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Georges-Pompidou, AP-HP

Abstract

Population monitoring is a challenge in many areas such as public health or ecology. We
propose a method to model and monitor population distributions over space and time, in order
to build an alert system for spatio-temporal data. Assuming that mixture models can correctly
model populations, we propose new versions of the Expectation-Maximization algorithm to
overcome drawbacks of the existing ones. We then combine these algorithms with a temporal
structure, allowing to detect dynamical changes in population distributions, and name it a
spatio-temporal mixture process (STMP). We test STMP on synthetic data, and consider several
different behaviors of the distributions, to adjust this process. Finally, we validate STMP on
a real data set of positive diagnosed patients to corona virus disease 2019. We show that our
pipeline correctly model evolving real data.

Keywords: Gaussian Mixture Model, EM algorithms, spatio-temporal data

1 Introduction

1.1 Background

The rapid growth of health information systems has led to the availability of real-time spatio-
temporal follow up of patients affected by a given disease with a high precision. A remaining challenge
is to develop methods to use these data to improve public health strategies and to transform these
observed data into actionable decision-aid tools.

A spatial model is based on the characterization of individuals by their geographical location
(place of birth, place at the time of diagnosis, place of residence, etc). All together, these people
are building up a population. The temporal component is very important in disease monitoring
therefore requiring to consider the population distribution as evolving along time. The association of
spatial and temporal components for a disease yields a spatio-temporal distribution. One actionable
decision-aid tool that could improve health management using such data is real-time highlighting of
new or evolving clusters of patients, i.e. a specific sub-group of patients which will evolve differently,
while the rest of the population remains identically distributed. This would be particularly useful
to rapidly identify a new contamination source for transmissible disease, as soon as the first affected
cases are present in health information systems.
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1.2 Related Works

1.2.1 Spatio-temporal statistical analyses in epidemiology

Spatio-temporal statistical analyses are already present in research in epidemiology and are mainly
based on statistical tests, coupled or not with space-time kernel density estimation, as presented in
[1]. Scan statistics methods proposed in [2, 3] are reference methods for many studies. They propose
detection of spatial and/or temporal clusters from aggregated data (discrete in space and time) using
sliding windows. They exhaustively scan the space and time in order to seek significant spatio-
temporal clusters. The hypothesis that the incidence rate is higher inside the windows than in the
studied region is tested using Monte Carlo methods to simulate likelihood ratio distributions.They
develop different statistics using a known underlying population at risk, or cases/controls. In absence
of population-at-risk, the authors of [4] estimate the expected number of cases. In both case, their
methods require to fix several parameters on the considered sliding window (minimal area and
minimal temporal size are two examples of the various parameters). An important issue is that
these methods do not provide a modelling of the population over the whole space.

An alternative way is to use mixture models. By using a finite mixture of distributions, we model
each point as belonging to each of the subgroups (clusters) with a certain probability. Mixture models
come with strong advantages. First, they are flexible as one can set the probability distribution
function (pdf) of each cluster depending on the type of observations (scalars, vectors, positive
measures, etc). Second, it is interpretable because subjects can be attributed to estimated classes
a posteriori which enables to distinguish homogeneous groups in the whole set. Third, they do not
rely on controls distribution estimation or observation, unlike scan statistics methods. Moreover, by
using mixture models, we make assumption here that the distribution of global population is not
changing across time. We are working on the temporal evolution of the cases distribution. Last,
these mixture models are parametric and well understood.

1.2.2 Estimation algorithms of mixture models and their issues

When data are multivariate real values observations, the usual probability density for each cluster is
the multivariate Gaussian distribution. This is particularly relevant when considering geographical
data (mapped as living on the real plane).

But several issues arise when using such a model. First, one has to set the number of components
in the mixture. To solve this burden, model selection criteria have been proposed, notably by [5, 6, 7].
However, they rely on finite collection of estimations with increasing complexity.

Then, one has to be able to estimate the parameters of this particular model given the data
base. To perform the estimation of Gaussian mixture parameters, given that we fix the number of
clusters, the leading algorithm is the Expectation-Maximization algorithm introduced by Dempster
et al. [8].

The choice of initial parameters is a major issue for the EM algorithm, as its solution is de-
terministic and highly dependent on this initial choice. The construction of the sequence ensures
that the critical points are maxima, but could be both global or local ones. As Baudry and Celeux
[9] pointed out, several strategies exist to avoid sensibility to initial values and selection of a bad
local maximum. Easy ways to address this issue are to use small-EM algorithms as initialisation
of a long run or to execute the EM algorithm several times with different random initialization
procedures. When the problem is high-dimensional, these methods are not convenient because the
parameters space to explore becomes too large. Another suggestion was to initialise with k-means
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algorithm, which is also a clustering method. The stability is improved but the k-means algorithm
has to be initialized which switches the problem without solving it. Recently, Lartigue et al. [10]
introduced an annealing E-step to better stride the support and become almost independent from
the initialization.

On the other hand, Baudry and Celeux [9] proposed to introduce a recursive initialisation which
consists in using the K components solution to initialize the K + 1 components mixture. Although
interesting, their full process requires several GMM, with a varying number of components, leading
to expensive computational time. By using this recursive initialization strategy, Baudry and Celeux
also acted on the second burden of the EM algorithm: the choice of the number of components.
Selecting the optimal number of components is highly dependent on which finite collection of models
we consider and which selection criterion is used.

To select the best model in a finite collection, the well known criteria based on maximum like-
lihood are the Akaike Information Criterion (AIC)[5], or the Bayesian Informative Criterion (BIC)
[6].BIC has been proved to be adequate for selecting K, but it is an asymptotic criterion and requires
to run the estimation for several given possible K.

To overcome the problems of these asymptotic criteria, non-asymptotic approaches have been
proposed, as the slope heuristic criterion. It was introduced by Birgé and Massart [7], and Baudry
et al. [11] proposed a framework to calibrate it. This criterion assumes that there exists an optimal
constant, which, associated with the model dimension, provides an optimal penalty of the log-
likelihood. By computing a regression with obtained log-likelihood values in the estimated models
collection, the optimal constant is then obtained with the slope. Drawbacks of this method are the
required linear behavior of the log-likelihood and a large enough finite set of estimated models.

Trying to solve both issues together is a recurrent objective, which led to original methods in
the past decades. These methods perform estimation and selection of the model at the same time
[12, 13, 14, 15, 16, 17] .

A recent idea, proposed in [12], combines the slope heuristic criterion for model selection [7] with
a dynamical change of the number of components inside the EM algorithm. The aim was to avoid
convergence towards local maxima at the boundary of the parameters space and a too restrictive
initialization. They introduced a annihilation step which deletes components based on a data-
depending threshold and iterate between it and the EM algorithm until all components proportions
are above a chosen threshold. The final estimated model is saved in a collection and this process is
repeated several times for different initial K. Form the estimated models collection they select the
best model with the slope heuristic criterion. As described here, their introduced method is also
based on estimation of a finite collection of models. Moreover they have to run several time the EM
algorithm to estimate only one model of the collection. This leads to high computation time, and
to the risk that the real model does not belong to the finite set of models.

