Origin and composition of three heterolithic boulderand cobble-bearing deposits overlying the Murray and Stimson formations, Gale Crater, Mars Roger Wiens, Kenneth Edgett, Kathryn M Stack, William E Dietrich, Alexander B Bryk, Nicolas Mangold, Candice Bedford, Patrick Gasda, Alberto Fairén, Lucy Thompson, et al. # ▶ To cite this version: Roger Wiens, Kenneth Edgett, Kathryn M Stack, William E Dietrich, Alexander B Bryk, et al.. Origin and composition of three heterolithic boulder- and cobble-bearing deposits overlying the Murray and Stimson formations, Gale Crater, Mars. Icarus, 2020, 350, pp.113897. 10.1016/j.icarus.2020.113897. hal-02933157 HAL Id: hal-02933157 https://hal.science/hal-02933157 Submitted on 8 Sep 2020 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. ORIGIN AND COMPOSITION OF THREE HETEROLITHIC BOULDER- AND COBBLE-1 2 BEARING DEPOSITS OVERLYING THE MURRAY AND STIMSON FORMATIONS, 3 GALE CRATER, MARS 4 Roger C. Wiensa, Kenneth S. Edgettb, Kathryn M. Stackc, William E. Dietrichd, Alexander B. Brykd, Nicolas Mangolde, Candice Bedfordf, Patrick Gasdaa, Alberto Faireng, Lucy Thompsonh, Jeff Johnsonⁱ, Olivier Gasnault^{j,k}, Sam Clegg^a, Agnes Cousin^{j,k}, Olivier Forni^{j,k}, Jens Frydenvang^l, Nina Lanza^a, Sylvestre Maurice^{j,k}, Horton Newsom^m, Ann Ollila^a, Valerie Payréⁿ, Frances Rivera-8 Hernandezo, Ashwin Vasavadac 9 10 11 12 ^aLos Alamos National Laboratory, Los Alamos, NM, USA 13 ^bMalin Space Science Systems, San Diego, CA, USA ^cJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 14 ^dDepartment of Earth and Planetary Science, University of California-Berkeley, Berkeley, CA, USA 15 ^eUniversité de Nantes, Laboratoire de Planétologie et Géodynamique, Nantes, France 16 17 ^fLunar and Planetary Institute, Houston, TX, USA 18 ^gCentro de Astrobiologia (CSIC-INTA), Madrid, Spain; and Department of Astronomy, Cornell 19 University, Ithaca, NY, USA 20 ^hPlanetary and Space Science Centre, University of New Brunswick, Fredericton, New Brunswick, 21 22 ⁱJohns Hopkins University Applied Physics Laboratory, Laurel, MD, USA 23 ^jUniversité de Toulouse, UPS-OMP, Toulouse, France 24 ^kInstitut de Recherche en Astrophysique et Planétologie, CNRS, UMR 5277, Toulouse, France 25 ¹University of Copenhagen, Copenhagen, Denmark ^mInstitute of Meteoritics, University of New Mexico, Albuquerque, NM, USA 26 27 ⁿEarth, Environmental, and Planetary Sciences, Rice University, Houston, TX, USA 28 ^oDepartment of Earth Sciences, Dartmouth College, Hannover, NH, USA 29 30 Corresponding author: Roger C. Wiens, MS C331, Los Alamos National Laboratory, Los Alamos, 31 NM 87545 USA, e-mail: rwiens@lanl.gov, phone: 505-667-3101 32 33 34 | 36
37
38
39
40 | Gale crater Heterolithic unit Curiosity rover Stimson formation Murray formation | |----------------------------|---| | 41 | Greenheugh pediment | | 42 | | | 43 | Highlights: | | 44
45
46
47
48 | HiRISE images show heterolithic, bouldery units on the lower portion of Aeolis Mons Curiosity observed three such units with cobbles and boulders to > 2 m diameter Layered sandstones are similar to intact outcrops > 5 km distant, on Bradbury Rise Conglomerate clasts at Bimbe have compositions similar to the Stimson formation Conglomerates imply late fluvial activity during/after deposition of the Stimson | | 49 | | | 50 | | Keywords: # **ABSTRACT** 51 52 53 Heterolithic, boulder-containing, pebble-strewn surfaces occur along the lower slopes of Aeolis Mons ("Mt. Sharp") in Gale crater, Mars. They were observed in HiRISE images acquired from orbit 54 55 prior to the landing of the Curiosity rover. The rover was used to investigate three of these units 56 named Blackfoot, Brandberg, and Bimbe between sols 1099 and 1410. These unconsolidated units 57 overlie the lower Murray formation that forms the base of Mt. Sharp, and consist of pebbles, cobbles 58 and boulders. Blackfoot also overlies portions of the Stimson formation, which consists of eolian 59 sandstone that is understood to significantly postdate the dominantly lacustrine deposition of the - 60 Murray formation. Blackfoot is elliptical in shape (62 x 26 m), while Brandberg is nearly circular (50 - 61 x 55 m), and Bimbe is irregular in shape, covering about ten times the area of the other two. The - 62 largest boulders are 1.5-2.5 m in size and are interpreted to be sandstones. As seen from orbit, some - 63 boulders are light-toned and others are dark-toned. Rover-based observations show that both have the - same gray appearance from the ground and their apparently different albedos in orbital observations 64 - 65 result from relatively flat sky-facing surfaces. - Chemical observations show that two clasts of fine sandstone at Bimbe have similar compositions 66 - and morphologies to nine ChemCam targets observed early in the mission, near Yellowknife Bay, 67 - 68 including the Bathurst Inlet outcrop, and to at least one target (Pyramid Hills, Sol 692) and possibly a - 69 cap rock unit just north of Hidden Valley, locations that are several kilometers apart in distance and - 70 tens of meters in elevation. These findings may suggest the earlier existence of draping strata, like 71 the Stimson formation, that would have overlain the current surface from Bimbe to Yellowknife Bay. - 72 Compositionally these extinct strata could be related to the Siccar Point group to which the Stimson - 73 formation belongs. - 74 Dark, massive sandstone blocks at Bimbe are chemically distinct from blocks of similar morphology - 75 at Bradbury Rise, except for a single float block, Oscar (Sol 516). Conglomerates observed along a - 76 low, sinuous ridge at Bimbe consist of matrix and clasts with compositions similar to the Stimson - 77 formation, suggesting that stream beds likely existed nearly contemporaneously with the dunes that - 78 eventually formed the Stimson formation, or that they had the same source material. In either case, - 79 they represent a later pulse of fluvial activity relative to the lakes associated with the Murray - 80 formation. 86 87 - 81 These three units may be local remnants of infilled impact craters (especially circular-shaped - 82 Brandberg), decayed buttes, patches of unconsolidated fluvial deposits, or residual mass movement - debris. Their incorporation of Stimson and Murray rocks, the lack of lithification, and appearance of 83 - 84 being erosional remnants suggest that they record erosion and deposition events that post-date the - 85 exposure of the Stimson formation. #### 1. INTRODUCTION deposits. Since the Mars Science Laboratory (MSL) rover, Curiosity, landed on Mars in 2012, it has been used to explore the geologic record preserved within Gale (Fig. 1), a 154 km diameter impact crater located at the boundary between heavily cratered ancient highlands and younger, northern lowlands. Through investigation of Gale's ancient rock record—considered to be younger than 3.8 Ga and generally older than 3.2 Ga (Thomson et al., 2011; Le Deit et al., 2013)—the MSL team seeks to characterize the nature and evolution of early Martian environments and to understand their potential habitability (Grotzinger et al., 2013; Grotzinger et al., 2015). Here we present ground-based observations regarding a puzzling type of geological unit first observed prior to landing. Using ~25 cm/pixel High Resolution Imaging Science Experiment (HiRISE; McEwen et al., 2007) images acquired from the orbiting Mars Reconnaissance Orbiter (MRO), the team identified a suite of isolated features ranging in size from 10s to 100s of meters across that occur along the lower northern slopes of Aeolis Mons (informally, Mt. Sharp), the 5-km-high stratified mountain in Gale (Fig. 1). The strata of Aeolis Mons are sedimentary (Malin and Edgett, 2000; Anderson and Bell, 2010; Milliken et al., 2010). The puzzle was whether these isolated features are part of the sedimentary rock record (i.e., lithified units) or are younger, unconsolidated HiRISE images all are relatively featureless in texture (at ~25 cm/pixel scale) and are of a uniform, intermediate to dark tone. In addition to these attributes, the landforms also contain concentrations of boulders to > 1 m in size. Some of the boulders seen in HiRISE images exhibit light tones; others are dark toned. Prior to encountering these units, it had been suggested that the apparent light-toned rocks are from the eolian lithology on upper Mt. Sharp (Milliken et al., 2010), or that they could be remnants of landslide or glacial till deposits. The team preliminarily interpreted these landforms to be depositional units because of their boulder-rich nature. These "heterolithic deposits" or "blocky units" are spatially distinct, span a ~200 m elevation range along the lower northern slopes of Aeolis Mons, and occur across a lateral distance of ~10 km. Although most of the heterolithic units are
