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Abstract

Population monitoring is a challenge in many areas such as public health or ecology. We
propose a method to model and monitor population distributions over space and time, in order
to build an alert system for spatio-temporal data evolution. Assuming that mixture models
can correctly model populations, we propose new versions of the Expectation-Maximization
algorithm to better estimate both the number of clusters together with their parameters. We
then combine these algorithms with a temporal statistical model, allowing to detect dynamical
changes in population distributions, and name it a spatio-temporal mixture process (STMP).
We test STMP on synthetic data, and consider several different behaviors of the distributions, to
adjust this process. Finally, we validate STMP on a real data set of positive diagnosed patients
to corona virus disease 2019. We show that our pipeline correctly models evolving real data and
detects epidemic changes.

Keywords: Gaussian Mixture Model, EM algorithms, spatio-temporal data

1 Introduction

1.1 Background

The rapid growth of health information systems has led to the availability of real-time spatio-
temporal follow up of patients affected by a given disease with a high precision. A remaining challenge
is to develop methods to use these data to improve public health strategies and to transform these
observed data into actionable decision-aid tools.

A spatial model is based on the characterization of individuals by their geographical location
(place of birth, place at the time of diagnosis, place of residence, etc). All together, these people
are building up a population. The temporal component is very important in disease monitoring
therefore requiring to consider the population distribution as evolving along time. The association of
spatial and temporal components for a disease yields a spatio-temporal distribution. One actionable
decision-aid support system that could improve health management using such data is real-time
highlighting of new or evolving clusters of patients, i.e. a specific sub-group of patients which will
evolve differently, while the rest of the population remains stable. This would be particularly useful
to rapidly identify a new contamination source for transmissible disease, as soon as the first affected
cases are present in health information systems.

1.2 Related Works and motivations

1.2.1 Spatio-temporal statistical analyses in epidemiology

Spatio-temporal statistical analyses are already present in research in epidemiology and are mainly
based on statistical tests, coupled or not with space-time kernel density estimation, as presented
in [1]. Scan statistics methods proposed in [2, 3] are reference methods for many studies. They
propose to detect spatial and/or temporal clusters from aggregated data (discrete in space and
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time) using sliding windows to compare cases and reference population. They exhaustively scan
the space and time in order to seek statistically significant spatio-temporal clusters for a given
tolerance and test. The hypothesis that the incidence rate is higher inside the windows than in
the studied region is tested using Monte Carlo methods to simulate likelihood ratio distributions.
They develop different statistics using a known underlying population at risk, or cases/controls. In
absence of population-at-risk, the authors of [4] estimate the expected number of cases in order to
infer a reference population and to still be able to apply the scan statistics algorithms. In both case,
their methods require to fix several parameters on the considered sliding window (minimal area and
minimal temporal size are two examples of the various parameters). Moreover, cases/controls studies
are subject to selection and expensive effort to find a proper control group among other things and
not feasible in all situations [5]. In addition, these studies are prone to several biases [6]. As it
is usually difficult to sample a control group from a reference population distribution, the ensuing
comparison between cases and controls is exposed to false differences due to inadequate sampling
of the control group [6]. Another important issue is that these methods do not provide a statistical
modelling of the population over the whole space and time.

In this work, we choose to introduce a spatiotemporal statistical model. In particular we will
consider mixture models. By using a finite mixture of distributions, we model each point as belonging
to each of the subgroups (clusters) with a certain probability. Mixture models come with strong
advantages. First, they are flexible as one can set the probability distribution function (pdf) of each
cluster depending on the type of observations (scalars, vectors, positive measures, etc). Second, it is
interpretable because subjects can be attributed to estimated classes a posteriori which enables to
distinguish homogeneous groups in the whole set. Third, they do not rely on a population reference
distribution estimation, unlike scan statistics methods, as presented previously. They only rely on
cases distribution. Last, these mixture models are parametric and well understood.

1.2.2 Estimation algorithms for mixture models

When data are multivariate real value observations, the usual probability density for each cluster is
the multivariate Gaussian distribution. This is particularly relevant when considering geographical
data (mapped as living on the real plane).

But several issues arise when using such a model. First, one has to be able to estimate the
parameters of this particular model given the data base.

To perform the estimation of Gaussian mixture parameters, given that we know the number of
clusters, the leading algorithm is the Expectation-Maximization algorithm introduced by Dempster
et al. [7]. The choice of initial parameters is a major issue for the EM algorithm, as its solution is
deterministic and highly dependent on this initial choice. The construction of the sequence ensures
that the critical points are maxima, but could be both global or local ones. As Baudry and Celeux [8]
pointed out, several strategies exist to avoid sensibility to initial values and selection of a bad local
maximum. Easy ways to address this issue are to use small-EM algorithms as initialisation of a long
run or to execute the EM algorithm several times with different random initialization procedures.
When the problem is high-dimensional, these methods are not convenient because the parameters
space to explore becomes too large. Another suggestion was to initialise with k-means algorithm,
which is also a clustering method. The stability is improved but the k-means algorithm has to be
initialized which switches the problem without solving it. Recently, Lartigue et al. [9] introduced an
annealing E-step to better stride the support and become almost independent from the initialization.
However, this method requires to set the temperature profile which may be tedious.

On the other hand, Baudry and Celeux [8] proposed to introduce a recursive initialisation which
consists in using the K components solution to initialize the K + 1 components mixture. Although
interesting, their full process requires several GMM estimations, with a varying number of com-
ponents, leading to expensive computational time. By using this recursive initialization strategy,
Baudry and Celeux also acted on the second burden of the EM algorithm: the choice of the number
of components.

To solve this burden, model selection criteria have been proposed, notably the well known criteria
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based on maximum likelihood named Akaike Information Criterion (AIC) [10], or the Bayesian
Informative Criterion (BIC) [11]. BIC has been proved to be adequate for selecting K, but it is
an asymptotic criterion and requires to run the estimation for several given possible K. However,
all these methods rely on finite collection of estimations with increasing complexity. Selecting the
optimal number of components is highly dependent on which finite collection of models we consider,
which could highly increase the computational cost to be exhaustive. Moreover, the choice of the
best criterion is left to the user given only theoretical guaranties on their asymptotic convergences.

To overcome the problems of these asymptotic criteria, non-asymptotic approaches have been
proposed, as the slope heuristic criterion. It was introduced by Birgé and Massart [12], and later
Baudry et al. [13] proposed a framework to calibrate it. This criterion assumes that there exists
an optimal constant, which, associated with the model dimension, provides an optimal penalty of
the log-likelihood. By computing a regression with obtained log-likelihood values in the estimated
models collection, the optimal constant is then obtained with the slope. Drawbacks of this method
are the required linear behavior of the log-likelihood and a large enough finite set of estimated
models.

Trying to solve both issues together is a recurrent objective, which led to original methods in the
past decades, performing estimation and selection of the model at the same time [14, 15, 16, 17, 18, 19]
.

A recent idea, proposed in [14], combines the slope heuristic criterion for model selection [12] with
a dynamical change of the number of components inside the EM algorithm. The aim was to avoid
convergence towards local maxima at the boundary of the parameters space and a too restrictive
initialization. They introduced a annihilation step which deletes components based on a data-
depending threshold and iterate between it and the EM algorithm until all components proportions
are above a chosen threshold. The final estimated model is saved in a collection and this process is
repeated several times for different initial K. Form the estimated models collection they select the
best model with the slope heuristic criterion. As described here, their introduced method is also
based on estimation of a finite collection of models. Moreover they have to run several time the EM
algorithm to estimate only one model of the collection. This leads to high computation cost, and to
the risk that the real model does not belong to the finite set of models.

In [15] and later [19] a minimum message length criterion [20, 21] is developed to penalise the
cost function, originally based on the log-likelihood in the EM algorithm. With this introduced
penalisation, clusters may be annihilated if they are non-informative.This step prevents the algorithm
from approaching the boundary of parameter space, and acts as a model selection process. They
also try to address the initialization problem by beginning their algorithm with a large number of
components. Their complete algorithm has the default to not stop before reaching a minimal number
of clusters fixed in advance, and it forces parameter space exploration to obtain several models and
select the best one among them.

Another dynamical algorithm is the step-wise split-and-merge EM algorithm, based on the con-
struction of split and merge criteria [16, 17]. The authors of [16] based their split and merge criteria
on Kullback-Leibler divergence and correlation coefficient respectively, while in [17] they used the
local Kullback-Leibler divergence to measure distance between a local density and model density of
each component for both split and merge criteria. The authors of [16] need to fix thresholds for their
criteria, which requires finding the optimal thresholds. Moreover their split and merge movements
are totally independent, while the realisation of one or the other may generate the need to further
re-check the criteria and estimated parameters . In [17] they free themselves from the choice of
criteria thresholds, and introduce an acceptance probability for freshly new computed parameters
after the split-merge step, which avoids too frequent and unstable moves. Even if they do not need
to set thresholds in order to split or merge clusters, their algorithm computes an collection of models
by running several GMM estimation algorithms, implying computational issues.

In [18], Yang et al. also considered a dynamical algorithm, where the number of components
is estimated in a single-run EM algorithm at a not too-high computational time. Moreover, the
framework remains close to the EM algorithm one, but still presents the problem of falling into local
maximums. More details will be given below (see Section 2.1).

These different variants of the EM algorithm require a high computational cost, the tuning of
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several parameters or cannot avoid undesirable local maxima involving for example superimposed
clusters. In addition the temporal component to monitor the population distribution is absent of
these procedures, and the epidemiological models presented above also cannot meet the criteria
for estimating, monitoring and modelling population dynamics over time. As a consequence, these
drawbacks prevent us from directly using these different methods to obtain correct approximations
of population dynamic and to monitor them.

