
HAL Id: hal-02933582
https://hal.science/hal-02933582

Preprint submitted on 8 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Budget learning based on equivalent trees and genetic
algorithm : application to fall detection algorithm

embedding
Mounir Atiq, Sergio Peignier, Mathilde Mougeot

To cite this version:
Mounir Atiq, Sergio Peignier, Mathilde Mougeot. Budget learning based on equivalent trees and
genetic algorithm : application to fall detection algorithm embedding. 2020. �hal-02933582�

https://hal.science/hal-02933582
https://hal.archives-ouvertes.fr

Budget learning based on equivalent trees
and genetic algorithm : application to fall
detection algorithm embedding.

Mounir Atiq1, Sergio Peignier2, and Mathilde Mougeot1

1Centre Borelli, ENS Paris-Saclay, Gif, France
2Univ Lyon, INSA Lyon, INRAE, BF2I, UMR0203,

F-69621 Villeurbanne, France

Abstract

Budget learning is a research field of growing interest that aims at including real world
resource constraints into the design of machine learning models, mainly to reduce real
environment prediction time. One common way of doing it is by modifying a pre-
trained machine learning model, to fit the prediction time constraints while keeping
as best as possible the model’s prediction quality. However, in this case, the per-
formance of these kinds of methods depends on the pre-trained model structure. To
overcome this dependence, we propose to tackle the budgeted optimization problem,
by using equivalent models with different structures and therefore different computa-
tion costs. The contribution of this work is to propose a genetic algorithm to decrease
prediction time of random forest classifiers, by using equivalent decision trees. The
first step of our method consists in building, from a pre-trained random forest, an
initial population of random forests, that share the same decision function but have
different structures. Then a genome reduction operation, is iteratively applied on the
individuals via pruning based mutations.

Our experiments show an important impact of using equivalent decision trees on
reachable random forest solutions with a budgeted prediction time. Results obtained
on a synthetic data made of gaussian-shaped clusters and on a real industrial fall
detection dataset, advocate for the use of equivalent random forest models in budget
learning.

Keywords: Budget learning, equivalent decision trees, random forests, prediction
time cost, genetic algorithm

1 Introduction

1.1 Budget learning

One major success of machine learning is its today applicability in a wide-range of
industrial systems in numerous fields like IoT, security, healthcare or finance. In this
context, the prediction model complexity is often adjusted through hyper-parameter
tuning in the learning process, without taking deeply into account the capacity of

1

1 Introduction 2

the device intended to run the model. Indeed several variables, involving real resource
consumption necessary for building a model and/or making it work in a limited device,
are not directly included in classical machine learning, whereas these real world appli-
cations need resources both to be trained and to stay functioning. These resources are
often subject to practical constraints and taking them into account during the learning
and/or prediction phase is the purpose of budget learning. Thus, budget learning is a
vast and real concern for modern ground applications of machine learning.

Depending on the applications, resources can be critical either in the training or the
prediction phase [1]. For instance, Active Learning methods focus on budgets defined
on training instances, whereas other approaches consider budgeted computation time
of prediction. Even both can be considered at the same time, for instance, this is
the case for budgeted reinforcement learning [2]. In our case, we assume that the
training is done under unrestricted conditions, with hypothetically unlimited resources.
Conversely, as our model is intended to be embedded in a small electronic device, the
cpu-time consumption is extremely constrained in the prediction phase occurring in
real conditions.

Several recent works on budget learning on decision trees show the increasing in-
terest in finding new ways to deal with real-world resource constraints in the context of
models based on decision trees. Some methods incorporate directly budget constraints
in a tree building algorithm to learn from scratch a budget sensitive model [3] [4].
Others are designed to alter a pre-trained decision trees based model to make it fit
some budget constraints [5]. Among all known methods for updating a pre-trained
tree-based model conditionally to a budget, one vast family is based on genetic pro-
gramming methods [6].

In this work we present a new approach to modify a random forest, previously
trained on an experimental setup with almost no constraints, to fit a prediction-time
budget, defined by the capacities of an embedded system. It consists of a genetic
algorithm that explores the space of pruned predictors from an initial population
composed by random forests. This genetic exploration is based on a fitness function
that is a trade-off between accuracy and the prediction time, and it is initialized by a
randomized equivalent tree procedure.