in direct contact with the lowermost exposed unit of Aeolis Mons, the Murray formation, several examples overlie the Stimson formation, which unconformably overlies an erosional paleoslope cut These landforms exhibit a variety of shapes ranging from circular, elliptical, to irregular, but in through the Murray formation on the lower portion of Mt. Sharp (Banham et al., 2018; Watkins et al., in revision). To understand whether the heterolithic deposits are part of the ancient rock record in Gale crater, or whether they are modern, unconsolidated materials like the nearby eolian dunes, the MSL team used whether they are modern, unconsolidated materials like the nearby eolian dunes, the MSL team used the tools and instruments of the Curiosity rover to investigate three of them that were encountered along the rover traverse (Fig. 1). In this paper we describe their setting, morphology, lithology, and compositional relationships using data acquired from orbit and on the ground. Based on these observations, we determine the stratigraphic context of the heterolithic deposits relative to the major geologic units investigated by the Curiosity rover, and discuss potential depositional origins and processes for these deposits. This work focuses exclusively on the three units studied by Curiosity, though many more exist in the area at the base of Mt. Sharp. # 1.1. Geological Context 130 131 - Curiosity landed on Bradbury Rise, at the distal end of the alluvial fan produced by Peace Vallis, a fluvial channel that descends from the crater rim (Fig. 1 inset; Palucis et al., 2014). Rocks of the - 132 - 133 Bradbury group include loose gravels, conglomerate beds, and sandstones deposited in a fluvial - 134 setting (Williams et al., 2013; Grotzinger et al., 2015). Upon reaching the Pahrump Hills around Sol - 135 750, Curiosity entered the Murray formation (Grotzinger et al., 2015) of the Mt. Sharp group. This - 136 primarily lacustrine formation has been eroded to expose over 300 meters in vertical extent starting - 137 at Pahrump Hills and extending up at least through Vera Rubin ridge (VRR; Fraeman et al., in - 138 revision) and Glen Torridon (Fig. 1). The slope of the eroded Murray formation forms the base of - 139 Mt. Sharp. Draping over this erosional surface and forming patchy outcrops overlying the Murray is - 140 the Stimson formation, considered to be part of the Siccar Point group (Fraeman et al., 2016; - 141 Banham et al., 2018; Watkins et al., in revision). It consists of dark-gray sandstones containing cross-142 bedding ~1 m thick with cross laminations. It has a bimodal grain size centering on 250 µm and 710 - 143 - μm (Banham et al., 2018). The Stimson formation was interpreted to be eolian (Banham et al., 2018). - 144 Subsequent lithification of the Stimson followed by canyon incision led to formation of the ~7-17 - 145 meters-high Murray buttes (Fig. 1 and Supplemental Material) in which the Stimson formation is - 146 exposed as buttes and mesas over the underlying Murray formation (Banham et al., 2019). - 147 In addition to the Murray and Stimson formations, Curiosity encountered three heterolithic units - 148 (Fig. 1): Blackfoot (encountered by Curiosity on sols 1094-1104), Brandberg (sols 1158-1160), and - 149 Bimbe (sols 1400-1410), characterized by unconsolidated deposits of pebbles, cobbles and boulders - 150 that overlie the Murray formation, and in at least one case the Stimson formation. These units are - 151 clearly different from the surrounding surface exposures. Dark-toned, massive float rocks in - 152 particular are unique to these units relative to the surrounding surface, which have very few float - 153 rocks aside from those that clearly belong to the respective Murray and Stimson formations or are - 154 meteorites (Meslin et al., 2017). These three units occur between elevations of -4434 and -4419 m - 155 (relative to the Martian datum) within 1.2 km of each other and within ~0.5 km of a discontinuous - 156 scarp that marks a topographic transition between the flat plains (Aeolis Palus) and Mt. Sharp (Fig. - 157 1). 164 165 166 - 158 The units are distinct from boulder and cobble deposits that occur on the slopes of mounds, buttes, - 159 mesas, and scarps in the region. In the latter cases, usually an intact, erosion-resistant cap rock (e.g., - 160 Stimson formation, in the case of Murray Buttes) overlies exposures of Murray-formation rock. It is - 161 also important to note that there are few to zero cobbles and boulders composed of fragments of - 162 these overlying rocks sitting on Murray-formation bedrock exposures more than 50 m (and usually - 163 not > 10 m) from the base of the buttes. #### 2. METHODS #### 2.1. Imaging - 167 All HiRISE images acquired through 1-October-2017 of Blackfoot (24 images), Brandberg (23 - 168 images), and Bimbe (28 images) were used to observe the distribution pattern and relative tone of - 169 observable boulders. Typically, these are boulders ≥ 0.45 m in size; boulders smaller than ~1 m in - 170 size can be identified if they have a tone that contrasts with surroundings and/or cast a shadow. In - 171 addition, we illustrate our observations using the Calef and Parker (2016) mosaic of HiRISE images - 172 of the MSL investigation site compiled as a base map with the rover traverse overlain. Topographic - 173 information comes from a digital elevation model (DEM) assembled by Parker and Calef (2016) - using HiRISE stereo pair images and correlated with Mars Global Surveyor (MGS) Mars Orbiter - 175 Laser Altimeter (MOLA) topographic measurements, referenced to the Martian datum per the - approach outlined by Kirk et al. (2008). 191 192 193 194 195 196 197 198 199 200 - 177 Nearly all of Curiosity's cameras were used in this investigation. They consist of redundant dual - 178 pairs of left and right stereo Navigation cameras (Navcams; Maki et al., 2012) and front and rear - Hazard cameras (Hazcams; Maki et al., 2012); two Mast cameras, one on the right side of the mast, - with a 100 mm focal length for long-range imaging, and one on the left side with a 34 mm focal - length for a larger field of view (Mastcam-34 and Mastcam-100; Malin et al., 2017); a Mars Descent - 182 Camera (MARDI; Malin et al., 2017); a Remote Micro Imager (RMI; Maurice et al., 2012; Le - 183 Mouelic et al., 2015); and a Mars Hand Lens Imager on the rover arm (MAHLI; Edgett et al., 2012). - 184 Imaging via Curiosity's cameras can be considered to occur in two modes: (1) mono- and stereo- - 185 context imaging and (2) high-resolution or close-up imaging. The rover's Mastcams, Navcams, - Hazcams, and MARDI provide contexts at a variety of scales as a function of distance from the - 187 rover. The RMI and MAHLI provide close-up photography. As part of ChemCam (Wiens et al., - 188 2012; Maurice et al., 2012), the RMI provides panchromatic images with a spatial resolution of ~100 - 189 µm within 2.5 m distance. Typical MAHLI macrophotography provides color images over a 15–100 - 190 µm/pixel range (Yingst et al., 2016). #### 2.2. Boulder and Cobble Lithology Interpretation Stereo context imaging provides information on boulder and cobble dimensions that are generally accurate to ±1 cm (Maki et al., 2012). Boulder and cobble size classifications use the scheme of Blair and McPherson (1999) and Terry and Goff (2014) over the 6.4–409.6 cm size range: fine cobbles (6.4–12.8 cm), coarse cobbles (12.8–25.6 cm), fine boulders (25.6–51.2 cm), medium boulders (51.2 –102.4 cm), coarse boulders (102.4–204.8 cm), very coarse boulders (204.8 – 409.6 cm). Grains smaller than cobbles and coarser than 4 mm are referred to as pebbles, while particles 2 to 4 mm are granules (Wentworth, 1922). A detailed approach to both the Curiosity rover instruments and rock classification is provided by Mangold et al. (2017). - Most of the boulders, cobbles, and pebbles observed at Blackfoot, Brandberg, and Bimbe were - 202 investigated only through contextual images obtained by MRO HiRISE and Curiosity's Mastcams, - 203 Navcams, and Hazcams. In these cases, identification of rock type is limited to comparisons with - 204 other, more closely examined rocks along the Gale-crater traverse since 2012. Additional context - images were obtained by MARDI and MAHLI (wheel inspection and landscape images), particularly - when the rover drove across Blackfoot. A few boulders and cobbles were examined in greater detail - 207 using MAHLI for macrophotography; the Alpha Particle X-ray Spectrometer (APXS; Campbell et al. - 208 2012) was used for geochemistry on one cobble at Blackfoot and two boulders at Bimbe. ChemCam - 209 RMI images and laser-induced breakdown spectroscopy (LIBS) were used to investigate three targets - 210 at Blackfoot, three targets at Brandberg, and 16 targets (several of which are on the same boulder) at - 211 Bimbe. As described below, the compositions derived from ChemCam LIBS and APXS are used in - the interpretations of the boulders and cobbles. - 213 Image interpretation of boulder and cobble lithology is based on experience gained from Curiosity's - 214 exploration in Gale crater to date. All of the >350 m of observed in-place strata appear to be - 215 sedimentary rocks. Further, the nearly 5 km of stratigraphy above, on Mt. Sharp, are also interpreted - to be dominated by sedimentary rock (e.g., Malin and Edgett, 2000; Anderson and Bell, 2010; - 217 Milliken et al., 2010). The strata encountered along the traverse include conglomerates interpreted to - 218 be fluvial sediments (Williams et al., 2013, Mangold et al., 2016); sandstones interpreted to be - 219 fluvial, deltaic, and lacustrine (Grotzinger et al., 2013; Grotzinger et al., 2015; Rice et al., 2017); - 220 sandstones interpreted to be eolian (Banham et al., 2018); and rocks finer-grained than fine sand, - 221 interpreted largely to be lacustrine mudstones (e.g., Grotzinger et al., 2015). Clasts interpreted as - 222 being derived from igneous