1.3 Contributions

In this paper, we propose a pipeline named spatio-temporal mixture process (STMP) to infer pop-
ulation distribution and to highlight temporal population distribution differences as a first step
towards a decision support and alert system for spatio-temporal analysis of the evolution of a pop-
ulation. This process can be used to initiate a detailed analysis of the environment, for example, if
the pathology may depend on environmental causes. The STMP can also allow to focus on effects
of decisions in specific areas where changes are happening, as we have faced with the COVID-19
pandemic and successive lockdowns for example.

With the proposed STMP, we combine a mixture model with reliable estimation and temporal
monitoring of this model. This pipeline will create a temporal process with two mixture models,
one time-depending and one totally independent. The adequacy of population dynamic to either of
these two models will determine if an alert should be raised or not.

As a module to our STMP, we will introduce an adaptation of the EM algorithm to take into
account a temporal dependency inside a mixture model evolution. Finally, we will also propose an
improvement of the Robust EM algorithm in [18] to overcome the EM algorithm drawbacks that are
model selection and efficient estimation. Even if this Robust EM was shown to be effective to tune
parameters as the number of components in the mixture, it can output overlapping components.
This output is related to a local maximum of the criterion to optimize. This results in the need of
post-processing the outputs to determine if the proposed estimate is relevant not only regarding the
number of clusters but their parameters as well. Post-processing analysis is not satisfactory as the
final user is only required to interpret models and alerts, without interfering into the process and
modifying its results. Therefore, we will suggest changes to obtain a more automatic algorithm to
avoid these overlapping components.

Our contribution is thus twofold. We build the complete pipeline named STMP to model the
dynamical evolution of a population and help for its monitoring, and we solve the Robust EM issues,
in order to not raise false alerts due to wrong estimation steps.

To finish designing our STMP, we will perform experiments on synthetic data and we will study
the behaviour of our pipeline in different situations to produce a robust monitoring. We will then
compare our modified Robust EM and the original version by [18] on a COVID-19 dataset from
Paris area, and test STMP on this dataset, showing the adequacy of a mixture model evolving over
time and the consistency of the alert response to population epidemic changes.

2 Notations and reminders on mixture models

We assume for our future application in Section 4 and 5 that the population is modeled as a Gaussian
mixture. As we will associate in this paper our pipeline with Gaussian Mixture Models (GMMs), we
first recall the GMM definition and then the classical methods introduced in the literature to estimate
GMM parameters. In particular, we focus on the question of estimating the number of clusters and
the mixture parameters in a single-run algorithm. These methods are the basic elements on which
we build our STMP pipeline described in Section 3.1.

In order to describe a GMM, we consider a set of observations denoted x = (x1, . . . ,xn) with
xi ∈ Rd. Let Nd(·|µk,Σk) be the probability density function (pdf) of the Gaussian density of
dimension d with mean µk and covariance matrix Σk. To write the GMM in its complete form
we introduce latent variables (zi)i=1,...,n, such as each zi is following a categorical distribution of
parameter π. This information is then encoded as a K-dimensional binary variable zi for each
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i ∈ {1, . . . , n} with zki = 1 if data xi belongs to cluster k, 0 otherwise.
Then the complete model writes :{

zi ∼ Categorical(π1, . . . , πk) ,
xi|zki = 1 ∼ Nd(µk,Σk) .

(1)

The whole issue with GMM is twofold. The first challenge is to estimate the number of components
K in the model. Then, given this estimated K, the second issue is how to estimate the vector of
parameters θ, containing the Gaussian distributions parameters and the mixture proportions π. All
this has to be performed from the observed data only.

The most popular algorithm to estimate a GMM is the Expectation-Maximization (EM) algo-
rithm [7] as it has been introduced for that purpose. The general principle is to produce a sequence

of parameters (θ̂p)p∈N which converges towards the set of critical points of the observed likelihood,
which writes for GMMs on a set of observations x:

pθ(x) =

n∏
i=1

[
K∑
k=1

πkNd(xi|µk Σk)

]
. (2)

The EM algorithm alternates between an expectation step, and a maximisation step which updates
the mixture parameters, until convergence criterion is met. The detailed equations are given in
Appendix A.1.

As the EM algorithm presents several drawbacks detailed in Section 1, and that we expect our
framework to have a single run to estimate the data distribution at a given time step, we turn to
the more ”dynamical” algorithms where estimation and selection of the model are performed at the
same time [15, 19, 17, 16, 18].

In the next part, we will detail a recent dynamical algorithm proposed by Yang et al. [18], which
answers almost all issues and is the base of our proposition.

2.1 Robust EM algorithm [18]

As mentioned above, the unknown number of clusters in GMM is a main issue. The authors of [18]
go deeper into looking dynamically for the best number of components in the mixture. Their Robust
EM adjusts the EM mixture objective function, by adding a criterion based on the entropy of the
mixture proportions πk. Non-informative proportions are given by a high entropy. Consequently,
the penalty added to the likelihood is given by the opposite entropy. Starting from the complete
log-likelihood, the objective function to maximize in the M-step with this entropy-based penalty is
therefore:

L′(θ,x, z) =

n∑
i=1

K∑
k=1

τki log(πkN (xi|µk,Σk)) + β

n∑
i=1

K∑
k=1

πklogπk,with β ≥ 0 . (3)

With this new criterion to maximise, the update equation of components proportions π inside
the EM algorithm becomes:

π̂
(new)
k = π̂k,MLE + βπ̂

(old)
k

(
ln π̂

(old)
k −

K∑
s=1

π̂(old)
s ln π̂(old)

s

)
(4)

with π̂k,MLE given by Eq.(9) (see Section A.1), and π̂
(old)
k being the component weight estimate

of previous iteration. The equations to estimate the means µ̂k and the covariance matrices Σ̂k in
Robust EM remain unchanged and given by Eq.(10) and Eq.(11) with the new component weights
from Eq.(4).

As we can see, a new hyperparameter β comes as a penalty weight in Eq.(3). It helps to control
the competition between clusters. Acting on the evolution of proportions with β enables one to check
at each iteration that all the components proportions are above a given threshold, and therefore to
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delete those of proportion πk <
1
n . This is the annihilation part in their process. A specific dynamic

is imposed to β. This parameter is set to zero when the cluster number K is stable, i.e not decreasing
for a time period named pmin. This is important to not obtain oscillating parameters, and so to
reach a maximum. A limitation is that they fixed this time limit to pmin = 60 iterations, without
any attempt to adapt it to different use cases. This algorithm is however robust to initialization as,
to start with, each data point is the center of its own component, which yields the initial number of
class K0 to be n, the sample size.
Although efficient, entropy-based penalisation [18] do not prevent from having several components
with similar parameters, meaning that two cluster may be superimposed. In the Robust EM al-
gorithm [18], competition and instability of component proportions do not avoid to end up with a
local maximum of this type. The coefficient β is usually not high enough to trigger removal of one
of the superimposed clusters. As the competition is not guaranteed at each iteration, we suggest
improvements of the Robust EM algorithm by [18] in the next section. We also present a temporal
process which, combined with estimation algorithms, will provide efficient detection of population
dynamical changes.

3 Method: combine a spatio-temporal mixture model with
efficient estimation algorithms

In this section, we describe our general pipeline for temporal evolution modelling of a population
including a distribution change detection, named STMP. Then, we introduce modifications on the
Robust EM algorithm to escape local maxima characterised by ”overlapping clusters”. Finally,
we detail another adaptation of the EM algorithm in order to constrain the estimation of GMM
parameters. This enables to propose a close variant of a given distribution which, since estimated,
highly depends on samples. The STMP pipeline and the estimation algorithms are generic enough
to apply on different mixture models by using different estimation algorithms.

3.1 A spatio-temporal mixture process (STMP) with dynamical change
detection

We consider that the time period is discretized and the time steps are given by t = 1...T . At each

time step, the data vector is X(t) = (X
(t)
1 , . . . ,X

(t)
nt ) with X

(t)
i ∈ Rd. We assume that these data

are sampled from a statistical time dependent model. We model the data at each time step t by a
mixture of probability distributions, parametrized by a vector θ(t), characterizing the current model
M (t).

At each time t, we observe a new set X(t), independent of the previous one X(t−1). Given
this new sample, we want to evaluate if the previous model M (t−1), defined as a mixture model
estimated on X(t−1), is likely to fit the new set X(t). We make the assumption that the distribution
of the underlying global population is not changing across time. This is in line with the difficulties
related to the use of reference populations presented in Section 1 and coherent with our targeted
applications. We design our model to monitor population evolution across time in particular for
either short time period of time like the COVID-19 analysis where the population was constrained
to strict locked-down or hard traveling restrictions, or longer period of time where the study focuses
on longer time steps as well, with aggregated data. Thus the model does not require any datasets
other than the vectors X(t) for each time step t.

However, as M (t−1) depends on the data set at time t−1, it suffers from the estimation variability,
which means that the true model is likely to be close but not necessarily exactly this one. To deal
with this uncertainty, we estimate a constrained model (or candidate model) M ′ to fit X(t) where
M ′ is an adjustment of M (t−1), given by θ′ close to θ(t−1). Behind this adaptation of M (t−1), we
indirectly keep track of the estimated model at previous time. However if at time t the data set X(t)

is sampled from a very different distribution, M ′ should not be able to fit X(t). In this situation, we
would like our process to detect this shift in population dynamic, and propose an alternative model
more representative of the new data.
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In order to do this, we propose to also estimate an alternative model, Ma from the only data set
X(t). We do not make any assumption on a previous time step dependence to estimate this model
leading to a parameter vector θa only driven by X(t).

