Missing rating imputation based on product reviews via deep latent variable models - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Missing rating imputation based on product reviews via deep latent variable models

Résumé

We introduce a deep latent recommender system (deepLTRS) for imputing missing ratings based on the observed ratings and product reviews. Our approach extends a standard variational autoen-coder architecture associated with deep latent variable models in order to account for both the ordinal entries and the text entered by users to score and review products. DeepLTRS assumes a latent representation of both users and products, allowing a natural visualisation of the positioning of users in relation to products. Numerical experiments on simulated and real-world data sets demonstrate that DeepLTRS outperforms the state-of-the-art, in particular in contexts of extreme data sparsity.
Fichier principal
Vignette du fichier
MissingRatings.pdf (472.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02933326 , version 1 (08-09-2020)

Identifiants

  • HAL Id : hal-02933326 , version 1

Citer

Dingge Liang, Marco Corneli, Pierre Latouche, Charles Bouveyron. Missing rating imputation based on product reviews via deep latent variable models. ICML2020 Workshop on the Art of Learning with Missing Values (Artemiss), Jul 2020, Nice / Virtual, France. ⟨hal-02933326⟩
253 Consultations
90 Téléchargements

Partager

More