In [13] and later [17] a minimum message length criterion [18, 19] is developed to penalise the
cost function, originally based on the log-likelihood in the EM algorithm. With this introduced
penalisation, clusters may be annihilated if they are non-informative.This step prevents the algorithm
from approaching the boundary of parameter space, and acts as a model selection process. They
also try to address the initialization problem by beginning their algorithm with a large number of
components. Their complete algorithm has the particularity to not stop before reaching a minimal
number of clusters and it forces parameter space exploration to obtain several models.

Another dynamical algorithm is the step-wise split-and-merge EM algorithm, based on the con-
struction of split and merge criteria [14, 15]. The authors of [14] based their split and merge criteria
on Kullback-Leibler divergence and correlation coefficient respectively, while in [15] they used the
local Kullback-Leibler divergence to measure distance between a local density and model density of
each component for both split and merge criteria. In [15] they free themselves from the choice of
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a criteria threshold, and introduce an acceptance probability for freshly new computed parameters
after the split-merge step, which avoids too frequent and unstable moves.

In [16], Yang et al. also considered a dynamical algorithm, where the number of components
is estimated in a single-run EM algorithm at a not too-high computational time. Moreover, the
framework remains close to the EM algorithm one, but still presents the problem of falling into local
maximums.

These different variants of the EM algorithm require a high computational cost, the tuning of
several parameters or cannot avoid undesirable local maxima involving for example superimposed
clusters. In addition the temporal component to monitor the population distribution is absent of
these procedures, and the epidemiological models presented above also cannot meet the criteria
for estimating, monitoring and modelling population dynamics over time. As a consequence, these
drawbacks prevent us from directly using these different methods to obtain correct approximations
of population dynamic and to monitor them.

1.3 Contributions

In this paper, we propose a pipeline named spatio-temporal mixture process (STMP) to infer popula-
tion distribution and to highlight temporal population distribution differences as a first step towards
a decision support and alert system for spatio-temporal analysis of the evolution of a population.

With the proposed STMP, we combine reliable estimation and modeling of mixture models and
temporal monitoring of these models. This pipeline will create a temporal process with two mixture
models, one time-depending and one totally independent. The adequacy of population dynamic to
either of these two models will determine if an alert should be raised or not.

As a module to our STMP, we will introduce an adaptation of the EM algorithm to take into
account a temporal dependency inside a mixture model. Finally, we will also propose an adaptation
of the Robust EM algorithm in [16] to overcome the EM algorithm drawbacks that are model selection
and efficient estimation. Even if this Robust EM was shown to be effective to tune parameters as
the number of components in the mixture, and estimate the means and cluster covariances, it can
output overlapping components. We will suggest changes to obtain a more flexible algorithm and
avoid these overlapping components.

To finish designing our STMP, we will perform experiments on synthetic data and we will study
the behaviour of our pipeline in different situations. We will then test our algorithm on a COVID19
data set from Paris area, showing the adequacy of a mixture model evolving over time and the
consistency of the alert response to population dynamical changes.

2 Notations and reminders on mixture models

We assume for our future application in Section 4 and 5 that the population is modeled as a Gaussian
mixture. As we will associate here our pipeline with Gaussian Mixture Models (GMMs), we first
recall the GMM definition and then the classical methods introduced in the literature to estimate
GMM parameters. In particular, we focus on the question of estimating the number of clusters and
the mixture in a single-run algorithm. These methods are the basic elements on which we build our
pipeline STMP described in Section 3.1.

2.1 Summary on Gaussian mixture models

Let us consider a set of observations denoted x = (x1, . . . ,xn) with xi ∈ Rd. Let Nd(·|µk,Σk)
be the probability density function (pdf) of the Gaussian density of dimension d with mean µk
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and covariance matrix Σk, then the observations are assumed to be sampled from the following
probability distribution:

K∑
k=1

πkNd(·|µk Σk) , (1)

where (πk)1≤k≤K is the mixing proportion sequence and satisfies 0 < πk < 1, ∀ k = 1, . . . ,K

and
K∑
k=1

πk = 1. The parameter is given by θ = (π1, . . . , πK , µ1, . . . , µK ,Σ1, . . . ,ΣK) with means

(µk)k=1,...,K ∈ Rd×K and covariance matrices (Σk)k=1,...,K ∈ S++
d×d(R), the set of symmetric positive

definite matrices in d dimensions.
A GMM can be written as a hierarchical model. Let us introduce latent variables (z1, . . . , zn)

such that zi = {0, 1}K , zki = 1 if data xi belongs to cluster k, 0 otherwise. Then the complete model
writes : {

zi ∼ Mult(1, π1, . . . , πk) ,
xi|zki = 1 ∼ Nd(µk,Σk) .

(2)

The whole issue with GMM is twofold. The first challenge is to estimate the number of compo-
nents in the model. Then, given this estimated K, the second issue is how to estimate the vector of
parameters θ. All this has to be performed from the observed data only.

In the following subsection, we recall the Expectation-Maximization algorithm and its variants
to solve both above mentioned issues. We also highlight their drawbacks which prevent us from
using them as is in our STMP.

2.2 Estimation of GMM parameters with EM-like algorithms

The most popular algorithm to estimate a GMM is the Expectation-Maximization (EM) algorithm
[8] as it has been introduced for that purpose. The general principle is to produce a sequence of

parameters (θ̂p)p∈N which converges towards the set of critical points of the observed likelihood. The
observed likelihood writes for GMMs on a set of observations x:

pθ(x) =

n∏
i=1

[
K∑
k=1

πkNd(xi|µk Σk)

]
. (3)

The EM algorithm alternates between the two following steps (until convergence criterion is
met). Suppose we are at the p-th iteration of the algorithm, we have:

• E-step : Compute the conditional expectation of the complete log-likelihood. Latent variables
zki are discrete, so their conditional expectations are given by

pθ(z
k
i = 1|xi) =

πkNd(xi|µk,Σk)∑K
j=1 πjNd(xi|µj ,Σj)

= τki (θ) . (4)

• M-step : Update the parameter estimates:

π̂pk,MLE =
1

n

n∑
i=1

τki , (5)
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µ̂pk,MLE =

∑n
i=1 τ

k
i xi∑n

i=1 τ
k
i

, (6)

Σ̂pk,MLE =

∑n
i=1 τ

k
i (xi − µi)>(xi − µi)∑n

i=1 τ
k
i

. (7)

As the EM algorithm presents several drawbacks detailed in Section 1, and that we expect our
framework to have a single run to estimate the data distribution at a given time step, we turn to
the more ”dynamical” algorithms where estimation and selection of the model are performed at the
same time[13, 17, 15, 14, 16].

In the next section, we will detail a recent dynamical algorithm proposed by [16], which answers
almost all issues and is the base of our proposition.

