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Conditional probability and interferences in generalized measurements

M. Trassinelli1, ∗

1Institut des NanoSciences de Paris, CNRS, Sorbonne Université, F-75005 Paris, France
(Dated: July 24, 2020)

In the context of generalized measurement theory, the Gleason-Busch theorem assures the unique
form of the associated probability function. Recently, in Flatt et al. Phys. Rev. A 96, 062125 (2017),
the case of subsequent measurements has been treated, with the derivation of the Lüders rule and
its generalization (Krauss update rule). Here we investigate the special case of subsequent mea-
surements where an intermediate measurement is a composition of two measurements (a or b) with
possible interference effects. In this case, the associated probability cannot be written univocally,
and the distributive property on its arguments cannot be taken for granted. Different probability
expressions are related to the intrinsic possibility of obtaining definite results for the intermediate
measurement. The frontier between the two cases is investigated in the framework of generalized
measurements with a toy model, a Mach-Zehnder interferometer with movable beam splitter.

I. INTRODUCTION

In Quantum Mechanics, probabilities are obtained by
the squared modulus of complex amplitudes, which give
rise to interference phenomena. In the common example
of Young’s slits composed of a source, two slits and a
screen or movable detector as represented in Fig. 1, the
probability to detect an emitted particle in a position x
on the backstop wall is given by

Pr(ab) = |ψa + ψb|2 =

= Pr(a) + Pr(b) + 2
√
Pr(a)Pr(b) cos (arg(ψaψ

∗
b )) ,

(1)

where ψa, ψb are the complex probability amplitudes as-
sociated with each slit and Pr(a) = |ψa|2, Pr(b) = |ψb|2
are the probabilities associated to the opening of the sin-
gle slits. The above expression is substantially different
from the classical probability sum rule

PrC(ab) = Pr(a) + Pr(b), (2)

where interference terms are not present.
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FIG. 1. Scheme of Young’s slits experiment. Adapted from
Ref. [1].
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The probability function for the quantum case is
strictly connected to the Hilbert space structure, where
systems are described with respect to a defined basis and
where the complex numbers mentioned above correspond
to coordinates. With some minimal requirements on
the probability function Pr, in 1957 Gleason [2] demon-
strated that Pr is univocally defined in a Hilbert space
by the trace rule

Pr(i) = tr(ρPi), (3)

where ρ = |ϕ〉 〈ϕ| is the density matrix of the pre-
pared system and Pi = |i〉 〈i| is the projector on the
state of interest. In the case of an initial pure state
|ϕ〉 = |s〉, Eq. (3) corresponds to the Born rule with
Pr(i) = | 〈i|s〉 |2. Gleason’s theorem has some limita-
tions; it is valid only for Hilbert spaces with a dimension
larger than two and for projective von Neumann mea-
surements [3].

In the framework of the general measurement formal-
ism of positive-operator-valued measures (POVM, also
called probability operator measures), in 2003, Busch [4]
extended Gleason’s theorem for any dimension and for
imperfect measurements described by positive operators,
effects Ei, instead of projectors. Recently (2017), in the
same context of POVM, Flatt, Barnett and Croke applied
the Gleason-Busch theorem to subsequent measurements
[5]. Considering the operators Ei and Fj associated with
the measurements i and j, with i before j, Flatt and
coworkers proved that Pr(i, j) takes the general form

Pr(i, j) = tr

(
Fj
∑
k

KikρK
†
ik

)
, (4)

where the operators Kik are related to the effects by

Ei =
∑
kK
†
ikKik. From the above equation and the cor-

responding one for the conditional probability Pr(i|j),
the Kraus update rule [6, 7]

ρ→ ρ′i =

∑
kKikρK

†
ik

tr
(∑

kK
†
ikKik

) (5)
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for the state update of the system ρ′i after the measure-
ment i is recovered. It is worth noting that the Kraus
update rule, and its particular case of the Lüders rule
[8] valid for ideal measurement and determined by the
von Neumann projection postulate, are derived from first
principles. There is no need of other postulates than the
description of states via the Hilbert space and a few basic
requirements for the probability function.

