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ABSTRACT
We present a hybrid, multi-method, computational scheme for protein/ligand systems well suited to be used on modern and forthcoming
massively parallel computing systems. The scheme relies on a multi-scale polarizable molecular modeling, approach to perform molecular
dynamics simulations, and on an efficient Density Functional Theory (DFT) linear scaling method to post-process simulation snapshots. We
use this scheme to investigate recent α−ketoamide inhibitors targeting the main protease of the SARS-CoV-2 virus. We assessed the reliability
and the coherence of the hybrid scheme, in particular, by checking the ability of MM and DFT to reproduce results from high-end ab initio
computations regarding such inhibitors. The DFT approach enables an a posteriori fragmentation of the system and an investigation into the
strength of interaction among identified fragment pairs. We show the necessity of accounting for a large set of plausible protease/inhibitor
conformations to generate reliable interaction data. Finally, we point out ways to further improve α−ketoamide inhibitors to more strongly
interact with particular protease domains neighboring the active site.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0148064

I. INTRODUCTION

To study molecular systems at the atomic scale, Quan-
tum Mechanical (QM) methods are the most accurate theoretical
approaches. Presently, the availability of efficient numerical schemes
and ongoing increases in available computational resources are
enabling one to perform full QM (QMF), computations of com-
plete microscopic systems at the 10k atoms scale and above.1,2

This is in comparison to commonly used hybrid approaches that

combine QM schemes with Molecular Mechanics (MM) methods
(see, among others, Refs. 3–13). A number of challenges exist when
employing QM/MM;14 one benefit of using QMF is there is no need
to arbitrarily define a frontier between the QM and MM regions.
A further interesting feature of QMF methods is their ability to
decompose a molecular system into chemical fragments. Then, using
energy-decomposition schemes, it is possible to construct maps of
these fragments that effectively describe the strength of the local
microscopic interactions.15–18 QMF schemes have the benefit not
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only of opening up the treatment of new categories of systems2,19

but are also promising theoretical tools from which to build a
new generation of docking methods that will help speed up the
development/optimization process of new drugs,20,21 for instance.
We note here that QMF schemes have already been used to inves-
tigate the binding modes of drugs targeting the main protease Mpro

of the SARS-CoV-2 virus and of its variants.22–26

Despite their efficiency, we cannot rely on QMF schemes to
perform the intensive sampling of the conformational space of large
systems that is needed to compute reliable averaged quantities (such
as interaction energies). Most of the available QMF studies take into
account only a handful of conformations of the systems investigated,
see Refs. 27 and 28, for instance. To remediate the drawbacks arising
from using limited conformational datasets, we may investigate sys-
tems using Molecular Dynamics (MD) techniques based on efficient
MM approaches; a QMF scheme can then be used to post-process a
large enough snapshot set extracted along the MD trajectories (see,
among others, Refs. 29–32). We denote this kind of sequentially
coupled approach as MM-QMF hereafter.

MD/MM schemes are now particularly efficient and long-time
simulations, from the 0.1–1 μs scale, have been repeatedly reported.
Regarding Mpro/inhibitor complexes, we may quote here Refs. 6
and 33–36, and even MD runs up to the 10 μs scale of the Mpro

dimer are available.37 However, the reliability of the snapshot sets

extracted along MD trajectories does not only depend on the MD
run duration but also on the accuracy of the MM approach. Up until
now, investigations of protein/ligand complexes mostly use stan-
dard pairwise MM approaches. These MM approaches neglect all the
dynamical/cooperative effects, such as microscopic polarization (or
they account for them according to a pairwise mean field approach)
and their accuracy is still largely debated, in particular, to model
polyelectrolyte systems.38–41

Our aim is to show the ability of an original polarizable MM-
QMF scheme to study large-scale sets of protein/ligand conforma-
tions using massively parallel computational resources and to dis-
cuss the origin of the microscopic local interactions stabilizing those
complexes from reliable mean values of electronic density-based
quantities. Moreover, we will also show how modern computational
resources help in assessing new force field approaches built from
purely quantum ab initio data, which is also pivotal to addressing
challenging new chemical systems for which experimental data are
rare or unavailable. Regarding the MM approach, we consider a
multi-scale scheme relying on the polarizable ab initio-based force
field TCPEp42 to model the protein/ligand complexes and on a
polarizable coarse-grained approach43,44 to account for the solvent.
This multi-scale MM approach is efficient enough to readily gener-
ate 100 ns scale MD simulations of multiple hydrated systems. To
post-process the large set of complex conformations (for the present

FIG. 1. (a) Definition of the six
α−ketoamide inhibitors considered in
the present study. CN, CP, CH, and
Boc are the acetonitrile, cyclo propyl,
cyclo hexyl, and tert-butyloxycarbonyl
groups, respectively. In brackets, the
EC50 values in μM that measure the
inhibitor potency for the SARS-CoV-2
Mpro main protease.51 For inhibitors
13a, 13b, and 14b, the interaction
between their side chains and pockets
S1–S4 (as defined in Refs. 48 and
54) are shown. (b) Superimposition
of the final 13a structures along ten
independent MD simulations within the
active site. (c) Close-up view of the
Mpro/inhibitor 13b final structure along
one of the simulations. Dashed lines
are the strong hydrogen bonds between
the imidazolium head of His41 and
the inhibitor ketoamide group as well
as between the Cys145 sulfur/inhibitor
ketoamide carbon sp2.
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study 100 snapshots) regularly extracted along MD trajectories, we
consider our own QMF scheme based on Density Functional The-
ory (DFT) and implemented in the Daubechies wavelets basis set45,46

as well as its features for defining meaningful chemical fragments
within a system from which to compute local bond orders among
fragments.15,16

Here, we focus our study on complexes corresponding to the
SARS-CoV-2 main protease Mpro interacting with a new family
of peptidomimetic α−ketoamide molecules. α−ketoamides are an
example of potent (and a priori nontoxic47) inhibitors that are able
to target the main protease of a wide group of coronaviruses.48 In
particular, they are able to covalently bond (based on a reversible
mechanism49,50) to the Mpro catalytic domain, yielding the inhibi-
tion of biological activity.51–55 In Fig. 1, we summarize the inhibitors
considered in the present study. The first four (namely, 13a, 13b,
14b, and 11r) are potent Mpro inhibitors,51 whereas the last two (11p
and 11f) are characterized by weak or no inhibitory potency.48 Note
that the lack of inhibitory potency does not prejudge the ability of an
α−ketoamide to interact with the Mpro active site or to form a sta-
ble complex, as shown by crystallographic data in the particular case
of 11f (see Ref. 48 and crystallographic structures of 11f interact-
ing with the main protease of the human coronavirus HCov-NL63,
PDB label 5NHO56). With the exception of 11f, the inhibitors inves-
tigated using the MM approach will be further studied using the
QMF scheme in order to compare the role of inhibitor side chains
on the Mpro/inhibitor interactions.