1.2 Budget learning on decision trees

Budget learning aims at considering resource needs while applying a machine learning
method. At the same time, the complexity of machine learning models is growing, as
the scale of their application in real world, and the hard-wares they are implemented
in are more and more portable and small [7, 8]. Thus, several recent works involving
this topics on various kinds of models and considering different resource constraint
frameworks. Some of them refer directly to industrial applications [9, 10], whereas
others focus more on the theoretical framework of budgeted optimization [11,12]. One
major categorisation among budget learning situations, as presented by the authors
in [1,2], is whether the resource costs appear in the training or the prediction phase of
a machine learning model. In this paper, we focus on the prediction time of random
forests models.

One common approach while dealing with prediction time costs on decision tree
based models is to include a penalisation to these costs directly in the greedy building
operations of decision trees. This can be done by adapting boosting trees methods,
as the Greedy-Miser algorithm [13], that adds sequentially a new decision tree in a
step-wise regression way at each step of the algorithm. Each new decision tree is built
using modified version of CART with a budget sensible purity function which takes
into account both empirical error and feature usage with a regularization parameter
λ. In [14], authors present several boosting algorithms on decision trees for budget
learning. Another local approach is proposed in [3], for inducing budget sensitive

2 Budgeted prediction time using random forests 3

ensemble of decision trees. Authors define a family of budget sensitive purity functions
(class of admissible impurity functions) that can be used to greedily construct decision
trees.

In [5], the same authors propose an alternative algorithm with a more global
optimization approach. The budget learning algorithm starts from random forest
of pre-trained decision trees and then prunes them under budget constraints. They
propose to solve a linear program corresponding to the best pruning combination on
decision trees of a random forest, relatively to a dataset and feature acquisition costs,
according to the trade-off between prediction accuracy and prediction computation
time.

1.3 Genetic algorithms on decision trees

Among global optimization for budget learning in decision trees, genetic algorithms
are widely used as non-greedy alternatives to deal with large combinatorial and multi-
objective optimizations. They are already largely used in feature subset selection
[15, 16], which is very linked to budget learning. For instance, genetic algorithms are
introduced to explore the extremely high-dimensional discrete space of all possible fea-
ture subsets and retrain successively decision tree models over the selected subset until
achieving a fitness or maximum iteration criterion in [17] and [18]. While exploring
decision tree models space through genetic algorithms, some inherent drawbacks of
local an greedy induction can be avoided [6] as well as keeping the ability of decision
tree models to extract compact and relevant set of decision rules [19, 20]. Moreover,
as shown in [21] tree structure is well-suited for defining intuitive cross-over and mu-
tation operators and is compatible with string encoding which allows to use standard
genetic programming methods. Most of existing genetic algorithms on decision trees
use a standard cross-over consisting in the swapping sub-trees between two decision
tree individuals [22]. In this work, as described in Section 3, individuals are random
forests and the cross-over is based on swapping full decision trees between two ran-
dom forests. Considering mutation, existing works on genetic algorithm for decision
trees propose different mutation operations, depending on the optimization problem
they consider, and the correspondent explored space of models. All of these budget
learning methods on decision tree based models aim at minimizing a prediction error
while keeping in a limited range of prediction time cost, but they mainly differ on
the exact cost function they consider and the way this function is included during the
optimization.

The work presented in this paper is organised as follows: Section 2 describes the
usual framework for modelling prediction time on random forests and the constrained
optimization we are dealing with. Section 3 explains the different genetic operations
used in our algorithm and describes how they are assembled to give an iterative method
for reduction of the prediction computation time. In particular Section 3.2 presents
the notion of equivalent decision trees which is used to initialize the genetic algorithm.
The experimental setup and results obtained on simulated and real industrial data are
presented in Sections 4 and 5.

2 Budgeted prediction time using random forests

This Section defines prediction time costs for random forests and the associated con-
strained minimization problem considered in our algorithm.

2.1 Prediction time costs for decision tree based models

There are two kinds of computations that contribute to the prediction time of a decision
tree or a random forest : the evaluation cost and the feature acquisition cost.

2 Budgeted prediction time using random forests 4

For a given sample x, the feature acquisition cost corresponds to the time spent to
compute needed features for the prediction of x, and the evaluation cost corresponds
to the time spent to compute internal nodes for the prediction of x (once the feature
have been computed).

We deal here with a pre-trained random forest model called M, a training set of

n labelled data point couples S = (X,Y) =
(

(x(1), y(1)), ...(x(n), y(n))
)

with a feature

space of dimension d. We assume that each feature fj (with 1 ≤ j ≤ d) has an
individual acquisition cost cj and a evaluation cost for each internal node kev, which
is constant for all node splits.