In this article, we apply the formalism of subsequent
generalized measurements to the special case with two
possible and mutually exclusive intermediate measure-
ments, with possible emerging interference effects. With
a change of notations with respect to Flatt et al., we
will show that two possible expressions of the final prob-
ability Pr can be derived from Eq. (3). They corre-
spond to a wave-like or particle-like behavior, i.e. Eqs. (1)
and (2) in the example of Young’s slits, and correspond
to the possibility of distinguishing or not the intermedi-
ate measurement. The difference between the two forms
is the order of the arguments of the probability expres-
sions, where the distributive property can not be taken
for granted. The violation of the distributive property in
Quantum Mechanics is not new and it has been pointed
out since the early years of its formulation [9, 10] and ex-
tensively discussed in Quantum Logic. Its connection to
the extension of classical probability to quantum prob-
ability is well discussed in the literature in the case of
perfect projective measurement [11–15]. For imperfect
general measurements, when positive operators are con-
sidered instead of projectors, some work has been per-
formed by Busch and collaborators [16, 17]. Here we
present a general discussion about the probability func-
tion for the distinguishable and indistinguishable path
cases (the particle-like and wave-like behaviors) in the
case of imperfect (unsharp) measurements.

The frontier between the different cases, and then the
domain of validity of Eqs. (1) and (2), has been ex-
tensively discussed in the past. Experimentally, it has
been explored in the last decades through investigations
of interference effects with molecules with larger and
larger masses. Diffraction of large inorganic and organic
molecules with masses beyond 25000 atomic mass units
has been obtained [18–20]. Here, we discuss this frontier
in the context of generalized measurements considering a
Mach-Zehnder interferometer with movable beam split-
ter. This toy model, introduced in the past by Haroche
et al. [21, 22], has the interesting feature of allowing
to pass from one case to the other continuously, simply
considering a variation of the mass of the movable beam
splitter.
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FIG. 2. Scheme of two subsequent measurements. Adapted
from Ref. [5].

II. PROBABILITY FOR SUBSEQUENT
MEASUREMENTS

A. Introduction of new notations

Taking inspiration from the Quantum Logic approach
[11–15, 23, 24] and the propositional definition of proba-
bility [25–27], we introduce a new notation with the log-
ical operators “∧” and “∨” to unambiguously discuss the
joint probability of series of subsequent measurements.
The conjunction operator “∧” is equivalent to “AND” in
normal language and to the comma in the previously in-
troduced notation Pr(i, j). The disjunction operator “∨”
is equivalent to “OR” also indicated with the “+” opera-
tor (in Refs. [4, 5] as example). Particular attention has
to be payed for measurements i, j that are incompatible.
In this case, the logical operator “∧” is not well defined
[12–14, 23], except if the order of subsequent measure-
ments is defined. As already pointed out in the consistent
histories interpretation of Quantum Mechanics [28–30],
differently from standard logic, the operator “∧” is not
symmetric with respect to i, j with i ∧ j 6= j ∧ i. With
this notation the joint probability defined above for a
measurement j obtained after a measurement i can be
written as

℘(j ∧ i|s) ≡ Pr(i, j), (6)

where we explicitly indicate the system preparation s,
which is in fact connected to the possible measurement
outcomes. We also invert the order of i, j to clearly indi-
cate the sequential order of the measurement or prepara-
tion from right to left (preparation s, first measurement
i and second measurement j).

B. Rewriting probabilities

Before treating in details the Young’s slits problem
with new introduced notation, we shall rewrite the prop-
erties and assumptions of the probability function used
by Flatt et al. [5] that lead to Eq. (5). We consider a
set of positive-semidefinite operators (effects) Ei of the
same POVM with

∑
iEi = I. The requirement prop-

erties of the probability function ν(Ei) = Pr(i) for the
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Gleason-Busch theorem are

(P1) 0 ≤ ν(Ei) ≤ 1.

(P2) ν(I) = 1.

(P3) ν(Ei + Ej . . .) = ν(Ei) + ν(Ej) + . . .

The function ν(Ei) is in fact a map from the full set of
effects E(H) acting on the Hilbert space H: E → ν(E)
with ν(E) ∈ [0, 1].

With our notation, the previous propositions become

(P1*) 0 ≤ ℘(i|s) ≤ 1.

(P2*) ℘(I|s) = 1.

(P3*) ℘(i ∨ j ∨ . . . |s) = ℘(i|s) + ℘(j|s) + . . .

where i, j are the measurements that correspond to the
effects Ei, Ej and I =

∨
i i measurement correspond to

the identity operator I.
When two subsequent measurements are considered to-

gether, Flatt et al. introduced the new function

µiν(Fj) = ν(E(ij)) = Pr(i, j) (7)

for the action of the effect Fj after the action of Ei and
E(ij) indicating the cumulative effect (see Fig. 2). In ad-
dition, the following assumptions are considered by Flatt
et al.

