

∂wρii
and gi =

∂

∂zνii
, 2 ≤ i ≤ m. (27)

that have together 2m − 1 nonzero components. The associated control system is in
the form NF∗min which is x-flat at x0 with h = (w1

1, w
1
2, . . . , w

1
m) being a flat output of

differential weight at least n+m+ max2≤i≤m νi. C

The above definition provides an explicit construction of the control vector fields gi.

Proposition 3.2. Consider the observed dynamical system (Σ, h) around x0 and suppose
that a (m − 1)-tuple of functions (ψ2, . . . , ψm) satisfies the assumption of Theorem 3.3
(M1)∗. Denote ψqi = Lq−1

f ψi, for 1 ≤ q ≤ νi, 2 ≤ i ≤ m, and ϕji = Lj−1
f hi, for

1 ≤ j ≤ ρi, 1 ≤ i ≤ m. Vector fields g1, . . . , gm such that the x-flat control system (Σc, h)
is ∗-minimally modified can be constructed as follows:
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- for g1 by
< dϕji , g1 >= 0, 1 ≤ j ≤ ρi − 1, < dψqi , g1 >= 0, 1 ≤ q ≤ νi,

1 ≤ i ≤ m, 2 ≤ i ≤ m,

< dϕρii , g1 >=

{
1, i = 1,
ψ1
i , 2 ≤ i ≤ m,

(28)

- for g2, . . . , gm by< dϕji , gl >= 0, 1 ≤ j ≤ ρi, < dψqi , gl >=

{
0, 1 ≤ q ≤ νi − 1,
δil, q = νi,

1 ≤ i ≤ m, 2 ≤ i ≤ m,
(29)

where 2 ≤ l ≤ m and δil = 1, if i = l, and 0, otherwise.

Corollary 3.4. In a local coordinate system x = (x1, . . . , xn), form the n × n-matrix

H1(x) =

(
H(x)
Ψ(x)

)
whose first k rows H(x) are the differentials dϕji (x) = dLj−1

f hi(x)

and the last n − k rows Ψ(x) are the differentials dψqi = dLq−1
f ψi, where we use the

notations of Proposition 3.2. Then equations (28)-(29) are equivalent to

H1(x) · g(x) = D(x), (30)

where g(x) = (g1(x) . . . gm(x)), and D(x) = (dsi (x)), with dsi , for 1 ≤ s ≤ n, 1 ≤
i ≤ m, denoting suitable terms of the right hand-side of (28)-(29). If the (m − 1)-
tuple of functions (ψ2, . . . , ψm) satisfies the assumption of Theorem 3.3 (M1)∗, then the
matrix H1(x) is invertible around x0 and

g(x) = (H1(x))−1 ·D(x). (31)

Proof. The proofs of Proposition 3.2 and Corollary 3.4 follow directly from the algorithm
in Section 3.3.1 for constructing g1, . . . , gm of NF∗min.

3.3.2 Discussion of NF∗min

Condition (M1)∗ actually says that if we want to construct a flat control system with a
minimal modification of the z-equations (that is only m − 1 modified equations), then
the modified equations are necessarily those at the bottom of each zi-chain (that have to
involve the remaining inputs u2, . . . , um). Therefore, we necessarily have to use one (and
only one!) (m− 1)-tuple of linking terms (z1

2 , . . . , z
1
m) = (ψ2, . . . , ψm) such that the new

output h1 = (h1, . . . , hm, ψ2, . . . , ψm) renders the original system locally observable. In
that case, we obtain the normal form NF∗min which can be seen as a particular case of
NF1 for which ` = 1.

If x0 is not an equilibrium (i.e., f(x0) 6= 0), then, according to (M2)∗, such linking
terms always exist and lead to a control system for which the vector fields g1, . . . , gm dis-
tort 2m−1 equations only (the modification being consistent with the minimal number of
different controls affecting the w-part). If f(x0) = 0, the problem of finding (ψ2, . . . , ψm)
reduces to a linear problem, see (M3)∗.

