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Missing rating imputation based on product reviews
via deep latent variable models
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Abstract

We introduce a deep latent recommender system
(deepLTRS) for imputing missing ratings based
on the observed ratings and product reviews. Our
approach extends a standard variational autoen-
coder architecture associated with deep latent vari-
able models in order to account for both the ordi-
nal entries and the text entered by users to score
and review products. DeepLTRS assumes a la-
tent representation of both users and products,
allowing a natural visualisation of the position-
ing of users in relation to products. Numerical
experiments on simulated and real-world data
sets demonstrate that DeepLTRS outperforms the
state-of-the-art, in particular in contexts of ex-
treme data sparsity.

1. Introduction and related works

Matrix completion is a central machine learning problem,
which consists in predicting the non observed entries of
a matrix on the basis of the observed entries. We focus
here on the collaborative filtering problem which aims at
completing a matrix of user ratings about products. These
matrices are extremely sparse in practice which makes the
inference of the non-observed entries challenging. A long
series of approaches have been proposed to tackle this issue.

The works of Gopalan et al. (2015); Basbug & Engelhardt
(2016) rely on the assumption that ratings are sampled from
Poisson distributions, simple or compound. Recently, cou-
pled compound Poisson factorization (CCPF, Basbug &
Engelhardt, 2017) was introduced as a more general frame-
work based on different generative approaches (e.g. mixture
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models or matrix factorization models). Another class of col-
laborative filtering models rely on user-based (respectively
item-based) autoencoders to produce user (item) embed-
dings in lower dimension, both based on recurrent (Monti
et al., 2017) or convolutional (Sedhain et al., 2015; Zheng
et al., 2016) architectures. The last two approaches are
special cases of a more general architecture (graph autoen-
coder models, Kipf & Welling, 2016), recently employed
for matrix completion (Berg et al., 2017).

Unfortunately, although the aforementioned models can ac-
count for side information additionally to the user ratings,
they do not introduce a modeling framework specific to the
product reviews. However in practice, the product ratings
are often paired with reviews that might contain crucial in-
formation about the user preferences. Thus, in McAuley
& Leskovec (2013), the hidden factors and hidden topics
(HFT) model combines latent rating factors with latent re-
view topics. Still, when a large amount of user ratings is
missing, the performance of the predictions turns out to be
limited.

We introduce here the deep latent recommender system
(deepLTRS, Sections 2-3) for the completion of rating ma-
trices, accounting for the textual information collected in the
product reviews. DeepLTRS extends probabilistic matrix
factorization (Mnih & Salakhutdinov, 2008) by relying par-
tially on latent Dirichlet allocation (LDA, Blei et al. (2003))
and its recent autoencoding extensions (Srivastava & Sut-
ton, 2017; Dieng et al., 2019). Thus, our approach adopts
a variational autoencoder architecture as a generative deep
latent variable model for both the ordinal matrix encoding
the user/product scores, and the document-term matrix en-
coding the reviews. Our approach is tested on simulated and
real datasets (Section 4) and compared with other state-of-
the-art approaches in contexts of extreme data sparsity.

2. A text based recommender system

We consider data sets involving M users scoring/reviewing
P products. Such data sets can be encoded by two matrices:
an ordinal data matrix Y accounting for the scores that users
assign to products and a document-term matrix (DTM) W
accounting for the reviews that users make about products.
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Ordinal data. The ordinal data matrix Y in NM*x? jg
such that Y;; is the score that the i-th user assigns to the j-th
product. This matrix can be very sparse (most of its entries
are missing) corresponding to users not scoring/reviewing
some products. Conversely, when a score is assigned it takes
valuesin {1,..., H} with H > 1.

Assumption 1. Henceforth, we assume that an ordinal
scale is consistently defined. For instance, when customers
evaluate products, 1 always means “very poor” and H is
always associated with “excellent” reviews.

Assumption 2. The number of ordered levels H is assumed
to be the same for all (not missing) Y;;. If it is not the
case, a scale conversion pre-processing algorithm (see for
instance Gilula et al., 2018) can be employed to normalize
the number of levels.

Text data. By considering all the available reviews, it is
possible to store all the different vocables employed by the
users into a dictionary of size V. Thenceforth, we denote by
W (3) a row vector of size V encoding the review by the i-
th user to the j-th product. The v-th entry of W (*7), denoted
by Wy’j ), is the number of times (possibly zero) that the
word v of the dictionary appears into the corresponding
review. The document-term matrix W is obtained by row
concatenation of all the row vectors W (7).