(A1) 0 ≤ µiν(Fj) ≤ ν(Ei) < 1.

(A2) µiν(I) = ν(Ei).

(A3) µiν(Fj + Fk + . . .) = µiν(Fj) + µiν(Fk) + . . . .

With our notation, we consider on the same level the
measurements j and i and the operator “∧” indicates the
measurement order. The assumptions (A1–2) can simply
be rewritten as

(A1*) 0 ≤ ℘(j ∧ i|s) ≤ ℘(i|s) ≤ 1.

(A2*) ℘(I ∧ i|s) = ℘(i|s).

(A2*) is now a tautology. For (A3), the rewriting is am-
biguous. µiν(Fj + Fk + . . .) can be written in fact in two
different forms:

℘((j ∧ i) ∨ (k ∧ i)|s) (8)

or

℘((j ∨ k) ∧ i|s). (9)

The discussion on this ambiguity is the key point of the
present work. If the distributive property is considered
valid, the two expressions are equivalent. But the va-
lidity of distributivity cannot be taken for granted. As

anticipated in the introduction, the violation of the dis-
tributive law in quantum phenomena is well known since
the early years of Quantum Mechanics [9, 31]. In particu-
lar in Quantum Logic [10, 11, 14, 24, 32–34] this is related
to the properties of orthomodular lattices, associated to
sets of yes/no experiments, where the distributivity on
their elements is not always valid. In the next sections
we will in particular discuss this violation in the context
of general measurements.

III. INTERFERENCES IN THE POVM
FORMALISM

A. General considerations

To investigate the difference between Eqs. (8) and (9),
we come back the specific example of Young’s slits where
we consider the possibility to measure or flag the passage
through each slit. Before that, a short introduction to
generalized measurements is mandatory. In the frame-
work of POVM, the single measurements are described

by the positive-valued operators E` = K†`K`, where K`

operators are determined by the unitary interaction be-
tween the system we want to study and the detector, both
considered as quantum systems. The general expression
for K` is given by [35, 36]

K` =
∑
i,j

αij 〈`det|Φdeti 〉 |j〉 〈i| , (10)

where αij depend on the action of the unitary matrix Uint
describing the interaction between the system and the de-
tector. The initial state is described by |Ψ0

i 〉 = |i〉 |Φ0〉,
where |i〉 and |Φ0〉 describe the initial state of the sys-
tem and the detector, respectively. After their mutual
interaction, the system and detector states are described
by |Ψ0

i 〉 → |Ψi〉 = |ϕi〉 |Φi〉 =
∑
j αij |j〉 |Φi〉. |Φdeti 〉 de-

scribes the detector state after the interaction with the
system in an initial state |i〉. Finally, |`det〉 represents
the detector state corresponding to the macroscopic out-
come of the measurement device. In the case of a non-
destructive measurement, the above formula is simplified
to

K` =
∑
i

〈`det|Φdeti 〉 |i〉 〈i| . (11)

B. Distinguishable case

In the case of Young’s slits, we consider that the de-
tection of the path taken by the particle is possible and
is non-destructive. The formula corresponding to Eq. (8)
becomes ℘((d ∧ a) ∨ (d ∧ b)|s) and depends on the oper-
ators Ka,Kb and Kd. Ka,Kb are related to the detec-
tion of the path a or b, and the corresponding effects are
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FIG. 3. Schemes of subsequential measurements correspond-
ing to the Young’s slits experiment for the case where the
path of the particle can be detected (top) or not (bottom).

Ea = K†aKa, Eb = K†bKb. Kd is related to the detec-

tion d on the screen with Fd = K†dKd The combination
of Ea and Eb with Ed can be assimilated to the effects
E(ad) and E(bd) as in Eq. (7), and for which the property
(P3)/(P3*) can be applied. In this case we have

℘((d ∧ a) ∨ (d ∧ b)|s) = ℘(d ∧ a|s) + ℘(d ∧ b|s) =

= tr(FdKaρK
†
a) + tr(FdKbρK

†
b ). (12)

The above equation corresponds to the classic prob-
ability sum rule, i.e. the particle-like probability in
Eq. (2). The fact that we can decompose the measure-
ment in two separate operators E(ad) and E(bd) (Fig. 3,
top)) implicitly means that the different paths can be
distinguished and we have just a duplicated version of
the basic subsequent measurement represented in Fig. 2.
This case can be easily treated with the formalism in-
troduced by Flatt et al. with the introduction of the
probability functions µaν(Fd) and µbν(Fd).