On the other hand, the differential weight of h as a flat output of NF ∗min is at least
n+m+ max2≤i≤m νi. Indeed, the inputs u2, . . . , um appear at the bottom level of each
zi-chain, and it follows that, in the best case, u1 is the only input that needs to be
differentiated in order to express all states and controls with the help the hi’s and their
time-derivatives. For each zi-chain, the input u1 needs to be differentiated νi times.
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Hence, in the best case, the differential weight of h is n + m + max2≤i≤m νi. In some
cases, we may need additionally to differentiate other inputs among u2, . . . , um. This
is similar to the differential weight of (NFmin,h), see Section 3.1.2. The condition for
(NF∗min,h) to be of minimal possible differential weight n+m+ p∗ is actually that all zi-
chains are of length either p or p+ 1, see (M4)∗, (this reminds very much the form NF2)
and again, according to (M4)∗, linking terms assuring the minimal differential weight
always exit if the nominal point around which we work is not an equilibrium. Around an
equilibrium x0, they exists if we can find a dummy output Cz such that all observability
indices of (A,C), where A = ∂b

∂z (x0), are equal either to p or p + 1. Notice that around
an equilibrium, there are systems (e.g., systems such that A = ∂b

∂z (x0) = 0) for which
we cannot construct flat inputs in an optimal way (leading to a flat control system of
the form either (NFmin,h) or (NF∗min,h) ), but we can always compute them using the
procedure of [20]. Finally, observe that similarly to (NFmin,h), see Remark 3.4, any
u = (u1, u2, . . . , um) for which u1 = 0 creates flatness singularities in the control space
for (NF∗min,h).

An interesting and important observation is that in many cases, we can obtain from
the optimal forms (NFmin,h) or (NF∗min,h) a feedback equivalent flat control system
with m modified equations only, as stated by the following corollary.

Corollary 3.5. Suppose n − k ≥ 2. If there exists either a function ψ satisfying
Theorem 3.2 (M1) or a (m − 1)-tuple (ψ2, . . . , ψm) satisfying Theorem 3.3 (M1)∗ with
νi ≥ 2, for 2 ≤ i ≤ m, then there always exists a construction that renders the system
flat and modifies m equations only.

Proof. See Section 5.4.

The main idea leading to Corollary 3.5 is to rectify, if possible, the control vec-
tor field g1 of (NFmin,h) or (NF∗min,h) respectively (the control vector field g2, . . . , gm
of those forms are already rectified and each of them has only one nonzero compo-
nent) or, equivalently, to apply a suitable change of coordinates mixing the observed
w-variables and the unobserved z-variables. As explained in Remark 3.3, the distribu-
tion G = span {g1, . . . , gm} is not known a priori, and first, it has to be constructed
in an optimal way with the help of (NFmin,h) or (NF∗min,h), and only then, if G is in-
volutive (which is the case if all zi-chains are of length at least 2), it can be rectified
leading to a flat control system with m equations involving the flat inputs (but for which
there is no longer a splitting between the observable w-subsystem and the unobserved
z-subsystem).

To summarize, if, the goal is to modify the original dynamics (5)-(6) in the simplest
possible way (without asking for h to be of minimal differential weight, or imposing any
constraints on the number of flat inputs that are added to the observed w-part), then
NFmin is such a construction. If, on the other hand, it is important to obtain a flat control
system with the differential weight of h being the minimal possible, or with a minimal
number of inputs affecting the w-subsystem, then NF∗min for the case n − k ≥ m − 1,
respectively, NF3 for n− k < m− 1, provide such a construction.

3.4 Global results and ∗-minimal modification of Σ
All normal forms presented in this paper are local and valid around any point of an
open and dense subset X of X guaranteeing a generic construction of the vector fields
g1, . . . , gm. Under some hypothesis, g1, . . . , gm may however exist globally on X and the
control system may be x-flat on X with the flat output being globally defined as ϕi = hi,
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1 ≤ i ≤ m, (but, with representation (2) which is, in general, local, see [20] where this is
illustrated by an example). The following proposition gives conditions allowing a global
construction of g1, . . . , gm leading to a ∗-minimally modified control system. Moreover,
it asserts that under those conditions, the manifold X has to be of a special form (see
[12] for the notion of parallelizable manifold used in item (ii) below).

Proposition 3.3. Consider the observed system (Σ, h) on X. The following hold:

(i) Suppose that (Σ, h) admits uniform POQI’s (ρ1, . . . , ρm) on X. If there exist func-
tions (ψ2, . . . , ψm) globally defined on X satisfying condition (M1)∗ of Theorem 3.3
around any x0 ∈ X with uniform OQI’s (ρ1, . . . , ρm, ν2, . . . , νm) on X, then there ex-
ist g1, . . . , gm globally defined on X that lead to (NF∗min, h) and have together 2m−1
number of nonzero components. The obtained control system (NF∗min, h) is locally
x-flat around any x0 ∈ X and moreover, if each νi is either p or p + 1, then the
differential weight of h as a flat output of NF∗min is n + m + p∗ and the system is
∗-minimally modified.