With these two estimated models in hands, we are now able to track changes of the population
distribution, and determine whether there is a modification in the population geographical spreading.
Our proposed warning system is defined as follows. If at time t, the model M ′, close to M (t−1),
is not adapted to describe X(t), we keep the independent model Ma as the new description of the
current population and raise an alert. The aim is now to define the decision rule to select either
model and to raise the alert or not as a result.

A simple way to quantify goodness of fit of a statistical model to the data is its likelihood. The
likelihoods of estimated mixture models M ′ and Ma, given by pθ′(X

(t)) and pθa(X(t)) respectively,
are used to define a decision rule in our process, named likelihood ratio or also known as Bayes
factor.

As the alternative model is unconstrained, pθa(X(t)) is the maximum value of the likelihood of
the data without assumption. On the other hand, pθ′(X

(t)) is the maximum value of the likelihood
when the parameters θ′ are restricted to stay in a neighbourhood of θ(t−1). In the case where the
constrained model M ′, fits well the new data set, the alternative model is likely to be similar and
to have a similar likelihood.Therefore, the likelihood ratio will be close to one. On the other hand,
if the new data set is sampled from a far different distribution from M (t−1), then the constrained
model will have a likelihood that is lower than the alternative model which by design will be able
to better fit the new point cloud. Therefore, there should be a notification when this ratio is away
from one.
Finally, we define the ratio as follows:

rt(M
′,Ma) =

pθa(X(t))

pθ′(X(t))
. (5)

In order to accept or reject the alternative model at time t, we define a threshold τ such that if
rt(M

′,Ma) ≥ τ , the alternative model is selected and an alert is raised. The detailed behaviour
of this likelihood ratio depending on the population evolution will be studied in Subsection 4.2.
In particular, this empirical study allows us to set the threshold τ and highlight its properties in
particular its low dependence w.r.t the sample size.

With all these elements in hand, our space-time complete pipeline, named Space-Time Mixture
Process (STMP), executes at each time t the following steps:

1. Estimate models M ′ and Ma based on respectively (M (t−1), X(t)) and (X(t)),

2. Compute likelihood ratio rt(M
′,Ma) as in Eq.(5),

3. If rt(M
′,Ma) ≥ τ , raise an alert and set M (t) = Ma. Else set M (t) = M ′.

Note that this pipeline is very versatile with respect to the chosen distributions in the mixture
model as well as the estimation algorithms used in first step. Depending on the dataset, the model
is able to handle any type of pdfs.

We now describe the two algorithms that we use to perform the candidate and alternative model
estimations.

3.2 The Modified Robust EM algorithm: tackling superimposed clusters

In Section 2, we have highlighted two weaknesses of the Robust EM algorithm by [18]. First, the
minimal number of iterations (named pmin) before setting β = 0 is too small, which means that the
algorithm is untimely stopped in its exploration. Then, the algorithm is stuck in local maxima as soon
as the convergence condition (‖µ(p) − µ(p−1)‖ < threshold) is satisfied, which stops the algorithm
too early, revealing aberrant clusters. These aberrant clusters are here superimposed clusters, which
means that at least two clusters are sharing very similar (or exactly equal) parameters values. This
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corresponds to local maxima which can be analysed only by post processing the results, and it is
particularly observable on real and scattered data.

To avoid this local maximum issue inside the estimation algorithm (avoid post-processing anal-
ysis), we propose slight modifications of the Robust EM algorithm, by incorporating an online
verification step of superimposed clusters. We consider that two clusters i and j are superimposed
if

‖µi − µj‖2 + ‖Σi − Σj‖F < ε (6)

for some small ε > 0. Note that requiring equality in Eq. (6) is numerically too strong and would
barely happen. We check Condition (6) when the algorithm has reached the convergence condition
(Algorithm 2, line 1). As long as there are overlapping clusters we force the estimation to continue,
as we will see now.

Inside Algorithm 2, the ”stop-competition” part is the moment in the algorithm where β = 0 if
the component number is stable for at least 100 iterations and if the actual iteration number p is
greater than pmin (Algorithm 2, line 2). At that point in the algorithm, if we set β = 0 too early,
it slows down the competition between clusters, and may block components from disappearing. If
there is no overlapped clusters and stability conditions are fulfilled then we set β = 0. Otherwise,
we proceed as follows: we first increase pmin by increment of 50 iterations (Algorithm 2, line 3).
By increasing pmin, the algorithm has more iterations to try to annihilate some components. Since
increasing pmin indefinitely can lead to a ”stable” configuration where β adopts a cyclical behaviour
and loops on it, we then check the closeness condition (6) again. If Eq. (6) is still true for some
clusters, we merge these clusters. The weight of the fused cluster is the sum of the weights of the
overlapping ones. The means and covariance matrices being almost equal, this fusion of components
does not change the likelihood. This makes the algorithm jump to another configuration with the
same likelihood and enables it to explore this new region of interest. Other steps of the algorithm
stay identical to the original Robust EM, as presented in Subsection 2.1. The full modified Robust
EM algorithm is summarized in Algorithm 2.

3.3 The Constrained EM algorithm: incorporating former parameters

We name Constrained EM (C-EM) a slight variation of original EM algorithm [7] where the param-
eters are restricted to a neighbourhood of a given vector of parameters denoted θ0. In particular,
we introduce constraints on the estimated components proportions (πk)1≤k≤K . Moreover, when the
cluster means are involved, restrictions are also put on these means. The initialization of our C-EM
algorithm is given by the parameter vector θ0 as well. The idea behind C-EM algorithm is to obtain
estimated parameters highly driven by the initial parameters vector θ0 but updated on data X.
Because the parameters of our dynamical modeling are estimated empirically, the estimation suffers
from the uncertainty given by the sampling. This means that the estimated parameters at time t−1
may not be the perfect description of the data set and a new independent sample from the same
ground truth distribution will lead to a slightly different estimated parameter vector and a slightly
different likelihood. Therefore, we consider that a newly independent estimated mixture and the
given estimated one may both come from the same ground truth. For this reason, the C-EM enables
us to give a chance to the previously estimated model to explain the data distribution. Otherwise,
forcing the comparison of M (t−1) with Ma will always be in favor of Ma. With this parameters-
dependency, the newly estimated parameters could be incorporated in our temporal process as a
time-dependent estimate.

From now on, we propose the details of this algorithm for distributions where the cluster means
and covariances are to be estimated. This will be the case in our disease progression use case
where the model is a mixture of Gaussian distributions. We now detail constraints we impose on
parameter estimations inside an EM-like algorithm to estimate GMM. We name π̂c, µ̂c and Σ̂c the
constrained proportions, means and covariance matrices obtained through the C-EM algorithm. As
in the original EM algorithm, π̂p and µ̂p vectors are estimated at iteration p of C-EM following
equations (9) and (10). We then add a third step in the estimation algorithm to obtain π̂c and µ̂c.
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The constrains in the C-EM algorithm always imply θ0, the initial parameter vector at p = 0, as
we want to restrict the parameters estimation. The initial parameter vector contains (π0

k)k, (µ0
k)k

and (Σ0
k)k the covariance matrices providing information about the anisotropy we allow for the

uncertainty on the means parameters to adapt locally. Components proportions are probability
weights and live in [0, 1], so we simply constrain component proportion of cluster k, π̂pk (at iteration
p), to vary inside [π0

k ± 0.1]. It will represent π0
k more or less 10% of all proportions. We also avoid

proportions to become null to avoid an artificial death of a cluster in the mixture. Constrained mean
µ̂ck of the component k at iteration p with the C-EM algorithm is a projection of estimated µ̂pk on
a rectangular space centered on µ0

k and of length and width given by ellipse axis of the covariance
matrix Σ0

k (square roots of the eigenvalues of Σ0
k).

These constraints are written here for each iteration p:{
π̂ck = min(max(π0

k − 0.1, π̂pk), π0
k + 0.1) ,

µ̂ck = Prect(µ0
k,Σ

0
k)(µ̂

p
k) .

(7)

Note that the algorithm can converge to final parameters where one covariance matrix is degen-
erated, reflecting the aim of the algorithm to delete one component of the mixture model. In the
original EM algorithm, implementations usually include a regularisation on the covariance matrices,
in order to avoid singular ones. As we want to see when the estimated candidate model does not
correspond to data, we remove this regularisation from the C-EM algorithm. Therefore, we raise an
alert when one or more covariance matrices become singular. We add this condition as an alert in
STMP detailed in Subsection 3.1, before the calculation of the ratio rt (Eq.(5)).

In addition to this, as the covariance matrices are not constrained in the C-EM algorithm, we
introduce a condition to check these parameters a-posteriori. From C-EM algorithm, covariance
matrices are freely estimated, but they can evolve far away from initial covariances matrices Σ0

k, so
missing the time link. We introduce an already existing similarity measure between final estimated
Σ̂ck in C-EM and Σ0

k the initial covariance matrices. We use the cosine similarity, also introduced
as the correlation matrix distance by [22] on correlation matrices. We adopt their formulation
and apply it on covariance matrices instead of correlation matrices. Bounded between 0 and 1,
this coefficient measures orthogonality between two matrices and is useful to evaluate whether the
spatial structure of the clusters have significantly changed. Low values reflects high similarity while
high values reflects orthogonality, and so on dissimilarities. As Σ̂ck should be similar to Σ0

k, we only
tolerate a value of 0.1 or less, in order to introduce flexibility and sampling error tolerance inside
STMP. For higher values, showing dissimilarities between Σ̂ck and Σ0

k, we also raise an alert in STMP
detailed in Subsection 3.1.