In the case of ideal projective measurements, we have
Ea = Ka = Pa = |a〉 〈a| and Eb = Kb = Pb = |b〉 〈b|
where we used the properties of projectors P †i = Pi and
PiPi = Pi. The above equation then becomes [15]

℘((d ∧ a) ∨ (d ∧ b)|s) =

= | 〈d|U(ad)|a〉 〈a|U(sa)|s〉 |2 + | 〈d|U(bd)|b〉 〈b|U(sb)|s〉 |2,
(13)

where the unitary operators U correspond to the evolu-
tion of the different parts of the apparatus.

The expression of ℘((d ∧ a) ∨ (d ∧ b)|s) can also be
directly obtained by the trace reduction of the density
matrix ρ with respect to detector base |adet〉 and |bdet〉.
In this case we have

℘((d ∧ a) ∨ (d ∧ b)|s) = tr(KdρrK
†
d), (14)

with ρr = tradet,bdet (|Ψi〉 〈Ψi|) and where |Ψi〉 =∑
j αij |j〉 |Φi〉. From the linearity of the trace operator,

it is easy to verify that the previous expression is equiva-
lent to Eq. (12). This indicates that the use of the trace
over the undetected |adet〉 , |bdet〉 states implicitly implies
an interaction between the system and the which-path
detectors, even if they are not directly involved in the
measurement.

C. Indistinguishable case

In the case we can not distinguish which path is taken
by the particle, the a ∨ b cannot be decomposed and we
have to deal with the expression

℘(d ∧ (a ∨ b)|s) = tr(FdKa∨bρK
†
a∨b). (15)

The operator Ka∨b can be defined in two different ways:

1. from a complementary measurement c (e.g. a series
of detectors on the slit walls),

2. via a detector state |qdet〉 belonging to the span
generated by the vectors |adet〉 and |bdet〉.

As we will see, a genuine a∨ b measurement is related to
a complementary case only. The second approach is in
fact related to the quantum eraser case and it is discussed
separately in the next section.

If we consider a complementary measurement c to both
a and b measurements, we have that c ∧ b = 0, c ∧ b = 0
and c = I − a ∨ b. Ea∨b corresponds to the absence of
signal in the measurement Ec, then, using the property of
the set of effects of the POVM for which

∑
i=a,b,cEi = I,

we have Ea∨b = I −Ec = Ea +Eb. Ka∨b can be written
as [17, 35, 37]

Ka∨b = Ua∨b
√
Ea + Eb, (16)

where Ua∨b is a unitary matrix that depends on the de-
tails of the interaction between |adet, bdet〉 and the prop-
agating particle-wave.

We can see that in this general case, ℘(d∧ (a∨ b)|s) 6=
℘((d∧a)∨ (d∧ b)|s) and the distributive property on the
arguments of ℘ is violated. In the case of ideal projective
measurements, Ka∨b can be explicitly written. In this
case we have that Ea∨b = Ea+Eb = Pa+Pb and Eq. (15)
becomes [15] (see also Refs. [11, 13, 17])

℘(d ∧ (a ∨ b)|s) =

= | 〈d|U(ad)|a〉 〈a|U(sa)|s〉+ 〈d|U(bd)|b〉 〈b|U(sb)|s〉 |2,
(17)
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which is equivalent to the quantum form of the probabil-
ity in Eq. (1), i.e. equivalent to the Born rule.

For the indistinguishable case, the measurement a ∨ b
corresponds to an atomic operator Ea∨b ≡ E(ab) that
cannot be decomposed in terms of Ea, Eb. The cumula-
tive effect E(abd) depends then on all three measurements
a, b and d and can be represented by the scheme in the
bottom of Fig. 3.

D. The quantum eraser revisited

In the Quantum Logic context, a measurement rep-
resenting a ∨ b can be built from a vector |qdet〉 =
α |adet〉 + β |bdet〉 [14], with α, β 6= 0, which belongs to
the span generated by the vectors |adet〉 and |bdet〉. Us-
ing Eq. (11) with ` = q, we can then write

Ka∨b ≡ Kq = α∗Ka + β∗Kb, (18)

where |α|2 + |β|2 = 1 for a normalized probability. Once
inserted in Eq. (15), the above expression gives rise to
mixed 〈adet|bdet〉 terms and then to interference phe-
nomena. This is in fact the case of the quantum eraser
[16, 38–42], where instead of the direct path detection via
|adet〉 , |bdet〉, a combination of them is considered and in-
terference terms appear.

