Bayesian statistical analysis of hydrogeochemical data using point processes: a new tool for source detection in multicomponent fluid mixtures - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Bayesian statistical analysis of hydrogeochemical data using point processes: a new tool for source detection in multicomponent fluid mixtures

Résumé

Hydrogeochemical data may be seen as a point cloud in a multi-dimensional space. Each dimension of this space represents a hydrogeochemical parameter (i.e. salinity, solute concentration, concentration ratio, isotopic composition...). While the composition of many geological fluids is controlled by mixing between multiple sources, a key question related to hydrogeochemical data set is the detection of the sources. By looking at the hydrogeochemical data as spatial data, this paper presents a new solution to the source detection problem that is based on point processes. Results are shown on simulated and real data from geothermal fluids.
Fichier principal
Vignette du fichier
ring2020.pdf (320.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02933268 , version 1 (08-09-2020)

Identifiants

Citer

Christophe Reype, Antonin Richard, Madalina Deaconu, Radu S. Stoica. Bayesian statistical analysis of hydrogeochemical data using point processes: a new tool for source detection in multicomponent fluid mixtures. RING Meeting 2020, Sep 2020, Nancy, France. ⟨hal-02933268⟩
209 Consultations
87 Téléchargements

Altmetric

Partager

More