For a given decision tree, any sample x is associated with a precise path leading
to a leaf value which is the prediction of x by this tree. Then, we can define a feature
usage vector Φ[x] ∈ Nd corresponding to how many times each feature is used in this
path. Then, the length of this path in terms of number of internal nodes is the sum of
this vector’s elements ‖Φ[x]‖1. By taking the element-wise indicator function on this
vector, we define the binary vector φbin[x]j = 1]0,+∞[[Φ[x]j] that indicates for each
feature whether or not it is needed in the path of x (φbin[x]j = 1 if the feature fj is
needed and 0 if not).

Feature acquisition cost: It corresponds to the computation time spent to
compute features needed in the path of x indicated by the ones of the vector φbin[x].

Then the feature acquisition cost is defined as
d∑

j=1

cjφ
bin[x]j .

Evaluation cost: It corresponds to the computation time spent, having already
computed the needed features, to assess all the node on the path of x. Then the eval-
uation cost is proportional to the length of this path and is modelled by : kev‖Φ[x]‖1.

For a random forest, if we consider the sum of all the different paths of x in the
trees of the forest, we can define in the same way vectors Φ and φbin describing the
feature usage for the random forest prediction of x. Then, for a given sample x, the
total prediction time cost of a decision tree is defined as :

C(M, x) =

d∑
j=1

cjφ
bin
M [x]j + kev‖ΦM[x]‖1

2.2 Budgeted optimization

In this work, the budget learning task is formalized as a constrained minimization
problem. Indeed, we aim at minimizing a mean empirical loss relatively to a loss
function (as in standard machine learning problems), but in a constrained space of
models that have a prediction time bounded by a budget B > 0. More formally, let
H be the space of models based on decision tree classifiers (e.g., random forests). To
each modelM∈ H corresponds a decision function hM(x) and a prediction time cost
C(M, x) for every sample x. Moreover, let `(hM(x), y) be the loss function measuring
the error between the prediction hM(x) and the true label y.

The budgeted prediction time problem is to find a model M̂ such that:

M̂ = argmin
M∈H

1

n

n∑
i=1

`(hM(x(i)), y(i)) (1)

subject to
1

n

n∑
i=1

C(M, x(i)) ≤ B (2)

3 Genetic pruning algorithm 5

3 Genetic pruning algorithm

This Section presents the genetic representation of random forests and the genetic
operations used in our algorithm and defines the fitness function on random forest
individuals, which is the objective function used to perform the budgeted minimization
presented in 2.2 through individual selection. The notion of equivalence between
decision trees is developed as well as how and why it is used to initialize the population
of our genetic algorithm. As possible splits on which are built random forest individuals
is a finite set, the space of random forest explored by our algorithm is also finite, but
drastically large. Moreover, optimal equivalent decision trees considering model’s size
are proved to be NP-hard to find [21,23] and genetic algorithms are a common way of
dealing with such optimization problem [24].

3.1 Genetic representation of random forests

We propose a genetic representation of random forests where each decision tree is
treated as a separate gene with two parts which correspond to the ordered sequences of
internal nodes and leaves values. Internal nodes are split sequences (feature/threshold
couples) and are the part of the genome subject to mutations. These splits are fixed
by the initial pre-trained random forest and the genetic algorithm re-orders them in
different decision tree structures with randomized equivalent tree procedure. On the
other hand, leaf values are label sequences and are updated following the training data
of the budget algorithm, their values being regulated by the environment.

After the population initialization, each new generation is obtained using the fol-
lowing successive genetic operations : the cross-over reproduction, to increase popu-
lation diversity and fasten convergence towards a best individual; the pruning based
mutation, to explore random forests with lower prediction time costs; and population
reduction, to keep a reasonable population size and to increase the mean overall fit-
ness of the whole population. As explained in 3.5 a selection and guided mutations
are employed to optimize a fitness function representing the quality of random forests
both in terms of accuracy and prediction time cost.

3.2 Initialization with randomized equivalent trees

Equivalent decision trees are classifiers that differ in their structure although they share
the same decision function, Figure 3.2 shows an example of two equivalent decision
trees. In 2, we explained that the prediction time cost of a random forest is importantly
linked to the structure of the trees, as for a given sample x, the cost depends on its
paths on the random forest trees. This means that two equivalent decision trees can
have different prediction time costs.

Definition 1: Two decision trees T1 and T2 are equivalent if their decision functions are
equal on all the feature space X . ∀x ∈ X , hT1(x) = hT2(x).