processes or perhaps impact-generated melts have been confined to - 223 coarse cobbles and smaller sizes (Williams et al. 2013; Sautter et al., 2014, 2015, 2016; Mangold et - 224 al., 2016; Cousin et al., 2017a); these are interpreted as having been liberated by rock decay - 225 processes from exposures of conglomerate and pebbly sandstone, likely transported in streams from - the crater walls and rim (e.g., Williams et al., 2013; Sautter et al., 2016). 226 - 227 The experience in Gale crater includes observations of bedrock properties and landscape evolution - 228 that pertain to indicators of Blackfoot, Brandberg, and Bimbe boulder and cobble lithology as a - 229 function of color, shape, sedimentary texture (e.g., clastic, clast properties, fabric), and sedimentary - 230 structure (bedding, bedding plane features, soft sediment deformation). Concretions and nodules - 231 (Stack et al. 2014; Nachon et al., 2017; Wiens et al., 2017; Sun et al., 2019) as well as fracture- - 232 associated diagenetic features such as veins (Nachon et al., 2014, 2017; Kronyak et al., 2019) and - 233 alteration halos (Frydenvang et al., 2017; Yen et al., 2017) also occur in the sedimentary rocks of - 234 - Gale; their presence in a boulder or cobble can also aid in lithological identification. Color is helpful - because the majority of sandstones coarser than very fine sand observed in Gale are medium to dark 235 - 236 gray (almost black). Conglomerates are generally gray with clasts of varied sizes from sand to small - cobbles of various shades of gray from white to black. Mudstones and very fine sandstones which 237 - 238 make up the majority of the stratigraphy encountered by Curiosity, occur mostly in various shades of - 239 medium to light-gray, purple-gray, and various shades of red. - 240 Thus a first-order comparative approach emerges for lithologic interpretation of boulders and cobbles - 241 at Blackfoot, Brandberg, and Bimbe that are only seen in context images. - 242 Conglomerate cobbles and boulders have a gray matrix and abundant pebble clasts. In some 243 - cases, pebbles liberated from their surfaces litter the adjacent ground. Pebbles were normally - 244 interpreted as igneous from their coarse-grained or massive texture, at least on Bradbury Rise - (e.g., Williams et al., 2013). 245 - 246 Cobbles and boulders interpreted as sandstone are dark gray, can exhibit bedding structures and 247 - sand-, granule-, or minor pebble-sized clasts as viewed in the highest spatial resolution context - 248 images (e.g., Mastcam-100 data). Some of the dark-gray sandstones in Gale have concretions - 249 (like the object liberated from Stimson eolian sandstone studied by Van Bommel et al., 2017), - 250 fracture fills (veins), or fracture-parallel alteration "halos." - 251 Mudstone cobbles and boulders are expected to be rare, given their poorer resistance to erosion. - 252 However, angular fine cobbles of mudstone do occur and have been identified along Curiosity's 253 traverse (e.g., Lamoose target noted by Morris et al., 2016, and a large number of dislodged slabs - 254 observed in the upper Murray formation below VRR, and smaller pebbles on the ridge itself). - 255 Fine laminae and diagenetic features, especially veins and concretions, are common in the - 256 mudstones in Gale (e.g., Sun et al., 2019). Color might actually be the most helpful clue, as none 257 of the mudstones identified thus far have been as dark gray as the sandstones and their colors - 258 include reddish, golden brown, and purplish strata. ## 2.3. Elemental Compositions and Reflectance Spectroscopy ChemCam uses LIBS at distances of 2–7 meters from the rover's remote sensing mast to determine elemental chemistry (Wiens et al., 2012; Maurice et al., 2012). Laser pulses of 14 mJ energy and 5 ns duration are focused on observation points (0.3-0.6 mm diameter) on the targets. The first few laser pulses remove dust from the surface. Individual spectra from pulses 6–30 at each targeted point are averaged and processed to remove ambient-light background, noise, and electron continuum, leaving the atomic emission spectrum (Wiens et al., 2013). These are further processed through a calibration algorithm that normalizes the spectra, correcting for variable distance (Wiens et al., 2013), and yields the abundances of the major elements as oxide weight percent (Clegg et al., 2017). Trace elements Li, Rb, and Sr are processed by calibrating the area of an emission peak of the respective element, slightly revised from Payré et al. (2017). Accuracies are estimated using the calibration algorithm on a separate test set of standards over a variety of compositions, yielding accuracies as functions of abundances for each major element and trace element. Precisions are determined by comparing repeated observations of onboard calibration targets carried out over a number of different days (Blaney et al., 2014) or by comparing repeated observations of a homogeneous lithologic unit such as the Sheepbed mudstone in Gale crater (Mangold et al., 2015). The latter is more realistic in that it is done over various instrument-to-target distances, but it is a worst-case measurement of precision, as it includes any heterogeneity that may exist in the bedrock at the scale of the beam. Overall, the two determinations of precision are comparable. Finally, for each observation point, the averaging of 25 spectra, and the resulting standard deviation, allows us to determine the stability of the composition within the evolving laser pit. This standard deviation is another measure of precision and is equivalent in its nature to the error reported with APXS observations. An exception is that, because the laser creates a depth profile into reported with APXS observations. An exception is that, because the laser creates a depth profile into the target, the standard deviation includes the heterogeneity of the target over the depth of laser pulses 6 to 30. Normally this is not a significant consideration but sometimes the composition does 284 change over the course of the 25 laser pulses, resulting in a higher standard deviation that is 285 unrelated to instrument stability. 259 260 261 262 263264 265 266 267 268 269 270 271 272 273 274 275 276 277 All ChemCam statistics, including abundances, accuracies, and standard deviations are provided in the data submitted to the Planetary Data System. Quantification limits for the trace elements Li, Rb, and Sr are 5, 26, and 96 ppm, respectively. While accuracies vary with abundances, observations presented here were generally within ± 5 , ± 30 , and ± 150 ppm, respectively. For all targets, Fe is not separated by oxidation state, but is computed as total iron as FeO ("FeO $_{\rm T}$ "). The major elements are not normalized to 100% to allow for contributions from minor elements such as S, P, Cl, F, and H. In most cases the major-element total is in the mid-90s in wt. %, but in a few 293 cases the minor elements appear to comprise up to \sim 12 wt. %. APXS was used to analyze four targets: Badlands in the Blackfoot area and targets Sonneblom, Funda, and Zambezi at Bimbe (Sonneblom and Zambezi were on the same boulder). Funda was analyzed by a 4-point raster, while the other three targets were single analyses. Badlands, Zambezi, and Sonneblom were overnight integrations. The Dust Removal Tool was not used on any of the targets. The footprint of APXS is ~1.7 cm in diameter. Johnson et al. (2015) demonstrated that radiance spectra acquired using ChemCam without the laser provides sufficient signal to allow measurement of reflected sunlight from soil and rock targets. Calibration of such data was accomplished by dividing the scene radiance spectrum by a calibration 302 target radiance spectrum with known reflectance properties (Wiens et al., 2013). This provided an - 303 estimate of relative reflectance with uncertainties of <10% (Johnson et al., 2015). Typically, such - 304 passive observations were acquired after laser shots, which served to minimize dust contamination in - 305 the measurement's field of view. - 306 The rover's interior mineralogical and geochemical laboratories, Chemistry and Mineralogy - 307 (CheMin) and Sample Analysis at Mars (SAM), were not used to investigate Blackfoot, Brandberg, - 308 and Bimbe. 309 310 311 312 313 314 315 334 # 3. RESULTS #### 3.1. Blackfoot Image Observations #### 3.1.1. Field site and Stratigraphic Position Of the three heterolithic units that were investigated, Blackfoot was the only one that the Curiosity - rover drove across. The route went southwest across the long dimension of Blackfoot between sols - 1099 and 1104 (09-14 September 2015). Curiosity parked at two spots on Blackfoot (Fig. 2a) to - briefly investigate the surface. ChemCam observed targets named Sunburst and Swan at the Sol - 316 1099-1100 site and targets Jefferson, Madison, and Lincoln, at the Sol 1100-1104 site. APXS and - MAHLI were deployed on Sol 1102 to study an angular, coarse cobble named Badlands at the Sol - 317 - 318 1100-1104 parking spot. Early views of Blackfoot were acquired on Sol 1094 (04 September 2015) - 319 and later views were obtained from the Big Sky and Greenhorn drill sites (Fig. 1; see Yen et al., - 2017) as late as Sol 1144 (25 October, 2015). HiRISE captured an image of the Curiosity rover on 320 - 321 Sol 1094 (Fig. 2a). - 322 Blackfoot covers about 1730 m² in a semi-elliptical area that has a long dimension of ~62 m oriented - 323 northeast-southwest and a short dimension of ~26 m perpendicular to that. It occurs between - 324 elevations -4434 and -4432 m on the lower north-facing slope of Mt. Sharp. Excluding the largest - 325 boulder, the unit has $< \sim 1.1$ m relief and its overall surface slopes upward $\sim 1.2^{\circ}$ toward the - 326 southwest (i.e., elevation gain of ~1.4 m over 62 m). At the northeast end, the gravels, cobbles, and - boulders of which it is composed are in contact with the