This is a situation not equivalent to the case with a
complementary measurement c = I − a ∨ b. Even if we
recover the presence of interferences with the use of |qdet〉
instead of |adet〉 or |bdet〉, we are dealing with a single
measurement q that corresponds to the probability ℘(d∧
q|s), and not ℘(d ∧ (a ∨ b)|s). Similarly to a, b measure-
ments, we could consider the alternative measurement
given by the vector |rdet〉 = −eiφβ |adet〉+ eiφα |bdet〉 or-
thogonal to |qdet〉. When both possible measurements q
and r are considered, we can write down the probabilities
℘((d∧q)∨(d∧r))|s) and ℘(d∧(q∨r)|s). |rdet〉 , |qdet〉 and
|adet〉 , |bdet〉 are two different bases describing the detec-
tion and they are related by a unitary transformation.
Because of the property of the unitary transformation, it
can be demonstrated (see App. A for the detailed calcu-
lations) that the combination of the two measurements r
and q and the which-path a and b are completely equiv-
alent and

℘((d ∧ q) ∨ (d ∧ r))|s) = ℘((d ∧ a) ∨ (d ∧ b))|s). (19)

The interference terms present in the separate terms
℘(d ∧ q|s) and ℘(d ∧ r|s), completely compensate in
℘((d∧ q)∨ (d∧ r))|s) = ℘(d∧ q|s) +℘(d∧ r|s) like in the
well known results on the quantum eraser.

For the case of ℘(d ∧ (q ∨ r))|s) probability, the sit-
uation is more complicated because it depends on the
values of α, β, φ but also on the choice of α′, β′ for build-
ing Kq∨r = α′Kq + β′Kr. With this last consideration,
we can conclude that in fact the construction of Ka∨b via
Eq. (18) is not equivalent to a genuine which-path igno-
rance, but it is a special case where a different detector
state basis is considered.

BS1

BS2
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M

d1

d2

PS
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b

2"#

1"#

2%&'

1%&'

1

2

1

2

FIG. 4. Scheme of the Mach-Zehnder interferometer with a
movable beam splitter BS1, a phase shifter with φ with two
possible incoming beams |1in〉 and |2in〉 and outputs |1out〉
and |2out〉 measured by the detectors d1 and d2. Photons
parallel to the incoming photon (horizontal propagation in the
figure) are indicated by the states |1〉 and with |2〉 otherwise
(vertical propagation).

IV. DISCUSSIONS AND A TOY MODEL

A. Distinguishing between distinguishable and
indistinguishable cases

The fundamental difference between distinguishable
and indistinguishable cases, i.e., the use of Eq. (14) or
Eq. (16) for the probability function, is the coupling be-
tween the considered system and the possible which-path
detector(s) and/or the environment. Such a coupling has
been extensively studied in the context of the decoher-
ence theory [43, 44]. In this section we consider a very
simple case to consider the limits of Eqs. (14) and (16)
in terms of effects thanks to a toy system where we can
continuously tune the detectability of the taken path.

We consider a Mach-Zehnder interferometer with a
movable beam splitter (represented in Fig. 4), an exam-
ple discussed in the literature and realized experimentally
with atoms in resonant cavities [21, 22]. Here we treat
the problem in terms of effects in a POVM framework. A
discussion of the Mach-Zehnder interferometer in terms
of unsharp detection has been already discussed by Busch
and Shilladay [16]. In this past work, the unsharpness of
the detection is studied in terms of measurement mixing
between the two paths, like in the quantum eraser case
discussed in Sec. III D. The cases of distinguishability or
indistinguishability of the paths is also treated, but not
the frontier between them, which on the contrary is the
main subject of the following paragraphs.
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B. A Mach-Zehnder interferometer with a movable
beam splitter

The system considered here is composed by a single-
photon source emitting monochromatic photons |1in〉 in-
teracting with: a movable beam splitterBS1, two mirrors
M,M ′, a phase shifter PS that induces a phase φ, a sec-
ond (fixed) beam splitter BS2 and two detectors d1 and
d2, following the scheme represented in Fig. 4. The mov-
able beam splitter, with a mass m, can move with respect
to a pivot and is connected to a fixed part by a spring
that corresponds to a resonant angular frequency ω. The
beam splitter-spring system is described by a harmonic
oscillator with energy spectrum En = ω~(n + 1

2 ). When
the photon is reflected from the first beam splitter, a mo-
mentum kick ∆P =

√
2p, with p = 2π~/λ the impulse

of the photon, is transferred to BS1 with a translation
from its ground state |0〉BS to the coherent state |αBS〉
with α = ip/

√
mω~ [21, 22].

