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Abstract. For helicopters, anticipating failures is crucial. To this end,
the analysis of flight data allows to develop predictive maintenance ap-
proaches, for which Airbus Helicopters (AH) has proposed several so-
lutions, some based on machine learning using predictive models. One
recurrent problem in this setting is the contextualization of the data,
that is to identify the data better fitting the phenomenon being mod-
eled. Indeed, helicopters are complex systems going through different
flight phases. Experts therefore have to identify the adequate ones, in
which the selected flight parameters are stable and consistent with the
studied problem. In this paper, we propose a generic solution to con-
textualize classification data, and present an experimental study on AH
flight data: the results are encouraging and allow to keep domain experts
involved the process.
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1 Introduction

In the helicopters industry, predictive maintenance is crucial and Airbus Heli-
copters (AH) seeks to anticipate failure as soon as possible. One solution is to
analyze flight data, as most helicopters are equipped with flight recorders for
hundreds of parameters. Such an amount of data makes it possible to analyse
“low-level signals”’ over longer periods of time, and to detect failures earlier.
In this context,AH has gathered data on hundreds of thousands flight hours: to
face such a huge amount of data, a Big Data platform has been deployed at AH
to enable the storing and processing of large quantities of data [9].

Using this platform, digital twins have been devised to identify as soon as
possible small variations on core physical sensors. They are mainly based on
physical models and expert knowledge, but AH combines these with machine
learning techniques to build predictive models from the data. To build such
models, AH faces generic and recurrent issues that are well-known in machine
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learning, such as data cleaning, accuracy , or explainability. But in addition to
these classic issues, AH also seeks to build models corresponding to the normal
behavior of the system, and has to use data fitting the behavior algorithms
have to model. Indeed, an important filtering step is performed to identify the
data that is adequate to deal with the considered problem: complex systems
such as helicopters go through many different phases, and only a subset of the
data is relevant for a given model, as they are the only one for which the laws
of normal behavior of the system apply. It is therefore necessary to identify the
correct context for the considered task, which is the subset of data corresponding
to the desired phases on which the model is applied. We define this problem as
contextualization, according to the term used by AH experts. Thus, it consists in
determining the flight phases where considered parameters have lesser variability
and are less subject to pilot maneuvers and external parameters not recorded by
the system. At AH, this crucial step is dealt with by relying on experts knowledge
who specify how to filter flight data.

The contextualization problem can seem as a simple problem at first hand
(mainly data selection), but turns out to be a nightmare in practice. Identifying
the appropriate data is clearly not an easy task, and depends on the final objec-
tive for the classification model. In addition, contexts are tightly linked with the
application they concern, so solutions are often specific to one given situation.
For systems such as helicopters, contextualization is also important as they are
systems governed by physical laws, that apply only in specific contexts: the pur-
pose of classification models is therefore to produce outputs coherent with these
laws. To this end, these models have to be trained on data consistent with the
physical model they represent.

In this paper, we propose our ongoing work to address the contextualization
challenge. We seek to identify the appropriate context for a classification task,
by identifying the subset of data more likely to capture the normal behavior. To
do so, we seek the data favoring the existence of a function between the features
and the class to predict. As the correct context should follow some underlying
function the model seeks to define, we propose to remove the regions of the data
preventing the existence of that function, and to only keep the data more likely
to correspond to a normal behavior. We then show how this approach can be
applied to AH classification datasets.

Based on these considerations, we made the following contributions: (1)
Proposing a generic solution for contextualization, in order to define filters that
can be used to reduce the dataset to a given context; (2) Experiments on AH
data showing how identifying context elements can improve the accuracy of clas-
sifiers; (3) Confronting a contextualization proposed by AH experts to additional
context elements proposed by our method.