(ii) If (Σ, h) on X satisfies the condition of item (i) above, then X is parallelizable and X
is either open (i.e., non compact) or compact and in that case, X is diffeomorphic
to the n-dimensional torus Tn = S1 × · · · × S1.

Proof. The proof is given is Section 5.5.

Observe that if POQI’s are uniform on X, then the rank of the codistribution H is
constant everywhere. It is clear that under Proposition 3.3, the functions wji = Lj−1

f hi,
for 1 ≤ j ≤ ρi, 1 ≤ i ≤ m, and zqi = Lq−1

f ψi(x), for 1 ≤ q ≤ νi, 2 ≤ i ≤ m, are defined
globally and form around any x0 a local system of coordinates. Therefore, the vector
fields g1, . . . , gm are also globally constructed on X.

The system (Σc, h) is globally defined on X and is locally, around any x0, equivalent
to the normal form (NF∗min, h). We do not claim however that it is globally equivalent
to (NF∗min, h) unless (w, z) = Φ(x), where wji = Lj−1

f hi, 1 ≤ j ≤ ρi, and z
q
i = Lq−1

f ψi,
1 ≤ q ≤ νi, is a global diffeomorphism of X. For the same reason, the flatness of (Σc, h) is
local around any (x0, u0), such that u10 6= 0, although flat output components h1, . . . , hm
are defined globally.

4 Example: application to private communication

In this section we discuss from the point of view of minimal modification the solution
proposed in [20] for an application to private communication. We use a transmitter,
composed of two independent chaotic systems, a Lorenz circuit (x`, y`, z`), see, e.g., [17],
and a Rössler circuit (xr, yr, zr), see, e.g., [26], of the form (the notation (Ch) referring
to the chaotic behavior):

(Ch) :


ẋ` = σ(y` − x`) ẋr = −yr − zr
ẏ` = −kdx`z` + rx` − y` ẏr = xr + ayr
ż` = kdx`y` − βz` żr = b+ zr(xr − c),

where the parameters a, b, c, β, σ, r and kd are constant. Two messages u1(t) and u2(t)
have to be sent to the receiver and in order to transmit them, we add to (Ch) two control
vector fields g1 and g2 whose controls are, resp., u1 and u2:

(Chc) : ẋ = f(x) + u1g1(x) + u2g2(x), yi = hi(x), 1 ≤ i ≤ 2,
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and the masked information transmitted via the communication multiplexed channel is
(y1(t), y2(t)) = (x`(t), z`(t)), where g1 and g2 are chosen in such a way that (Chc) is flat
with ϕ = (h1, h2) = (x`, z`) being a flat output, and f is the right-hand side of (Ch).

It is clear that with (h1, h2) = (x`, z`) only the Lorenz variables can be observed and
in the observed-unobserved form (5)-(6), using the new global w-coordinates w1

1 = x`,
w2

1 = Lfx` = σ(y` − x`), w1
2 = z`, the Lorenz circuit is equivalently given by: ẇ1

1 = w2
1,

ẇ2
1 = −σkdw1

1w
1
2 + σ(r− 1)w1

1 − (σ+ 1)w2
1 = a1(w) and ẇ1

2 = kdw
1
1( 1
σw

2
1 +w1

1)− βw1
2 =

a2(w).
Notice that here, the unobserved subsystem described by the Rössler circuit is com-

pletely independent of the observed Lorenz circuit. Define the linking term z1 = ψ(w, xr, yr, zr)
by ψ = yr and compute its successive time-derivatives. We get Lfψ = xr + ayr and
L2
fψ = −(yr + zr) + a(xr + ayr). It is clear that dψ, dLfψ and dL2

fψ are independent
everywhere, and zq = Lq−1

f ψ, 1 ≤ q ≤ 3, (together with the w-coordinates) define a
global system of coordinates on R3 × R3. So we globally define g1 = ∂