Assumption 3. For the sake of clarity, we assume that the
review W) exists if and only if'Y;; is observed.

Note that, since each row in W corresponds to one (and
only one) not missing entry in Y, the number of rows in the
DTM is the same as the number of observed values in Y.

It is now assumed that both users and products have la-
tent representations in a low-dimensional space R, with
D <« min{M, P}. In the following, R; denotes the latent
representation of the i-th user. Similarly C} is the latent
representation of the j-th product.

The following generative model is now considered:
Y;j = <Rl,C7> + 61‘]‘,VZ' =1.MVvVj=1..,P, (1)

where (-, -) is the standard scalar product and the residuals
€;; are assumed to be i.i.d. and normally distributed random
variables, with zero mean and unknown variance 7?:

€ij ~ N(07U2)~
In the following, R; and C; are seen as random vectors,
such that
R

iid

C; '

(O7ID)7Vi
(OvID)vvj

with R; Il C;. This model is knows as probabilistic matrix
factorization (PMF, Mnih & Salakhutdinov, 2008). Note
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Figure 1. Graphical representation of the generative model (varia-
tional parameters are not included).

that, due to rotational invariance of PMEF, the choice of
isotropic prior distributions for R; and C}; is in no way
restrictive

We now extend PMF by also relying on R; and C); to char-
acterize the document-term matrix W. Following the gen-
erative model of LDA (Blei et al., 2003), each document
W (i-3) is drawn from a mixture distribution over a set of K
latent topics. The topic proportions in the document W (+7)
are denoted by 60;;, a vector lying in the K — 1 simplex.
LDA, in its multinomial PCA formulation assumes that

p(W(l’])w”) ~ Multinomial(Lij, ﬁﬂij), 3)

where L;; is the number of words in the review W (%9) and
B € RV*K is the matrix whose entry f3,;, is the proba-
bility that vocable v occurs in topic k. By construction,
szl Bk = 1,Vk. Moreover, conditionally to all vectors
0;;, all the reviews {IW (1)} are independent random vec-
tors. The following assumption calls R; and C; into play.

Assumption 4. The topic proportions are now assumed to
be sampled as follows

bi; = o(fy (Ri, Cy)), 4)

where [ : R2P — RX is a continuous function approxi-
mated by a neural network parametrized by v and where
o(+) denotes the softmax function.

We emphasize that the §;; are no longer independent con-
trary to LDA. We finally state that:

Assumption 5. Given the pair (R;, C;), it is assumed that
Y;; and Wd) are independent.

We stress that we are not assuming that Y;; and W (%9) are
independent. Instead, we describe a framework in which
the dependence between them is completely captured by the
latent embedding vectors R; and C;. A graphical represen-
tation of the generative model described so far can be seen
in Figure 1.
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3. Variational auto-encoding inference

A natural inference procedure associated with the genera-
tive model proposed would consist in looking for estimates
(n?,~, ) maximizing the (integrated) log-likelihood of the
observed data (Y, W). Unfortunately, this quantity is not
directly tractable and we rely on a variational lower bound
(a.k.a. ELBO) to approximate it. A tractable family of joint
distributions ¢(-) over the pair (R, C') of all (R;); and (C});
is considered via the following mean-field assumption

a(R,C) = a(R)a(C) = [ ][ a(R)a(C). )

Moreover, since R; and C; follow Gaussian prior distribu-
tions (Eq. (2)), ¢(+) is assumed to be as follows:

aCj) = g(Csu§,59), (7)

where g(+; i, S) is the pdf of a Gaussian multivariate distri-
bution with mean p and variance S and

pft s =g (Ye, W)
:U‘]C L= ll,L(Yjv W(.’j))7

SE = ho o (Y;, WE)

2

S =1, (Y7, WD)

Here, Y; (respectively Y7) denotes the i-th row (column)
of Y and W) := 3> W) corresponds to a document
concatenating all the reviews written by user ¢ and, similarly
W) .= > W) corresponds to all the reviews about
the j-th product. The two functions hy : RETYV — R2*P
and [, : RM+V — R2%D are the network encoders and they
are parametrized by ¢ and ¢, respectively.

Thanks to Egs. (1)-(3)-(5)-(6)-(7) and by computing the KL
divergences between ¢(-) and the prior distributions of R
and C, the evidence lower bound (ELBO) can be explicitly
computed (cf. Section A, supplementary material).