In analogy to the Young’s slits, we can consider the
interferometer arm with the reflection from the movable
beam splitter as the path a, and path b otherwise (see
Fig. 4).

C. No-path detection case

In the case of a fixed beam splitter, the state of the
beam splitter itself does not change after the passage of
the photon and the state corresponding to the photon is

|1in〉 → |φ〉 =

− 1

2
|1out〉 −

i

2
|2out〉 −

eiφ

2
|1out〉+

ieiφ

2
|2out〉 (20)

The probability of detecting something on the detec-
tor d1 depends on the operator Kd1 = |0out〉 〈1out| and

the corresponding effect Fd1 = K†d1Kd1
= |1out〉 〈1out|.

Because of the impossibility of determining the path
taken by the photon, the corresponding probability is
℘(d1 ∧ (a ∨ b)|s). The complementary detection c repre-
senting Ka∨b could be constitued by a series of detectors
around the beam splitter BS1, like the wall detection in
the case of the Young’s slits, to insure the interaction
(reflection or transmission) of the incoming photon |1in〉
with BS1. The probability is then given by

℘(d1 ∧ (a ∨ b)|s) = tr(Fd1ρ
′) =

1

2
[1 + cos(φ)] , (21)

with ρ′ = |φ〉 〈φ| and |φ〉 given by Eq. (20). We recover
the standard formula of the Mach-Zehnder interferometer
[16, 37].

D. Which-path detection and probabilities

We consider now that the beam splitter BS1 can
move and that its state after the recoil is described by

the coherent state |αBS〉. Considering the initial state
|1in〉 |0BS〉 describing the photon-beam splitter system,
after the interaction between the incoming photon with
the first beamsplitter BS1 (and the mirrors M and M ′

and the second beam splitter BS2), the photon/mirror
state |φ〉 is described by

|1in〉 |0BS〉 →= |φ〉 |ΦBS〉 =

= −1

2
|1out〉 |αBS〉 −

i

2
|2out〉 |αBS〉+

− eiφ

2
|1out〉 |0BS〉+

ieiφ

2
|2out〉 |0BS〉 , (22)

where |φ〉 is state of the photon at the exit of the inter-
ferometer and |ΦBS〉 is the state of the movable beam
splitter after the passage of the photon.

The operator Kb = 〈0BS |ΦBS〉 |φ〉 〈1in| can be associ-
ated to the branch b where there is no momentum trans-
fer to BS1, which remains in the |0BS〉 state. For the
branch a, we cannot directly use 〈αBS |ΦBS〉 |φ〉 〈1in| as
Ka operator. Due to the non-orthogonality of |αBS〉 and
|0BS〉, this leads to the possibility of having Ea+Eb > 1,
violating the basic POVM properties. Considering that
we can identify a coherent state only if its correspond-
ing signal is above the quantum shot noise of the system,
instead of |αBS〉 we can consider its Gram-Schmith or-
thogonalization |α′BS〉 with respect to |0BS〉

|α′BS〉 =
|αBS〉 − 〈0BS |αBS〉 |0BS〉√

1− | 〈0BS |αBS〉 |2
. (23)

The corresponding which-path operators are then

Ka = 〈α′BS |φ〉 〈1in| =
1

2

√
1− | 〈0BS |αBS〉 |2 |1out〉 〈1in|+

− i

2

√
1− | 〈0BS |αBS〉 |2 〈α′BS |αBS〉 |2out〉 〈1in| (24)

and

Kb = 〈0BS |Ψ〉 〈1in| =

= −1

2
〈0BS |αBS〉 |1out〉 〈1in|−〈0BS |αBS〉

i

2
|2out〉 〈1in|+

− eiφ

2
|1out〉 〈1in|+

ieiφ

2
|2out〉 〈1in| . (25)