∂w2
1

+ z1 ∂
∂w1

2
and

g2 = ∂
∂z3

and obtain in (w, z)-coordinates a system in the following form:
ẇ1

1 = w2
1 ẇ1

2 = a2(w) + z1u1

ẇ2
1 = a1(w) + u1 ż1 = z2

ż2 = z3

ż3 = b2(w, z) + u2,

(32)

where b2(w, z) = −b− z2− az3− (z3− z1 + az2)(z2− az1), which is flat with (w1
1, w

1
2) =

(x`, z`) being a flat output.
Notice that only one dummy output ψ = yr is necessary to render (Ch) observable,

the observed w-subsystem is affected only by u1, while the remaining input appears
at the bottom level of the (only) z-chain. System (32) contains m + 1 = 3 modified
equations (which, according to Theorem 3.2, is the minimal possible), so it is minimally
modified and it is actually in the form (NFmin,h). Moreover, the differential weight
of h equals n + m + p∗ = n + m + 3 (for m = 2, we simply have p∗ = p = n − k) and,
according to Theorem 3.3, it is the minimal possible, thus system (32) is also ∗-minimally
modified and represented in the form (NF∗min,h) which, as we have already discussed,
can be seen as an optimal (NF1,h)-form (for which only one dummy output is needed).
This example is consistent with the remarks of Section 3.2.2 and perfectly illustrates the
situation when all constructions (NF1,h), (NFmin,h) and (NF∗min,h) coincide. Finally,
the vector fields g1 and g2 (and thus system (32)) are globally defined on R3 × R3, thus
illustrating Proposition 3.3.

For private communication, the chaotic behavior of the transmitter (Ch) (depending
on the values of the constant parameters) is crucial and has to be preserved by adding the
modification u1g1(x)+u2g2(x). In [20], we have shown, using numerical simulations, that
the chaotic behavior of (Ch) is preserved by adding control vector fields multiplied by
suitable periodic messages into the dynamics, and second, that for suitable amplitudes of
the encoded messages, the messages are recovered with a good accuracy by the receiver.

5 Proofs

5.1 Proof of Theorem 3.1

Suppose that locally, around x0 ∈ X , there exist z-coordinates (completing w-coordinates)
and control vector fields g1, . . . , gm that have together, in the (w, z)-coordinates, m
nonzero components and render (Σc, h) flat at x0. It follows that in the (w, z)-coordinates,
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each vector field gi has one (and only one) nonzero component (recall that the control
vector fields are supposed everywhere independent). Assume that m′ equations, with
m′ ≤ m, of the w-subsystem are affected by the flat inputs. We rename the w-variables
by (w1, . . . wk) such that among the w-equations only those for ẇi, for 1 ≤ i ≤ m′, involve
the controls, i.e., (Σc, h) is of the form

ẇi = fi(w) + ci(w, z)ui, 1 ≤ i ≤ m′,
ẇi = fi(w), m′ + 1 ≤ i ≤ k,
ż = b(w, z) +D(w, z)ū,

with (h1, . . . , hm), where hl = hl(w), 1 ≤ l ≤ m, a flat output, ci(w, z) non vanishing
smooth functions, ū = (um′+1, . . . , um), and D(w, z) a full rank (n−k)×(m−m′)-matrix
(containing only m−m′ nonzero terms). By applying the local invertible static feedback
vi = ci(w, z)ui, 1 ≤ i ≤ m′, and vi = ui, m′ + 1 ≤ i ≤ m, we get

ẇi = fi(w) + vi, 1 ≤ i ≤ m′,
ẇi = fi(w), m′ + 1 ≤ i ≤ k,
ż = b(w, z) +D(w, z)v̄,

where v̄ = (vm′+1, . . . , vm). From this form, it is clear that none z-state nor v̄-input can
be represented in terms of h(j)

l , j ≥ 0, contradicting the flatness assumption. It follows
that the z-coordinates are absent implying that (Σ, h) is locally observable at x0 ∈ X
(and POQI’s are actually OQI’s).

Even if we allow gi’s to be dependent at some point, they are independent on an open
and dense subset, on which the same proof applies, excluding flatness.

The proof of the converse implication is contained in Remark 3.2.

5.2 Proof of Theorem 3.2

Proof of (M1). The proof is given by the algorithm of Section 3.1.1 following the theorem.

Proof of (M2). Consider (Σ, h) around any x0 ∈ X satisfying f(x0) 6= 0 and such that
(Σ, h) admits POQI’s (ρ1, . . . , ρm) at x0. We will prove that Σ can be locally, around x0,
transformed into (5)-(6) with the unobserved subsystem (6) given by the following chain
of integrators:

żq = zq+1, 1 ≤ q ≤ n− k − 1,
żn−k = 1.