cross-bedded sandstone facies of the 327 - 328 Stimson formation (Fig. 2d, e). At its southwest end it is in contact with mudstones of the Murray - 329 formation (Fig. 2h). The Blackfoot unit cross-cuts and bridges the pattern of parallel ridges (Banham - 330 et al., 2018) separated by troughs > 4 m deep that are exhibited by the underlying Stimson and - 331 Murray-formation rocks (Fig. 2a, Supplementary Fig. 1-1). Its topography and contact relations with - 332 underlying bedrock suggest a near-uniform thickness of the order of a few tens of centimeters. No 333 - intact rock unit overlies Blackfoot; it is not emergent from beneath superposed rock strata. # 3.1.2. Physical Sedimentology of the Blackfoot Deposit - 335 The surface of Blackfoot is pebbly with scattered occurrences of cobbles and boulders of a variety of - 336 sizes, shapes, and orientations relative to their internal bedding structures (Fig. 2f, i). Some of the - 337 boulders and cobbles are resting on the surface of Blackfoot, while others protrude from the deposit. - 338 The loose, pebbly surface includes a few minor superimposed patches of unconsolidated eolian sand. - 339 The largest boulders are ~1.5–2.5 m in size; boulders of sizes ~0.45 to ~1.8 m can also be observed - in the highest quality HiRISE images of Blackfoot (e.g., PSP_009294_1750 and 340 - 341 ESP 018854 1755), as well as the images acquired during the rover's visit to the area. Most—but, - 342 importantly, not all—boulders and cobbles are clustered on the downward slopes around the unit - 343 margins; some of these clasts have apparently moved down onto nearby, subjacent rock surfaces. - 344 The northeast end of Blackfoot exhibits an exposure that gives a glimpse of its internal sedimentary - 345 structure (Fig. 2f). The framework clasts in this few tens-of-centimeters-thick exposure are angular to sub-rounded pebbles and cobbles; matrix clasts — i.e., grains finer than pebbles in the interstices between pebbles and cobbles — are not resolved in the highest resolution images acquired. Sorting in this apparent exposure is poor and laminae or beds within individual cobbles are randomly oriented. Although the subjacent Stimson and Murray-formation rocks are cut by fractures (some of which are filled with minerals, i.e., veins), the Blackfoot material is not; furthermore, some fractures in Stimson formation rocks terminate at the boundary with the Blackfoot unit (Fig. 2g). Particle size analysis of Blackfoot (Supplementary Material, Section 2) indicate a median size (D50) of 16 mm, and 84th percentile (D84) of 40 mm and a 16th percentile (D16) of 7 mm (Supplementary Material, Section 2, Supplementary Fig. 2-3). #### 3.1.3. Evidence of Lithologic Diversity The lithologic diversity of Blackfoot was suspected for several years before the rover arrived, based on mapping during traverse planning. This notion was due to the tone of the two largest boulders at Blackfoot relative to the surrounding terrain as seen in HiRISE images. As labeled in Fig. 2a, boulder A has a dark tone and boulder B has a light tone in this perspective from orbit. As seen from the ground, the only relatively light-toned rocks encountered along the traverse to that point were light-gray mudstones of poorer erosion resistance (e.g., Grotzinger et al., 2013; Grotzinger et al., 2015; Morris et al., 2016; Schieber et al., 2016). In addition to these few light-toned rocks, light-toned fracture-associated halos occur in the Stimson formation (Frydenvang et al., 2017; Yen et al., 2017), but the affected portion of these sandstones is small relative to the size of boulder B. In addition, white vein minerals, interpreted based on ChemCam and APXS observations to be calcium sulfates, are abundant throughout Curiosity's field site (Nachon et al., 2014, 2017; Kronyak et al., 2019). Clasts formed from the breakdown of exposed, eroding veins along the traverse have been of pebble size and smaller (e.g., Newsom et al., 2018). The light-toned (orbital perspective) boulder B was imaged on the ground using the Mastcams from four different locations on sols 1094, 1098, 1100, and 1144 (e.g., Fig. 2c), and it was also captured in a MAHLI rover wheel inspection image from Sol 1102, as well as in engineering camera data. The boulder's dimensions are approximately 2.7 by 1.6 m. The Mastcam images provide eight important observations about boulder B: (1) the rock is actually not light-toned as seen from the ground; it is dark gray, (2) it is angular, (3) it is tabular with a relatively flat skyward-facing surface, (4) its skyward-facing surface is coated with brownish-orange eolian dust, (5) its skyward-facing surface is smooth at centimeter scale, (6) it exhibits sedimentary structure in the form of bedding, (7) the bedding thickness is < 1 cm (i.e., of the order of a few millimeters), and (8) the bedding is at an angle of about 50° relative to the top of the boulder and relative to the surface on which the boulder rests. On the basis of bedding and color, boulder B is interpreted to be a sandstone, similar to other sandstones observed in the area and in Gale crater in general. The light tone observed from orbit (Fig. 2a), and also to some extent as observed from a distance with rover cameras, is entirely the result of the combination of a dust coating and a skyward-facing surface that is smooth at centimeter and perhaps millimeter scales. Boulder A was imaged using Curiosity's Mastcams and engineering cameras from four different locations on sols 1094, 1098, 1100, and 1144 (e.g., Fig. 2b). Boulder A differs from boulder B; it is smaller (~1.2 m across), but stands higher above the surface owing to its greater sphericity. Like boulder B, it is dark gray in color, but it is rougher at a centimeter scale. Boulder A, too, has dust on its skyward-facing surfaces, but the combination of shape and centimeter-scale roughness renders it dark-toned when viewed from above in HiRISE images. 390 The images acquired during Curiosity's traverse across Blackfoot show the range of boulder and 391 cobble lithologies present at its surface. Generally, on the basis of color, tone, texture, and 392 sedimentary structure, the boulders can all be interpreted as sandstones. Some of the cobbles can also be interpreted as likely sandstones, on the same basis, but some cobbles are pebbly conglomerates or 394 pebbly sandstones (Fig. 3). The lithology of pebble clasts and smaller grains are not interpreted here 395 owing to insufficient spatial resolution in the images acquired. - 396 Fig. 3 shows various examples of the rocks interpreted to be conglomerates and sandstones at - 397 Blackfoot. Mastcam and RMI images of select targets, such as Swan, Sunburst, Lincoln, Jefferson, - 398 and Madison show that sand grains are present in these rocks (Fig. 3b,e), all of which are interpreted - 399 to be dark gray, erosion-resistant sandstones. Their individual characteristics vary; for example - 400 Madison and Sunburst include light-toned sand grains (Fig. 3b, e) and Sunburst exhibits cross- - 401 stratification (Fig. 3a). MAHLI images of the rock target Badlands also show sand grains (Fig. 3f). - 402 Some of the rocks observed at Blackfoot are light gray to white in color (Fig. 3g); some of these - 403 might have been eroded from fracture-associated altered sandstones that occur in the Stimson - formation (see Frydenvang et al. 2017; Yen et al. 2017). 404 - 405 None of the boulders and cobbles observed at Blackfoot resemble or are lithic fragments of the - 406 Murray formation. As well as can be determined from the images acquired by the Mastcams, RMI, - 407 Navcams, Hazcams, MARDI, and MAHLI, none are as finely (< 1 mm) laminated as typical - 408 Murray-formation rock, nor are they of one of the colors—light grays, grayish purples, brownish and - 409 yellowish reds—observed in Murray-formation strata. - 410 In summary, Blackfoot is a relatively thin accumulation of poorly sorted pebbles to boulder-size - 411 clasts; the angular to well-rounded pebble-sized lithic fragments appear to serve as matrix to the - 412 coarser rocks. The boulders and cobbles exhibit random orientations relative to their internal 413 - sedimentary structure (bedding); some of them protrude from the deposit and others rest on its 414 - surface. The deposit overlies both Stimson and Murray-formation rocks and is not lithified. The 415 - surface is largely a pebbly lag with very little superimposed eolian dust and sand. Boulder and - 416 cobble shapes include angular clasts; these are suggestive that they were not transported far from 417 their bedrock source. The boulders are generally dark-gray apparent sandstones; the gray - 418 - conglomerates are a sub-set of a population of otherwise dark gray (and a few light gray to white) - 419 sandstone cobbles. 420 421 422 423 424 393 ### 3.2. Brandberg Image Observations #### 3.2.1. Field Site and Stratigraphic Position - Brandberg is a nearly circular (~50 x 55 m) landform. The MSL team parked the rover next to the - eastern edge of Brandberg on Sol 1158 for a limited investigation. The Navcams, Hazcams, - 425 Mastcams, and ChemCam were all used to examine nearby cobbles and boulders of Brandberg from - 426 this vantage point over sols 1158-1160 (09-11 November 2015). HiRISE captured an image of - 427 Curiosity parked at the site on Sol 1159, 10 November 2015 (Fig. 4a). Brandberg was also visible in - 428 Mastcam mosaics acquired during the drive toward and away from Brandberg over the sol 1115- - 429 1163 period (25 September – 14 November 2015). - 430 Covering about 2300 m², Brandberg occurs between elevations -4435 and -4432 m on the lower - 431 north-facing slope of Mt. Sharp. Not only is it nearly circular, an arcuate ridge of about 1-2 m height - 432 occurs about 15-20 m to its east (Fig. 4f). A Sol 1160 Mastcam mosaic (sequence mcam05248) shows that the ridge is composed of purple-ish Murray-formation bedrock. As viewed in planform in HiRISE