2.3 The Robust EM algorithm

As mentioned above, the unknown number of clusters in GMM is a main problem. The authors of
[16] go deeper into looking dynamically for the best number of components in the mixture. Their
Robust EM adjusts the EM mixture objective function, by adding a criterion based on the entropy
of the mixture proportions πk. Non-informative proportions are given by a high entropy, leading to
minimise this entropy.Starting from the complete log-likelihood, the objective function to maximize
in the M-step with this entropy-based penalty is:

L′(θ,x, z) =

n∑
i=1

K∑
k=1

zki log(πkN (xi|µk,Σk)) + β

n∑
i=1

K∑
k=1

πklogπk,with β ≥ 0 . (8)

With this new criterion to maximise, the update equation of components proportions π inside
the EM algorithm becomes:

π̂
(new)
k = π̂k,MLE + βπ̂

(old)
k

(
ln π̂

(old)
k −

K∑
s=1

π̂(old)
s ln π̂(old)

s

)
(9)

with π̂k,MLE given by (5), and π̂
(old)
k being the component weight estimate of previous iteration.

Equations to estimate the means µ̂k and the covariance matrices Σ̂k in Robust EM are still given
by Eq.(6) and Eq.(7) with the new component weights from Eq.(9).

As we can see, new parameter β comes as a penalty weight in Eq.(8). It helps to control the
competition between clusters. This parameter is enhanced at each iteration to increase the entropy
weight in Eq.(9) if proportions at previous iteration were too close. And reciprocally β is reduced
automatically to undercut the gap between the different proportions. Acting on the evolution of
proportions with β enables one to check at each iteration that all the components proportions are
above a given threshold, and therefore to delete those of proportion πk ≤ 1

n . This is the annihilation
part in their process.
Another dynamic is imposed to β which is fixed to zero when the cluster number K is stable, i.e not
decreasing for a long period. This is important to not obtain oscillating parameters, and so to reach
a maximum. From their implementation and experiments, they fixed this time limit to pmin = 60
iterations, without any attempt to adapt it to different use cases.

This algorithm is robust to initialization as, to start with, each data point is the center of its
own component, which yields the initial number of class K0 to be n, the sample size. Starting with
higher number of mixture components than the true value is a solution to the initialization problem,
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allowing to escape local maxima in some situations where components are very heterogeneously
distributed in space.

Although efficient, entropy-based penalisation [16] or equivalently Dirichlet-type prior [13] do
not prevent from having several components with similar parameters, meaning that two cluster may
be superimposed.

In the Robust EM algorithm ([16]), competition and instability of component proportions do not
avoid to finish in a wrong local maximum of this type. The coefficient β is usually not high enough
to trigger removal of one of the superimposed clusters. As the competition is not guaranteed at
each iteration, we suggest improvements of the Robust EM algorithm by [16] in the next section.
We also present a temporal process which combined with estimation algorithms will provide efficient
detection of population dynamical changes.

3 Methods: combine a spatio-temporal mixture process and
estimation algorithms

In this section, we describe our general pipeline for temporal evolution of a population including a
distribution change detection, named STMP. Then, we detail an adaptation of the EM algorithm
in order to constraint the estimation of GMM parameters. This enables to propose a close variant
of a given distribution which, since estimated, highly depends on samples. Finally, we introduce
modifications on the Robust EM algorithm to escape local maxima characterised by ”overlapping
clusters”. The pipeline STMP and the estimation algorithms are generic enough to apply on different
mixture models and different process cases.

3.1 A spatio-temporal mixture process (STMP) with dynamical change
detection

We consider that the time period is discretized and the time steps are given by t = 1...T . At each

time step, the data vector is X(t) = (X
(t)
1 , . . . ,X

(t)
nt ) with X

(t)
i ∈ Rd. We assume that these data

are sampled from a statistical time dependent model. We model the data at each time step t by a
mixture of probability distributions, parametrized by a vector θ(t), characterizing the current model
M (t).

At each time t, we observe a new set X(t), independent of the previous one X(t−1). Given this
new sample, we want to evaluate if the previous model M (t−1), defined as a mixture model estimated
on X(t−1), is likely to fit the new set X(t).

However, as M (t−1) depends on the data set at time t−1, it suffers from the estimation variability,
which means that the true model is likely to be close but not necessarily exactly this one. To deal
with this uncertainty, we estimate a constrained model (or candidate model) M ′ to fit X(t) where
M ′ is an adjustment of M (t−1), given by θ′ close to θ(t−1). Behind this adaptation of M (t−1), we
indirectly keep track of the estimated model at previous time, so we obtain a temporal chain from
M (0) to M (T ) through computation of M (t) = M ′. However if at time t the data set X(t) is sampled
from a very different distribution, M ′ should not be able to fit X(t). In this situation, we would
like our process to detect this shift in population dynamic, and propose an alternative model more
representative of the new data.

In order to do this, we propose to also estimate an alternative model, Ma from the only data set
X(t). We do not make any assumption on a previous time step dependence to estimate this model
leading to a parameter vector θa only driven by X(t).
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With these two models in hands, we are now able to track changes of the population distribu-
tion, and determine whether there is a modification in the population geographical spreading. Our
proposed warning system is defined as follows. If at time t, the model M ′, close to M (t−1), is not
adapted to describe X(t), we keep the independent model Ma as the new description of the current
population and raise an alert. The aim is now to define the decision rule to select either model and
to raise the alert or not as a result.

A simple way to quantify goodness of fit of a statistical model to the data is its likelihood. The
likelihoods of estimated mixture models M ′ and Ma, given by pθ′(X

(t)) and pθa(X(t)) respectively,
are used to define a decision rule in our process, named likelihood ratio or also known as Bayes
factor.

As the alternative model is unconstrained, pθa(X(t)) is the maximum value of the likelihood of
the data without assumption. On the other hand, pθ′(X

(t)) is the maximum value of the likelihood
when the parameters θ′ are restricted to stay in a neighbourhood of θ(t−1). In the case where the
constrained model M ′, fits well the new data set, the alternative model is likely to be similar and to
have a similar likelihood.Therefore, the likelihood ratio will be close to one. On the other hand, if the
new data set is sampled from a far different distribution from M (t−1), then the constrained model
will have a likelihood that is lower than the alternative model which by design will be able to bet-
ter fit the new point cloud. Therefore, there should be a notification when this ratio is away from one.

Finally, we define the ratio as follows:

rt(M
′,Ma) =

pθa(X(t))

pθ′(X(t))
. (10)

In order to accept or reject the alternative model at time t, we define a threshold τ such that if
rt(M

′,Ma) > τ , the alternative model is selected and an alert is raised.

The detailed behaviour of this likelihood ratio depending on the population evolution will be
studied in Subsection 4.2. In particular, this empirical study allows us to set the threshold τ and
highlight its properties in particular its independence w.r.t the sample size.