II. METHODS
A. The multi-scale MM polarizable approach

The proteases are modeled using an updated version of the
polarizable all atom force field TCPEp that relies on an induced
dipole moment polarization approach and whose parameters are
assigned to reproduce ab initio quantum data.42 Most of the force
field parameters used to model the α−ketoamide inhibitors cor-
respond to those that we use to model proteins. For instance,
repulsion, dispersion, and polarizability parameters to model the
interactions between a thiolate and a ketoamide moiety NH–OCCO
correspond to those modeling the interactions between thiolate and
the amide moiety NH–CO in the latest force field version. How-
ever, we assigned a reduced set of parameters to model the specific
standard 1–4 dihedral and improper torsional energy terms from
quantum ab initio data computed at the MP2(FC)/aug-cc-pVDZ
level of theory (see Figs. S1–S3).

All the inhibitor Coulombic charges and all the non-bonded
energy term parameters regarding inhibitor acetonitrile moieties
were specifically assigned for the present study according to the pro-
tocol detailed in former studies (see Ref. 57, for instance). Note
here the Coulombic charges of the sp3 carbons connecting the
inhibitor moieties are set to values zeroing the inhibitor total charge.
The Coulombic charges of inhibitors 13b and 11p are reported
in Fig. 2(a). A novelty of the polarizable TCPEp force field is to
only account for the electric field components generated by charged

FIG. 2. (a) Atomic charges to compute the Coulombic term (violet) and the electric fields acting on polarizable atoms (green) for inhibitors 11p and 13b (charges not shown
for 11p correspond to their values for standard peptide/protein systems, whereas the charges already defined for 11p are not shown for 13b). The definitions of α−ketoamide
oxygens O1 and O2 are shown in red. (b) QMF atomic charges as a function of MM ones for the Mpro monomer in its crystallographic x-ray geometry (PDB label 6Y7M).
Solid line: the linear correlation fit (the regression coefficient is 0.91, the slope is 0.8, and the charge at the origin is 0.0e). The comparison of the aggregated charge on the
residues is also shown in the inset.
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and dipolar chemical groups. The particular case of α−ketoamide
inhibitors leads us to define a specific set of charges for the latter
“connecting” carbons so that the sum of the charges generating the
inhibitor electric field is again zero.

We account for the solvent water using a polarizable coarse-
grained approach well suited to be used in conjunction with
all atom polarizable force fields based on the induced dipole
moment approach to model solutes.43,44 The water molecule is
modeled as a single polarizable particle (its polarizability obeys a
Clausius–Mossotti relation) and electrostatic effects among solvent
particles are neglected. The interparticle interactions are modeled
using a Lennard-Jones-like term to which is added an energy term
that is a function of the water local density. The solute/solvent para-
meters are assigned to reproduce the hydration structural properties
(such as mean water–solute atom distances and mean hydration
numbers) and hydration Gibbs free energies at ambient conditions
of a training set of small molecular and ionic entities (such as
methanol and the methyl ammonium ion).

As with all force field approaches, the TCPEp and the solvent
coarse-grained parameter sets have been regularly updated since
their original versions.42,44 To assess the quality of the latest version
of the our MM multi-scale approach, we plot in Fig. S4 the poten-
tial of mean surfaces of the dipeptide alanine in gas phase and in
liquid water, and in Fig. S5, we plot the temporal evolution at the
μs scale of the Root Mean Square Deviation (RMSD) of the protein
1PGB58 backbone along eight distinct MD simulations in aqueous
phase performed according to the protocol detailed below and using
our latest parameter sets. The geometry of 1PGB is not restrained
to its crystallographic starting conformation. The RMSDs are sta-
ble along long time periods (up to 900 ns) and they fluctuate within
1.1–2.2 Å. To further assess the ability of our MM approach to model
molecular assemblies, we show in Fig. S5 a superposition of the start-
ing and final conformations of an 11-residue cleavage site peptide
within the active site from a 100 ns MD simulation using our MM
approach (here the protease backbone is restrained to its starting
conformation). The protease/peptide starting structure corresponds
to the final one59 of a MD simulation in water performed using
the GROMACS code (version 2019.260) and the non-polarizable
AMBER99SB-ILDN force field.61 Along our MD simulation, the
peptide backbone RMSD is included within 0.8 and 1.5 Å, a range
of values that corresponds to the peptide RMSD fluctuations along
the GROMACS/AMBER trajectory.

B. Molecular dynamics protocol
All MD simulations were performed at ambient conditions

using the code POLARIS(MD).62 The Newtonian equations of
motion are solved using a multiple time step algorithm with two
time steps: 0.25 fs for intra-solute stretching, bending, and improper
torsional energy terms and 2 fs for all the other interactions.63 All
the covalent X–H bonds and H–X–H angles are constrained to their
force field reference values by means of the iterative RATTLE pro-
cedure (convergence criterion of 10−5 Å). The system temperature
and pressure in NVT and NPT simulations are monitored by means
of the Langevin dynamics approach64 and the Nosé–Hoover baro-
stat,65 respectively. Solute and solvent induced dipole moments are
solved iteratively until the mean difference in these dipoles between
two successive iterations is less than 10−6 D.