images, Brandberg has a surface speckled with light- and dark-toned boulders (Fig. 4a). The overall surface is also dark-toned, similar in HiRISE images to nearby eolian dunes such as the Namib and High dunes explored via Curiosity (Bridges and Ehlmann, 2018) after departing Brandberg. The HiRISE views of Brandberg also show that it has a discontinuous, meter-scale parallel ridged texture that runs approximately northeast-southwest (Fig. 4a). In HiRISE images and all of the acquired Mastcam and Navcam mosaics of Brandberg, this unit is seen to be elevated above and in contact with Murray-formation rocks, all around its circumference. It does not contact the Stimson formation and there are no overlying rock units. Supplementary Fig. 1-2 shows that Brandberg and Blackfoot occur at the same elevation and have a similar thickness. #### 3.2.2. Physical Sedimentology of the Brandberg Deposit The surface of Brandberg exhibits scattered boulders, cobbles, and pebbles, interspersed with dark-gray, windblown sand and granules (Fig. 4b-e). The sands form tails in the lee of boulders and cobbles (Fig. 4b), creating the pattern of northeast-southwest oriented lineations observed in HiRISE images. Some of the boulders and cobbles are resting on the surface of Brandberg, but many protrude from within the deposit (Fig. 4d, e). Overall, Brandberg is a poorly sorted, unconsolidated sedimentary deposit. Three attributes indicate that Brandberg is not a lithified unit (i.e., not sedimentary rock): (1) fractures and (2) veins do not cut across the unit and its clasts, and (3) it is not emergent from beneath an overlying rock unit. The largest boulders are angular and of several meters in size. Many of the boulders and cobbles are angular, slab-shaped, and dip at steep angles relative to the surface (Fig. 4e). Supplementary Fig. 2-3 shows that Brandberg has a similar particle size distribution to Blackfoot of D50 of 13 mm, D84 of 44 mm, and D16 of 4 mm. Size analysis was performed via images acquired along the steepened exposure shown in Fig. 4(e) and 5(a), where the maximum exposed clast size was 409 mm. # 3.2.3. Evidence of Lithologic Diversity The presence of boulders of differing tone in HiRISE images suggested the possibility of lithologic diversity in Brandberg, years before the rover arrived (Fig. 4a). As with boulder B at Blackfoot, Mastcam images of the boulders at Brandberg show that the light tones are not the result of an intrinsic tonal property of the individual clasts, but instead are evident in cases in which a boulder has a relatively smooth (at cm- to mm-scale), skyward-facing surface coated with eolian dust. Mastcam images show that some of the boulder- and cobble-sized clasts seen along the east margin of Brandberg exhibit fine lamination (sub-mm to mm-scale), relatively flat surfaces at cm-scale, and are covered with a thin coating of dust (Fig. 4e). In some cases, the laminae are dipping steeply relative to horizontal, indicating that they have been displaced from their original bedding orientation (Fig. 4d). One of the ChemCam targets at the edge of Brandberg was Hoba (Fig. 5a, b), which from the images could be part of the local bedrock. The RMI mosaic of Hoba (Fig. 5b) shows a fractured rock, with fractures cutting across laminae; the rock surface is rough-textured at millimeter scales, rougher than adjacent eolian sandstone surfaces. These properties are similar to those of nearby outcrops of intact Murray-formation rocks. Some of the clasts in Brandberg that are interpreted to be outcrops of intact Murray-formation rocks. Some of the clasts in Brandberg that are interpreted to be Murray-formation rocks also exhibit protrusive, cm-scale concretions (Fig. 5i), as do nearby Murray- 473 formation rocks (Fig. 5j). 474 Brandberg also has dark-gray boulders and cobbles (Fig. 4b-e). In some cases they are cross- 475 stratified and laminated at millimeter scales (Fig. 5h) and thus physically resemble rocks of the Stimson formation, such as those on the nearby Emerson plateau (Fig. 1) described by Banham et al. (2018). A dark-gray ChemCam target cobble, Gibeon (Fig. 5a, c) has protruding objects (grains or concretions) of very coarse sand and granule size (i.e., 1-3 mm) and exhibits no distinct bedding. A few of the cobble-sized stones observed at Brandberg contain pebble-sized clasts or concretions and are either conglomerates, pebbly sandstones, or sandstones containing pebble-sized concretions (Fig. 5g). Further, some of the loose, pebble-sized clasts in the Brandberg deposit resemble concretions that eroded out of Stimson formation sandstones on the nearby (~340 m to the southwest) Naukluft Plateau (Fig. 5d-f). #### 3.3. Bimbe Image Observations #### 3.3.1. Field Site and Stratigraphic Position Located due north of the Murray buttes, Bimbe was the most investigated of the three heterolithic units visited by the Curiosity rover. As viewed in HiRISE images (Fig. 6), Bimbe is a boulder-bearing surface with an irregular shape that covers ~16,800 m². It is intermediate in tone relative to the nearby darker-toned eolian sands of the Bagnold dune field (e.g., Bridges et al., 2017) and the surrounding lighter-toned, dust-coated outcroppings of the Murray formation. Most of the boulders visible in HiRISE images of Bimbe are dark toned but a few, as in Brandberg and Blackfoot, exhibit a light tone (Fig. 6b inset). The easternmost extent of Bimbe is a ~37 x 11 m ridge that protrudes northeastward and is mantled with small boulders and cobbles (Fig. 7). This ridge exhibits an eastward azimuth of ~65.5°, which is within the range of the azimuths (50°–95°) exhibited by ridge forms in the nearby Murray buttes, Naukluft Plateau, and Baynes Mountain areas (Fig. 6). Approximately 65–90 m southeast of Bimbe are two hills mantled with dark-gray cobbles and small boulders, named Bukalo and Bailundo (Fig. 7); Mastcam image mosaics show that these resemble the northeast-projecting ridge on the east side 500 of Bimbe (Fig. 7). area by Stimson formation-capped buttes and mesas on the lower northward-facing slope of Mt. Sharp (Figs. 6b and 8, Supplementary Fig. 1-3). The average slope from Bimbe to a Bimbe-like surface to the north (Fig. 6a) is about 4.5%. Bimbe occurs between the elevations –4417 and – 4426 m and exhibits 9–10 m of surface relief, more than at Blackfoot or Brandberg. A higher proportion of boulders, visible in HiRISE images, occurs on the southern, higher-elevation side of the unit (Figs. 6, 8). Several somewhat circular and elliptical depressions near and adjacent to Bimbe exhibit dark-toned bedforms within them; by analogy to similar features throughout Gale crater, these are probably meteoritic impact structures that have trapped eolian sand. One such elliptical depression occurs on the southeast side of Bimbe and some of the larger boulders encountered during With the exception of the northeastward-projecting ridge, the rest of Bimbe generally slopes down toward the north and lies in a broad depression in the Murray formation which is bordered in this the rover investigation of Bimbe occur there (dashed ellipse in Fig. 8). The Curiosity rover was driven along the east and southeast margins of Bimbe and stopped at four locations (Fig. 6b). The first site was visited on sols 1399–1400 (12–13 July 2016) and the second on sols 1400 and 1401 (13–14 July 2016). The rover was parked at a stand-off position some meters from the edge of Bimbe, to image the boulders and cobbles during sols 1401–1405 (15–19 July 2016), where ChemCam observed Murray bedrock. Then it was driven to the last investigation for study of Bimbe over sols 1405–1410 (19–24 July 2016). At the first two Bimbe investigation - 519 sites (sols 1399–1400 and 1400–1401), only remote-sensing observations (ChemCam, Mastcam, - 520 Navcam, Hazcam) were acquired; at the final site, MAHLI and APXS were also deployed. While a - 521 large number of boulders and cobbles were observed by Mastcam at Bimbe, the descriptions given - here focus on the ones that were also observed by ChemCam, MAHLI, and APXS. - 523 ChemCam observed two targets on Sol 1400 (Fig. 6b), Auchab and AEGIS_post_1400a (the latter - 524 selected via rover autonomous targeting software; Francis et al., 2017). As the latter target was - observed after a rover drive, it is at the same site as the Sol 1401 ChemCam targets, Aussenkehr, - Canico, and Chinchimane (Fig. 6b). The final Bimbe site visited by Curiosity (sols 1405–1410) - 527 displayed boulders and cobbles of various morphologies along a low (≤ 1 m) ridge trending to the - 528 northwest (Fig. 9a). Several boulders were south of the ridge, sitting on Murray-formation bedrock - 529 just past the southern margin of Bimbe. The boulders and cobbles nearest to the rover were examined - 530 using ChemCam, Mastcam, MAHLI, and APXS (Fig. 9b). These included two boulders in the - robotic arm workspace, one a conglomerate with targets Tumba (MAHLI only) and Funda (APXS - 532 raster and MAHLI), the other a dark-gray apparent sandstone with targets named Sonneblom (APXS, - 533 MAHLI, and ChemCam) and Zambezi (MAHLI and APXS). Just behind those boulders lay a - partially exposed conglomeratic boulder containing ChemCam targets Seeheim, Wilhelmstal, - 535 Cabamba, and Bungo. About half a meter farther on the low ridge to the right (north and east) of the - rover were ChemCam targets Oranjemund and Lucala (Fig. 9b). Farther to the right were several - 537 conglomeratic stones, including a rounded one containing ChemCam target Balombo, along with a - dark-gray fine boulder named Seeis and another target selected by the rover, AEGIS_post_1406a. - Finally, to the left of the rover was a ChemCam target named Mariental (Fig. 9a); this small boulder - was not on the surface of Bimbe proper, but instead sat isolated on Murray-formation bedrock to the - north of the low ridge which forms the southern margin of Bimbe. 540 542 543 544 545 546 547 ## 3.3.2.