With all these elements in hand, our space-time complete pipeline, named Space-Time Mixture
Model (STMP), executes at each time t the following steps:

1. Estimate models M ′ and Ma based on respectively (M (t−1), X(t)) and (X(t)),

2. Compute likelihood ratio rt(M
′,Ma) as in Eq.(10),

3. If rt(M
′,Ma) > τ , raise an alert and set M (t) = Ma. Else set M (t) = M ′.

We now describe the two algorithms that we use to perform the candidate and alternative model
estimations.

3.2 The Modified Robust EM algorithm: tackling superimposed clusters

In Section 2, we have highlighted two weaknesses of the Robust EM algorithm by[16]. First, the
minimal number of iterations (named pmin) before setting β = 0 is too small, which means that the
algorithm is untimely stopped in its exploration. Then, the algorithm is stuck in local maxima as soon
as the convergence condition (‖µ(p) − µ(p−1)‖ < threshold) is satisfied, which stops the algorithm
too early, revealing aberrant clusters. These aberrant clusters are here superimposed clusters, which
means that at least two clusters are sharing very similar (or exactly equal) parameters values.
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To avoid this local maximum problem, we propose slight modifications of the Robust EM algo-
rithm, by incorporating a verification step of superimposed clusters. We consider that two clusters
i and j are superimposed if

‖µi − µj‖2 + ‖Σi − Σj‖F < ε (11)

for some small ε > 0. Note that requiring equality in Eq. (11) is numerically too strong and would
barely happen.

We check Condition (11) when the algorithm has reached the convergence condition (Algorithm 2,
line 1). As long as there are overlapping clusters we force the estimation to continue, as we will see
now.

Inside Algorithm 2, the ”stop-competition” part is the moment in the algorithm where β = 0
if the component number is stable for at least 100 iterations and if the actual iteration number p
is greater than pmin (line 2). At that point in the algorithm, if we set β = 0 too early, it slows
down the competition between clusters, and may block components from disappearing. If there is no
overlapped clusters and stability conditions are fulfilled then we set β = 0. Otherwise, we proceed
as follows: we first increase pmin by increment of 50 iterations (Algorithm 2, line 3). By increasing
pmin, the algorithm has more iterations to try to annihilate some components.

Since increasing pmin indefinitely can lead to a ”stable” configuration where β adopts a cyclical
behaviour and loops on it we then check the closeness condition Eq. (11) again. If Eq. (11) is
still true for some clusters, we merge these clusters. The weight of the fused cluster is the sum of
the weights of the overlapping ones. The means and covariance matrices being almost equal, this
fusion of components does not change the likelihood. This makes the algorithm jump to another
configuration with the same likelihood and enables it to explore this new region of interest.

Other steps of the algorithm stay identical to the original Robust EM, as presented in Subsec-
tion 2.3. The full modified Robust EM algorithm is summarized in Algorithm 2.

3.3 The Constrained EM algorithm: incorporating former parameters

We name Constrained EM (C-EM) a slight variation of original EM algorithm [8] where the param-
eters are restricted to a neighbourhood of a given vector of parameters denoted θ0. In particular,
we introduce constraints on the estimated components proportions (πk)1≤k≤K . Moreover, when the
cluster means are involved, restrictions are also put on these means. The initialization of our C-EM
algorithm is given by the parameter vector θ0 as well. The idea behind C-EM algorithm is to obtain
estimated parameters highly driven by the initial parameters vector θ0 but updated on data X.
Because the parameters of our dynamical modeling are estimated empirically, the estimation suffers
from the uncertainty given by the sampling. This means that the estimated parameters at time t−1
may not be the perfect description of the data set and a new independent sample from the same
ground truth distribution will lead to a slightly different estimated parameter vector. Therefore,
we consider that a newly independent estimated mixture and the given estimated one may both
come from the same ground truth. For this reason, the C-EM enables us to give a chance to the
previously estimated model to explain the data distribution. Otherwise, forcing the comparison
of M (t−1) with Ma will always be in favor of Ma. With this parameters-dependency, the newly
estimated parameters could be incorporated in our temporal process as a time-dependent estimate.

From now on, we propose the details of this algorithm for distributions where the cluster means
and covariances are to be estimated. This will be the case in our disease progression use case where
the model is a mixture of Gaussian distributions. We now detail constraints we impose on parameter
estimations inside an EM-like algorithm to estimate GMM.
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We name π̂c, µ̂c and Σ̂c the constrained proportions, means and covariance matrices obtained
through the C-EM algorithm. As in the original EM algorithm, π̂p and µ̂p vectors are estimated at
iteration p of C-EM following equations (5) and (6). We then add a third step in the estimation

algorithm to obtain π̂c and µ̂c. Covariance matrices Σ̂p are estimated with Eq. (7), and correspond

to Σ̂c, without any direct constraint but we will see right after a tested condition at the end of the
C-EM algorithm.

The constrains in the C-EM algorithm always imply θ0, the initial parameter vector at p = 0, as
we want to restrict the parameters estimation. The initial parameter vector contains (π0

k)k, (µ0
k)k

and (Σ0
k)k the covariance matrices providing information about the anisotropy we allow for the

uncertainty on the means parameters. Components proportions are probability weights and live in
[0, 1], so we simply constrain component proportion of cluster k, π̂pk (at iteration p), to vary inside
[π0
k ± 0.1]. It will represent π0

k more or less 10% of all proportions. We also avoid proportions to
become null to avoid an artificial death of a cluster in the mixture.

Constrained mean µ̂ck of the component k at iteration p with the C-EM algorithm is a projection
of estimated µ̂pk on a rectangular space centered on µ0

k and of length and width given by ellipse axis
of the covariance matrix Σ0

k (square roots of the eigenvalues of Σ0
k).

These constraints are written here for each iteration p:{
π̂ck = min(max(π0

k − 0.1, π̂pk), π0
k + 0.1) ,

µ̂ck = Prect(µ0
k,Σ

0
k)(µ̂

p
k) .

(12)

In STMP, θ0 will be the estimated parameter vector from the previous time step t − 1 of the
pipeline, which corresponds to θ(t−1).We obtain at time t an estimated parameter depending on
estimated parameter at time t−1, but allowing some adaptation of the model to the newly observed
data X(t).

In the use case presented later, we use Gaussian distribution for each cluster. This will be
detailed and motivated in Section 5. In this setting the constrains are the one presented above on
the mixture probabilities and the means of the Gaussian distributions (Eq.(12)).

Note that the algorithm can converge to final parameters where one covariance matrix is degen-
erated, reflecting the aim of the algorithm to delete one component of the mixture model. In the
original EM algorithm, implementations usually include a regularisation on the covariance matrices,
in order to avoid singular ones. As we want to see when the estimated candidate model does not
correspond to data, we remove this regularisation from the C-EM algorithm. Therefore, we raise an
alert when one or more covariance matrices become singular. We add this condition as an alert in
STMP detailed in Subsection 3.1, before the calculation of the ratio rt (Eq.(10)).