Our study investigates the local interactions among the
monomeric form of the SARS-CoV-2 main protease and α-
ketoamide inhibitors. Protease dimerization is a priori needed
for catalytic activity as local dimer interactions stabilize the cat-
alytic pocket shape.66 Moreover, recent MD simulation studies
have revealed significant structural differences between the Mpro

monomeric and dimeric forms that would a priori favor catalytic
efficiency in the dimer state.67 As we only consider monomeric pro-
tease systems, we systematically restrain the positions of the protease
backbone carbons (α, Cα) that lie at a distance larger than 5 Å from
any inhibitor atom within the starting conformations by means of
the following term:

Udir(Cα) =∑
Cα

kc[1 − ui ⋅ u0
i ]2. (1)

Here, the sum runs over the restrained Cα’s, and ui is the unit vec-
tor connecting the protease center of mass (COM) to its ith Cα (u0

i
is that vector in the starting structures). We set the constant kc to
20 kcal mol−1 Å−2. Note that most of the Cα’s of the two flexible
loops close to the protease catalytic site are restrained along our
simulations.68

C. QMF treatment with density functional theory
Kohn–Sham Density Functional Theory (DFT) is implemented

using a Daubechies wavelets formalism45,46 in the BigDFT code.69

We use the PBE functional70 with D3 corrections71 (PBE + D3)
and Hartwigsen–Goedecker–Hutter pseudopotentials.72 For sys-
tems with a suitable electronic structure, the one-body density
matrix can be represented in terms of a set of support functions
ϕα, which can be optimized while preserving their strict locality
(their domain is within a predefined localized space region). This
nearsightedness principle, yielding quantum DFT approaches in
which the computational cost scales linearly with the number of
atoms, is also at the core of similar DFT approaches available in the
ONETEP73 and CONQUEST74 codes.

Besides computational efficiency, linear scaling DFT
approaches are also at the core of original analysis tools, such
as the Complexity Reduction Framework (CRF) procedure.15,16

The details of the CRF procedure for application to protein sys-
tems are available in Refs. 59 and 75. Briefly, the CRF procedure
relies on the identification of independent fragments from the
analysis of the system density matrix F expressed in terms of
the support functions. For determining fragments, it provides
an index Π f = 1

q f
Tr((F f )2 − F f ) (termed the purity index, q f

the number of electrons) that can be interpreted as the level of
confidence within which a given fragment can be considered
as an independent unit of the system. Once a fragmentation
is provided that meets the desired level of confidence, we may
define quantities, such as the inter-Fragment Bond Order (FBO),
that measures the amount of the electronic density shared by
two fragments (strength of the chemical bond). Fragments may
also be used as a basis set on which to project the total interac-
tion energy of a molecular assembly. The sum of interfragment
energies ΔU f may be used to estimate total interaction energies
and to analyze individual fragment contributions to assembly
stabilization.
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CRF fragments do not necessarily meet standard
groups/moieties based on chemical intuition. As an illustra-
tion, let us consider Mpro in its apo form and in its crystallographic
geometry (from PDB ID 6LU7) to which we added hydrogens

(see details below), and we analyze the purity values of suitable
portions of the protein. We plot in Fig. 3, the distributions of
the purity index values of each residue type present in Mpro (also
split in its side chain and its backbone unit NHCOCα) as a CRF

FIG. 3. (a) Purity index values required to get the equivalence between CRF fragments and residues for Mpro in its crystallographic geometry 6LU7. Blue and orange violin
plots: purity index distributions for the full residues (π) and for their side chains [π(SC)], respectively. (b) Identification of pocket leading fragments within the active site
from FBO data between Mpro and the subsites (labeled P and P′) of two of its natural substrates.59 The violin plots show the FBO distributions for each Mpro residues with
the substrate subsites among the MD snapshots post-processed (see main text for details). The boxes on top of the Mpro sequence represent the FBO averages (darker
colors correspond to higher FBO values). Boxes are colored according to the substrate subsites. On the bottom row, we represent the final set of leading fragments.
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fragment. From this figure, it appears that particular residues,
such as arginines, tryptophans, and tyrosines, correspond to pure
fragments (they are identified as fragments even with purity index
values as low as about 1%) whereas glycines and cysteines (in
particular, that of the Mpro active site) are identified as fragments
only for large purity index values (>5%). The high purity values
needed to identify the latter two residue types as fragments is a
marker of a (relatively) more diffuse electronic density around
them. To meet lower purity values around those regions, one should
merge such subunits into larger fragments that include some of
their neighboring residues to reach lower purity values. From this
case-study, the purity index should be set to about 8% to interpret all
the Mpro residues as fragments. That is still an acceptable level of
confidence in value, which will be considered for the present
study.

Within this setup, we further analyzed the interaction between
Mpro and its natural substrates following the guidelines of the study
in Ref. 59 to identify leading amino acid fragments interacting with
the substrates subsites. Such an approach can be thought as an unbi-
ased, ab initio identification of the enzymatic pockets that only relies
on chemical interaction among the system’s moieties. The leading
fragments are summarized in Table I and are obtained from the
representations of the interaction in Fig. 2. Three fragment sets cor-
respond to the usual Mpro pockets S1, S2, and S4.48 We thus denote
those fragments accordingly to the latter pockets. We also identify
a leading fragment set (denoted S3) composed of a single residue
(namely, Glu166), and two distinct sets (denoted S1′ and S2′–S5′),
where the latter encompasses the interaction residues with the last
part of the substrates. When discussing FBO data below, we denote
as a “pocket” each set of leading fragments even if they include a
single residue (S3).

D. Standard quantum ab initio computations
To assess the reliability of our QMF approach and to build

up an accurate polarizable force field to model Mpro/inhibitor com-
plexes, we performed standard MP2 computations, with the frozen
core approximation MP2(FC), using the GAUSSIAN09 package.76

We also performed PNO-L-CCSD(T)77,78 computations (using the
MOLPRO code79) of a set of 13a conformations using the aug-
cc-pVTZ basis set,80 with density-fitting for all integrals using the
aug-cc-pVTZ/JKFIT81 and aug-cc-pVTZ/MP2FIT basis sets.82 For
the DFT calculations, we have employed a grid spacing of 0.4 bohr
for the underlying wavelet sampling of the support functions in all
the data presented in this study.

TABLE I. Leading fragments of the Mpro pockets (the fragments are here all
residues).

Pocket Leading fragments (residues) for Mpro

S1 140, 141, 143, 144, 145, 163, 164
S2 41, 45, 46, 49, 54, 165, 187, 188
S3 166
S4 167, 168, 189, 190, 191, 192
S1′ 27, 142
S2′–S5′ 19, 21, 23, 24, 25, 26, 47, 67, 69, 119, 121

E. Starting structures of protease/inhibitor complexes
For inhibitors 11f, 13a, and 13b, their x-ray crystallographic 3D

structures interacting with the HCov-NL63, SARS-CoV, and SARS-
CoV-2 main proteases, respectively, have been reported.56,83,84

As the latter two proteases share 96% of homology, we assume
the binding mode of 13a wrt SARS-CoV Mpro to be the same
as for SARS-CoV-2. Moreover, because of the similarity of the
binding modes of 11f, 13a, and 13b with reference to the pro-
teases of HCov-NL63, SARS-CoV, and SARS-CoV-2,48,51 respec-
tively, we also assume the binding mode of inhibitors 14b and
11r, 11p and 11f correspond to that of 13b with reference to
SARS-CoV-2.