(33)

First observe that since f(x0) 6= 0, there exist local coordinates (w, z̃) in a neighbor-
hood Ox0 of x0, with w given by (4) and z̃ = Ψ(x), bringing (Σ, h) into (5)-(6) with the
unobserved subsystem (6) transformed into ([1, 22], see also [29] for an explicit construc-
tion of rectifying coordinates):

˙̃zq = 0, 1 ≤ q ≤ n− k − 1,
˙̃zn−k = 1.

(34)

Notice that the latter is the uncontrolled z-subsystem of the form NF2 of [20], with the
z-variables labeled differently, see Section 3.2. The right hand side of (33), denoted b(z),
does not vanish so can be transformed into (34) (rectified) via a diffeomorphism z̃ = φ(z)
(which actually is a global diffeomorphism of Rn−k). It follows that in local coordinates
(w, z), where w is given by (4) and (z1, . . . , zn−k) = z = φ−1 ◦Ψ(x), with φ−1 ◦Ψ defined
on Ox0 since φ(z) is global on Rn−k, the original system (Σ, h) takes the form (5)-(6) with
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the unobserved subsystem (6) given by (33) (which is of the form (10) with bn−k = 1).
In particular, the first component z1 = ψ(x) of z = φ−1 ◦ Ψ(x) verifies (M1). For that
form we construct the vector fields g1, . . . , gm by (12). They have together the minimal
possible, that is, m+ 1, number of nonzero components. The associated control system
is in the form NFmin, with bn−k = 1, which is clearly x-flat at x0 with h = (w1

1, . . . , w
1
m)

a flat output of differential weight at least n+m+ (n− k).

Proof of (M3). Is a particular case of that of condition (M3)∗ of Theorem 3.3 (with
the (m − 1)-tuple of functions (ψ2, . . . , ψm) being replaced by the function ψ, and the
(m− 1)× (n− k)-matrix C by a row vector).

5.3 Proof of Theorem 3.3

Proof of (M1)∗. The proof is given by the algorithm of Section 3.3.1.

Proof of (M2)∗. The proof is similar to that of condition (M2) of Theorem 3.2. We first
prove that Σ can be transformed locally, around x0, into (5)-(6) with the unobserved
subsystem (6) given by the following m− 1 chains of integrators:

żqi = zq+1
i , 1 ≤ q ≤ νi,

żνii = bi, 2 ≤ i ≤ m, (35)

where

νi =

{
p, 2 ≤ i ≤ m− r,
p+ 1, m− r + 1 ≤ i ≤ m, and bi =

{
1, i = 2,
0, 3 ≤ i ≤ m− 1,

(36)

(this recalls very much the properties of the z-chains of the normal form NF2 of [20],
see (20) in Section 3.2).

Like in the proof of condition (M2) of Theorem 3.2, observe that since f(x0) 6= 0,
there exist local coordinates (w, z̃) in a neighborhood of x0, with w given by (4) and z̃
of the from z̃ = Ψ(x), bringing (Σ, h) into (5)-(6) with the unobserved subsystem (6)
transformed into:

˙̃zqi = 0, 1 ≤ q ≤ νi,
˙̃zνii = bi 2 ≤ i ≤ m, (37)

where the integers νi and bi are defined by (36). The right hand side of (35) does not
vanish so can be transformed into (37) (rectified) via a diffeomorphism z̃ = φ(z). It
follows that in local coordinates (w, z), where w is given by (4) and z = φ−1 ◦Ψ(x), the
original system (Σ, h) takes the form (5)-(6) with the unobserved subsystem (6) given
by (35) (which is of the form (24) with the integers νi and functions bi given by (36)).
For that form we construct the vector fields g1 = ∂

∂w
ρ1
1

+
∑m

i=2 z
1
i

∂
∂w

ρi
i

and gi = ∂
∂z
νi
i

,
2 ≤ i ≤ m, that have together 2m − 1 nonzero components and lead to form NF∗min

which is x-flat at x0 with h = (w1
1, . . . , w

1
m) a flat output of minimal differential weight

n+m+p∗. It is clear that the (m−1)-tuple of functions (z1
2 , . . . , z

1
m) = (ψ2(x), . . . , ψm(x))

of z = φ−1 ◦Ψ(x) satisfies the assumptions of (M1)∗ with νi being either p or p+ 1.