In addition to this, as the covariance matrices are not constrained in the C-EM algorithm, we
introduce a condition to check these parameters a-posteriori. From C-EM algorithm, covariance
matrices are freely estimated, but they can evolve far away from initial covariances matrices Σ0

k, so
missing the time link. We introduce an already existing similarity measure between final estimated
Σ̂ck in C-EM and Σ0

k the initial covariance matrices. We use the cosine similarity, also introduced
as the correlation matrix distance by [20] on correlation matrices. We adopt their formulation
and apply it on covariance matrices instead of correlation matrices. Bounded between 0 and 1,
this coefficient measures orthogonality between two matrices and is useful to evaluate whether the
spatial structure of the clusters have significantly changed. Low values reflects high similarity while
high values reflects orthogonality, and so on dissimilarities. As Σ̂ck should be similar to Σ0

k, we only
tolerate a value of 0.1 or less, in order to introduce flexibility and sampling error tolerance inside
STMP. For higher values, showing dissimilarities between Σ̂ck and Σ0

k, we also raise an alert in STMP
detailed in Subsection 3.1.
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3.4 Application of the STMP on Gaussian mixtures models

To conclude this section, our new process is fully described in Algorithm 1, combining the temporal
process described in Subsection 3.1 with the C-EM to estimate M ′ (Subsection 3.3), and the modified
Robust EM to estimate Ma (Subsection 3.2).

Algorithm 1: The Spatio-Temporal Mixture Process (STMP)

input : For t = 0, . . . , T : data X(t)

θ0 ← ModifiedRobustEM(X0)

θ(t) ← θ0

for t = 1, . . . , T do
θ(t−1) ← θ(t)

θ′ ← C-EM(X(t), θ(t−1),maxiterations=5)

θa ← ModifiedRobustEM(X(t))

rt ← pθa (X(t))

pθ′ (X
(t))

if (∃ singular Σ̂′k ⊂ θ′) or (∃ cos similarity(Σ̂′k, Σ̂
(t−1)
k ) > 0.1 ) then

alert ← True

θ(t) ← θa

else if rt ≥ τ then
alert ← True

θ(t) ← θa

else
θ(t) ← θ′

end

end

As in next applications we will only consider geographical data, in R2, we use Gaussian Mixture
Models to represent these data. The GMM parameters are estimated with the presented algorithms,
and the likelihoods are computed with Eq. (3).

Remember that the pseudo-code 1 shows the STMP with all our propositions, which could be
used with different mixture models. The adaptation of the estimation algorithms may also be used
to fit with other distributions.

4 Experiments on synthetic data

This section is dedicated to the experimental validations therefore focused on synthetic data. We
first present all the experiments that are tested on our pipeline.

To demonstrate and validate our complete pipeline, using both our modified Robust EM and
our C-EM, we then study the estimated likelihood ratio for different behaviors of the population
distribution (characterized by the experiments), and the resulting performances of the pipeline. By
studying these performances we can fix a threshold conditioning the raise of the alert in all situations.

Finally, in Subsection 4.3 we focus on the validation of STMP,given by Algorithm 1. We evaluate
the alert performances and computation times for all experiments.

In Appendix A.2.1 we present the estimation results of the Gaussian mixture models inside our
pipeline. And in Appendix A.2.2 we include experiments on the number of points n in the data
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sample, and how it affects each step of STMP.

4.1 Description of experimental setups

All the experiments are done on a two time steps configuration (only t = 0 and t = 1). We consider
the following situation where we have a Gaussian mixture distribution with three clusters at initial
time (t = 0). One cluster is isolated on the far right hand side, and the two others are on the left hand
side. This is the basic structure that all initial distributions (at t = 0) will follow. Different positions
of left hand side clusters are represented in Figure 3, for Setup F. (Far.), Setup M.(Moderate.) and
Setup C. (Close.).

From this initial Gaussian mixture, various changes are done at time t = 1 considering:

• (Case I.) : no evolution at t = 1, clusters are properly distinct (corresponds to Setup F. at
t = 0 and t = 1).

• (Case II.) : the emergence of one new cluster leading to a distribution with four clusters at
time t = 1.

• (Case III.) : the disappearance of one cluster among the existing three initially present.

• (Case IV.) : the movement of one initial cluster, which corresponds to moving centers and
changing proportions and covariances.

• (Case V. and Case VI.) : no evolution at t = 1, as Case I., but here the two left hand side
clusters are slightly interfering (Setup M.) for Case V., and finally these two clusters are very
closed and barely identifiable if not enough samples (Setup C.) for Case VI. .

• (Case VII. to Case IX.) : from initial Setup F. or M. at t = 0, there is a movement of the two
left hand side clusters to Setup M. or C. at t = 1 .

We write K
(0)
true the number of components in the mixture distribution at t = 0, K

(1)
true in the

mixture distribution at t = 1. A case is finally characterised by its mixture parameters at t = 0
and at t = 1 and we represent all cases in Table 2. In addition, Figure 2 and Figure 3 give a simple
representation of Cases I. to IV. and of Setup F., M. and C. involved in Cases V. to IX.

We obtain Gaussian mixture distributions with parameters θ(0) and θ(1) from described cases.
For each case I. to IX. , given the two distributions, we can sample n0 = n1 = n points, which form
our data sets X(0) and X(1).

The sampling step, for any of the cases presented above, is executed S times and followed by
execution of our STMP on each set of sampled data. It produces S different resulting processes, for
each experiment (from Table 2). This enables us to analyze the behavior of STMP and likelihood
ratio across runs and evolution cases.

4.2 Estimation of the alert threshold

As motivated in Subsection 3.1, the likelihood ratio is a good indicator of how well the alternative
model Ma at time t is fitting data X(t) against the model M ′.

In case of no evolution of the distribution from t = 0 to t = 1, both Ma and M ′ should fit
correctly the data, leading to a likelihood ratio around one. Of course, as said previously, due to
the sampling of the distribution, it cannot be equal to one exactly. thus the goal of the following
study is to introduce an empirical threshold of adequacy, over which the alternative model Ma is
definitely considered as the best model explaining current data and an alert is raised.
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Figure 1: For each Case is presented the number of raised alerts over S = 100 runs according to the
considered threshold τ . The filled black vertical line is the final selected threshold.

With all the experiments above, we study the behavior of our STMP according to the alert
threshold τ involved in Algorithm 1. It is important to fix this threshold in order to raise meaningful
alerts and reach a correct performance. As we said previoulsy, we run several times our STMP on
different sampled data for each case distribution. This number of runs S is here fixed to S =
100. For each run of STMP on each case, we look at the computed likelihood ratio defined by
Equation (10)between M ′ and Ma at t = 1. We then account for the number of raised alerts,
depending on the value of the likelihood ratio threshold. Figure 1 represents this behavior, with one
curve by case explained in Subsection 4.1.

For Case I., Case V. and Case VI., the population distribution is the same at t = 0 and t = 1, but
Ma and M ′ are not estimated by the same algorithm, and the likelihood ratios are depending on the
sampled data. However, the model M ′ should still be accepted as the two mixture distributions are
very close. Therefore, it requires to take into account this uncertainty when selecting our threshold
alert. From Figure 1, we observe that a threshold of 1.0 is not appropriate, as a high number of
alerts is raised for these cases, where we should have zero alert. Increasing the threshold allows for
model and data variability to be taken into account, and avoid false positive alerts.