We built the starting structures of all complexes from the
crystallographic x-ray PDB structure 6Y2G84 (i.e., 13b interact-
ing with SARS-CoV-2 Mpro). Each complex is made from a sin-
gle protease monomer, and we model the covalent bond between
the inhibitor and the Mpro Cys145 cysteine as an ionic bond: the
Mpro catalytic dyad His41/Cys145 is taken under its ionic form
(the side chains are thus an imidazolium and thiolate group,
respectively). In correspondence to a previous analysis of 91
Mpro x-ray crystallographic structures,6 we set His41 to be in
an ϵ−rotameric state, i.e., the His41 side chain nitrogen NE2
(PDB labeling) points toward the inhibitor ketoamide oxygen O1
[see Fig. 2(a)].

We docked the 13a, 14b, 11r, 11p, and 11f inhibitors to
best fit the 13b conformation within the active site in the orig-
inal PDB structure 6Y2G. For all inhibitors, their dihedral angle
OCCO is set to 180○ (that angle is termed below as ωOCCO). The six
resulting complex structures were first optimized in the gas phase
by performing 100 steps of standard conjugate gradient without
imposing any constraints on the complex geometry. The optimized
complexes were then embedded in cubic boxes filled with polariz-
able pseudo particles (PPP) modeling water. These particles (about
57 000) are set on the nodes of a grid whose dimension is 3 Å
(and particles located at less than 3 Å from any non-hydrogen
atom are removed). The resulting hydrated protease/inhibitor struc-
tures were then relaxed by performing a series of eight independent
preliminary 10 ns scale MD simulations per complex in the NPT
ensemble. Each simulation corresponds to a different set of start-
ing atomic velocities and the protease Cα positions are restrained
by means of the energy term Udir [see relation (1)]. For each com-
plex, we selected a final simulation snapshot from one of these MD
runs along which the inhibitor maintains an interaction pattern
that agrees with those of X-ray experimental structures 6Y7M and
6Y2G. These final structures (protease/inhibitor and solvent parti-
cles) were again optimized as above to yield the starting simulation
structures for a final series of MD simulations performed in the
NVT ensemble and at the 100 ns scale (one per protease/inhibitor
complex).

Our assumption to model the Mpro/inhibitor binding by con-
sidering a zwitterionic (activated) form of the cysteine/histidine
catalytic dyad may be interpreted as modeling an ionic pre-reactive
state before the formation of a covalent bond between Mpro and
the inhibitors. This state has been taken into account in recent
QM/MM studies investigating the proteolysis reaction mechanism3

as well as its covalent bonding reaction mechanism with alde-
hyde derivatives6,7 and α−ketoamide inhibitors.23,85 A recent exper-
imental neutron crystallographic study86 (supported by large scale
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quantum MD simulations87) suggests the catalytic dyad to already
be under an ionic form in the Mpro apo form as well as the his-
tidine His164 that appears to be hydrogen bonded to the catalytic
His41 in all the reported experimental structures (see Ref. 6 and ref-
erences therein). We investigated the effect of the protonation state
of His164 on the structural stability of the active site for our six
Mpro/inhibitor complexes using our MD/MM protocol. Our simu-
lations systematically show the protonation of His164 to fully disrupt
the original interaction pattern reported in the PDB experimental
structures 6Y2G and 6Y7M, regardless of the inhibitor. Hence, we
consider His164 as neutral and we set it in a δ−rotameric state in our
starting structures to favor a strong hydrogen bond between it and
the His41 imidazolium group. Note, in recent x-ray/neutron stud-
ies, Kneller et al. show the protonation state of His164 to be a priori
ligand dependent.88,89

III. ACCURACY AND COHERENCE
OF THE MM-QMF APPROACH

To assess the quality of both our MM and QMF approaches
to model α−ketoamide inhibitors, we performed a 40 ns MD sim-
ulation of 13a in the aqueous phase, from which we extracted
300 inhibitor snapshots regularly spaced along the last 30 ns seg-
ment. From these snapshots, we extracted a subset of 30 inhibitor
conformations (from the least to the most stable MM ones) for
re-investigated at the quantum ab initio PNO-L-CCSD(T) level of
theory. The MM, QMF, and ab initio intramolecular inhibitor total
energies all agree (see Fig. 4). The agreement is particularly good
between QMF and ab initio data, whereas our force field agrees with
ab initio data only on average.

To assess the consistency of post-processing Mpro/inhibitor
snapshots from our MD/MM simulations using our QMF scheme,
we extracted 100 Mpro/inhibitor structures along a subset of
the twelve preliminary NPT simulations performed to relax the
hydrated Mpro/inhibitor complexes. Along the full NPT simula-
tion set, inhibitors 11r, 13a, 13b, and 14b maintain their start-
ing binding pattern within the active site. Regarding 11r and
11f, they are both rapidly ejected away from Mpro binding site
along 4 and 6 simulations, respectively, but they still lie close
to the active site. The above (post-processed) simulation subset
mostly comprises 11r and 11f trajectories corresponding to different
Mpro/inhibitor binding modes and the snapshots are extracted along
the final MD segments on which the Mpro/inhibitor binding pattern
is stable.

For each extracted snapshot set, we computed the
Mpro/inhibitor mean interaction energies ΔŪ from our MM
and QMF approaches (the details of these energies are summarized
in Tables S2–S4 of the supplementary material). The ΔŪs are
computed as the difference between the Mpro/inhibitor complex
energy and the energies of Mpro and the inhibitor separately in
their complex poses. Both the MM and QMF ΔŪ values are linearly
correlated [see Fig. 4(b)]. However, the MM energies are more
stable than the QMF ones by about 20%.