The corresponding probabilities of the single paths be-
come

℘(d1 ∧ a|s) = tr(Fd1KaρK
†
a) =

1

4

(
1− | 〈0BS |αBS〉 |2

)
(26)

℘(d1 ∧ b|s) = tr(Fd1KbρK
†
b ) =

1

4

∣∣1 + eiφ 〈0BS |αBS〉
∣∣2 =

(27)

=
1

4

[
1 + | 〈0BS |αBS〉 |2 + 2<e(eiφ 〈0BS |αBS〉)

]
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FIG. 5. Dependency of the different probability expressions
as function of φ (with the fixed value α = 1.5, top) and as
function of α (with the fixed value φ = 0, bottom).

Finally, we have then

℘((d1 ∧ a) ∨ (d1 ∧ b)|s) =
1

2

[
1 + e−

|α|2
2 cos(φ)

]
, (28)

where we used 〈αBS |0BS〉 = e−
|α|2
2 .

As we can see in Fig. 5, for each probability relative
to a specific path, an interference term is always present
and is proportional to the overlap between the |0〉BS and
|αBS〉 states. Only the probability corresponding to the
path b is sensitive to the phase of the PS.

In the limit 〈0BS |αBS〉 → 0 (corresponding to α→∞
and m→ 0, see Fig. 5 bottom), we have a pure particle-
like behavior with ℘(d1 ∧ a|s) = ℘(d1 ∧ b|s) = 1/4 and
℘((d1 ∧ a) ∨ (d1 ∧ b)|s) = 1/2.

In the limit 〈0BS |αBS〉 → 1 (corresponding to α → 0
and m→∞, see Fig. 5 bottom), we have instead ℘(d1 ∧
a|s) = 0 and ℘(d1∧b|s) = 1. From the detection of |0〉BS ,
no information on the taken path can be extracted. In
this limit case ℘(d1∧b|s) (and then ℘((d1∧a)∨(d1∧b)|s))
is de facto equivalent to ℘(d1 ∧ (a ∨ b)|s) treated in the
previous section. The behavior of the different formulas
as function of φ and α is shown in Fig. 5.

Except to the limit case with 〈0BS |αBS〉 → 0 (m→ 0),
the two equations (21) and (28) lead to different forms
of the probability function. Once more, the expressions
d1 ∧ (a ∨ b) and (d1 ∧ a) ∨ (d1 ∧ b) cannot be considered
equivalent with the violation of the distributivity prop-

erty.

V. CONCLUSION

In conclusion, we present a formulation of the prob-
ability function in the context of generalized measure-
ments for subsequent detections with several possible
paths. From the assumption of the Hilbert space struc-
ture for the description of systems, Gleason-Busch theo-
rem assures that the trace of the density operator univo-
cally defines the form of the probability function. Flatt
and coworkers demonstrate that from this result, when
subsequent measurements are considered, the Kraus up-
dating rule is reconstructed. Here we apply the same
methodology to a two-path case with a renewed notation.
Two different expressions of the probability are found,
℘((d ∧ a) ∨ (d ∧ b)|s) and ℘(d ∧ (a ∨ b)|s), which are re-
lated to the possibility of distinguishing or not the trajec-
tory in the measurement system. In fact, the distributive
property of the probability function arguments cannot be
taken for granted. From the first expression, the classi-
cal law or probability PrC(a ∨ b) = PrC(a) + PrC(b)
is recovered. The use of the reduced trace over the un-
detected states of the path-detectors leads to this same
expression.

With regards to the ℘(d∧ (a∨ b)|s), the associated op-
erator Ka∨b to the a∨b measurement, can be interpreted
ambiguously. Ka∨b can be built from a complementary
measurement of a and b (c = NOT (a ∨ b)) leading to
a final expression corresponding to the standard Born
rule for the case of perfect projective measurements. If
Ka∨b is constructed by a mixing of path-detector states,
we recover the situation of the quantum eraser. We are
in fact considering the probability ℘(d ∧ q|s) associated
with the state |qdet〉 = α |adet〉+ β |bdet〉, which depends
on the choice of constants α and β, i.e. a special case of
which-path ignorance.