Section 2 introduces the preliminaries. In section 3, we propose our approach
to better contextualize datasets, and in section 4, we focus on AH’s data, to show
how we built a context for the considered dataset, and develop the lessons drawn
from this collaboration based on the experimentations that have been conducted.
Finally section 5 presents the related work before concluding in section 6.
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2 Preliminaries

2.1 Functional dependencies

We first recall basic notations and definitions (see [8]). Let U be a set of at-
tributes. A relation schema R is a name associated with attributes of U , i.e.
R ⊆ U . A database schema R is a set of relation schemas. Let D be a set of
constants, A ∈ U and R a relation schema. The domain of A is denoted by
dom(A) ⊆ D. A tuple t over R is a function from R to D. A relation r over R is
a set of tuples over R. If X ⊆ U , and if t is a tuple over U , then we denote the
restriction of t to X by t[X]. If r is a relation over U , then r[X] = {t[X], t ∈ R}.
Definition 1. Let R be a relation schema, X ⊆ R and C ⊆ R\X. A FD on R
is an expression of the form R : X → C (or simply X → C when R is clear
from context)

Definition 2. Let r be a relation over R and X → C a functional dependency
on R. X → C is satisfied in r, denoted by r |= X → C, if and only if for all
t1, t2 ∈ r, if t1[X] = t2[X] then t1[C] = t2[C].

2.2 Supervised classification in machine learning

Let’s consider a set of N training samples {(x1, y1), ..., (xN , yN )} where xi is
the feature vector of the i-th example and yi its label (or class). The number of
different labels K, is limited and much smaller than the number of samples.Given
this, classification is the task of learning a target function g (a classifier) that
maps each example x to one of the k classes, with the lowest error rate. It is
possible to express a classification problem using relational databases notations.
In the sequel, we will therefore consider a relation r0(A1, . . . , An, C) with N
tuples, where for any tuple ti, ti[A1 . . . An] = xi and ti[C] = yi. In addition, we
consider that traditional feature selection methods (see [1]) have been applied
and consider the subset X ⊆ {A1 . . . An} of selected features.

To evaluate the performances of an algorithm, we use accuracy, which is the
proportion of samples that are correctly classified by a model. This score lies
between 0 and 1, and ideally should get as close as possible to 1. Given a model
M over a relation r, accuracy is defined as follows:

accuracy(M, r) =
# of correct predictions

|r|

2.3 Existence versus determination of a function

We use the link between FDs and classification, developed in [7]. We only under-
line here it relies on the notion of function, as classifier seeks to define a function
from the features to the class, while the FD X → C can say whether or not
such a function exists or not: the FD X → C is satisfied if and only if there
exists a function from X to C. If the FD is not satisfied, it means some pairs
of tuples have the same value on X, but different classes. Such tuples are called
counterexamples:
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Definition 3. Let r be a relation over R and X → C a FD f on R. The set of
counterexamples of f over r is denoted by CE(X → C) and defined as follows:

CE(X → C, r) = {(t1, t2)|t1, t2 ∈ r, t1[X] = t2[X] and t1[C] 6= t2[C]}

Counterexamples are important as they identify pairs of tuples for which the
classifier cannot perform correctly, as for the same input, it always predicts the
same output. The proportion of counterexamples therefore directly impacts the
quality of the classification: it can be evaluated using measure G3, and contrary
to [5] that presents this measure as an error, we propose it as follows:

G3(X → C, r) =
max({|s||s ⊆ r, s |= X → C})

|r|
Measure G3 is of crucial importance for the classification problem, as in the

subset s defined for G3, there exists a function between the left and right hand
side of the dependency. For classification, measure G3 is therefore a way to bound
the accuracy a classifier can reach on the considered dataset, as it is necessary
limited by the existence of counterexamples. As a result, the following result
holds, for which the details and proof are given in [7]:

Proposition 1. Let X ⊆ R be a set of features, C ∈ R the class to be predicted,
r a relation over R, and M a classifier from X to C. Then:

accuracy(M, r) ≤ G3(X → C, r)

In the setting of contextualization, G3 can be seen as a way to identify
whether or not a dataset follows a function, and to identify zones that are there-
fore more likely to correspond to a normal behavior of the system.

3 Contextualization of a classification dataset

The objective is to propose a methodology for the contextualization of classi-
fication datasets. The proposed solution considers there should be a function
between the features and the class to predict. The idea is to identify the regions
in the initial dataset in which a function is likely to exist, and therefore in which
the FD features→ class is likely to be satisfied. On the opposite, regions with a
high proportion of counterexamples should be removed, as they are likely regions
where the model hypothesis are not verified.