On the other hand, if we set a too high threshold τ , there is a risk of not detecting all important
changes. We clearly see for Cases II., III., IV., and VIII. that the number of true positive alerts
is affected by a too high threshold. If we go above τ = 1.2 we see an important decrease for Case
IV., and later for the Cases II. and III. . Case VIII., which corresponds to a move from Setup F.
to Setup C. is affected earlier by the the likelihood ratio threshold, as the proximity of two clusters
(Figure 3c) affects the estimation of mixture parameters and so on the likelihood ratio. It leads us
to set a threshold relatively closed to one.

We observe that for population moves from Setup F. to Setup M. (Case VII.) or from Setup M.
to Setup C. (Case IX.), corresponding to slight movements, alerts are not raised for a threshold over
one. The likelihood ratio values stay relatively close to one because the model M ′ can adapt to data
X(1). This provides us an intuition on the level of variations that our model can detect.

Therefore when applied to a specific problem, one has to know that the relocation of one cluster
may be detected if it relates to the variance of the estimated clusters. Otherwise, these displacements
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may be considered as normal variability of the discretization of the distributions.
Note that this alert criterion may be adapted given a specific problem with the constrains that

are imposed to the candidate model.
Finally, to make a compromise over all our experiments and obtain a good performance of our

pipeline, we fix the threshold to τ = 1.1. We obtain a balance between false negative and false
positive alerts, that we want to maintain as low as possible, considering all possible situations.

4.3 Performances of the STMP on synthetic data

We have defined in the previous subsection the threshold to alert the user that there may be a
population dynamical change between two given time points.

As explained in Subsection 3.3, there is also an alert when a component tries to disappear
(leading to degenerated covariance matrix) when estimated by the C-EM. And when covariance
matrices estimated by the C-EM are too different from the previous step ones. With these warning
systems, we defined a whole pipeline, named STMP, to monitor the dynamic of the population and
raise alerts when reasonable changes occur. We are now demonstrating the performances of STMP.

Using an alert threshold of τ = 1.1, we obtain the following alert rates, that we can retrieve in
the Figure 1.

For Cases I. and V. we obtain 99 and 98 true negative alerts respectively, and Case VI. raises
eight false positive alerts. For Cases II. to IV. we obtain a true positive alert rate of 100%, detecting
all changes in population distribution with our STMP.

STMP does not raise an alert when the distributions differ barely in time. This is due to our
likelihood ratio threshold fixed to τ = 1.1. The true positive number of alerts is of 2% for Case VII.
and IX. .

In contrary, the bigger movement in Case VIII. leads to a true positive number of 32%. This
brings us to the problem that STMP can not raise an alert when GMM are hard to estimate correctly,
as here. This experiment involves the Setup C., which is complex to estimate for EM algorithms.

Last but not least, our proposed method is computationally efficient with a very low computa-
tional time. All experiments are performed with an average execution time of 1.70s. From Table 3
we recover average execution time by case type. Fast execution was also a criterion leading the
construction of our method, and satisfying for our future applications.

5 Application of STMP on a real life use case

In this section we demonstrate the relevance of STMP with GMM on real epidemiological data from
the COVID19 in Paris, France.

5.1 Presentation of the data set

For this use case, we included all positive diagnosed patients to COVID19 living in Paris city. These
data were collected in AP-HP (Assistance Publique des Hopitaux de Paris) which is the largest
hospital entity in Europe with 39 hospitals (22,474 beds) mainly located in the Greater Paris area
with 1.5 M hospitalizations per year (10% of all hospitalizations in France). For each patient we have
two pieces of information: the week he/she was diagnosed positive, and his/her place of residence.
Patients were aggregated at the scale of an IRIS area, which is the smallest geographical division in
France with 2000 inhabitants in average per area.

New positive diagnosed patients were aggregated by IRIS and by week over 11 weeks (from weeks
9 to 19 of the year 2020). We therefore use a week as the time step t in our process. Beginning
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from the first week (week 9), which corresponds to the beginning of pandemic in France, we apply
our STMP, keeping at each time t one of the models Ma or M ′ according to the criterion defined in
Subsection 3.1 with threshold τ given in Section 4.

We have 5621 positive diagnosed patients over all weeks and all Paris IRIS areas. Table 8 informs
us that the number of cases per week is not homogeneous, as in first weeks, few cases living in Paris
were detected positive.

5.2 Performances of STMP

The aim here is to underline presence or absence of temporal constancy in data, which suggests
that the population distribution was stable at the peak of the pandemic. This is in line with
epidemiological studies that where showing a ”peak” around these weeks after the first propagation
phase (weeks 9 to 12) (see weekly reports of Public Health Institution[21] Page.7 Figure 8.).

We still use a fixed alert threshold of τ = 1.1 in STMP, estimated by previous experiments. Our
STMP reveals that a GMM, estimated by our modified Robust EM on week 13 with K̂(13) = 7,
was accepted on weeks 14 and 15. As a reminder, week 13 represents the peak of the pandemic, in
terms of new positive cases. This means that C-EM executed across weeks 14 and 15 fits very well
the new data set each week with a source model estimated on week 13. Even if the number of cases
changes over time, STMP is able to detect a constant underlying distribution. It is consistent with
the patients distribution on weeks 13, 14 and 15 as we can see on Figures 5, 6, 7 and 8.

On 16th week, STMP rejects the hypothesis that the patients data set is approximated by the
mixture law estimated on previous weeks. The alternative model Ma is accepted. Parameters θ(16)

on 16th week are newly estimated, evolving too far from θ(15), parameters on 15th week. It can be
interpreted with the decrease of new positive cases such as the disappearance of large clusters from
previous weeks and the detection of many smaller clusters, corroborated by the Figures 6b and 8b.
In addition, from Table 8, the number of cases is starting to get weak again.

On the following weeks (weeks 17,18 and 19), the number of cases is still decreasing, and as on
first weeks, the small number of cases leads to accept totally new estimated parameters θa each
week, without link with previous weeks.

From Table 1, the likelihood ratio values are globally distant from our defined threshold τ = 1.1,
leaving no doubt about the choice of best parameters θ(t) at each time step t. Only on week 13
the likelihood ratio value is smaller that our defined threshold while the temporal-dependent model
M ′ is rejected. This is due to high changing covariance matrices during the C-EM stage. The
model M ′ fits the new dataset by excessively moving the covariance parameters herited from M (12).
Finally, the ratio values on next weeks confirm that a GMM with 7 clusters is adapted to the data
distribution on these weeks.

An important and interesting result stemming from this analysis is the highlight of small clusters
closed to Paris periphery: on weeks 13 to 15, which have a not so high number of clusters, we observe
relatively small clusters on the edges of Paris area. These small clusters are even more striking on
weeks 12 or 16 where the number of clusters is large. These areas are low-income neighbourhoods
which are known to favour COVID-19 epidemics.