In STMP, θ0 will be the estimated parameter vector from the previous time step t − 1 of the
pipeline, which corresponds to θ(t−1).We obtain at time t an estimated parameter depending on
estimated parameter at time t−1, but allowing some adaptation of the model to the newly observed
data X(t). Finally, we should not forget that the C-EM is constrained by initial parameters θ0,
including a fixed number of clusters K0. It is not possible in C-EM to merge clusters based on their
properties, as this would violate the imposed constraints. If the model estimated by C-EM is not
correctly fitting data X(t), this will be detected inside STMP.

3.4 Application of the STMP on Gaussian Mixtures Models

To conclude this section, our new process is fully described in Algorithm 1, combining the temporal
process described in Subsection 3.1 with the C-EM to estimate M ′ (Subsection 3.3), and the modified
Robust EM to estimate Ma (Subsection 3.2) on GMMs.

As in next applications we will only consider geographical data, in R2, we use Gaussian Mixture
Models to represent these data. The GMM parameters are estimated with the presented algorithms,
and the likelihoods are computed with Eq. (2). Remember that the pseudo-code 1 shows the STMP
with all our propositions, which could be used with different mixture models. The adaptation of the
estimation algorithms may also be used to fit with other distributions.
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Algorithm 1: The Spatio-Temporal Mixture Process (STMP)

input : For t = 0, . . . , T : data X(t)

θ0 ← ModifiedRobustEM(X0)

θ(t) ← θ0

for t = 1, . . . , T do
θ(t−1) ← θ(t)

θ′ ← C-EM(X(t), θ(t−1),maxiterations=5)

θa ← ModifiedRobustEM(X(t))

rt ← pθa (X(t))

pθ′ (X
(t))

if (∃ singular Σ̂′k ⊂ θ′) or (∃ cos similarity(Σ̂′k, Σ̂
(t−1)
k ) > 0.1 ) then

alert ← True

θ(t) ← θa

else if rt ≥ τ then
alert ← True

θ(t) ← θa

else
θ(t) ← θ′

end

end

4 Experiments on synthetic data

This section is dedicated to the experimental validations therefore focused on synthetic data. We first
present all the experiments that are tested on our pipeline. To demonstrate and validate our complete
pipeline, using both our modified Robust EM and our C-EM, we then study the estimated likelihood
ratio for different behaviors of the population distribution (characterized by the experiments), and
the resulting performances of the pipeline. By studying these performances we can fix a threshold
conditioning the raise of the alert in all situations. In Subsection 4.3 we focus on the validation
of STMP,given by Algorithm 4.4 (and Appendix A.3.2) we present experiments on the number of
points n in the data sample, and how it affects each step of STMP. And in Appendix A.3.1 we
present the estimation results of the Gaussian mixture models inside our pipeline.

4.1 Description of experimental setups

All the experiments are done on a two time steps configuration (only t = 0 and t = 1). We consider
the following situation where we have a Gaussian mixture distribution with three clusters at initial
time (t = 0). One cluster is isolated on the far right hand side, and the two others are on the left hand
side. This is the basic structure that all initial distributions (at t = 0) will follow. Different positions
of left hand side clusters are represented in Figure 4, for Setup F. (Far.), Setup M. (Moderate.) and
Setup C. (Close.).

From this initial Gaussian mixture, various changes are done at time t = 1 considering:

• (Case I.) : no evolution at t = 1, clusters are properly distinct (corresponds to Setup F. at
t = 0 and t = 1).

• (Case II.) : the emergence of one new cluster leading to a distribution with four clusters at
time t = 1.

• (Case III.) : the disappearance of one cluster among the existing three initially present.

• (Case IV.) : the movement of one initial cluster, which corresponds to moving centers and
changing proportions and covariances.
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• (Case V. and Case VI.) : no evolution at t = 1, as Case I., but here the two left hand side
clusters are slightly interfering (Setup M.) for Case V., and finally these two clusters are very
closed and barely identifiable if not enough samples (Setup C.) for Case VI. .

• (Case VII. to Case IX.) : from initial Setup F. or M. at t = 0, there is a movement of the two
left hand side clusters to Setup M. or C. at t = 1 .

We write K
(0)
true the number of components in the mixture distribution at t = 0, K

(1)
true in the

mixture distribution at t = 1. A case is finally characterised by its mixture parameters at t = 0
and at t = 1 and we represent all cases in Table 2. In addition, Figure 3 and Figure 4 give a simple
representation of Cases I. to IV. and of Setup F., M. and C. involved in Cases V. to IX.

We obtain Gaussian mixture distributions with parameters θ(0) and θ(1) from described cases.
For each case I. to IX. , given the two distributions, we can sample n0 = n1 = n points, which form
our data sets X(0) and X(1). The sampling step, for any of the cases presented above, is executed S
times and followed by execution of our STMP on each set of sampled data. It produces S different
resulting processes, for each experiment (from Table 2). This enables us to analyze the behavior of
STMP and likelihood ratio across runs and evolution cases.

4.2 Estimation of the alert threshold

As motivated in Subsection 3.1, the likelihood ratio is a good indicator of how well the alternative
model Ma at time t is fitting data X(t) against the model M ′. In case of no evolution of the
distribution from t = 0 to t = 1, both Ma and M ′ should fit correctly the data, leading to a
likelihood ratio around one. Of course, as said previously, due to the sampling of the distribution,
it cannot be equal to one exactly. Thus the goal of the following study is to introduce an empirical
threshold of adequacy, over which the alternative model Ma is definitely considered as the best
model explaining current data and an alert is raised. With all the experiments above, we study the
behavior of our STMP according to the alert threshold τ involved in Algorithm 1. It is important
to fix this threshold in order to raise meaningful alerts and reach a correct performance.

As said previously, we run S sampling steps for each case distributions, here fixed to S = 100
runs. We obtain S pairs of datasets (X(0), X(1)). For each pair we compute the theoretical likelihood
ratio

r∗1(M (0),M (1)) =
pθ1(X(1))

pθ0(X(1))
,

implying the true parameters of models M (0) and M (1). This provides a ”theoretical” value of r,
only depending on the observation sets. We then account for the number of wrong alerts, depending
on the value of the likelihood ratio threshold τ . Figure 1 represents this behavior, with one curve
by case explained in Subsection 4.1. As the dataset X(1) is sampled from the truth model M (1), the
theoretical likelihood ratio should be almost one modulo the variability of the data if M (0) = M (1).
In contrary, this theoretical ratio should quickly diverge from one if X(1) is not corresponding to
the model M (0). This explains that we obtain 100 % of correct alerts on the majority of the case
experiments (Fig. 1), as the computed theoretical likelihood ratios are really higher than tested
values of the threshold. The cases which are critical for the choice of the threshold are Case VII. and
Case IX (Fig. 1). They imply slight differences of the distributions between t = 0 and t = 1, so the
theoretical likelihood ratio values stay relatively close to one. Therefore correct alerts are not raised
for a threshold over about 1.06 when considering experiments with datasets of size n = 400 points
(Fig. 1a) for these two cases. With n = 100 points, we clearly see that theoretical likelihood ratios
are globally lower. For a same value of the threshold the number of false negative alerts increases
(Fig. 1b). This provides us an intuition on the level of variations that our model can detect.

While the best possible performance would be obtained with a threshold at 1.05 (Fig. 1a) if we
only consider theoretical ratios results, the study of the threshold involving the estimated models
M ′ and Ma is less optimal. The computation of the likelihood ratio in the complete pipeline implies
uncertainty on sampled data and on estimated parameters θ′ and θa. This estimated ratio is defined
by Equation (5) between M ′ and Ma at t = 1. We study the performance of the pipeline with these
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(a) Experiments with datasets of size n = 400. (b) Experiments with datasets of size n = 100.

Figure 1: For each Case is presented the number of false alerts (positive or negative) on theoretical
likelihood ratios, over S = 100 runs according to the considered threshold τ . The filled black vertical
line is the final selected threshold.

Figure 2: For each Case is presented the number of false alerts (positive or negative) depending on
estimated likelihood ratios given by (5), over S = 100 runs according to the considered threshold τ .
The filled black vertical line is the final selected threshold. Datasets are of size n = 400.

estimated ratios values, by accounting for the number of wrong alerts over S = 100 runs as before.
The corresponding results, with these estimated likelihood ratios, are given in Figure 2. In Table 7
we retrieve the number of alerts per case for different threshold values and for different dataset sizes.
For Case I., Case V. and Case VI., the population distribution is the same at t = 0 and t = 1, but
Ma and M ′ are not estimated by the same algorithm, and the likelihood ratios are depending on the
sampled data. However, the model M ′ should still be accepted as the two mixture distributions are
very close. From Figure 2, we observe that a threshold of 1.0 is not appropriate, as a high number
of alerts is raised for these cases, where we should have zero alert. Increasing the threshold allows
for model and data variability to be taken into account, and avoid false positive alerts.

On the other hand, if we set a too high threshold τ , there is a risk of not detecting all important
changes. We clearly see for Cases II., III., IV., and VIII. that the number of true positive alerts is
affected by a too high threshold. If we go above τ = 1.2 we see an important decrease for Case IV.,
and later for the Cases II. and III. . Case VIII., which corresponds to a move from Setup F. to Setup
C. is affected earlier by the likelihood ratio threshold, as the proximity of two clusters (Figure 4c)
affects the estimation of mixture parameters and so on the likelihood ratio. It leads us to set a
threshold relatively closed to one. As on the theoretical likelihood ratio study, we observe here that
slight movements corresponding to Case VII. and Case IX. lead to incorrect alerts for a threshold
over one. The estimated likelihood ratio values stay relatively close to one because the model M ′
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can adapt to data X(1). The evolving distributions are not detected.
Therefore when applied to a specific problem, one has to know that the relocation of one cluster

may be detected if it relates to the variance of the estimated clusters. Otherwise, these displacements
may be considered as normal variability of the discretization of the distributions. Note that this
alert criterion may be adapted given a specific problem with the constrains that are imposed to the
candidate model. Finally, we see from analysis of the theoretical ratios and the estimated ratios
that we need to make a compromise. The optimistic theoretical likelihood ratios would lead us
to take a threshold very close to one. But the obtained values with the estimated models contain
more uncertainty that we cannot ignore and imply to select a larger threshold. To obtain good
performances of our pipeline we fix the threshold to τ = 1.1. We obtain a balance between false
negative and false positive alerts, that we want to maintain as low as possible, considering all possible
situations.