4. Numerical experiments
4.1. Simulated data and effect of the data sparsity

Simulation setup. An ordinal data matrix Y with M =
750 rows and P = 600 columns is simulated according to
a latent continuous cluster model. The rows and columns
of Y are randomly assigned to two latent groups, in equal
proportions. Then, for each pair (, j) corresponding to an
entry of Y, a Gaussian random variable Z;; is sampled in
such a way that Z;; ~ N(2,1) it X\ = Xj(.c)
N (3,1) otherwise, where Xi(R) and X J(-C) label the clusters
of the ¢-th row and the j-th column, respectively. Then

the following thresholds ty = —oo, t; = 1.5, t2 =
2.5, t3 = 3.5, t4 = 400 are used to sample the note

s and Zij ~

User
«  Product

Visualization of users and products for simulated data

Figure 2. Visualization of the user and product embeddings (spar-
sity of 0.99).

Yi; € {1,...,4} as

4
Yij = Z KX(Zij )1ty ®)
=1

Then, four different texts from the BBC news (denoted by
A, B, C, D) are used to build a message associated to the
note Y;; according to the scheme summarized in Table 1.

| cluster 1 | cluster 2
cluster 1 A B
cluster 2 C D

Table 1. Topic assignments for simulated data.

Thus, when the user ¢ in cluster X, Z»(R) = 2 rates the product

J in cluster XJ(-C) = 1, arandom variable Z;; ~ N(3,1) is
sampled, Y;; is obtained via Eq. (8) and the review W (©:4)
is built by random extraction of words from message C.
All the sampled messages have an average length of 100
words. Finally and in order to introduce some noise, only
80% of words are extracted from the main topics, while the
remaining 20% is extracted from the other topics at random.

First, Figure 2 shows a t-SNE representation of R; and C},
with data sparsity of 0.99 (i.e. 99% of the observations in Y’
and W are replaced by NA at random). We first note that
the two (row ans column) clusters are well separated despite
the large degree of sparsity. Since deepLTRS assumes that
the closer the distance, the greater the probability that the
product is reviewed by the user, this latent representation
is well representative of the simulated setup . A total of 10
data sets was simulated according to the above setup, with
sparsity rates varying in the interval [0.5, 0.99]. The whole
observed data is used as training data set, the remaining
missing data was split into 50% for validation and 50%
for test. This experimental setup was used to benchmark
deepLTRS by comparing it to some state-of-the-art meth-
ods as HFT (McAuley & Leskovec, 2013), HPF (Gopalan
et al., 2015) and CCPF (Basbug & Engelhardt, 2017). Since
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CCPF has many choices of combination between sparsity
and response models, we chose one example with better
performance as described in (Basbug & Engelhardt, 2017).
Figure 3 shows the evolution of the test RMSE of deepLTRS
(with D = 50 and text) and its competitors. Additional re-
sults are reported in the supplementary material, Section C.
Let us recall that the simulation setup does not follow the
deepLTRS generative model and therefore does not favour
any method here.

-W- HFT -
~F- HPF
-
25 CCPF-PMF E
-®- deeplTRS -
>
20
& -
=
z
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215
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- .
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B s et -
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Effect of the sparsity for four different models

Figure 3. Test RMSE of models: HFT, HPF, CCPF and deepLTRS
with different sparsity level on the simulated data.

4.2. Amazon Fine Food data

Data and pre-processing. This data set! spans over a pe-
riod of more than 10 years, including all 568, 464 reviews
up to October 2012. All records include product and user
information, ratings, time of the review and a plain-text
review. In the data pre-processing step, we only considered
users with more than 20 reviews and products reviewed
by more than 50 users to obtain more meaningful infor-
mation. The retained data was processed by removing all
punctuations and numbers. Since around half of the nega-
tive reviews have more positive than negative words in the
data set, we kept the stop words (such as “not”,“very”) to
make our bag-of-words structure more clearly retain the
original semantics. The final data set has M = 1, 643 users,
P = 1,733 products, a vocabulary with V' = 5, 733 unique
words and 32, 811 text reviews in total. The data sparsity is
here of 0.989%.