We can observe absence of likelihood ratio value on the last week. We cannot compute this ratio,
due to the ”empty class phenomenon”. The model M ′ tries to remove a component which leads to
an early stop of the estimation process. This triggers the inevitable choice of the alternative model
and raises an alert.

Finally, from the mathematical and algorithmic point of view, we obtain interesting results,
showing that C-EM across time can sufficiently model evolving real data with a relatively stable and
high size.
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Table 1: Results of our process on positive diagnosed people in AP-HP hospitals with a time step
being a week

Week Estimated number of
classes K̂ by Ma

Estimated number of
classes K̂ by M ′

Likelihood Ratio r Accepted
model

9 5 None None M (0)

10 2 5 1.390 Ma

11 5 2 1.471 Ma

12 12 5 1.214 Ma

13 7 12 1.079 Ma

14 5 7 0.976 M ′

15 7 7 1.028 M ′

16 12 7 1.362 Ma

17 6 12 1.254 Ma

18 9 6 1.760 Ma

19 3 9 computationally
invalid

Ma

6 Conclusion

We have proposed a complete and generic pipeline for modeling evolution of population distribution,
and detecting abnormal changes in this distribution. This STMP was combined with new EM
algorithm variants. Our application on public health data shows that this STMP well models
population distributions, and raise meaningful alerts.

The STMP for monitoring population distributions and the algorithms to estimate the models are
two independent objects. This enables future directions of our work when integrating covariables
following non-Gaussian distributions in the mixture. We will still be able to use our proposed
algorithms as they are blind to the distributions in the mixture.

On the other hand, the performance of the EM algorithms depends on the data set sizes. In future
work we will try to temperate the modified robust EM as proposed by [22] to improve estimations
in unstable situations.

Last, the decision rule was here empirically fixed. In future work this decision rule will be
modeled as an acceptation probability, taking advantage of Monte Carlo Markov Chains theory.
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A.1 Pseudo-Code of the modified Robust EM presented in Section 3

18



Algorithm 2: Modified Robust EM

Initialization : data set X ∈ Rn×d, K0 ← n, ε > 0
p← 0, β0 ← 1
π0
k ← 1/n, µ0 ← X

Σ0
k ← d2

k(d
√
Kinitial e)

Id with

Dk = sort
{
d2
ki = ‖xi − µk‖2 : d2

ki > 0, i 6= k, 1 ≤ i ≤ n
}

= {d2
k(1), . . . , d

2
k(n)};

Compute τk,0i with (4)
p← 1
Compute µpk with (6)

1 while max1≤k≤Kp ‖µp+1
k − µpk‖ > ε or Eq. (11) is verified for some clusters do

Compute πpk by (9)

πEM(1) ← max
1≤k≤Kp

πp,EMk , π
(old)
(1) ← max

1≤k≤Kp
π

(old)
k

E ←
∑Kp

k=1 π
(old)
k lnπ

(old)
k

βp ← min

{∑Kp−1

k=1 exp
(
−ηn

∣∣∣πpk−π(old)
k

∣∣∣)
Kp−1 ,

(1−πEM(1) )(
−π(old)

(1)
E
)
}

Update class number Kp−1 to Kp by deleting classes with πpk ≤ 1/n, then adjust πpk and

τk,p−1
i

if Kp−1 6= Kp then
pcomponent ← 1 /* variable to keep in memory the number of iterations

with a stable number of components */

end

if p ≥ pmin and pcomponent ≥ 100 then
2 if no superimposed clusters (Eq.(11) false) then

βp = 0

3 else if superimposed clusters and pcomponent < 200 then /* give more time to

the algorithm to converge */

pmin ← pmin + 50
4 else merge superimposed clusters

adjust πp, µp, Σp and τp−1

end

end
Compute Σpk with (7) and Σpk = (1− γ)Σk + γQ with

γ = 0.0001, Q = d2
minId, d

2
min = min{{d2

ij : d2
ij = ‖xi − xj‖2 > 0, 1 ≤ i, j ≤ n}

Compute τk,pi with (4)

Compute µp+1
k with (6)

p← p+ 1
pcomponent ← pcomponent + 1

end

19



A.2 Supplementary analyses of Section 4
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Described Experiment Average computation time over S = 100 runs (std)

Case I. 1.76s (0.61)
Case II. 1.73s (0.51)
Case III. 1.40s (0.31)
Case IV. 1.58s (0.36)
Case V. 1.63s (0.20)
Case VI. 1.85s (0.49)
Case VII. 1.79s (0.29)
Case VIII. 2.04s (0.64)
Case IX. 1.51s (0.20)

Table 3: Average (and standard deviation) computation time of different experiments. Each execu-
tion of our method was performed after sampling n0 = n1 = 400 points.

A.2.1 Results on the estimation of the number of components K inside our pipeline

We present here results on the estimation of GMM parameters with the modified Robust EM al-
gorithm at t = 0 and t = 1 in our STMP experiments. All experimental frameworks described in
Subsection 4.1 are tested, all with n0 = n1 = n = 400 points, the biggest number of samples we
considered.

For each run of each experiment, we check here if the number of estimated clusters by our
modified Robust EM at t = 0 or t = 1 is correct. We report the correctly estimated K rate in
Table 4.

We use the modified Robust EM twice in our STMP: to estimate the initial model at t = 0 and
then the alternative model at t = 1. We have K̂(0) and K̂a components estimated for M (0) and Ma

respectively. We decide that our STMP correctly estimates K over time if and only if K̂(0) = K
(0)
true

and K̂a = K
(1)
true. As an example, in Table 4, for Case I. (same distribution at t = 0 and t = 1), over

S = 100 runs, 98 runs of our STMP give both correct estimated K̂(0) at t = 0 and K̂a at t = 1 . In
brief, the correctly estimated K number is given by the intersection of correctly estimated K̂(0) and
K̂a.

The Cases I. to IV. give good K estimates, explained by the correct separation of the clusters as
seen in Figure 2. On experiments with configurations bringing closer two clusters (Cases V. to IX.),
we obtain high rate (over 90%) for static and well-enough separated clusters (Setup F., Setup M.).
This score is also high for displacement from Setup F. to Setup M. .

But this score decreases when we consider moving clusters which are getting too close. In Setup
C., it becomes harder for our modified Robust EM to differentiate the two merging clusters, which
lead to worst scores. The global score of STMP executions involving at least one Setup C. distribution
is affected by this, the correct proportions are not bigger than 57%. If we look at the estimates K̂(0)

and K̂a in Table 4, the Modified Robust EM algorithm often estimates two classes with samples
from Setup C. distribution. This behavior happens at least 30 over 100 times for each experiment.
But this incorrect estimation leads to understandable results, as samples from the two left hand side
clusters can be confused (see Figure 3c). An example of wrong estimated parameters for Setup C.
is presented in Figure 4, which confirms the interpretability of the results.