4.3 Performances of the STMP on synthetic data

We have defined in the previous subsection the threshold to alert the user that there may be a
population dynamical change between two given time points. As explained in Subsection 3.3, there
is also an alert when a component tries to disappear (leading to degenerated covariance matrix) when
estimated by the C-EM. And when covariance matrices estimated by the C-EM are too different from
the previous step ones. With these warning systems, we defined a whole pipeline, named STMP,
to monitor the dynamic of the population and raise alerts when reasonable changes occur. We are
now demonstrating the performances of STMP. Using an alert threshold of τ = 1.1, we obtain the
following alert rates, that we can retrieve in the Figure 2. For Case I., Case V. and Case VI. we
obtain 98 true negative alerts respectively. For Cases II. to IV. we obtain a true positive alert rate
of 100%, detecting all changes in population distribution with our STMP.

STMP does not raise an alert when the distributions differ barely in time. This is due to our
likelihood ratio threshold fixed to τ = 1.1. The true positive number of alerts is of 2% for Case
VII. and 1% for Case IX. . In contrary, the bigger movement in Case VIII. leads to a true positive
number of 29%. This brings us to the problem that STMP can not raise an alert when GMM are
hard to estimate correctly, as here. This experiment involves the Setup C., which is complex to
estimate for EM algorithms.

Last but not least, our proposed method is computationally efficient with a very low computa-
tional time. All experiments on datasets of size n = 400 are performed with an average execution
time of 1.33s. From Table 3 we recover average execution time by case type. Fast execution was
also a criterion leading the construction of our method, and satisfying for our future applications.

4.4 Effects of the data set size on estimation of Gaussian mixtures and
on STMP

In previous explained experiments on synthetic data, we fixed the data set size to n = 400. After-
wards, we study the impact of the number of points for Cases I. to IX. described previously, with
n ∈ {100, 200, 400}. With the same true distributions as in Figures 3 and 4, we perform S = 100
runs of our process with data samples of size n = 200 and n = 100 at each time step. From these
experiments, detailed in A.3.2, we note that decreasing the number of samples decreases the propor-
tion of good estimated K̂ and inherently the quality of estimation of parameters θ in our modified
Robust EM.

But overall, the STMP performance is less affected by changes of data sets size (Table 7). It even
raises more alerts with fewer points on Case VII. to Case IX, due to overlapping gaussian components
which are estimated as one single component, raising an alert when compared to a three gaussian
distribution estimated at previous time step.
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5 Application of STMP on a real life use case

In this section we demonstrate the relevance of STMP with GMM on real epidemiological data from
the COVID-19 in Paris, France.

5.1 Presentation of the data set

AP-HP (Assistance Publique des Hopitaux de Paris) is the largest hospital entity in Europe with 39
hospitals (22,474 beds) mainly located in the Greater Paris area with 1.5 M hospitalizations per year
(10% of all hospitalizations in France). Since 2014, the AP-HP has deployed an analytics platform
based on a clinical data repository, aggregating day-to-day clinical data from 8.8 million patients
captured by clinical databases. An “EDS-COVID” database stemmed from this initiative. The AP-
HP COVID database retrieved electronic health records from all AP-HP facilities and aggregated
them into a clinical data warehouse. The clinical data warehouse allows a large set of data to be
retrieved in real time to deeply characterize hospitalized patients, including their residential address.
New patients who tested positive by polymerase chain reaction (PCR) as being infected by SARS-
CoV-2 from the 24th of february to the 10th of may 2020 (weeks 9 to 19), in one of the AP-HP
hospitals and living in Paris constitutes the dataset for this study. During this time period, tests
availability outside public hospital facilities were very limited, and therefore we can consider in this
study that this sample constitutes a representative sample of patients having been positively tested
during this period. To preserve privacy, residential addresses were extracted at the IRIS level, which
is a geographical division in France of residential units of 2000 inhabitants on average.

For each patient we have two pieces of information: the week he/she was diagnosed positive,
and his/her place of residence at the IRIS level. We therefore use a week as a time step t in our
process. Beginning from the first week (week 9), which corresponds to the beginning of pandemic
in France, we apply our STMP, keeping at each time t one of the models Ma or M ′ according to
the criterion defined in Subsection 3.1 with threshold τ given in Section 4. We have 5621 positive
diagnosed patients over all weeks and all Paris IRIS areas. Table 8 informs us that the number of
cases per week is not homogeneous, as in first weeks, few cases living in Paris were detected positive.

5.2 Comparison of the original Robust EM and the modified Robust EM

As described in Section 3.2, the application of Robust EM from [18] on real data reveals a problem.
Even if the Robust EM is dynamical, it can be stuck in an incorrect local maximum involving over-
lapping clusters. This phenomenon has been detected from example on the real dataset of COVID-19
positive cases in Paris area. In this section we compare the obtained estimated GMMs by original
Robust EM and our modified version, which is correcting this overlapping effect (Subsection 3.2).

On all weeks except the 13rd week, the Robust EM by [18] presents no overlapping cluster, it
returns acceptable estimated GMM, which can be interpreted independently of each other. As there
are no abnormalities in the estimation process, our modified Robust EM returns similar results. It
is illustrated by Figures 6a and 6b showing week 12 estimations.

In contrary, on week 13, the original Robust EM presents overlapping clusters, the final number
of classes is 11, but the figure 6c shows us that there are only nine clusters. We can only detect
superimposed clusters here by doing post-processing analysis: check the estimated parameters. Ta-
ble 9 gives these estimated parameters for both the Robust EM [18] and the modified Robust EM.
From this table we see that there are two pairs of superimposed clusters with mixture estimation by
Robust EM. By executing our modified Robust EM on the same week, independently of the other
time steps, we obtain nine clusters (Figure 6d and Table 9), confirming that if we merge redundant
clusters, we obtain a stable solution, accepted by the algorithm.

Our modified Robust EM, solving the problem of superimposed clusters, avoids to consider post-
processing analysis inside STMP, which should require an user action at each time step. It also
allows to answer a specific problem, to correctly model COVID-19 data in space and time, as we
will see in the next part.
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5.3 Performances of STMP

The aim here is to underline presence or absence of temporal constancy in data, which suggests
that the population distribution was stable at the peak of the pandemic. This is in line with
epidemiological studies that where showing a ”peak” around these weeks after the first propagation
phase (weeks 9 to 12) (see weekly reports of Public Health Institution[23] Page.7 Figure 8.).

We still use a fixed alert threshold of τ = 1.1 in STMP, estimated by previous experiments in
Section 4. On the first week (week 9), as the number of cases is very low, the modified Robust EM
converges towards the removal of all clusters. This leads to the situation where the algorithm stops
without reaching convergence, and the previous iteration estimated parameters are returned. As this
corresponds here to the initialisation, we observe on Figure 7a that each case is its proper cluster
and initial high variances. The week 10 is still presenting a low number of scattered cases, which
are modelled by two global clusters, geographically distributed on both sides of the river Seine. As
from week 10 to week 11 (and week 11 to week 12) the number of cases is highly increasing, the
model accepts new estimated parameters θa each week.

Our STMP reveals that a GMM, estimated by the modified Robust EM on week 12 with K̂(12) =
10, was accepted on weeks 13 and 14. As a reminder, week 12 represents the beginning of the
lockdown and week 13 represents the peak of the pandemic, in terms of new positive cases. This
means that C-EM executed across weeks 13 and 14 fits very well the new data set each week with a
source model estimated on week 12. Even if the number of cases changes over time, STMP is able
to detect a constant distribution. It is consistent with the patients distribution on weeks 12, 13 and
14 as we can see on Figures 7 and 8.

On 15th week, STMP rejects the hypothesis that the patients data set is approximated by the
mixture law estimated on previous weeks. The alternative model Ma is accepted. Parameters θ(15)

on 15th week are newly estimated, evolving too far from θ(14), parameters on 14th week. It can be
interpreted with the strong decrease of new positive cases such as the disappearance of large clusters
from previous weeks and the detection of large and global clusters, corroborated by the Figure 8a.
On the following week, the 16th, these three clusters from week 15, large and non-informative, are
accepted by the STMP. On the following weeks (weeks 17,18 and 19), the number of cases is still
decreasing, and as on first weeks, the small number of cases leads to accept totally new estimated
parameters θa each week, without link with previous weeks.

From Table 1, the likelihood ratio values are globally distant from our defined threshold τ = 1.1,
leaving no doubt about the choice of best parameters θ(t) at each time step t. Only on week 15 the
likelihood ratio value is smaller that our defined threshold while the temporal-dependent model M ′

is rejected. This is due to high changing covariance matrices during the C-EM stage. The model
M ′ fits the new dataset by excessively moving the covariance parameters herited from M (14). We
can observe absence of likelihood ratio value on the last week. We cannot compute this ratio, due to
the ”empty class phenomenon”. The model M ′ tries to remove a component which leads to an early
stop of the estimation process of this model. This triggers the inevitable choice of the alternative
model and raises an alert. Finally, from the mathematical and algorithmic point of view, we obtain
interesting results, showing that C-EM across time can sufficiently model evolving real data with a
relatively stable and high size.