To investigate the origin of this discrepancy, we compared both
the MM and QMF (PBE +D3 corrections) interaction energies with
reference to their ab initio CCSD(T)/CBS values using the 36 non
uracil and non ethyne dimers of the S66 benchmark database.90 All
these energy datasets are all linearly correlated with each other (the
Pearson correlation coefficient, Pr , is at least 0.83). Note here that the
D3 and MM dispersion components of the S66 dimer energies are

FIG. 4. (a) Comparison of the inhibitor 13a intramolecular energy estimated from our MM approach (empty symbols) and ab initio PNO-L-CCSD(T) computations (full
symbols) to QMF (PBE + D3) data for snapshots extracted along a MD/MM simulation of the inhibitor in water. The energies are shifted to be zero for the first snapshot (MM
and CCSD data) and for the most stable one (QMF). The dashed red line corresponds to the linear function y = x + b whose parameter b is set to minimize the difference
between MM and QMF energies. (b) Mean QMF Mpro/inhibitor interaction energies ΔŪ as a function of their MM counterparts (brown 11f, red 11p, orange 13a, green 11r,
light blue 13b, dark blue 14b). The error bars correspond to the standard deviations of these mean energy values. For 11f and 11p data, the numbers shown corresponds
to the simulation labels (see Figs. S8 and S9 of the supplementary material).
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linearly correlated (Pr = 0.92) and their magnitudes are close (within
less than 0.5 kcal mol−1 on average; see Fig. S6 of the supplementary
material). We also investigated the properties of a trimer modeling
the local interactions between the Mpro catalytic pair (in its ionic
form) and the inhibitor ketoamide moiety (in a geometry corre-
sponding to that observed along our MD runs) by means of our
MM, QMF and ab initio MP2(FC)/aug-cc-pVDZ computations. All
the trimer interaction energies agree within ±5 kcal mol−1 (see Table
S1 of the supplementary material). Hence, the discrepancy between
our MM and QMF approaches regarding the Mpro/inhibitor energies
ΔŪs does not arise from drawbacks in modeling local Mpro/inhibitor
interactions.

We also computed the Mulliken charges corresponding to Mpro

from our QMF approach. The formalism of the BigDFT code,
employed in this study, is based on a set of localized basis func-
tions that are expressed in Daubechies wavelets and optimized
on-site to suitably express the electronic structure of the system,
being at the same time close to orthogonality. Thanks to this
quasi-orthogonaliry, we have proven in Ref. 15 that Mulliken and
Loewdin population analysis are almost identical in this basis set.
For these reasons, they provide an effective representation for the
density matrix of the system and enable precise and chemically
sound results, especially when projected on the fragment with low
purity index (the residues in this case). Because of the fragmen-
tation process, those charges are reliable quantities from which to
compute fragment electrostatic properties (such as dipole moment
and quadrupole tensor). The charges are here systematically lower
in magnitude compared to our MM charges by about 20% [see
Fig. 2(b)]. This suggests that the discrepancies between MM and
QMF Mpro/inhibitor interaction energies that arise are more likely
from under-polarization of the Mpro chemical bonds using the
PBE functional, which yields an electrostatic potential within the
active site weaker by 20% for QMF than MM. A similar PBE bond
under-polarization compared to a polarizable force field has already
been reported for liquid water.2

Both our MM and QMF approaches provide a similar descrip-
tion of the microscopic interactions between the inhibitors and

Mpro. This description is in line with that expected from higher
levels of quantum ab initio theory. In particular, the set of
Mpro/inhibitor conformations (and their relative weight) sampled
along our MD/MM simulations should thus be close to that expected
along a MD/QMF simulation. That supports the reliability of the
data resulting from post-processing MM snapshots using QMF.

IV. INHIBITORS WITHIN Mpro ACTIVE SITE
FROM MM SIMULATIONS

We discuss here data computed along the final 100 ns of
the NVT simulations. Regarding inhibitor α-ketoamide moieties,
their final ωOCCO values remain close to their starting value (about
160○–180○) for 13b, 14b, 11r, and 11p; for 11f and 13a, they evolve
toward a value ≤15○, see Table II. In Fig. 5, we plot the ab initio
energy from MP2(FC)/aug-cc-pVDZ computations as a function of
ωOCCO for the model molecule CH3–NH–OCCO–CH3. Two snap-
shots that show the detail of the inhibitor interactions with the
protease catalytic dyad from simulations along which ωOCCO evolves
toward a weak value (≤30○) are also provided in Fig. 5.

According to the ab initio data regarding
CH3–NH–OCCO–CH3, conformations corresponding to ωOCCO
values ≤60○ are less stable than those for which ωOCCO = 160○–180○

by about 10 kcal mol−1. In addition to strong local interactions
between ketoamide oxygens and the imidazolium hydrogen HE2
(PDB labeling) of His145, inhibitor conformations within the active
site corresponding to weak ωOCCO values are also stabilized by
hydrogen bonds with the lateral chains or the backbone residues
such as His163/Asn142, see Fig. 5. Experimentally, all the reported
crystallographic ketoamide inhibitor/protease structures corre-
spond to ωOCCO values of about 180○.48,51 However, the inhibitors
are covalently bonded to the thiolate sulfur of Cys145 yielding a
less hindered rotation around the ketoamide OC–CO bond than in
free inhibitors. As we model the interaction between the inhibitors
and the catalytic dyad as being purely ionic, our results regarding
ωOCCO values ≤90○ does not prejudge the inhibitor conformational
behavior once covalently bonded to Mpro.

TABLE II. Inhibitor moiety spatial volumes values (V̄m) computed along MD simulations (in Å3), and ωOCCO mean values along the last 10 ns simulation segments for the
ketoamide moiety Mketamide (the OCCO RMSD values are ±20○).

13b 13a 14b 11r 11p 11f

V̄m data and mean OCCO dihedral angle values
Mketamide (deg) 0.10–180 0.18–15 0.04–160 0.04–180 0.02–180 0.09–0
Mamide 0.04 0.25 0.09 0.04 0.02 0.17
MS1 0.05 0.59 0.34 0.04 0.05 0.39
MS1′ 0.05 ⋅ ⋅ ⋅ 0.05 0.07 0.13 0.14
MS2 0.05 0.15 0.11 0.06 0.06 ⋅ ⋅ ⋅
MS4 0.10 0.36 0.22 0.04 0.03 ⋅ ⋅ ⋅

Moiety definition
Mketamide OCCO–NH backbone
Mamide OC–NH backbone ending group
MS1 Lactam side chain
MS1′ Phenyl Cyclo-propyl Phenyl Phenyl Phenyl Phenyl
MS2 Cyclo-propyl Cyclo-hexyl Cyclo-propyl Cyclo-hexyl Acetonitril ⋅ ⋅ ⋅
MS4 Pyridone + Boc Pyridone + Boc Pyridone + Boc Cinnamoyl Cinnamoyl Boc
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FIG. 5. (a) Details of the local interactions between 13a and the Mpro catalytic residues His41 and Cys145. (b) Energy profiles with regard to ωOCCO for the model molecule
CH3–NH–OCCO–CH3 from ab initio MP2(FC)/aug-cc-pVDZ computations (dashed line) and from our force field (solid line). The mean difference between force field and
ab initio energies is here 0.07 kcal mol−1 (the corresponding mean standard deviation is 0.1 kcal mol−1), and the root mean square deviation between both sets of energy
values is 0.12 kcal mol−1.