Thereafter, we can compute the estimation errors for means and covariances matrices on exper-
iments with correctly estimated number of components K (see Table 5). This allows us to confirm
that these estimated Gaussian mixtures are correctly estimated by the modified Robust EM inside
our pipeline STMP. We also notice a poorer average estimate of GMM parameters for data sets from
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(a) Case I. (b) Case II.

(c) Case III. (d) Case IV.

Figure 2: Description of Gaussian mixture distributions for Cases I. to IV. (from Table 2). Blue
centers and covariance ellipsis correspond to Gaussian Mixture parameters at t = 0, orange ones to
Gaussian Mixture parameters at t = 1. Note that when both elements are superimposed, the centers
only appear orange and the ellipses have mixed colors dotted lines.
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(a) Setup F. (Far) (b) Setup M. (Moderate) (c) Setup C. (Close)

Figure 3: Gaussian mixture distributions for Setups F., M. and C. involved in Cases presented
in Table 2 with an example of sampled data sets. Blue crosses correspond to µk and ellipsis to
covariance matrices Σk. Orange points are samples.

Figure 4: An estimated GMM with K̂ = 2 6= Ktrue = 3 for a Setup C. distribution. The centers
and covariances are represented in green. Orange points are samples.
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Experiment Proportion of correctly estimated number of components (% for K̂(0) = 2, K̂a = 2)

Case I. 98 %
Case II. 96 %
Case III. 100 %
Case IV. 100 %
Case V. 94 %
Case VI. 40 % (30 %,34 %)
Case VII. 100 %
Case VIII. 57 % (0 %,34 %)
Case IX. 57 % (0 %,36 %)

Table 4: Proportion of right estimated number of components among S = 100 runs. At each

execution, the estimation is correct iff : K̂a = K
(1)
true and K̂(0) = K

(0)
true. Configurations are described

in Table 2.

Setup C. As said previously, this parametrization implies that two clusters are mixed up. In Table 5
we clearly see a slight higher average euclidean distance between the true means and the estimated
ones for Setup C. models. For covariance matrices errors, simply estimated with Frobenius norm,
the average errors are less contrasted, but we observe the highest error for estimation of Ma in Case
II. (the GMM with an emerging cluster).

M (0) Ma

Case µ̂ Σ̂ µ̂ Σ̂

Case I. 2.0 (1.0) 15.0 (7.0) 2.0 (1.0) 14.0 (7.0)

Case II. 1.0 (1.0) 14.0 (7.0) 2.0 (1.0) 33.0 (31.0)

Case III. 2.0 (1.0) 14.0 (7.0) 1.0 (1.0) 11.0 (5.0)

Case IV. 2.0 (1.0) 14.0 (7.0) 2.0 (1.0) 20.0 (13.0)

Case V. 1.73 (1.24) 16.3 (11.58) 1.68 (0.97) 15.82 (8.19)

Case VI. 2.94 (3.71) 23.80 (25.55) 3.47 (4.35) 24.82 (28.84)

Case VII. 1.49 (0.92) 14.80 (6.63) 1.61 (0.95) 15.69 (7.77)

Case VIII. 1.61 (0.82) 15.2 (8.67) 3.05 (3.86) 24.24 (27.15)

Case IX. 1.68 (0.97) 16.0 (8.48) 3.02 (3.66) 25.39 (25.86)

Table 5: Mean (standard deviation) relative errors (expressed as a percentage) for the estimated
means and covariance matrices within each case, over all runs (for each case) having correctly
estimated K̂ inside STMP. The euclidean norm is used for means, and the Frobenius norm for
covariances.

A.2.2 Effects of the data set size on estimation of Gaussian mixtures and on STMP

In previous explained experiments on synthetic data, we fixed the data set size n = 400. In this part
we study effect of a varying n ∈ {100, 200, 400} in experiments Cases I. to IV. described previously.
With the same true distributions as in Figure 2, we perform S = 100 runs of our process with data
samples of size n = 200 and n = 100 at each time step.
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Experiment Proportions of right estimated
number of components with
n = 400

Proportions of right estimated
number of components with
n = 200

Proportions of right estimated
number of components with
n = 100

Case I. 98 % 88 % 65 %
Case II. 96 % 87 % 51 %
Case III. 100% 94 % 63 %
Case IV. 100 % 89 % 62 %

Table 6: Proportion of right estimated number of components among S = 100 runs. At each
execution, the estimation is correct iff : K̂a = K(1) and K̂

′
= K(0).

Experiment Data sets size n = 400 Data sets size n = 200 Data sets size n = 100

Case I. 1 21 56
Case II. 100 100 100
Case III. 100 100 100
Case IV. 100 100 100

Table 7: Number of alerts raised by our STMP for each experiment (S = 100 runs) on data sets of
n points.

As expected, decreasing the number of samples decreases the proportion of good estimated K̂
and inherently the quality of estimation of parameters θ (Table 6). For n = 200 points, the modified
Robust EM algorithm still gives high rates, between 87% and 94%, allowing to be confident in the
estimates. A data set of 100 points begins to be very limited to properly estimate a GMM: the best
alert rate is 65% and the worst is 51%. Therefore, we must be aware that accuracy of estimated
GMM in our process quickly decreases with the data set size.

We can now look at the performance of our pipeline, depending on the data set size. For the
Case I., we want to obtain zero alert. As we saw in Subsection 4.3, we almost reach it for data sets
of size n = 400. For data sets of size n = 200 we have 21 false positive alerts, and for n = 100 we
have 56 false positive alerts. For Cases II. to IV. the proportion of success is 100% for all n values
(Table 7).

Even if the modified Robust EM becomes less accurate with smaller data sets, our pipeline still
produces good results. The decrease of performance with smaller data sets should be improved
inside the modified Robust EM.
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Week Number of positive diagnosed people per week

9 5
10 18
11 272
12 965
13 1666
14 1297
15 695
16 366
17 209
18 114
19 14

Table 8: Distribution of positive diagnosed people to COVID19 over weeks.

A.3 Results on the COVID19 data set of Section 5
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(a) Week 9 (b) Week 10

(c) Week 11 (d) Week 12

(e) Week 13 (f) Week 14

Figure 5: Estimated GMM parameters on Covid19 data set per week (weeks 9 to 14). Green dots
are centers of the clusters.
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(a) Week 15 (b) Week 16

(c) Week 17 (d) Week 18

(e) Week 19

Figure 6: Estimated GMM parameters on Covid19 data set per week (weeks 15 to 19). Green dots
are centers of the clusters.
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(a) Week 9 (b) Week 10

(c) Week 11 (d) Week 12

(e) Week 13 (f) Week 14

Figure 7: Estimated GMM parameters on Covid19 data set per week (weeks 9 to 14). Triangles and
ellipses are stimated parameters. Green dots are patients.
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(a) Week 15 (b) Week 16

(c) Week 17 (d) Week 18

(e) Week 19

Figure 8: Estimated GMM parameters on Covid19 data set per week (weeks 15 to 19). Triangles
and ellipses are stimated parameters. Green dots are patients.
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