Physical Sedimentology of the Bimbe Deposit The first two investigation sites (sols 1399–1400, and sols 1400 and 1401; Fig. 6b) were relatively flat with the edge of the unit in contact with Murray-formation bedrock and observed to be relatively abrupt. Some eolian sand and regolith occurs at the outer edge, and then, moving inward—amid a regolith of granules, pebbles, and eolian sand—small cobbles, then larger cobbles and small boulders - occur a bit farther in from the edge. The final investigation site (sols 1405-1410; Fig. 6b) was a - 548 ridge, oriented approximately west-southwest to east-northeast, littered with larger boulders and - cobbles. In all cases, some of the cobbles and boulders sit on the surface and others protrude from the - regolithic subsurface. The boulders and cobbles exhibit an array of orientations relative to internal - 551 bedding structure (where present) and exhibit a range of shapes from angular to sub-rounded. - Patches of eolian sand form ridges in the lee of obstacles. - 553 HiRISE images show Bimbe to be in contact with Murray-formation exposures all around its - 554 perimeter. For the east and south side of Bimbe, imaged using the rover Mastcams, Navcams, and - 555 Hazcams, the same relationship is observed from the ground—Bimbe overlies Murray-formation - 556 rock; nowhere does it contact Stimson-formation rocks or other rock units. In addition, no rock unit - 557 overlies Bimbe; it does not appear to be emergent from beneath a rock unit. Bimbe is not cross-cut - by fractures or veins or intrusive rock. Like Brandberg and Blackfoot, Bimbe is not a rock unit but is, - 559 instead, an unconsolidated accumulation of poorly sorted sediment. Grain-size analysis of the Bimbe - unit produced a D50 of 9 mm, D84 of 33 mm and a D16 of 4 mm (Supplementary Fig. 2-3). #### 3.3.3. Evidence of Lithologic Diversity 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 As noted, Bimbe was suspected of being heterolithic because HiRISE images show that it includes light and dark-toned boulders. Like Brandberg and Blackfoot, the boulders that exhibit light tone in HiRISE images are actually dark gray and present a relatively flat, dust-coated surface toward the sky. Mastcam images and analyses made using ChemCam, APXS, and MAHLI, do, of course, show that Bimbe contains a range of lithologies. These include boulders and cobbles that are conglomerates, sandstones, and reddish stones interpretable as Murray-formation rocks (mudstones or very fine sandstones). #### Sandstone Boulders and Cobbles 3.3.3.1. Intact outcrops of sandstone encountered along the Curiosity rover traverse, whether deposited in eolian, fluvial, deltaic, or near-shore lacustrine settings, have generally been dark gray in color (e.g., Grotzinger et al., 2013; Grotzinger et al., 2015; Anderson et al., 2015; Treiman et al., 2016; Edgar et al., 2017; Banham et al., 2018). Some of these sandstones exhibit clear and obvious bedding, others are more "massively" bedded at centimeter to meter scale. Some exhibit protrusive (erosionresistant) grains of very coarse sand, granules or pebbles; others exhibit protrusive concretions that, in places, can give the rock surface a "knobby" appearance at centimeter scales. Some of the sandstones encountered by the rover also have pits in their surfaces, perhaps sites at which a coarse clast or concretion was liberated by weathering. All of these properties of the sandstones seen throughout the MSL mission in Gale crater are also found in one or another boulder or cobble at Bimbe. As a matter of communication convenience, we describe the dark-gray sandstone boulders and cobbles at Bimbe that display some form of stratification or bedding as layered, those which do not exhibit layers are described here as massive, and those with numerous mm- to cm-scale protrusions are here described as nodular. One modification to this scheme is that some dark-gray sandstones have similar appearance including apparent grain size range, and identical chemistry to the layered targets. We will show later that this class (both in layered and not apparently layered form) has been observed earlier along the traverse, and so we group these targets together here as well, calling them all "layered." Massive boulders and cobbles. A "massive" sandstone, for this discussion, is one that exhibits little or no evidence of layering within the cobble or boulder at the scales observable by MAHLI, RMI, and the Mastcams, Navcams, and Hazcams; this does not mean that the original outcrop from which the boulder or cobble eroded was not layered at some greater (decimeter to meter) scale. The boulder on which the targets Sonneblom and Zambezi occur provides an example (Fig. 10). It is dark gray, sand grains are observable (Fig. 10b, c), and the rock surface is pitted at millimeter to sub-millimeter scales, which appears to be a characteristic of this group. Mastcam-100 and ChemCam target, Seeis (Fig. 11a, b), is another example. Like Sonneblom, it is dark gray and pitted; dust-free surfaces can glint in sunlight and some well-rounded mm-scale grains protrude from the rock surface (e.g., 4x inset in Fig. 11b). See is also seems indistinctly layered. Some of these massive apparent sandstone boulders and cobbles also exhibit patches of relatively smooth, dark-gray material (Fig. 11); it is unclear whether these are intrinsic to the sediment or the remains of mineralization formed on fracture walls in the original, intact strata. One such patch was observed by ChemCam on target AEGIS 1406a (Fig. 11c, d). Another cobble examined using Mastcam-100 and ChemCam, called Oranjemund (Fig. 12), is inferred to be a sandstone because it is dark gray and resistant to erosion; only some of its larger grains are perhaps resolvable in the RMI and Mastcam-100 images acquired are 400-700 µm in size. The majority of grains are likely smaller than this. The sunlit portion of the stone facing the 606 Mastcam-100 in Fig. 12 shows that it is laminated at the grain scale (a lamina is the smallest 607 megascopic layer that can be observed in a sedimentary rock; Campbell, 1967). Oranjemund exhibits 608 sharp corners in some places, especially near the top, and more rounded edges near the base. Some 609 glinting of the surface near the apex is evident in the Mastcam image, and the surface investigated 610 using ChemCam is scalloped or fluted. We will show in Section 3.4.1 that Oranjemund is chemically 611 related to the more obviously layered cobble, Chinchimane, described next. 612 Layered boulders and cobbles. Mastcam images show that some boulders and cobbles at Bimbe are not only layered, they exhibit cross-bedding at scales to tens of centimeters (Fig. 13a, b). Still others 613 614 are finely layered, in parallel beds, at sub-millimeter scales. The ChemCam and Mastcam-100 target, 615 Chinchimane, provides an example (Fig. 14). Classified as a coarse cobble, the overall size of 616 Chinchimane is roughly 15 x 25 x 12 cm. Its top is flat and parallel to the bedding, suggesting 617 breakage along a bedding plane. Grains in Chinchimane are challenging to identify in Mastcam-100 618 and ChemCam RMI images; this can be an indicator that grains are smaller than the spatial 619 resolution of the images, or it can be an indicator that pores are filled with cement and the cement is difficult to distinguish from the grains, or a bit of both. A few rounded objects visible in the RMI 620 621 images of Chinchimane are in the coarse to very coarse sand range, roughly 700-1100 µm in size; these might be sand grains and might indicate that the rock consists largely of coarse to very coarse sands. Pitting at the scale of ~500 µm to several mm can be also seen where the layering is indistinct; 622 623 the scale of these pits is consistent with the tentative identification of grains. A light-toned fracture or 624 625 vein cross cuts some of the layers along the right side of the Mastcam-100 image. One layered sandstone cobble, explored via MAHLI from a distance of ~1 m, is an angular slab ("angular sandstone" in Fig. 9b) oriented such that the bedding points approximately skyward (Fig. 15); its ~700 µm grain-scale-thickness bedding includes a much finer-grained, light-toned, ~1 cmthick recessive stratum. Nothing quite like the stone in Fig. 15 has been observed in an intact outcrop during the rover's explorations in Gale to date. Nodular sandstone boulders and cobbles. Some of the sandstone boulders and cobbles at Bimbe display surfaces of many strongly protrusive sand-sized grains, concretions, or both. Some of them are light gray or white; most are darker shades of gray. Two ChemCam targets, Auchab and Canico, provide good examples. At millimeter to centimeter scale, they both have rough textures with protrusive objects of approximately 500-2000 µm size (Fig. 13b, c and 16a, b). Of the two, Auchab contains the highest density of these objects, which appear to cover nearly 50% of its surface. #### Conglomerate Boulders and Cobbles 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 Some of the boulders and cobbles at Bimbe are conglomerates; that is, they are boulder-sized and cobble-sized fragments of conglomeratic bedrock. A conglomerate is a clastic sedimentary rock that consists of > 10% clasts coarser than sand size. Conglomerates are distinguished from breccias because their coarse clasts are mostly sub-rounded to rounded, whereas breccia clasts are generally angular to sub-angular. The larger examples of conglomerates examined via Curiosity at Bimbe are associated with the low ridge that marks the southern boundary of Bimbe. Generally, they are gray and contain gray pebble clasts in a gray sandy matrix (Fig. 17). The pebble clasts have a range of shapes, from angular to sub-rounded and lower to higher