To contextualize a dataset, we propose an iterative approach, that is sum-
marized on figure 1. The process starts with an initial classification dataset. It
is then discretized, to smooth the data variability and to better identify coun-
terexamples. Then, G3 is computed, and a classifier is trained and tested, to
obtain an accuracy measure. Measure G3 allows to evaluate the existence of a
function, while the accuracy guaranties the performances of the model. These
two measures are taken into account to determine the next step in the process.
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If the domain experts are not satisfied with the measures, the counterexamples
are enumerated, to identify filters to remove the tuples that cause too many
counterexamples. The key is to find balance between removing regions of the
data while keeping as many tuples as possible. The filters can take different
forms: here, we propose to define filters in the form of conjunctions of conditions
allowing to remove groups of tuples. To identify such groups, visualizations are
proposed, to observe what tuples are the most involved in counterexamples.
Once the filters are determined, based on these visualizations and in collabo-
ration with domain experts, tuples are removed, providing a new dataset. This
process is repeated until satisfaction.

Fig. 1: Overview of the solution proposed to contextualize a classification dataset

3.1 From counterexamples to context-aware data selection

When the proposed contextualization is not satisfying, solutions have to be pro-
posed to refine it, and to therefore remove tuples from the dataset. The challenge
is to determine what are the tuples to remove and why. We therefore propose to
determine filters that can be applied to the dataset, to remove tuples and lower
the number of counterexamples in the dataset. Such filter should ideally remove
as few tuples as possible, while removing as many counterexamples as possible.
Indeed, one tuple might be involved in many counterexamples: in this case, it
should be removed.

Many solutions can be considered for the filters: one solution from example is
too order the tuples by the number of counterexamples they are involved in, and
to set a threshold to remove all the tuples involved in more counterexamples than
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this threshold. But it does not explain what are the characteristics of the removed
tuples: if a domain expert wishes to understand why a tuples is removed, she
has to manually check each counterexample. In this paper, we propose to define
filters in the form of conjunction of conditions applied to the dataset, making
the overall process explainable. These filters define, in simple terms, regions
of the dataset containing more counterexamples than others, while concerning
only a few tuples. This can be performed using visualizations proposing, for each
feature, histograms showing the distribution of values among counterexamples,
and the number of tuples taking a given value. The histograms can then be
used to identify values having, on a given feature, few tuples involved in many
counterexamples. The filters then integrate a condition removing such values
from the dataset. Such filters are interpretable by domain experts, who can
analyze whether or not these filters make sense with the desired context.
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Fig. 2: Toy example for filter design

Example 1. Figure 2 presents visualizations used to define filters. For a given
feature A, figure 2a shows for each value taken by this feature, the proportion of
tuples involved in counterexamples, and therefore how much they contribute to
the value of G3. Figure 2b is an histogram of values for the considered feature.
By comparing these two visualizations, it appears there is a zone that does not
contain many tuples, but many counterexamples. As a result, one condition for
a contextualization filter could be to remove all tuples for which A ≥ 15 and
A ≤ 25. This gives an interpretable filter, removing a few tuples and improving
measure G3. Similar work can be performed for each feature of the dataset,
creating a filter that is a conjunction of conditions over all features.
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4 Application to AH flight data

4.1 AH classification datasets

Using helicopters flight data, AH is developing tools such as virtual sensors, that
aim at monitoring the aircraft health and usage. They use the historical flight
data to learn a predictive model for a given parameter. The predicted value is
compared to the one given by the physical sensor: an alert is raised if the dif-
ference between the two values is too high. An example of such a virtual sensor
has been proposed by AH for the oil pressure of the helicopter Main Gear Box
(MGB) [2]. We reuse the data from this study to perform the experiments of
this paper. As a first contextualization had been done by AH domain experts,
we used and compared two datasets, with 10 attributes selected and discretized
by AH experts: the raw dataset corresponds to the flight data without any
contextualisation, for a given period of time, randomly mixing tuples from sev-
eral flights; the expert-Contextualized dataset is a subset of the raw one
containing tuples filtered by AH experts (around 50% of the raw data).

4.2 Comparison of AH datasets

Baseline Filter 1 Filter 2

Dataset # tuples accuracy # tuples accuracy # tuples accuracy

Raw 1969533 53.97% 607248 57.28% 468630 61.71%
Expert-contextualized 541342 73.94% 281947 76.02% 100165 78.61%

Table 1: Accuracy of random forest models on the oil pressure datasets

The impact of contextualization was analyzed, by comparing accuracy for
a random forest algorithm (baseline column of table 1). The accuracy for the
expert-contextualized dataset is much higher than for the raw one,confirming
the expert contextualization pertinence. Moreover, G3 = 95.53% for raw dataset
and G3 = 95.51% for expert-contextualized one. The proportion of counterex-
amples is therefore reasonable and the two datasets have similar G3 values. The
contextualization seems to have preserved the proportion of counterexamples:
they have decreased in absolute number, but not with respect to the size of the
dataset. New contextualization might therefore increase the model’s accuracy.