5.4 Interpretation of STMP results on the Covid-19 dataset

The results obtained for this use case are coherent with public health policy and COVID-19 trans-
mission patterns during this time period. Lockdown in France took place from the 17th of march
(beginning of week 12) to the 1st of June. As it takes about two weeks to go from contamination
to cytokine storm, no evolution in clusters was expected from week 12 to 14. Thereafter a decrease
in the number of clusters was expected, associated with a moving distribution . Moreover, esti-
mated clusters concentrate closed to Paris periphery, which are low-income neighbourhoods, known
to favour COVID-19 transmission. The reject on week 15 of the previous time step model can be
interpreted as the effect of the lockdown, and we can observe the natural barrier formed by the Seine,
as people can only move in a perimeter of one kilometre. The numerous clusters during week 18
are residuals clusters not solved by the lockdown. They mainly correspond to concentrated positive
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Table 1: Results of our process on positive diagnosed people in AP-HP hospitals with a time step
being a week

Week Estimated number of
classes K̂ by Ma

Estimated number of
classes K̂ by M ′

Likelihood Ratio r Accepted
model

9 5 None None M (0)

10 2 5 1.383 Ma

11 4 2 1.376 Ma

12 10 4 1.171 Ma

13 9 10 1.088 M ′

14 5 10 0.950 M ′

15 3 10 0.87 Ma

16 5 3 1.080 Ma

17 4 5 1.307 Ma

18 9 4 2.215 Ma

19 3 9 computationally
invalid

Ma

cases areas, whereas in the rest of the city there are few and scattered cases.

6 Conclusion

We have proposed a complete and generic pipeline for modeling evolution of population distribution,
and detecting abnormal changes in this distribution. This STMP was combined with new EM
algorithm variants. Our application on public health data shows that this STMP well models
population distributions, and raises meaningful alerts.

The STMP for monitoring population distributions and the algorithms to estimate the models are
two independent objects. This enables future directions of our work when integrating covariables
following non-Gaussian distributions in the mixture. We will still be able to use our proposed
algorithms as they are blind to the distributions in the mixture.

On the other hand, the performance of the EM algorithms depends on the data set sizes. In future
work we will try to temperate the modified robust EM as proposed by [24] to improve estimations
in unstable situations.

Last, the decision rule was here empirically fixed. In future work this decision rule will be
modeled as an acceptation probability, taking advantage of Monte Carlo Markov Chains theory.
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A Appendices

A.1 Equations for mixture parameters estimation in the original EM al-
gorithm [7]

The EM algorithm alternates between the two following steps (until convergence criterion is met).
At the p-th iteration of the algorithm, the update equations are given by:

• E-step : Compute the conditional expectation of the complete log-likelihood. Latent variables
zki are discrete, so their conditional expectations are given by

pθ(z
k
i = 1|xi) =

πkNd(xi|µk,Σk)∑K
j=1 πjNd(xi|µj ,Σj)

= τki (θ) . (8)

• M-step : Update the parameter estimates:

π̂pk,MLE =
1

n

n∑
i=1

τki , (9)
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µ̂pk,MLE =

∑n
i=1 τ

k
i xi∑n

i=1 τ
k
i

, (10)

Σ̂pk,MLE =

∑n
i=1 τ

k
i (xi − µi)>(xi − µi)∑n

i=1 τ
k
i

. (11)

A.2 Pseudo-Code of the modified Robust EM presented in Section 3

Algorithm 2: Modified Robust EM

Initialization : data set X ∈ Rn×d, K0 ← n, ε > 0
p← 0, β0 ← 1
π0
k ← 1/n, µ0 ← X

Σ0
k ← d2

k(d
√
Kinitial e)

Id with

Dk = sort
{
d2
ki = ‖xi − µk‖2 : d2

ki > 0, i 6= k, 1 ≤ i ≤ n
}

= {d2
k(1), . . . , d

2
k(n)};

Compute τk,0i with (8)
p← 1
Compute µpk with (10)

1 while max1≤k≤Kp ‖µp+1
k − µpk‖ > ε or Eq. (6) is verified for some clusters do

Compute πpk by (4)

πEM(1) ← max
1≤k≤Kp

πp,EMk , π
(old)
(1) ← max

1≤k≤Kp
π

(old)
k

E ←
∑Kp

k=1 π
(old)
k lnπ

(old)
k

βp ← min

{∑Kp−1

k=1 exp
(
−ηn

∣∣∣πpk−π(old)
k

∣∣∣)
Kp−1 ,

(1−πEM(1) )(
−π(old)

(1)
E
)
}

Update class number Kp−1 to Kp by deleting classes with πpk < 1/n, then adjust πpk and

τk,p−1
i

if Kp−1 6= Kp then
pcomponent ← 1 /* variable to keep in memory the number of iterations

with a stable number of components */

end

if p ≥ pmin and pcomponent ≥ 100 then
2 if no superimposed clusters (Eq.(6) false) then

βp = 0

3 else if superimposed clusters and pcomponent < 200 then /* give more time to

the algorithm to converge */

pmin ← pmin + 50
4 else merge superimposed clusters

adjust πp, µp, Σp and τp−1

end

end
Compute Σpk with (11) and Σpk = (1− γ)Σk + γQ with

γ = 0.0001, Q = d2
minId, d

2
min = min{{d2

ij : d2
ij = ‖xi − xj‖2 > 0, 1 ≤ i, j ≤ n}

Compute τk,pi with (8)

Compute µp+1
k with (10)

p← p+ 1
pcomponent ← pcomponent + 1

end

A.3 Supplementary analyses of Section 4

19



S
tu
d
y

ca
se

re
fe
r-

en
ce

D
es
cr
ip
ti
o
n

at
t

=
0

D
es
cr
ip
ti
o
n

at
t

=
1

N
u
m
b
er

o
f
cl
u
s-

te
rs

K
(0

)
tr

u
e

N
u
m
b
er

o
f
cl
u
s-

te
rs

K
(1

)
tr

u
e

P
ar
am

et
er
s
at
t

=
0

P
ar
am

et
er
s
at
t

=
1

C
as
e
I.

S
et
u
p
F
.

S
am

e
d
is
-

tr
ib
u
ti
o
n
s

(S
et
u
p
F
.)

3
3

π
1

=
0
.5
,π

2
=
π
3

=
0
.2

5
,
µ
1

=
(−

8
,−

3
.5

),
µ
2

=
(−

8
,3
.5

),
µ
3

=
(8
,0

),
Σ

1
=

Σ
2

=
Σ

3
=

Σ
0

π
1

=
0
.5
,π

2
=
π
3

=
0
.2

5
,
µ
1

=
(−

8
,−

3
.5

),
µ
2

=
(−

8
,3
.5

),
µ
3

=
(8
,0

),
Σ

1
=

Σ
2

=
Σ

3
=

Σ
0

C
as
e
II
.

S
et
u
p
F
.

E
m
er
g
en
ce

o
f
a
cl
u
st
er

3
4

π
1

=
0
.5
,π

2
=
π
3

=
0
.2

5
,
µ
1

=
(−

8
,−

3
.5

),
µ
2

=
(−

8
,3
.5

),
µ
3

=
(8
,0

),
Σ

1
=

Σ
2

=
Σ

3
=

Σ
0

π
1

=
π
2

=
π
3

=
π
4

=
0
.2

5
,
µ
1

=
(−

8
,−

3
.5

),
µ
2

=
(−

8
,3
.5

),
µ
3

=
(8
,0

),
µ
4

=
(−

2
.4

5
,6
.5

7
),

Σ
1

=
Σ

2
=

Σ
3

=

Σ
0
,Σ

4
=

( 0
.8

8
0
.

0
.

0
.4

8

)
C
as
e

II
I.

S
et
u
p
F
.

V
an

is
h
in
g

o
f
a
cl
u
st
er

3
2

π
1

=
0
.5
,π

2
=
π
3

=
0
.2

5
,
µ
1

=
(−

8
,−

3
.5

),
µ
2

=
(−

8
,3
.5

),
µ
3

=
(8
,0

),
Σ

1
=

Σ
2

=
Σ

3
=

Σ
0

π
1

=
π
2

=
0
.5
,µ

1
=

(−
8
,3
.5

),
µ
2

=
(8
,0

),
Σ

1
=

Σ
2

=
Σ

0

C
as
e

IV
.

S
et
u
p
F
.

C
h
an

g
in
g
a

cl
u
st
er

3
3

π
1

=
0
.5
,π

2
=
π
3

=
0
.2

5
,
µ
1

=
(−

8
,−

3
.5

),
µ
2

=
(−

8
,3
.5

),
µ
3

=
(8
,0

),
Σ

1
=

Σ
2

=
Σ

3
=

Σ
0

π
1

=
π
2

=
π
3

=
1
/
3
,µ

1
=

(−
8
,−

3
.5

),
µ
2

=
(−

8
,3
.5

),
µ
3

=
(6
.0

9
,−

2
.7

1
),

Σ
1

=
Σ

2
=

Σ
0
,Σ

3
=

( 1
.3

6
0
.

0
.

0
.9

2

)
C
as
e

V
.

S
et
u
p
M
.

S
et
u
p
M
.

3
3

π
1

=
0
.5
,π

2
=
π
3

=
0
.2

5
,
µ
1

=
(−

8
,−

2
.5

),
µ
2

=
(−

8
,2
.5

),
µ
3

=
(8
,0

),
Σ

1
=

Σ
2

=
Σ

3
=

Σ
0

π
1

=
0
.5
,π

2
=
π
3

=
0
.2

5
,µ

1
=

(−
8
,−

2
.5

),
µ
2

=
(−

8
,2
.5

),
µ
3

=
(8
,0

),
Σ

1
=

Σ
2

=
Σ

3
=

Σ
0

C
as
e

V
I.