Proof of (M3)∗. Let us now suppose that f(w0, z0) = 0 and bring the system into the
observed-unobserved form (5)-(6) around (w0, z0). We can always assume, without loss
of generality, that z0 = 0 (but not for w0 since hi may not vanish at x0). Take any
(m − 1)-tuple of functions ψ = (ψ2, . . . , ψm) such that ψi(w0, 0) = 0, for 2 ≤ i ≤ m.
Around (w0, z0) = (w0, 0), via the Taylor expansion, we have:

ż = Az +B(w − w0) + b̄(w, z),
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and
ψi(w, z) = Ciz +Di(w − w0) + ψ̄i(w, z), 2 ≤ i ≤ m,

where b̄ and ψ̄i contain all terms of order at least two (with respect to z and w−w0). It
is immediate to see that Lqfψi = CiA

qz+Hq + Ψ̄q, for any q ≥ 0, where the functions Hq

depend on w only and Ψq contain terms of order at least two (with respect to z and
w − w0). Therefore dLqfψi(w0, 0) = (CiA

q)dz mod span {dw}, for q ≥ 0. Denote by C
the (m − 1) × (n − k)-matrix whose rows are given by the Ci’s. From this, we deduce
that the functions ψ2, . . . , ψm satisfy condition (M1)∗ if and only if

rk


C
CA
...

CAn−k−1

 = n− k.

In particular, if there exists a matrix C for which the above rank is indeed n − k, then
the functions (ψ2, . . . , ψm) = Cz verify (M1)∗.

Proof of (M4)∗. It is immediate that the differential weight of h as a flat output of NF∗min

is the minimal possible n + m + p∗ (where p∗ = p, if r = 0, and p∗ = p + 1, otherwise,
see (19) for the definition of p∗) if and only if max2≤i≤m νi = p∗. From this, the definition
of p∗ and also based on

∑m
i=2 νi = n− k, we deduce that the integers νi of (M1)∗ verify

(after permuting the functions ψi, if necessary) νi = p+ 1, for 2 ≤ i ≤ r+ 1, and νi = p,
for r + 2 ≤ i ≤ m. Finally, from the equivalence stated by (M3)∗, it follows that the
integers νi are as above if and only if the matrix C of (M3)∗ satisfies (26) (recall that
n− k = p(m− 1) + r).

5.4 Proof of Corollary 3.5

Suppose that there exists an (m − 1)-tuple of smooth functions (ψ2, . . . , ψm) satisfying
condition (M1)∗ with νi ≥ 2, for 2 ≤ i ≤ m, and construct the form (NF∗min,h). We give
the proof only for this case, that corresponding to (NFmin,h) follows exactly the same
lines. By introducing the new coordinates ξρii = wρii − z1

iw
ρ1
1 , for 2 ≤ i ≤ m, we get

NFm



ẇj1 = wj+1
1 , ẇji = wj+1

i ,

ẇρ1−1
1 = wρ11 , ẇρi−1

i = ξρii + z1
iw

ρ1
1 ,

ẇρ11 = ã1(w, ξ, z1) + u1, ξ̇ρii = ãi(w, ξ, z
1)− z2

iw
ρ1
1 ,

żqi = zq+1
i ,

żνii = bi(w, z) + ui,
2 ≤ i ≤ m,

with 1 ≤ j ≤ ρi − 2, 1 ≤ q ≤ νi − 1, z1 = (z1
2 , . . . , z

1
m), ξ = (ξρ22 , . . . , ξρmm ), where

h = (w1
1, . . . , w

1
m) is a flat output of NFm whose exactly m components are modified by

adding the control vector fields.

5.5 Proof of Proposition 3.3

Proof of (i). The proof follows exactly the same arguments as those of condition (M1)∗

of Theorem 3.3 (whose proof is given by the algorithm of Section 3.3.1), with the only
difference that now all functions are defined globally, they form around any x0 a local
system of coordinates, and the vector fields g1, . . . , gm can be globally constructed by
formula (31) that is global.
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Proof of (ii). The map H1 : X → Rn defined in Corollary 3.4 is an immersion and thus
X is integrably parallelizable, see [12] for that notion. Then by the result of [12], the
manifold X is either open or, if compact, diffeomorphic to Tn = S1 × · · · × S1.
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