Consequently, any budgeted prediction time algorithm applied on a random forest
might lead to other solutions while considering an equivalent random forest composed
by equivalent decision trees. Our motivation is that exploring the space of equivalent
trees from an initial random forest can allow to find other solutions to the budgeted
prediction time problem defined in 2.2. To illustrate it, we initialize our genetic algo-
rithm with a randomized equivalent trees procedure to give structural variety to the
initial population of random forest individuals. This procedure builds, for each tree of
the pre-trained random forest, a randomized equivalent tree using the same splits but
drawing them randomly in a top-down manner until getting one-class leaves according
to the initial tree. A pseudo-code of this procedure is given in Algorithm 1.

3 Genetic pruning algorithm 6

Fig. 1: Different partitioning for the same classification (a) and corresponding
equivalent trees (b).

3.3 Genome cross-over between random forests

The cross-over operation is a classic method of reproduction with variation. This
operation corresponds to the exchange of sub-parts of the parental genomes after at
a random location known as the cross-over point. For instance, one common way
of doing a cross-over between decision trees is by exchanging sub-trees after having
selected cross-over nodes in the two parents. In this work, the cross-over operation
aims to exchange decision trees between two random forest parents. Accordingly to
the previously presented random forests genetic representation, it is in other words a
restricted locations cross-over that can happen only at genes start/end points. Then,
over the genetic algorithm iterations, each gene of the random forest individuals has
a corresponding ancestor gene corresponding to an initial decision tree or one of its
equivalents (See 3.2). Indeed, when dealing with numerical an not quantitative feature
like our case, exchanging sub-trees that correspond to non-overlapping regions of the

3 Genetic pruning algorithm 7

Algorithm 1 Randomized equivalent tree

procedure RandEqRec(T, Teq, path)
if path = null then

Teq ← NewTree()

φ, τ ← CohSplits(T, path)
C = hT (path)
if |C| > 1 then

// π : splits random drawing policy
φk, τk ← ChooseNewSplit(φ, τ, π)
Teq ← NewNode(φk, τk, π)
pathl, pathr ← Childs(Teq, path)
Teq ← RandEqRec(T, Teq, pathl)
Teq ← RandEqRec(T, Teq, pathr)

else
C = {ci}
Teq ← NewLeaf(ci, Teq, path)

return Teq

feature space can end up creating unreachable leaves, if it is made completely randomly.
Secondly, we want to keep track of the initial random forest model through genetic
operations in order to be able, for data analysis purposes, to read the final model as a
simplified version of the initial one. Concerning genetic algorithm using decision trees,
encoding trees into strings is possible before applying genetic operations but it is not
necessarily the case as decision trees already have suitable structure for that [6]. For
practical implementations, we do not use this string encoding in our work but it is
feasible, as long as cross-over is restricted to certain locations and genome reduction
mutation still keeps strings structure that can be reversely decoded into decision trees.

3.4 Mutations using random pruning

The second main genetic operation is the mutation and corresponds to the random
pruning of random forests individuals. Regarding the prediction time of a random
forest, pruning operation ensures a reduction of this cost. According to cost definition
in Section 2, the prediction time reduction obtained by pruning a decision tree at a
given node depends on how much feature usage this pruning avoids and is weighted by
the proportion of training samples reaching this node. So each time a random forest
individual is selected for mutation a pruning occurs randomly in each of its decision
tree, creating a new leaf of the dominant label among training data. To ensure the
mutation process to be progressive over iterations, pruning nodes are drawn using an
exponential policy relatively to their depth in order to encourage small pruning in
terms of deleted sub-trees. As we consider a decision tree as a gene in our represen-
tation, this random pruning mutation is a genome reduction mechanism occurring on
each gene. Before mutation, concerned individuals are replicated in order to avoid
loosing them in the situation where mutation would degrade their fitness value.

3.5 Selection, guided mutation and fitness function

To deal with our budgeted prediction time cost optimization we choose, as the ranking
value of random forest individuals, the trade-off between mean prediction error and

4 Experimental setup 8

Algorithm 2 Genetic pruning algorithm

procedure GenBudPr(Rf
(0), X, Y,N0, iM)

pop0 = RandEqTree(Rf
(0), N0)

for i = 0 :: iM do
rep← Select(popi, βr, X, Y)
popi ← Rep(popi, rep, τr)
mut← Select(popi, βm, X, Y)
popi ←Mut(popi,mut)
del← Select(popi, βd, X, Y)
popi+1 ← Eliminate(popi, del)
R̂f ← Min. fitness(Rf , X, Y, λ)
on popi+1

return R̂f

// Best individual of popiM according
to the fitness function.

the mean prediction time cost of a random forest with parameter λ :

Vfit(M) =
1

n

n∑
i=1

(
`(hM(x(i)), y(i)) + λC(M, x(i))

)
In this work, the trade-off function defines the fitness of the individuals. Depending

on their fitness, organisms undergo a selection step, inspired on the natural selection
phenomenon. This operation chooses the individuals with the best fitness (here, lowest
Vfit(M)) to reproduce, and it eliminates the worst individuals (highest Vfit(M)).