S
et
u
p
C
.

S
et
u
p
C
.

3
3

π
1

=
0
.5
,π

2
=
π
3

=
0
.2

5
,µ

1
=

(−
8
,−

1
.8

),
µ
2

=
(−

8
,1
.8

),
µ
3

=
(8
,0

),
Σ

1
=

Σ
2

=
Σ

3
=

Σ
0

π
1

=
0
.5
,π

2
=
π
3

=
0
.2

5
,µ

1
=

(−
8
,−

1
.8

),
µ
2

=
(−

8
,1
.8

),
µ
3

=
(8
,0

),
Σ

1
=

Σ
2

=
Σ

3
=

Σ
0

C
as
e

V
II
.

S
et
u
p
F
.

S
et
u
p
M
.

3
3

π
1

=
0
.5
,π

2
=
π
3

=
0
.2

5
,
µ
1

=
(−

8
,−

3
.5

),
µ
2

=
(−

8
,3
.5

),
µ
3

=
(8
,0

),
Σ

1
=

Σ
2

=
Σ

3
=

Σ
0

π
1

=
0
.5
,π

2
=
π
3

=
0
.2

5
,
µ
1

=
(−

8
,−

2
.5

),
µ
2

=
(−

8
,2
.5

),
µ
3

=
(8
,0

),
Σ

1
=

Σ
2

=
Σ

3
=

Σ
0

C
as
e

V
II
I.

S
et
u
p
F
.

S
et
u
p
C
.

3
3

π
1

=
0
.5
,π

2
=
π
3

=
0
.2

5
,
µ
1

=
(−

8
,−

3
.5

),
µ
2

=
(−

8
,3
.5

),
µ
3

=
(8
,0

),
Σ

1
=

Σ
2

=
Σ

3
=

Σ
0

π
1

=
0
.5
,π

2
=
π
3

=
0
.2

5
,
µ
1

=
(−

8
,−

1
.8

),
µ
2

=
(−

8
,1
.8

),
µ
3

=
(8
,0

),
Σ

1
=

Σ
2

=
Σ

3
=

Σ
0

C
as
e

IX
.

S
et
u
p
M
.

S
et
u
p
C
.

3
3

π
1

=
0
.5
,π

2
=
π
3

=
0
.2

5
,
µ
1

=
(−

8
,−

2
.5

),
µ
2

=
(−

8
,2
.5

),
µ
3

=
(8
,0

),
Σ

1
=

Σ
2

=
Σ

3
=

Σ
0

π
1

=
0
.5
,π

2
=
π
3

=
0
.2

5
,
µ
1

=
(−

8
,−

1
.8

),
µ
2

=
(−

8
,1
.8

),
µ
3

=
(8
,0

),
Σ

1
=

Σ
2

=
Σ

3
=

Σ
0

T
ab

le
2:

D
iff

er
en

t
ca

se
s

of
d

at
a

d
is

tr
ib

u
ti

on
s

ch
an

g
es

fr
o
m

o
n

e
ti

m
e

p
o
in

t
to

th
e

n
ex

t
o
n

e
(h

er
e

o
n

ly
co

n
si

d
er

in
g
t

=
0

a
n

d
t

=
1
).

N
ot

e
th

at
Σ

0
=

( 1.
0.

0.
1.

5)

20



(a) Case I. (b) Case II.

(c) Case III. (d) Case IV.

Figure 3: Description of Gaussian mixture distributions for Cases I. to IV. (from Table 2). Blue
centers and covariance ellipsis correspond to Gaussian Mixture parameters at t = 0, orange ones to
Gaussian Mixture parameters at t = 1. Note that when both elements are superimposed, the centers
only appear orange and the ellipses have mixed colors dotted lines.
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(a) Setup F. (Far) (b) Setup M. (Moderate) (c) Setup C. (Close)

Figure 4: Gaussian mixture distributions for Setups F., M. and C. involved in Cases presented
in Table 2 with an example of sampled data sets. Blue crosses correspond to µk and ellipsis to
covariance matrices Σk. Orange points are samples.

Figure 5: An estimated GMM with K̂ = 2 6= Ktrue = 3 for a Setup C. distribution. The centers
and covariances are represented in green. Orange points are samples.

Experiment Average computation time over S = 100 runs (std)

Case I. 1.24s (0.19)
Case II. 1.14s (0.18)
Case III. 1.55s (0.50)
Case IV. 1.35s (0.41)
Case V. 1.33s (0.14)
Case VI. 1.45s (0.32)
Case VII. 1.23s (0.10)
Case VIII. 1.31s (0.27)
Case IX. 1.35s (0.20)

Table 3: Average (and standard deviation) computation time of the different case experiments, with
n0 = n1 = 400 points.

22



A.3.1 Results on the estimation of the number of components K inside our pipeline

We present here results on the estimation of GMM parameters with the modified Robust EM al-
gorithm at t = 0 and t = 1 in our STMP experiments. All experimental frameworks described in
Subsection 4.1 are tested, all with n0 = n1 = n = 400 points, the biggest number of samples we
considered.

For each run of each experiment, we check here if the number of estimated clusters by our
modified Robust EM at t = 0 or t = 1 is correct. We report the correctly estimated K rate in
Table 4. We use the modified Robust EM twice in our STMP: to estimate the initial model at
t = 0 and then the alternative model at t = 1. We have K̂(0) and K̂a components estimated for
M (0) and Ma respectively. We decide that our STMP correctly estimates K over time if and only

if K̂(0) = K
(0)
true and K̂a = K

(1)
true. As an example, in Table 4, for Case I. (same distribution at t = 0

and t = 1), over S = 100 runs, 96 runs of our STMP give both correct estimated K̂(0) at t = 0 and
K̂a at t = 1 . In brief, the correctly estimated K number is given by the intersection of correctly
estimated K̂(0) and K̂a.

The Cases I. to IV. give good K estimates, explained by the correct separation of the clusters as
seen in Figure 3. On experiments with configurations bringing closer two clusters (Cases V. to IX.),
we obtain high rate (over 90%) for static and well-enough separated clusters (Setup F., Setup M.).
This score is also high for displacement from Setup F. to Setup M. (Case VII.) .

But this score decreases when we consider moving clusters which are getting too close. In Setup
C., it becomes harder for our modified Robust EM to differentiate the two merging clusters, which
lead to worst scores. The global score of STMP executions involving at least one Setup C. distribution
is affected by this, the correct proportions are not bigger than 54%. If we look at the estimates K̂(0)

and K̂a in Table 4, the Modified Robust EM algorithm often estimates two classes with samples
from Setup C. distribution. This behavior happens at least 30 over 100 times for each experiment.
But this incorrect estimation leads to understandable results, as samples from the two left hand side
clusters can be confused (see Figure 4c). An example of wrong estimated parameters for Setup C.
is presented in Figure 5, which confirms the interpretability of the results.

Experiment Proportion of right estimated number of components (% for K̂(0) = 2, K̂a = 2)

Case I. 96%
Case II. 98%
Case III. 100%
Case IV. 100%
Case V. 92%
Case VI. 42% (30%,32%)
Case VII. 99%
Case VIII. 54% (0%,34%)
Case IX. 54% (0%,37%)

Table 4: Proportion of right estimated number of components among S = 100 runs. At each

execution, the estimation is correct iff : K̂a = K
(1)
true and K̂(0) = K

(0)
true. Configurations are described

in Table 2.

Thereafter, we can compute the estimation errors for means and covariances matrices on exper-
iments with correctly estimated number of components K (see Table 5). This allows us to confirm
that these estimated Gaussian mixtures are correctly estimated by the modified Robust EM inside
our pipeline STMP. We also notice a poorer average estimate of GMM parameters for datasets from
Setup C. As said previously, this parametrization implies that two clusters are mixed up. In Table 5
we clearly see a slight higher average euclidean distance between the true means and the estimated
ones for Setup C. models. For covariance matrices errors, simply estimated with Frobenius norm,
the average errors are less contrasted, but we observe the highest error for estimation of Ma in Case
II. (an emerging cluster at t = 1).
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M (0) Ma

Case µ̂ Σ̂ µ̂ Σ̂

Case I. 1.5 (0.8) 15.4 (7.1) 1.5 (0.8) 14.3 (6.8)

Case II. 1.5 (0.9) 14.4 (7.3) 1.7 (0.9) 32.0 (31.5)

Case III. 1.5 (0.8) 14.3 (6.9) 1.2 (0.7) 11.0 (4.8)

Case IV. 1.5 (0.8) 14.0 (6.7) 1.5 (0.8) 21.2 (13.9)

Case V. 1.7 (1.2) 16.6 (12.2) 6.3 (3.6) 15.6 (7.8)

Case VI. 4.2 (16.6) 22.8 (22.0) 3.2 (3.8) 23.6 (25.5)

Case VII. 1.5 (0.9) 14.8 (6.6) 1.6 (1.0) 15.8 (7.8)

Case VIII. 1.5 (0.8) 14.3 (8.2) 3.7 (4.7) 29.0 (30.3)

Case IX. 1.7 (0.9) 16.2 (8.5) 2.9 (3.7) 24.8 (29.9)

Table 5: Mean (standard deviation) relative errors (expressed as a percentage) for the estimated
means and covariance matrices within each case, over all runs having correctly estimated K̂ inside
STMP. The euclidean norm is used for means, and the Frobenius norm for covariances.

A.3.2 Effects of the data set size on estimation of Gaussian mixtures and on STMP

In previous explained experiments on synthetic data, we fixed the data set size n = 400. In this part
we study effect of a varying n ∈ {100, 200, 400}. We perform S = 100 runs of our process with data
samples of size n = 200 and n = 100 at each time step (we already have results with n = 400).