Rating prediction. Five independent runs of the algo-
rithm were performed. For each run, we randomly selected
80% of the non-missing data as the training set, 10% for val-
idation and the remaining 10% for testing. Table 2 reports
the test RMSE for deepLTRS and its competitors (HFT, HPF
and CCPF-PMF) on the predicted ratings for the Amazon
Fine Food data. Once again, deepLTRS has better per-
formance than other models, with an average test RMSE
equal to 1.2518. In order to deeper understand the latent
representation meaning, we provide in Figure 4 a t-SNE

!The data set can be downloaded freely at https: //snap.
stanford.edu/data/web-FineFoods.html

Table 2. Test RMSE on Amazon Fine Food data.

Model |Run1 Run2 Run3 Runt4 Run 5|Average
HFT 1.424 1.533 1.474 1.423 1.385|1.448 (£0.051)
HPF 2.949 2968 2.931 2943 2.973|2.953 (£0.016)

CCPF-PMF|1.269 1.296 1.303 1.292 1.295|1.291 (£0.011)
deepLTRS [1.136 1.259 1.244 1.171 1.247 |1.252 (+0.049)

visualisation (D = 50) of the user latent positions on two
specific latent variables (var. 3 and 11) that can be easily
interpreted according to average ratings (top) and number
of reviews (bottom) the users give to the products. Indeed,
it clearly appears that var. 11 captures the rating scale of
Amazon users whereas var. 3 seems to encode the user ac-
tivity (number of reviews). Additional analyses are reported
in the supplementary material, Section D.

Avg. rating
1

Vil

2
3
.4
5

v3

Review nb
high (>30)
- low(<=5)

medium

Vil

V3

Figure 4. Latent representation of users on var. 3 and 11, according
to average ratings (left) and numbers of reviews (right) they give
to products.

5. Conclusion

We introduced here the deepLTRS model for ratings impu-
tation using both the ordinal and the text data available. Our
approach adopts a variational autoencoder architecture as a
generative deep latent variable model for both the ordinal
matrix encoding the user/product scores, and the document-
term matrix encoding the reviews. The further ability of
deepLTRS to predict the most likely words used by a re-
viewer to review a product will be inspected in future works.
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Supplementary material

A. Evidence lower bound

3 (B [(90) o o000
v ©)
~ (oS + ("l = D = og] T

5 (r(S5) + () 1§ — D —og \sﬂ)} +¢

where © := {n2, v, B, &, 1} denotes the set of the model and variational parameters and £ is a constant term that includes all the elements
not depending on ©.

B. Architecture of deepLTRS

In the architecture of deepLTRS, we have two encoders for users and products separately. As a method for stochastic optimization, we
adopt an Adam optimizer, with learning rate Ir = 2e 3.

In the user encoder, the first hidden layer has init_dim_R = (P + V') neurons, where P is equal to the number of products, and V' is the
number of words in the text vocabulary; the second hidden layer has mid_dim = 50 neurons. In the product encoder, the first hidden
layer has init_dim_C = (M + V') neurons, where M is equal to the number of users; the second hidden layer has the same neurons as
in the user encoder. So ftplus activation function and batch normalization are applied in each layer.

In the decoder, the first two layers have 2 X int_dim and 80 neurons separately, where int_dim = init_dim_R when decoding for users
and int_dim = init_dim_C for products. The number of neurons in the third layer depends on the number of topics, here we used
nb_of _topics = 50. In addition, Relu activation function and batch normalization are applied. In order to obtain the probability of each
word, the Softmax function is used in the end.

C. More on simulated data experiments

DeepLTRS with and without text data. We first run a simulation to highlight the interest in using the reviews to make more
accurate predictions of the ratings. To do so, 10 data sets are simulated according to the above simulation setup, with sparsity rates varying
in the interval [0.5, 0.99]. Figure 5 shows the evolution of the test RMSE of deepLTRS (with D = 50), with and without using text data,
versus the data sparsity level. One can observe that, even though both models suffer the high data sparsity (increasing RMSE), the use of
the text greatly help deepLTRS to maintain a high prediction accuracy for data sets with many missing values. Furthermore, the use of
text reviews greatly reduce the variance of the deepLTRS predictions.

D. More on Amazon Fine Food data experiments

Figure 6 shows a visualization with t-SNE of the high-dimensional latent representations (here D = 50) of the users and products for the
Amazon data. The density of the overlapping regions and the distance between user and product embeddings reflect the probability of
users reviewing the corresponding products.
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Figure 6. Projection with t-SNE of user and product latent representations for the Amazon Fine Food data set.
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Figure 5. RMSE by deepLTRS with and without text information on simulated data.
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