In practice, we used a deterministic selection scheme that picks the βr top ratio of
individuals for reproduction, and the βd bottom ratio for elimination. Hence, param-
eters βr and βd, correspond to reproduction and death rates respectively. Moreover,
we decided to guide the application of pruning mutation operations, using an expo-
nential policy which is also a function of the fitness value. Then, worst random forest
individuals are more likely to be pruned by mutation but creating mutants from best
ones is still possible although less likely. This choice is based on the intuition that best
individuals should be modified less often in order to preserve them for exploitation,
while worst individuals should be modified more often, for exploration purposes.

4 Experimental setup

This Section describes the two data sets used to experiment our genetic budget learning
algorithm, its parameter tuning and the methodology applied to compare and assess
the results.

4.1 Synthetic data

Synthetic data used in experiments are generated from binary labeled gaussian clusters.
The gaussian distributions are composed by 10 clusters of each label with mean µ and
variance σ2 parameters drawn randomly between bounded values (respectively [−1, 1]
and [0.5, 1.5]). Samples are generated with d = 20 features with 5 to 10 of them that
are randomly chosen to be informative (the rest being white noise only).

One advantage of these synthetic gaussian controlled scenarios is that it is possible
to generate as much data as needed for the evaluation process, which ensures perfor-
mance measures as precise as desired. A Python implementation of the generator is
available online [25].

5 Results 9

4.2 Fall detection data

Our real ground application is a fall detection model that has to be embedded in a
small device with limited cpu resources of 256kB ROM, 16kB RAM and 40 MIPS. We
dispose of a dataset composed by 742 signals of falls and non-fall events, sampled at
fs = 100Hz, and recorded with 28 volunteers aged from 25 to 45 years old. A wide
range of 87 features have been previously computed on these data from parts of the
signal, its derivative and Fourier transform.

Ideally, we want the embedded system to give a prediction on the current signal
every 10 ms, but all these features can not be computed with the device resources in
this short time budget. Features costs ci have been provided by the experts, as well
as the evaluation cost kev of a unique decision tree node.

4.3 Experiments

To observe whether using equivalent decision trees can be relevant or not for budget
learning purpose, each experiment is done on two separate population starting from
the same initial random forest. The first population is obtained with equivalent trees,
as described in Section 3.2, whereas the second one is obtained by exact duplication
of the initial random forest. For each experiment, datasets are split into three subsets
: the initial random forest training set, the training set used by genetic algorithm and
a test set to assess final best random forest individual after all iterations. The main
performance measure considered is the trade-off between mean accuracy and mean
prediction time cost represented by the fitness function. Other interesting measures
like mean error, depth, model size (in terms of number of nodes) or proportion of
total feature acquisition cost used in the random forest are also presented in the next
Section.

Population size at the start of the genetic algorithm is 40 random forests obtained
from the initially pre-trained model (either by randomized equivalent trees procedure
or duplication). At each iteration, new individuals are added to the population through
mutation and reproduction whereas the less valuable ones according to the fitness
function are removed. Mutation rate and reproduction rate are respectively set to
βm = 0.6 and βr = 0.25. Birth rate and mortality rate are set to τr = 3 and βd = 0.6.
Thus, the population size variation from a generation to the next one is given by the
factor : (1 + βm + βr ∗ τr)(1 − βd) which is 1.02 in our experiments, meaning the
population is slowly growing over iterations. As keeping the model’s accuracy as best
as possible is a crucial aspect of the considered industrial fall detection application,
the trade-off parameter is fixed relatively low to λ = 0.3 for fall detection data and
λ = 0.6 for synthetic data. Python implementation of algorithms 1 and 2 are available
online [26,27].

5 Results

This Section presents the results obtained with the aforementioned experiments, and
our interpretations. Figures 2, 3, 4 and 5 illustrate the algorithm’s behavior on the best
random forest individual during iterations on datasets used for the budgeted training
whereas Table 1 shows final best individual results assessed on the test datasets (to
simplify the display of these results, we refer to the prediction time cost as ”Budget”
in Figure 3 and Table 1).