As expected, decreasing the number of samples decreases the proportion of good estimated K̂ and
inherently the quality of estimation of parameters K (Table 6). For n = 200 points, the modified
Robust EM algorithm still gives a high rate of correctly estimated K for cases not implying too
closed gaussian clusters. For Cases I. to V. and Case VII., the rates are between 76% and 92%,
allowing to be confident in the estimates. For cases implying the Setup C. the estimated GMM are
worse, as expected, because two true gaussians are almost overlapping. A data set of 100 points
begins to be very limited to properly estimate a GMM even with well defined clusters: the best alert
rate is 61% and the worst is 8%. Therefore, we must be aware that accuracy of estimated GMM in
our process quickly decreases with the data set size.

We can now look at the performance of our pipeline, depending on the data set size. For the
Case I., we want to obtain zero alert. As we saw in Subsection 4.3, we reach 98% true negative
alerts for data sets of size n = 400. For data sets of size n = 200 we have 19 false positive alerts,
and for n = 100 we have 56 false positive alerts. For Cases II. to IV. the proportion of success is
100% for all n values (Table 7).

For Cases VII. to IX., involving more complex gaussian mixtures, the number of alerts is in-
creasing when we decrease n, contrary to what is expected in the first place. But this can finally be
explained by the poor number of correctly estimated gaussian mixtures inside the pipeline, that lead
to higher differences between estimated models at t = 0 and t = 1. For example if a t = 1 we are
in Setup C. (Fig 4c), as two gaussians components are hardly separable the pipeline will estimated
one cluster for the two components, and raise an alert as it is evolving away from the estimated
distribution at t = 0 (which could be Setup F. or M.).

Even if the modified Robust EM becomes less accurate with smaller data sets, our pipeline still
produces interpretable and meaningful results. The decrease of performance with smaller data sets
should be improved inside the modified Robust EM.
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Experiment Proportions of right esti-
mated number of compo-
nents with n = 400

Proportions of right esti-
mated number of compo-
nents with n = 200

Proportions of right esti-
mated number of compo-
nents with n = 100

Case I. 96% 90% 61%
Case II. 98% 87% 46%
Case III. 100% 92% 61%
Case IV. 100% 87% 59%
Case V. 92% 76% 42%
Case VI. 42% 20% 8%
Case VII. 99% 81% 51%
Case VIII. 54% 29% 22%
Case IX. 54% 34% 29%

Table 6: Proportion of right estimated number of components among S = 100 runs. At each
execution, the estimation is correct iff : K̂a = K(1) and K̂(0) = K(0).

Case Case I. Case II. Case III. Case IV. Case IX. Case V. Case VI. Case VII. Case VIII.
n Threshold
400 1.00 78% 100% 100% 100% 55% 99% 67% 99% 96%

1.05 2% 100% 100% 100% 1% 2% 21% 4% 69%
1.10 2% 100% 100% 100% 1% 2% 2% 2% 29%
1.15 2% 100% 100% 100% 1% 2% 1% 1% 7%
1.20 2% 100% 100% 99% 1% 2% 1% 1% 4%
1.25 2% 100% 100% 92% 1% 2% 1% 1% 4%
1.30 2% 100% 100% 81% 1% 2% 1% 1% 2%
1.35 2% 100% 99% 73% 1% 2% 1% 1% 2%
1.40 2% 100% 98% 72% 1% 2% 1% 1% 2%

200 1.00 80% 100% 100% 100% 58% 91% 55% 98% 94%
1.05 19% 100% 100% 100% 26% 22% 38% 27% 71%
1.10 19% 100% 100% 100% 21% 18% 20% 16% 47%
1.15 18% 100% 100% 100% 19% 16% 18% 14% 38%
1.20 17% 100% 100% 96% 19% 13% 17% 14% 30%
1.25 17% 100% 100% 91% 19% 13% 17% 13% 29%
1.30 17% 100% 100% 81% 19% 13% 17% 13% 28%
1.35 17% 100% 99% 75% 19% 13% 17% 13% 26%
1.40 17% 100% 98% 71% 19% 13% 17% 13% 26%

100 1.00 78% 100% 100% 100% 84% 89% 74% 96% 96%
1.05 62% 100% 100% 100% 74% 72% 71% 75% 89%
1.10 56% 100% 100% 100% 71% 70% 63% 70% 80%
1.15 56% 100% 100% 100% 67% 69% 54% 70% 77%
1.20 54% 100% 100% 99% 64% 64% 51% 68% 72%
1.25 54% 100% 100% 97% 63% 60% 51% 67% 68%
1.30 53% 100% 100% 93% 63% 60% 51% 64% 67%
1.35 53% 100% 98% 89% 62% 58% 49% 63% 66%
1.40 53% 100% 97% 86% 62% 58% 49% 63% 66%

Table 7: Number of alerts raised by our STMP for each experiment (S = 100 runs) on data sets of
n points. For each size of datasets and Case is provided the number of alerts for different values of
the alert threshold.
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A.4 Results on the COVID-19 data set of Section 5

Week Number of positive diagnosed people per week

9 5
10 18
11 272
12 965
13 1666
14 1297
15 695
16 366
17 209
18 114
19 14

Table 8: Distribution of positive diagnosed people to COVID-19 over weeks.

(a) Results of the original Robust EM on week
12.

(b) Results of our modified Robust EM on week
12.

(c) Results of the original Robust EM on week
13. We observe here overlapping clusters.

(d) Results of our modified Robust EM on week
13.

Figure 6: Estimated GMM labels and centers by Robust EM [18] and modified Robust EM on
COVID-19 data set on weeks 12 and 13. Green dots are centers of the clusters.
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Parameters Robust EM [18] Modified Robust EM

π̂

(
0.02 0.0355 0.0355 0.0494 0.0494 0.1992

0.0389 0.1049 0.0577 0.3463 0.0631

) (
0.0155 0.0651 0.0932 0.2086 0.0341
0.0896 0.0525 0.3924 0.049

)

µ̂



2.3487 48.8308
2.3646 48.8262
2.3646 48.8262
2.3158 48.8882
2.3158 48.8882
2.3166 48.8404
2.27 48.8502

2.3875 48.8473
2.3836 48.8894
2.3644 48.8782
2.4032 48.867





2.3486 48.8307
2.3646 48.8262
2.3151 48.8879
2.3174 48.8403
2.2697 48.8499
2.3892 48.8461
2.3841 48.8892
2.3655 48.8775
2.4042 48.8661



Σ̂



3.6945e− 05 3.2396e− 05
3.2396e− 05 3.2901e− 05

−−−−−−−− −−−−−−−−
6.924e-05 1.184e-05
1.184e-05 2.077e-05

−−−−−−−− −−−−−−−−
6.924e-05 1.184e-05
1.184e-05 2.077e-05

−−−−−−− −−−−−−−−
0.00032407 0.00011124
0.00011124 5.9566e-05
−−−−−−−− −−−−−−−−
0.00032407 0.00011124
0.00011124 5.9566e-05
−−−−−−−− −−−−−−−−

0.0005979 −8.6696e− 05
−8.6696e− 05 9.8369e− 05
−−−−−−−− −−−−−−−−

4.2497e− 05 4.0846e− 05
4.0846e− 05 6.039e− 05

−−−−−−−− −−−−−−−−
0.00025143 −7.2942e− 05
−7.2942e− 05 6.2798e− 05
−−−−−−−− −−−−−−−−

6.2128e− 05 −3.2058e− 05
−3.2058e− 05 2.2364e− 05
−−−−−−−− −−−−−−−−

0.0004057 −0.00010182
−0.00010182 0.00013259

−−−−−−−− −−−−−−−−
3.8073e− 05 −4.0277e− 05
−4.0277e− 05 8.9835e− 05





3.6889e− 05 3.244e− 05
3.244e− 05 3.2399e− 05

−−−−−−−−−− −−−−−−−−−−
6.842e− 05 1.1486e− 05
1.1486e− 05 2.0443e− 05

−−−−−−−−−− −−−−−−−−−−
0.0003229 0.00011263
0.00011263 6.0603e− 05

−−−−−−−−−−− −−−−−−−−−−−
0.00063988 −9.7086e− 05
−9.7086e− 05 9.9909e− 05

−−−−−−−−−− −−−−−−−−−−
3.9314e− 05 3.8337e− 05
3.8337e− 05 5.7455e− 05

−−−−−−−−−−− −−−−−−−−−−−
0.00022363 −5.9831e− 05
−5.9831e− 05 5.3155e− 05

−−−−−−−−−−− −−−−−−−−−−−
6.0678e− 05 −3.2255e− 05
−3.2255e− 05 2.264e− 05

−−−−−−−−−−− −−−−−−−−−−−
0.00043225 −0.00011348
−0.00011348 0.00014621

−−−−−−−−−−− −−−−−−−−−−−
3.1265e− 05 −3.6572e− 05
−3.6572e− 05 8.4985e− 05



Table 9: Estimated parameters by Robust EM [18] and modified Robust EM on week 13 of the
COVID-19 dataset. These estimations were performed independently of previous time steps.
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(a) Week 9 (There are only 5 cases, each case is
center of its own cluster.) (b) Week 10

(c) Week 11 (d) Week 12

(e) Week 13 (f) Week 14

Figure 7: Estimated Gaussian Mixture Models on COVID-19 dataset per week (weeks 9 to 14).
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(a) Week 15 (b) Week 16

(c) Week 17 (d) Week 18

(e) Week 19

Figure 8: Estimated Gaussian Mixture Models on COVID-19 dataset per week (weeks 15 to 19).
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