The frontier between the intrinsic possibility to distin-
guish a path or not is related to the coupling of the stud-
ied system with the path-detectors and/or the environ-
ment. This topic is widely studied in the literature, and
in particular in the context of decoherence theory. Here
we consider the very simple case of a Mach-Zehnder in-
terferometer with a movable beam splitter, which is also
well known in the literature but treated here in the con-
text of generalized measurements. We demonstrate here
that varying the mass of the beam splitter, we can con-
tinuously pass from the distinguishable path case, where
℘((d ∧ a) ∨ (d ∧ b)|s) is valid, to the indistinguishable
path case, where ℘(d∧ (a∨ b)|s) should be used instead.
This toy model reveals once more the complementarity
of nature, but also underlines once more the advantages
of generalized measurement theory with respect to ideal
projective measurements, where unsharp detections re-
vealing particle-like and wave-like behavior at the same
time can unambiguously be treated.



8

ACKNOWLEDGMENTS

I would like to thank very much M. Romanelli and M.
Walschaers for their constructive critics to the previous

version of the manuscript, but also C. Fabre, V. Parigi
and N. Paul for the stimulating discussions and support.
I would like also to thank A. Caticha and N. Carrara for
the encouragement and suggestions after a first talk on a
primordial version of the presented work.

[1] R. Feynman, R. Leighton, and M. Sands, The Feynman
Lectures on Physics (Pearson/Addison-Wesley, 1963).

[2] A. M. Gleason, Measures on the closed subspaces of a
hilbert space, 6, 885 (1957).

[3] J. Von Neumann, Mathematical Foundations of Quantum
Mechanics (Princeton University Press, 1955).

[4] P. Busch, Quantum states and generalized observables:
A simple proof of Gleason’s theorem, Phys. Rev. Lett.
91, 120403 (2003).

[5] K. Flatt, S. M. Barnett, and S. Croke, Gleason-busch
theorem for sequential measurements, Phys. Rev. A 96,
062125 (2017).

[6] K. Kraus, General state changes in quantum theory, Ann.
Phys. 64, 311 (1971).
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Appendix A: Quantum eraser probabilities

We consider two path detector bases |p1〉 , |p2〉, e.g.
corresponding to |adet〉 , |bdet〉 states of the Young’s slit
case, and a final detection d. We consider a per-
fect which-path measurement where |pj〉 are associ-
ated to the system state |j〉. The associated operators
Kj =

∑
i 〈pj |pi〉 |i〉 〈i| is then equivalent to the projec-

tors Pj = |j〉 〈j|. We consider two different orthogo-
nal states |q1〉 , |q2〉 related by the unitary transformation
|qj〉 = Vji |pi〉. For each measurement qj , the associated
operator

K ′j =
∑
i

〈qj |pi〉 |i〉 〈i| =
∑
i

Vji |i〉 〈i| . (A1)

For each single measurement qj , we have

℘(d ∧ qj |s) = tr(KdK
′′
j ρK

′†
j K

†
d) =

= tr(Kd(Vj1P1 + Vj2P2)ρS(V ∗j1P1 + V ∗j2P2)Pd) =

tr((
∑
i

VjiPi)ρ(
∑
i′

V ∗ji′Pi′)Pd) =

=
∑
i,i′

VjiV
∗
ji′ tr(PiρSPi′Pd) =

=
∑
i

|Vji|2 tr(PiρSPiPd)+
∑
i,i′ 6=i

VjiV
∗
ji′ tr(PiρSPi′Pd).

(A2)

When we consider the probability relative to the mea-
surement (d ∧ q1) ∨ (d ∧ q2), we have

℘((d ∧ q1) ∨ (d ∧ q2)|s) =

=
∑
j,i

|Vji|2 tr(PiρSPiPd)+
∑

ij,,i′ 6=i

VjiV
∗
ji′ tr(PiρSPi′Pd) =

=
∑
i

tr(PiρSPiPd) +
∑

i,i′ 6=i,j

VjiV
∗
ji′ tr(PiρSPi′Pd)

(A3)

where we used the unitary matrix property
∑
j |Vji|2 = 1.

The second term of the expression is in fact equal to
zero because of other property of unitarity of V matrices∑
j VjiV

∗
ji′ = δi,i′ in a sum over i, i′ 6= i. Finally we have

℘((d ∧ q1) ∨ (d ∧ q2)|s) =
∑
i

tr(PiρPiPd) =

= ℘(d ∧ p1) ∨ (d ∧ p2)|s). (A4)

Independently of the choice of the orthogonal and com-
plete base, probability is always the same and equal to a
particle-like behavior, even if the single d ∧ qj measure-
ment can provoke interference effects.