Figure 2 shows that, using parameter values given in previous Section, the ge-
netic algorithm converges on all our experiments after a few iterations towards a best
random forest individual regarding the fitness function value. This illustrates that
using pruning mutation, in combination with tree exchanges based cross-over, is a
valid method to optimize the trade-off between accuracy and prediction time cost of a

5 Results 10

random forest. As we can observe both on synthetic data and fall detection data, the
fitness value decrease in Figure 2 is very linked to the prediction time cost reduction
(between 35% and 45% for the synthetic data and between 50% and 80% for the fall
detection data) represented in Figure 3, which is the main purpose of the algorithm.
Depending on the inherent complexity of data distribution regarding decision trees
partitioning and the value of λ, this prediction time reduction can lead to a variable
loss in accuracy, as represented in Figure 4.

Another aspect of these results is the impact of using equivalent decision trees.
Indeed Figures 2 and 3 show that the genetic algorithm seems to reach better values
of fitness function and prediction time with the population evolved from randomized
equivalent trees initialization. This phenomenon is very pronounced on fall detection
data and also noticeable in synthetic data regarding confidence intervals. Moreover
this difference in prediction time reduction using equivalent trees is especially interest-
ing insofar as it does not necessarily reflect an accuracy difference as shown in Figure
4. Overall, all these figures reveal that using equivalent trees with this genetic algo-
rithm improves the budget learning task on our data but it takes more iterations to
converge. This behavior is confirmed in Figure 5 with the best individual mean depth
over iterations, which suggests in early iterations with Figure 3 that lower prediction
time individuals are obtained with equivalent trees while random forests are deeper
compared to the population initialized by duplication. These observations are con-
sistent with the intuition that space of potential accuracy/prediction time couples of
reachable solutions is highly wider by using equivalent trees because of the structural
variety it induces.

Concerning our embedded fall detection application, this genetic pruning algorithm
allows broadly to divide by 2 the prediction time without randomized equivalent trees
and to divide it by 4 while using them. From the 87 initial features, final best random
forest individuals keep in mean around between 10 and 20 features representing in
most cases less than 15 % of all features costs, and are also a lot lighter in terms
of depth and number of nodes. To compare Table 1 presents the results obtained in
these experiments in terms of accuracy and several prediction time aspects in front
of the first version of random forest implemented in 2017 in our embedded systems
for fall detection [7]. This model has been obtained by a first selection of a subset of
features by embedded system experts based on features acquisition costs and features
importance estimated on previous unconstrained model. Then a new random forest
has been trained using this features subset. The pruning approach with equivalent
trees presented in this work directly considers the mean prediction time budgeted
by a given device to simultaneously reduce the feature acquisition cost (through fea-
tures reordering and feature usage lowering) and the evaluation cost (through depth
decrease).

Tab. 1: Budget-wise comparison of different random forest models for fall de-
tection embedding.

2017 version [7] With Eq. Without Eq.
Fitness value 0.31± 0.03 0.20 ± 0.04 0.29± 0.05
Budget 0.72± 0.08 0.34 ± 0.11 0.68± 0.16
Error 0.09 ± 0.01 0.10 ± 0.03 0.09 ± 0.02
Depth 5 2.5 ± 0.5 2.5 ± 0.4
N° nodes 93± 5 22± 7 21± 6
N° features 34 16± 3 16± 3
(%) total feature cost 25 13 ± 5 22± 6

5 Results 11

0 2 4 6 8 10 12 14
Generation

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

Be
st

 S
co

re

Method
Whithout Eq. Trees
With Eq. Trees

(a)

0 2 4 6 8 10 12 14
Generation

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Be
st

 S
co

re

Method
Whithout Eq. Trees
With Eq. Trees

(b)

Fig. 2: Fitness value of the best random forest individual over iterations on
synthetic (a) and fall detection datasets (b).

5 Results 12

0 2 4 6 8 10 12 14
Generation

0.6

0.7

0.8

0.9

1.0

Bu
dg

et

Method
Whithout Eq. Trees
With Eq. Trees

(a)

0 2 4 6 8 10 12 14
Generation

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Bu
dg

et

Method
Whithout Eq. Trees
With Eq. Trees

(b)

Fig. 3: Mean prediction time cost of the best random forest individual over
iterations on synthetic (a) and fall detection datasets (b).