sphericities. Some of the boulders are weakly stratified (Fig. 17a), supporting the interpretation that they are fluvial conglomerates. A few boulders contain cross-cutting veins (Fig. 17b), indicative of fracturing and fluid flow at a time when the conglomerates were still part of an intact rock unit or units at some depth below the Martian surface. Some of these conglomerate stones lie on the surface; others protrude from the regolith. In 650 some cases, a litter of pebbles, liberated from the conglomeratic stones, lies on the ground in the 651 immediate vicinity (e.g., lower left of Fig. 17b). Attributes of four specific conglomerate boulders at the sols 1405-1410 field site were examined in some detail using ChemCam (three boulders) plus - 652 - 653 MAHLI and APXS (one boulder). - 654 One of the conglomerate boulders at the sols 1405-1410 location was the site of four ChemCam - 655 targets, Bungo, Seeheim, Wilhelmstal, and Cabamba (Fig. 18). The leftmost target, Seeheim, exhibits - 656 pebble clasts that protrude somewhat more than in other areas of the boulder surface, perhaps a result - 657 of greater eolian weathering. ChemCam LIBS observation points 1 and 2 at Seeheim hit a specific - 658 clast, while the remaining points hit other materials—two hit individual clasts, two hit matrix - material (Fig. 18b). In the same boulder, the target named Cabamba is a single, angular clast that 659 - 660 contains some light-toned, angular sub-clasts or mineral grains (Fig. 18d). Wilhelmstal is a rounded - 661 clast that might also have a few light-toned sub-clasts or mineral grains within it (Fig. 18e). After the - 662 laser pulses removed dust from Wilhelmstal, it presented a glinting, vitreous luster. The Wilhelmstal - 663 pebble also exhibits small, rounded indentations that could be vesicles. We will show in Section 3.4 - that Cabamba and Wilhelmstal have nearly identical, homogeneous compositions. The fourth target 664 - on this conglomeratic boulder, Bungo, consists entirely of sandy matrix, with grains < 500 µm in size 665 - 666 - 667 A second conglomerate boulder investigated using ChemCam had a singular target, Balombo (Fig. - 668 17c). The boulder has a relatively rounded shape, overall, with mostly angular pebbles protruding - 669 from its surface. At least two large sockets are present; these might once have held larger clasts. The - 670 ChemCam LIBS observation points on Balombo appear to have hit sandy matrix and a few larger (< - 671 2 mm) grains. 689 - A fine boulder in the rover's robotic arm workspace (sols 1405-1410), measuring ~50 cm x ~45 cm x 672 - ~30 cm, was investigated using the MAHLI and APXS (Figs. 17a and 19). Like the others at Bimbe, 673 - it contains mostly gray pebbles of various shapes and sizes set into a gray sandy matrix. These 674 - 675 sediments are weakly stratified. It also has recessed features that—where dust cover is minimal—are - 676 white. These white objects are of sizes similar to the pebbles and granules in the boulder. MAHLI - 677 and APXS were deployed to investigate one of them at a target named Funda. The white feature at - 678 Funda is banded (Fig. 19b). The other target investigated in this boulder, using MAHLI and - 679 Mastcam, only, is a pebble-sized sandstone fragment (Fig. 19c). This target, Tumba, provides - 680 definitive evidence for recycling of sedimentary rock on Mars (Edgett et al., 2018). - 681 Mariental (Fig. 20) is distinct from the other conglomeratic boulders because it occurs separate from - 682 the Bimbe deposit, an outlier about ~3 m to the immediate north (Fig. 9a). Perhaps this boulder - 683 rolled or slid to its present location or it was left behind by a retreating margin of the deposit. The - 684 ground under Mariental is not littered with pebbles (Fig. 20a inset). As in some of the other - 685 conglomerate boulders at Bimbe, the coarser clasts of Mariental are set in a dark, gray, sandy matrix - and some of its gray pebble clasts present a glinting, vitreous luster. In addition, and like the boulder 686 - 687 that contains the targets Tumba and Funda, Mariental includes recessed, pebble-sized white features - 688 (Fig. 20b) that could be either clasts or void-filling minerals similar to Funda (Fig. 19b). - Murray-Formation Pebbles and Cobbles, and White Stones - Reddish and white stones are present but are the least common of the varieties observed in Mastcam 690 - 691 mosaics of eastern Bimbe. Fig. 16a, c shows a couple examples of the reddish stones; none were - 692 investigated using the ChemCam, APXS, or MAHLI. They are inferred to be lithic fragments of - 693 Murray-formation rocks. Overall, the Murray formation consists largely of mudstones and very fine sand sandstones (e.g., Grotzinger et al., 2015; Rampe et al., 2017; Rivera-Hernandez et al., 2019) with colors ranging from various shades of light gray to a purplish gray to brick-red. Locally, near and up-slope from Bimbe, much of the Murray-formation bedrock is of the brick-red variety, like the stones observed in the Bimbe deposit. Angular white or very light gray pebbles are also observed in the deposit at Bimbe. Some of them are angular and relatively flat (Fig. 16a, c). Experience gleaned from studies of the Stimson formation showed that white "halos" of altered rock surround some fractures in the otherwise dark-gray sandstone (Frydenvang et al., 2017; Yen et al., 2017; Banham et al., 2018). Some of the white or very light gray pebbles and cobbles, like those in Fig. 16c, could be fragments of such altered Stimson formation sandstones. Some of the smaller white pebbles could be fragments of vein material. Essentially all of the white vein materials observed thus far throughout the Curiosity traverse have been calcium sulfate (Nachon et al., 2014, 2017). #### 3.4. Bimbe Compositions 698 699 700 701 702 703 704 705 706 707 708 709 710 711 713 714 717 720 722 Compositions are presented here, starting with Bimbe, as it is the only one of the three sites that had enough targets to classify them into groups which can be readily compared with other rocks examined during the mission. As described in Section 3.5, targets at Blackfoot and Brandberg have Murray and Stimson formation compositions. 712 ChemCam performed observations at 125 locations on sixteen Bimbe targets; APXS observed six locations (3 separate targets, one as a raster) on two distinct blocks. The compositions for each ChemCam observation point are given in the Supplementary Material. The mean abundances of the major elements for each ChemCam target are given in Table 1. Standard deviations from the mean of 716 the ChemCam observation points within each target (rasters of 5, 9, or 10 points) are given in Table 2. The distance to the target generally does not appear to play a role in the standard deviations, as the most distant target, Auchab, at 5.2 m, has relatively low standard deviations compared to closer 719 targets. Comparison with standard deviations taken from the single-shot spectra (n=25, dust-free) within a given observation point, presented in the Supplementary Material, shows that the variations 721 between points are nearly always larger than the variations between laser shots within an individual point, as would be expected for targets that are heterogeneous on a scale the size of the laser beam 723 (350-550 $\mu m;$ Maurice et al., 2012) or larger. 724 Table 3 presents abundances of several trace elements to which ChemCam is sensitive. These are $125 \qquad target \ averages, similar \ to \ Tables \ 1 \ and \ 2. \ In \ a \ number \ of \ cases \ for \ Rb \ and \ Sr, \ one \ or \ more \ points \ fell$ below the limits of quantification. In these cases, the mean of the remaining points is given with a 727 "<" sign to indicate the reduction caused by the point with no detection. Standard deviations between 728 observation points of a given target tend to reflect trends in standard deviations of the major elements 729 for the different targets and groups of targets, indicating that, similar to the major elements, the 730 measurement precision is much better than the accuracy, and providing information on the heterogeneity of the targets at the size scale of the laser beam. 732 Table 4 provides abundances and precisions for APXS observations of Bimbe targets Sonneblom, 733 Zambezi, and Funda. 734 Fig. 21 shows relationships among and between the different ChemCam Bimbe targets in terms of 735 major-element abundances. Mean abundances are plotted for all but the conglomerates; individual observation points are plotted for the conglomerates. The conglomerates do not have a homogeneous composition, but instead, scatter significantly. The nodular sandstones (2 targets) also scatter, but are still plotted as means. Each of the other Bimbe groups (massive, vitreous-luster conglomerate clasts, and layered) form loci of points that are circled. All four panels show that the massive, layered, and conglomerate groups are generally distinct and do not overlap each other in overall compositions. #### 3.4.1. Layered Rocks The layered group, consisting of just two targets, Chinchimane and Oranjemund, cluster tightly with the exception of the SiO₂ abundance, where the two targets differ by nearly 4 wt. % (Table 1 and the two yellow dots in Fig. 21). They are characterized by low Si and Al, and relatively high Ti, Mg, and K. Their chemical similarity belies the fact that Chinchimane is clearly layered and Oranjemund only has evidence of grain-scale lamination (Figs. 12, 14). The standard deviations between points in the respective rasters of observations on these two clasts also places them together; they are among the lowest of all of the ChemCam Bimbe targets (Table 2), suggesting that they are fine-grained (e.g., Rivera-Hernandez et al., 2019). In fact, their standard deviations between observation points are almost within a factor of two of the standard deviations of 25 laser shots within each individual observation