Regardless of the inhibitor OCCO conformation, both the
local interaction LI1 between the His41 imidazolium group and the
inhibitor ketoamide oxygens and the interaction LI2 between the
thiolate sulfur of Cys145 and the ketoamide carbons are preserved
along all the simulations, as shown by the plots of Fig. 6, with the
exception of interaction LI1 in the particular case of 11f (the small-
est inhibitor that demonstrates no inhibitory potency). For instance,
the distance R1 between the imidazolium hydrogen HE2 of His41 and
the ketoamide oxygen O1 with which it interacts the most closely in
the starting complex structure is about 1.8(2) Å along all our simula-
tions. The distances R2 between the thiolate sulfur of Cys145 and the
two ketoamide sp2 carbons are all about 3.0(2) Å (with the excep-
tion of 11f), with a dissymmetry of the order of 0.2 Å. All these
data show the robustness of the ionic interaction pattern between
the inhibitor ketoamide group and the lateral chains of His41 and
Cys145, regardless of the inhibitor.

Regarding the inhibitor side chains, they all maintain their
starting position and preserve their interactions with individual
Mpro pockets except for 14b and 11p. For 14b, its γ− actam group
moves to mainly interact with the solvent whereas its terminal
phenyl group moves from its starting position within pocket S4 to
an intermediate position in between pockets S1 and S4. Regarding
the terminal phenyl group of 11p, it evolves from pocket S1′ toward
pocket S2 (see Fig. 7). For the latter three groups, their structural
transition within the active site is achieved within the first 10 ns
segment of the MD simulations.

To further investigate the inhibitor behavior within the active
site, we compute the spatial volumes V̄m explored by the center of
masses (COMs) of the inhibitor main moieties, such as the γ−lactam
side chain and the ketoamide “backbone” moieties. These groups are
here defined from common chemical arguments and not from the

QMF procedure detailed in Sec. II C. They are denoted MSm where
Sm is the largest pocket to which the moiety is the closest to in the
simulation starting structures (see Fig. 1). This arbitrary definition
is made for readability purpose (as well as the assignment of the
ending cyclopropyl group of 13a to its Mketamide moiety). Besides
the MSm moieties, we define two inhibitor “backbone” moieties that
are denoted Mketoamide and Mamide, respectively. The volumes V̄m are
computed from the RMSDs (termed δx, δy, and δz) of the moiety
COM Cartesian positions along the simulations according to

V̄m =
4
3

πδxδyδz. (2)

For this calculation, the Mpro/inhibitor complex structures along a
MD trajectory are projected on to orthogonal axis frameworks for
which the RMSD (computed from the starting simulation struc-
tures) of the backbone Cα positions is the weakest. The moiety
definition and the V̄m values are summarized in Table II.

Estimates of mean position uncertainties in experimental crys-
tallographic structures range from 0.2 to 0.4 Å for x-ray resolutions
of 1.6 and 1.7 Å, respectively.91,92 That corresponds to an equiv-
alent spherical volume Ṽ of at most 0.08 Å3. This value is an
upper bound of most of our V̄m data (see Table II) and, in par-
ticular, for 13b from which we built all the Mpro/inhibitor starting
structures (the resolution of the experimental x-ray crystallographic
complex structure 6Y2G for inhibitor 13b is 2.2 Å3). Even if our V̄m
values for 13a are larger than Ṽ, they all show the structural stability
of the inhibitors within the Mpro pockets along our 100 ns simu-
lations. Note, however, the length of our simulations prevents us
from forming conclusions about the thermodynamic nature of the
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FIG. 6. Geometrical details of the ionic interactions between the Mpro catalytic dyad and the inhibitor ketoamide moiety. (a) Normalized distributions of the distance R1
between the hydrogen HE2 (PDB labeling) of His41 and the ketoamide oxygen O1 [see Fig. 2(a) for definition]. (b) Normalized distributions of the distances R2 between the
thiolate sulfur of Cys41 and the two ketoamide sp2 carbons. Light gray and bold black lines: distributions for individual inhibitor and averaged over all inhibitors, respectively,
with the exception of 11f whose specific R2 distributions are shown in blue dashed lines.

Mpro/inhibitor binding patterns here investigated (i.e., true minima
or transient states).

Regarding the particular case of inhibitors 11f and 11p, our
simulation data support the experimental evidence that the lack of
inhibitory potency (as experimentally reported for those inhibitors)
does not necessarily correspond to an inability of an α−ketoamide
inhibitor to form relatively stable complexes with the main proteases
of coronaviruses.48 Moreover and contrary to recent non-polarizable
force field simulations,93–95 our simulations also show the stability of
the ionic interaction between the inhibitor ketoamide moieties and
the activated (charged) residues of the catalytic dyad. This supports
the existence of an equilibrium between a state corresponding to α-
ketoamide inhibitors covalently bonded to Mpro and a pre-reactive
“ionic” state. We may also note here recent MD simulations showing
the presence of the α−ketoamide 13b within the Mpro active site to
stabilize the catalytic dyad in it ionic form by a few kcal mol−1.96

V. QM FRAGMENTS AND Mpro/INHIBITORS
INTERACTIONS

Our QMF approach enables us to quantify the strength of inter-
actions among fragments of a molecular system. By selecting a target
region it is possible to identify sets of fragments that share a non-
negligible fraction of the electronic density; in particular, we identify
fragment pairs for which the (symmetrized) FBO value is larger than
0.007 atomic units. Note FBO values for standard hydrogen bonds
are included within 0.5 × 10−2, and 1 × 10−2, as discussed in Ref. 59.