4.3 Additional contextualization using G3

We applied our methodology from figure 1 to the two datasets, but first verified
that the counterexamples were evenly distributed among the flights. Figure 3
shows a histogram of the percentage of counterexamples among flights: most
flights have a very low rate of counterexamples, so any removal of counterexam-
ples affects a large number of flights, avoiding the model to overfit on a subpart
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Fig. 3: Distribution of flights for each proportion of counterexamples

of the flights. We then analyzed the two plots made for each feature such as
figures 4a and 4b for the pressure. Low pressure values have more counterexam-
ples, while containing an important number of tuples. It can also be noted that
the domain contextualization removes a significant part of counterexamples, but
other regions could be cleaned further from counterexamples with additional
contextualization, for example for pressure values over 5.6 bar.

A first filter was designed (Filter 1 in table 1). For the pressure, this filter
removes all the data for which it is below 3.2 bar and above 6.4 bar, as these
regions have few tuples but many counterexample (see figure 4). Similar rules
were applied for the other features of the dataset. The results in table 1 show
the positive effect of this filter on classifier’s accuracy. It was decided to improve
again the contextualization, so we obtained filter 2 by adding additional rules to
the ones from filter 1. Table 1 shows that accuracy is improved by filter 2. After
this second iteration, the obtained contextualization was considered satisfying.

Finally, it should be noted from table 1 that there is a significant gap between
the highest accuracy on the raw dataset and the lowest accuracy for the expert-
contextualized one. Even with the best filter, it is not possible to reach the
result obtained using expert knowledge: the best approach consists in taking the
valuable domain expert knowledge into account, before refining it using tools
such as counterexamples and G3.

4.4 Take away lessons

These experimentation showed how contextualization can be used to improve the
accuracy of classifiers for AH virtual sensors. Contextualization is an important
problem, but it is not easy to address because the proposed solutions are often
domain-specific, or included in the ”data preparation” steps that our left to
data scientists judgment: our solution could in comparison be applied for other
types of application and involves domain experts in the loop. There is also a
qualitative aspect to this approach, that aims at taking a step back from the
model, to understand what is being done, and understand the limitations. This is
directly related to the explicability of the model, a crucial notion in aeronautics:
the prediction of what can be seen as a simple classification algorithm output
can put into question human lives getting back into an aircraft or not.
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Fig. 4: Counterexamples and distribution for pressure values

5 Related work

We applied our contextualization technique in the context of predictive main-
tenance for helicopters, a growing topic in the industry. Virtual sensors such
as the ones used for the experiments of this paper [2] are interesting solutions
in this context. Similarly, [3] proposes a virtual sensor to anticipate failures on
photo-voltaic systems. Additionally, [11] presents a failure anticipation approach
for aircraft systems. In this case, the learning is done only on flight phases pre-
defined by experts. More generally, in most works developed in the industry,
data is always combined with domain knowledge in order to speed-up accurate
predictive models development. However, this combination still is often not op-
timal, and we believe this is a lever for improving accuracy of predictive models
developed in the industry.

Functional dependencies are of high interest for data cleaning, a necessary
prerequisite for data contextualization. The authors from [6] showed that if there
is a functional dependency between features, it is likely to affect the classifier
negatively. Specific dependencies have been proposed to identify inconsistencies
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in a dataset, and eventually repair it. Matching dependencies [4] for data re-
pairing uses matching rules to relax the equality on functional dependencies and
assign values for data repairing. In Holoclean [10], dependencies are used to clean
automatically a dataset.

6 Conclusion

In this paper, we addressed the problem of contextualization of classification
datasets, applied to the flight data of AH. This problem is crucial, and appears
in many data science industrial applications, but has yet not been addressed
as massively as other traditional machine learning problems. We proposed a
methodology, and conducted experiments on data from a virtual sensor devel-
oped by AH, and showed how our method could improve the contextualization
and, as a consequence, the accuracy of the datasets.
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