5 Results 13

0 2 4 6 8 10 12 14
Generation

0.16

0.18

0.20

0.22

0.24

Er
ro

r

Method
Whithout Eq. Trees
With Eq. Trees

(a)

0 2 4 6 8 10 12 14
Generation

0.040

0.045

0.050

0.055

0.060

0.065

Er
ro

r

Method
Whithout Eq. Trees
With Eq. Trees

(b)

Fig. 4: Mean prediction error of the best random forest individual over iterations
on synthetic (a) and fall detection datasets (b).

5 Results 14

0 2 4 6 8 10 12 14
Generation

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Be
st

 D
ep

th

Method
Whithout Eq. Trees
With Eq. Trees

(a)

0 2 4 6 8 10 12 14
Generation

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Be
st

 D
ep

th

Method
Whithout Eq. Trees
With Eq. Trees

(b)

Fig. 5: Mean depth of the best random forest individual over iterations on syn-
thetic (a) and fall detection datasets (b).

6 Conclusion and future work 15

6 Conclusion and future work

This work tackles the problem of budgeted prediction time for random forest embed-
ding in a small cpu capacity device. We manage to get, with our genetic pruning
algorithm, low prediction time random forests in exchange of a very small accuracy
decrease with shallow trees and using a restricted subset of features. Also, the final
obtained classifier is still a pruned version of an equivalent of the initially pre-trained
random forest model. This means that, for our fall detection application, the initial
unconstrained model can be kept, if needed, offline for detailed interpretation of pre-
dictions, while the simplified version of this model is embedded for efficient real-time
online predictions.

This work shows through equivalent decision trees how much the model’s structure
is impacting on the computation time and that same decision function does not mean
same computation time. Using a simple randomized equivalent tree procedure, our
results on both synthetic data and fall detection data illustrate the potential of using
equivalent trees for this kind of structurally dependent machine learning problems.
This procedure builds equivalent decision trees with a homogeneous drawing policy
over given splits and does not take into account the knowledge of features costs. Thus,
an interesting continuation of this work would be to cost sensitive splits drawing
policies while generating equivalent decision trees.

Acknowledgment

Part of this work has been founded by the Industrial Data Analytics And Machine
Learning chairs of ENS Paris-Saclay. Mounir Atiq is partially supported by Tarkett.

6 Conclusion and future work 16

References

[1] N. Cesa-Bianchi, S. Shalev-shwartz, and O. Shamir, “Some Impossibility Results
for Budgeted Learning,” ICML Workshop on Budgeted Learning, 2010.

[2] G. Contardo, L. Denoyer, and T. Artières, “Sequential cost-sensitive feature ac-
quisition,” Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9897 LNCS,
pp. 284–294, 2016.

[3] F. Nan, J. Wang, and V. Saligrama, “Feature-budgeted random forest,” 32nd
International Conference on Machine Learning, ICML 2015, vol. 3, pp. 1983–
1991, 2015.

[4] M. Chen, Z. Xu, K. Q. Weinberger, O. Chapelle, and D. Kedem, “Classifier
Cascade for Minimizing Feature Evaluation Cost,” Proceedings of the 15th Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS), vol. XX,
pp. 218–226, 2012.

[5] F. Nan, J. Wang, and V. Saligrama, “Pruning random forests for prediction on
a budget,” Advances in Neural Information Processing Systems, pp. 2342–2350,
2016. [Online]. Available: http://arxiv.org/abs/1606.05060

[6] R. C. Barros, M. P. Basgalupp, A. C. De Carvalho, and A. A. Freitas, “A survey
of evolutionary algorithms for decision-tree induction,” IEEE Transactions on
Systems, Man and Cybernetics Part C: Applications and Reviews, vol. 42, no. 3,
pp. 291–312, 2012.

[7] L. Minvielle, M. Atiq, R. Serra, M. Mougeot, and N. Vayatis, “Fall Detection
Using Smart Floor Sensor and Supervised Learning,” Proceedings of the Annual
International Conference of the IEEE Engineering in Medicine and Biology Soci-
ety, EMBS (2017) 3445-3448, pp. 3–6.

[8] Z. Hussain, Q. Z. Sheng, and W. E. Zhang, “A review and categorization of
techniques on device-free human activity recognition,” Journal of Network and
Computer Applications, vol. 167, no. May, p. 102738, 2020. [Online]. Available:
https://doi.org/10.1016/j.jnca.2020.102738

[9] T. Veniat and L. Denoyer, “Learning Time/Memory-Efficient Deep Architectures
with Budgeted Super Networks,” in 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2018. [Online]. Available: http:
//arxiv.org/abs/1706.00046

[10] W. Luo, C. Nam, and K. Sycara, “Online decision making for stream-based
robotic sampling via submodular optimization,” IEEE International Confer-
ence on Multisensor Fusion and Integration for Intelligent Systems, vol. 2017-
November, pp. 118–123, 2017.