Here, we present such FBO data for the five inhibitors that are able
to interact with the overall large portion of the active site (i.e., all
inhibitors except of 11f). Our aim is to compare the role of inhibitor
side chains on the Mpro/inhibitor complex stability. All the mean
FBO values discussed below correspond to averages performed on
sets of 200 Mpro/inhibitor complex snapshots regularly extracted
along the 100 ns NVT simulations discussed above, after discarding
the first 10 ns.

A. Inhibitor QM fragments
Besides the nature of the atoms and the conformation of a

molecular system, the results of the CRF fragmentation process
mainly depend on the magnitude of the purity index. Here, we use
the purity index defined in Sec. II C (8%) to automatically generate
a set of stable QM fragments for Mpro along our MD trajectories.
Those fragments generally correspond to single residues (with the
exceptions corresponding to those identified using crystallographic
structures, see Sec. II C).

As expected from the overall weak fluctuations of the inhibitor
moiety positions within the active site, the inhibitor QM fragments
are also consistent within the entire extracted snapshot sets. Those
fragments are shown in Fig. 8. Interestingly, they correspond to
standard (intuitive) chemical groups (like phenyl). Of course, the
final fragmentation is not unique, and slightly altering the purity
index or generation procedure may lead to alternative fragment sets.
This arbitrariness explains why a methyl connecting two “chemical”
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FIG. 7. Inhibitor conformations within Mpro pockets. The inhibitors are shown in
a licorice representation (yellow: starting structure, blue: final MD/MM structure).
The S2′–S5′ pockets are represented together as pocket S1′ in for readability
purpose.

groups may belong to one of these groups for a particular inhibitor
and to a second group for another as observed for the ending
phenyl group of 11p and 11p connected to ketoamide moiety, for
instance. Thus, the interaction of an inhibitor within the active site
may be interpreted as arising from a set of temporally stable frag-
ments that can be used as two “fragment basis sets” (one for the
protease and one for the inhibitor) from which to decompose the
global Mpro/inhibitor interaction into a sum of almost “pure” pair-
wise interactions (within the confidence level defined by the purity
index).

B. Protease/inhibitor interactions
To quantify Mpro/inhibitor interactions from the protease point

of view, we sum up the mean FBO values for each protease residue
with the inhibitor fragments. The magnitudes of the resulting
σ(FBO)res data are shown in Fig. 9(a). As expected from the local
nature of the FBO quantity, only a reduced set of residues strongly
interact with the inhibitor: their σ(FBO) values range from 0.01 up
to about 0.2e in the particular case of the catalytic residue Cys145.

FBO data also allow one to investigate Mpro/inhibitor inter-
actions from the protease pocket point of view: for that purpose
we sum for each inhibitor the σ(FBO)res data corresponding to
the pocket leading residues that we have defined in Table I. Those
new values are denoted σ(FBO)pocket and their schematic repre-
sentation provides a simple way to readily compare the strength

of protease pocket/inhibitor interactions [see Fig. 9(b)]. Note here
that σ(FBO)pocket data correspond (with the exception of pocket S3)
to super-fragments and thus to a lower purity index. Stated oth-
erwise, the pocket data are better defined QM quasi-observables.
As expected, the σ(FBO)pocket data corresponding to the “catalytic
pocket” S1 are the strongest because of our choice to model the cat-
alytic dyad as charged residues. For other pockets, the magnitude of
the Mpro/inhibitor interactions decreases in the series S2 > S4 ≈ S3
> S2′–S5′ > S1′. The magnitude of each set of σ(FBO)pocket data is
remarkably close, regardless of the inhibitor. These data clearly show
that the inhibitor side chains to interact more strongly with pocket
S2 and they also show the pivotal role of residue Glu166 (“pocket” S3)
to anchor the inhibitors within the active site; because of the anionic
head of Glu166, the magnitude of σ(FBO)S3 value is close to that of
pocket S4 that comprises six leading residues.

The spread among the σ(FBO)pocket values is large within each
MD snapshot set: it amounts to about 20% of the mean σ(FBO)pocket
values. FBO data, as with the Natural Bond Orders (NBOs),97

are mostly sensitive to inter-atomic distances (see, among others,
Ref. 98). As discussed above, the volumes V̄m explored by inhibitor
side chain COMs along MD simulations agree with those computed
from the atomic position uncertainty in experimental crystallo-
graphic x-ray structures. In Fig. 9(c), we compare the σ(FBO)pocket
data for 13b averaged over MD snapshots to those computed from a
single crystallographic geometry (PDB structure 6Y2G); we find that
the “crystallographic” FBO points are all included within the range
of MD snapshot-based values, including the σ(FBO)res residue data
(see also Fig. 10). The present spread in σ(FBO)pocket values from
MD snapshots can serve as an estimate of the uncertainty regard-
ing FBO data (and other related quantities, such as NBO) computed
from a single experimental geometry. On one hand, this means that
such single structure-based FBO data may be used to get quick
insight into the local interaction networks stabilizing a molecular
assembly; on the other hand, the inclusion of statistical distribu-
tion of these data thanks to the molecular modeling enables to
further discuss the relative weight of interfragment interactions. For
instance, for 13b the single structure-based FBO data suggest the
strength of the interactions between pockets S2, S3, S4, and S2′–S5′

are much closer than averaged data from MD simulations.
For the present Mpro/inhibitor complexes, we have seen that the

short-range interaction components that are related to the chemical
bond (including D3 dispersion energies) represent the most impor-
tant contribution to the ligand-enzyme interaction (see Fig. S13),
and correlate with the magnitudes of the corresponding FBO data
(see Fig. 9). In particular, the FBO uncertainty when using a single
geometry, about 20%, is still valid for chemical interaction energy
components [see Fig. 9(c)].

The FBO data suggest that inhibitor interactions with pocket
S4 are not energetically optimal: the σ(FBO)S4 values are about twice
smaller than σ(FBO)S2 (and even negligible for 14b) and of the same
order of magnitude as the “single fragment” pocket S3 (pocket S4
comprises six leading fragments). Such consideration are based on
interactions that are not necessarily sterically obvious, as they are
not directly based on inter-fragment distances, and yet enable to
distinguish the relative weight of interaction of vicinal residues. As
MD snapshot-based FBO values are in line with experimental sin-
gle structure-based ones for 13b, this suggests the latter result to
not arise from a drawback tied to our MM approach and/or to our
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FIG. 8. QM fragmentation (color coded) of the inhibitors emerging from the processing of the MD trajectories using a purity index of 8%.