[11] T. Gao and D. Koller, “Active Classification based on Value of Classifier.” Nips,
pp. 1–9, 2011.

[12] Q. Gu, T. Zhang, C. Ding, and J. Han, “Selective labeling via error bound mini-
mization,” Advances in Neural Information Processing Systems, vol. 1, pp. 323–
331, 2012.

[13] Z. E. Xu, K. Q. Weinberger, O. Chapelle, S. Louis, and O. C. Cc, “The Greedy
Miser: Learning under Test-time Budgets,” Proceedings of the 29th International
Conference on Machine Learning (ICML-12), pp. 1175–1182, 2012.

[14] Z. E. Xu, M. J. Kusner, K. Q. Weinberger, and A. X. Zheng,
“Gradient Regularized Budgeted Boosting,” 2019. [Online]. Available: http:
//arxiv.org/abs/1901.04065

http://arxiv.org/abs/1606.05060
https://doi.org/10.1016/j.jnca.2020.102738
http://arxiv.org/abs/1706.00046
http://arxiv.org/abs/1706.00046
http://arxiv.org/abs/1901.04065
http://arxiv.org/abs/1901.04065

6 Conclusion and future work 17

[15] S. B. Kotsiantis, “Feature selection for machine learning classification problems:
A recent overview,” Artificial Intelligence Review, vol. 42, no. 1, p. 157, 2014.

[16] B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A Survey on Evolutionary Com-
putation Approaches to Feature Selection,” IEEE Transactions on Evolutionary
Computation, vol. 20, no. 4, pp. 606–626, 2016.

[17] J. Bala, J. Huang, H. Vafaie, K. DeJong, and H. Wechsler, “Hybrid learning using
genetic algorithms and decision trees for pattern classification,” International
Joint Conference on Artificial Intelligence, vol. 14, pp. 719–724, 1995.

[18] Yang, “Feature Subset Selection Using a Genetic Algorithm,” 2013.

[19] “A Genetic Algorithm for Constructing Compact Binary Decision Trees,” 2013.

[20] Z. Fu, “An Innovative GA-Based Decision Tree Classifier in Large Scale Data
Mining,” vol. 5, pp. 348–353, 1999.

[21] Q. Zhao and M. Shirasaka, “A study on evolutionary design of binary decision
trees,” Proceedings of the 1999 Congress on Evolutionary Computation, CEC
1999, vol. 3, no. 2, pp. 1988–1993, 1999.

[22] D. Jankowski, K. Jackowski, D. Jankowski, K. Jackowski, E. Algorithm, T. In-
duction, D. Jankowski, and K. Jackowski, “Evolutionary Algorithm for Decision
Tree Induction To cite this version : HAL Id : hal-01405549,” 2016.

[23] L. Hyafil and R. L. Rivest, “Constructing optimal binary decision trees is NP-
Complete,” Information processing letters, vol. 5, 1976.

[24] “Using Genetic Algorithms to Solve NP-Complete Problems,” In:ICGA, no.
November, pp. 124–132, 1989.

[25] “Synthetic Data Generator,” https://github.com/SergioPeignier/
TLSyntheticDataGenerator, [Online].

[26] “Randomized equivalent decision trees,” https://github.com/atiqm/equivalent
decisiion trees, [Online].

[27] “Genetic pruning algorithm ,” https://github.com/atiqm/budget learning/Gen/,
[Online].

https://github.com/SergioPeignier/TLSyntheticDataGenerator
https://github.com/SergioPeignier/TLSyntheticDataGenerator
https://github.com/atiqm/equivalent_decisiion_trees
https://github.com/atiqm/equivalent_decisiion_trees
https://github.com/atiqm/budget_learning/Gen/

	Introduction
	Budget learning
	Budget learning on decision trees
	Genetic algorithms on decision trees

	Budgeted prediction time using random forests
	Prediction time costs for decision tree based models
	Budgeted optimization

	Genetic pruning algorithm
	Genetic representation of random forests
	Initialization with randomized equivalent trees
	Genome cross-over between random forests
	Mutations using random pruning
	Selection, guided mutation and fitness function

	Experimental setup
	Synthetic data
	Fall detection data
	Experiments

	Results
	Conclusion and future work