MD protocol. Hence, we may conclude that the five α−ketoamide
inhibitors here investigated may be further improved to strengthen
local interactions with pocket S4 following the method proposed
in Ref. 99, for instance. The same conclusion may be drawn for
inhibitor interactions with pockets S1′ and S2′–S5′, though the
weakness of those interactions was expected from the fact that the
drug protrude less in the direction of these pockets (see Fig. 1).

VI. CONCLUSION AND PERSPECTIVE
Efficient DFT linear scaling approaches, such as our own imple-

mented in BigDFT, are promising theoretical tools to investigate
large molecular assemblies such as protein/ligand complexes. They
are also well suited to be used on modern massively parallel comput-
ing systems. These DFT methods remain, however, computationally
demanding. It is unrealistic, if not unnecessary, to expect DFT
calculations to replace commonly used force field-based methods
in view of the need for exhaustive sampling of the configuration
space. However, they do allow one to post-process large enough
sets of molecular conformations extracted from force field-based
simulations using original theoretical tools, such as our complex-
ity reduction framework. The CRF method yields a fragmentation

of a molecular system and measures of interaction between pairs of
identified fragments.

Here, we have considered a hybrid MM/QMF computational
scheme, which sequentially couples a multi-scale polarizable MM
approach together with our DFT linear scaling and post-processing
methods to investigate a set of five new α−ketoamide inhibitors tar-
geting the main protease Mpro of the SARS-CoV-2 virus. The MM
approach relies on an all atom ab initio-based force field to handle
Mpro and the inhibitors and on a coarse-grained scheme to account
for the solvent. The reliability and the coherence of that hybrid
scheme were assessed by cross-checking the predictions of the
polarizable MM and DFT approaches regarding mean interaction
energies of a large set of Mpro/inhibitor complex snapshots extracted
along MD simulations, as well as by assessing the reliability of both
methods to reproduce high-end quantum ab initio computations
for small molecular aggregates and a set of α−ketoamide inhibitor
conformations.

Using the multi-scale polarizable MM approach, we performed
MD simulations of the Mpro/inhibitor complexes in aqueous phase
at the 100 ns scale. Along those simulations, the inhibitor conforma-
tions and interaction patterns within the protease active site remain
stable. Moreover, the fluctuations of the center of mass positions
of the main inhibitor moieties measured along the simulations are
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FIG. 9. Interaction of the inhibitors projected on enzyme residues (pockets).
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FIG. 10. σ(FBO)pocket (left) and corresponding contact energy (right) data for 13b. The full square symbols within the violin plots correspond to data computed from the
original experimental x-ray crystallographic geometry 6Y2G.

in line with the atomic position uncertainties in crystallographic
x-ray structures.91,92 Even though we do not demonstrate here the
need of using a polarizable force field to simulate protein/ligand
complexes, we nevertheless show the ability of polarizable
force fields whose parameters are only assigned from quan-
tum ab initio results (without considering any experimental
data) to provide an overall reliable description of such molec-
ular assemblies. This paves the road toward computationally
assessing the potential of new classes of drugs ahead of any
experiment.

By post-processing sets of 100 snapshots of the Mpro/inhibitor
complexes extracted along our MD simulations, we show the exis-
tence of quantum-based fragments temporally stable along the MD
simulations (here quantum means the CRF fragmentation pro-
cedure). The Mpro fragments are mainly standard residues with
very few exceptions, whereas they correspond to standard chem-
ical groups for inhibitors. From inspections of mean FBO data
corresponding to Mpro/inhibitor fragment pairs, we show inhibitor
side chains to more strongly interact with the Mpro pocket S2
(and with residue Glu166) rather than pocket S4, regardless of
the inhibitor. Even though the same analysis could be carried
out on single experimentally resolved crystallographic structures,
with the present study we also provide variabilities and uncer-
tainties of the derived quantities, which strengthen our findings.
Our present conclusion a priori contrasts with a recent large-
scale MD simulations study33 that shows the opposite. Note that

besides simulation artifacts underlined by the authors of the lat-
ter study, like the accuracy of their scoring functions and of their
pairwise force fields, the set of drugs that were then investigated
is a priori not able to specifically target pocket S2. Our study also
yields an estimate of the uncertainty in FBO data when taking into
account a single experimental x-ray structure instead of a large
set of plausible geometries for a molecular assembly: that uncer-
tainty amounts to 20%, a value that may be considered for any
kind of electronic density analysis scheme (like the NBO one,97

for instance). Taking into account such a large uncertainty should
yield to mitigate the conclusions drawn as discussing very weak
Mpro/ligand interactions from electronic density arguments as in
Ref. 100.

As a perspective, we may mention the interesting feature of
FBO data to provide useful synthetic graph views of the local inter-
action networks occurring among the components of a molecular
assembly. In Fig. 11, we plot such interaction graphs for the five
largest α−ketoamide inhibitors. Theoretical FBO-based interaction
graphs can be used to develop new cost functions for docking
approaches, for instance. To achieve the present study, all the QMF
computations needed the use of about 1% of the total year resource
of available ten petaflopic computational systems. With the multi-
ple exaflopic computational systems that are expected to land within
a few years, such large scale QMF computational studies can be
routinely performed in order to investigate new classes of original
drugs.
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FIG. 11. Mpro/inhibitor interaction networks from FBO data. Inhibitor QM fragments are shown by squares and the Mpro ones (mostly protease residues) are shown by circles.
The lines interconnect Mpro/inhibitor fragment pairs whose FBO value is larger than 7 × 10−3e. The colors in the inner part of the node, related to the side colorbar, indicate
the total value of the fragment FBO with all the connected fragment of the protein. The node edges are associated with the pocket colors and to the inhibitor fragment for
the enzyme and the inhibitor nodes, respectively. For the case of the ligand, the fragments are defined in the molecule drawing next to the graph. Node numbers indicate
the fragment id as per the QMF fragment library definition that is provided in the supplementary material: (a) 11p, (b) 11r, (c) 13a, (d) 13b, and (e) 14b.

SUPPLEMENTARY MATERIAL

See the supplementary material for more detailed discussions
regarding the accuracy of the force field and of the multi-scale

MM approach to model proteins, as well as of the agreement
between our force field and PBE computations to model the
microscopic interactions occurring in our protease/ligand systems.
The final structures of the Mpro/inhibitor complexes along with
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all our MD simulations (in PDB format) are freely available at
http://biodev.cea.fr/polaris/download.html.
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