point (Supplementary Material). These latter values speak to the homogeneity over the depth of the laser pits. While the pit depths are not generally known, based on laboratory experiments (Wiens et al., 2012; Maurice et al., 2016) they are generally < 150 µm for the 30 laser shots used at each of the observation points reported here, suggesting that the average grain size of these targets may be on the order of a few tens of microns (cf. Rivera-Hernandez et al., 2019). Because of the similarity in composition of these two targets, Oranjemund is classified as "layered sandstone" along with Chinchimane. The mean abundances and standard deviations of all 15 ChemCam observation points on these two layered targets are, for SiO₂, TiO₂, Al₂O₃, FeO_T, MgO, CaO, Na₂O, K₂O: 42.9 \pm 2.3, 1.2 \pm 0.1, 6.3 \pm 0.6, 20.1 \pm 0.6, 11.5 \pm 1.1, 5.2 \pm 1.2, 2.1 \pm 0.2, 1.0 \pm 0.4 wt. %. #### 3.4.2. Massive Rocks Inspection of the compositions of the massive targets in Table 1 and Fig. 21 shows that their compositions are quite similar. They have relatively high SiO₂, Na₂O, and FeO_T abundances, moderate CaO, and relatively low MgO. Aluminum is surprisingly low, given the silica and alkali abundances. Although low Al₂O₃ has been seen in Gale crater rocks before (e.g., Stolper et al., 2013), the Al₂O₃/(CaO+Na₂O+K₂O) ratios are even lower in the Bimbe massive targets, as will be discussed in Section 3.6.4. Table 3 shows that the Bimbe massive targets are enriched in Sr (387 to 673 ppm mean abundances) and Li (24-34 ppm) relative to the other Bimbe targets. In particular, the lowest Sr abundance of the massive targets (Sonneblom_CCAM, at 387 ppm) is more than double the next highest Sr value (Chinchimane, at 173 ppm; Table 3) among the Bimbe targets. Simple statistical evaluation of the compositions and deviations of the massive targets, from Tables 1 and 2, indicate that they belong together as a compositional group. Specifically, standard deviations of the major-element abundances of the different targets, from Table 1, are significantly less than the means of the standard deviations between observation points within each target, from Table 2, indicating the compositional spread is greater within each target than it is between the different targets for the massive targets. - 778 The mean abundances of all 42 ChemCam observation points on massive targets are, for SiO₂, TiO₂, - 779 Al₂O₃, FeO_T, MgO, CaO, Na₂O, K₂O: 54.3±6.3, 1.1±0.5, 8.2±3.4, 17.1±3.2, 2.5±1.0, 4.7±3.2, - 780 4.6 ± 0.9 , 1.1 ± 0.6 wt. %. 790 791 792 793 795 796 797 798 799 - 781 The Sonneblom and Zambezi APXS targets (Table 4) were on different areas of the same block. - 782 They are compositionally similar to one another. Slight differences in composition can be attributed - 783 to the varying dust coverage for the two different targets. The Sonneblom target was on the top, - dusty surface of the rock, and the Zambezi target was on a darker gray, cleaner, inclined surface (Fig. - 785 10a). The increased dust on the Sonneblom surface results in somewhat higher FeO, MgO, CaO, - 786 SO₃, Cl, Ni, Zn, and Br concentrations than for the cleaner Zambezi target. Zambezi has relatively - high SiO₂, Na₂O, and K₂O concentrations. Al₂O₃, MgO, CaO, SO₃, and Ni contents are relatively - 788 low. Comparison of ChemCam compositions with that of APXS (Table 4) for Sonneblom (Fig. 10)-- - 789 the one target that was analyzed by both instruments--shows similar compositions. All of the major - elements observed by APXS are within one standard deviation of the ChemCam compositions except - elements observed by AFAS are within one standard deviation of the Chemicani compositions exce - for MgO, Na₂O, and K₂O. The MgO abundance observed by APXS is significantly higher than that - of ChemCam, and Na₂O is lower, possibly due to dust. APXS's Zambezi observation appears more - dust-free, and its Mg and Na abundances are close to those of ChemCam. An explanation for the - substantially higher K₂O observed by APXS at both locations of this block is unknown. ### 3.4.3. Conglomerates - Conglomerates show significant compositional scatter in Fig. 21 and Tables 1-3, as expected for a group of cemented clasts from diverse sources, and consistent with previous conglomerates observed - by ChemCam LIBS (Williams et al., 2013; Mangold et al., 2016). As mentioned above, two sub- - clasts with vitreous lusters were sampled by ChemCam as individual targets within the - 800 conglomerates; these are Wilhelmstal and Cabamba. The compositions of these two targets (e.g., Fig. - 801 18d, e) are each quite homogeneous (Table 2), and the two targets have similar compositions (Table - 802 1 and Fig. 21) for all elements except Mg, where the mean MgO abundances range from 4.9 to 7.2 - 803 wt. %. For the other elements, the differences between these two targets are generally smaller than - 804 the standard deviations within individual targets (Table 2), indicating significant homogeneity among - the two. (Note, however, white grains in Fig. 18d, e that may not have been sampled by ChemCam). - The source of this apparent vitreous-luster, homogeneous material is not known, but it could be - 807 produced by impact melting or partial melting of some of the conglomerate source material, resulting - in a relatively homogeneous glass with a composition that is near the mean composition of the more - 809 heterogeneous conglomerate. - 810 A third target, AEGIS_post_1400a (Fig. 14a, and Supplementary Material), appears to be - 811 compositionally similar to the vitreous-luster conglomerate clasts: Its composition is almost identical - 812 to that of Wilhelmstal, and also to that of Cabamba with the exception of MgO. This is in spite of - having a quite different texture: The AEGIS target is not a conglomerate or part of a conglomerate; it - is rough at the sub-millimeter scale and covered by indistinct 5-10 mm diameter lumps (Fig. 11c, d). - 815 Some of the protrusions are angular while others are rounded. We will show in Section 3.6.1 that its - 816 composition is that of the Stimson formation. - 817 Among the ChemCam conglomerate targets, Bungo (Fig. 18c) shows the lowest heterogeneity - between points (Table 2), besides the vitreous-luster ones. It also has the highest FeO_T and lowest Al - 819 and alkalis (Table 1). The RMI image (Fig. 18c) shows no observable clasts in the targeted region. - 820 So a possibility is that Bungo's composition represents matrix material. Bungo's composition is - 821 somewhat different from the vitreous-luster conglomerate clasts in that it has lower Al and alkalis - and higher Mg, although the standard deviations of Bungo and the vitreous-luster conglomerate - 823 clasts overlap (Tables 1-2). - Table 2 shows that, except for Bungo and the vitreous-luster conglomerate clasts, the standard - 825 deviations within each individual conglomerate target are large, at least for Si, Al, Fe, Ca, and the - 826 alkalis. This might be expected, as the individual clasts within the conglomerates appear dissimilar. - 827 Thus the compositional variation agrees with the visual inspection, suggesting that these - 828 conglomerates contain clasts from a range of different host rocks. Seeheim (shown in Fig. 18b) in - 829 particular has high standard deviations (Table 2) due to several observation points apparently hitting - 830 nearly pure feldspars, with alkali totals in the 6-9 wt. % range (Supplemental Material). As noted - above, nearly every point hit a different clast within the conglomerate. - 832 The mean abundances of all 44 ChemCam observation points on conglomerates are, for SiO₂, TiO₂, - 833 Al₂O₃, FeO_T, MgO, CaO, Na₂O, K₂O: 45.9±5.3, 1.0±0.1, 11.1±2.6, 18.4±3.2, 6.4±2.0, 6.4±2.4, - 834 3.3±1.0, 0.5±0.5 wt. %. 845 846 847 - The compositions of individual ChemCam observation points of the conglomerates revealed other - details of the chemistry, including a fluorine-rich point. This is described briefly in the - 837 Supplementary Material section 5. - 838 Embedded in a conglomerate, the banded clast Funda and the surrounding matrix and clasts (Fig. - 839 19a, b) were analyzed only by APXS. Funda raster-spot 3 had a significant proportion of the APXS - field of view filled with the white clast, and the chemical data (Table 4) suggest that it consists of - 841 calcium sulfate. Funda could be either a mineral fill in a former void, or it could be a calcium sulfate - clast liberated from a previous rock and deposited with the sands and pebbles observed in the - boulder. The remaining APXS raster spots do not have appreciable calcium sulfate, but reveal - appreciable MgO, CaO and Na₂O contents and relatively low K₂O concentrations. #### 3.4.4. Nodular Sandstones - Targets Auchab and Canico are classified as nodular or coarse sandstone based on their textures - (Figs. 13, 16). These two targets were found at different locations, both separated from the main - group of Bimbe targets (Fig. 6b), and Auchab having been observed at a relatively long distance of - 5.2 m. The two appear to differ in their FeO_T and K₂O abundances (Table 1), with Auchab being - 850 higher in the latter and Canico higher in FeO_T. However, the standard deviations of the points (Table - 851 2) are relatively high, so that the Fe difference is not significant in terms of the overall rock - 852 composition. ChemCam's K₂O abundances have been observed to be higher for targets at distances > - 853 3.5 m; Auchab is in the >95th percentile in terms of target distance (Maurice et al., 2016), so the K_2O - 854 difference is not likely significant. - 855 To investigate briefly the chemical make-up of the nodules, we look at the compositions of the - 856 individual points (Supplementary Material). From the Canico data, Fe is anti-correlated with Si, Al, - Ca, and Na; it is uncorrelated with Mg, and Fe is positively correlated with Ti ($R^2 = 0.73$). - Oualitatively it is also positively correlated with Mn,
although the Mn results are not elaborated - further in this paper. Auchab, at more than twice the distance from ChemCam, generally shows the - 860 same trends, but with greater scatter. The images (Figs. 13, 16) show that Auchab has a far higher - density of coarse nodules. The generally higher Fe abundance of Auchab (Table 1) might suggest - that the nodules are high in Fe and Ti, although it is difficult to make any stronger inferences from - this limited data set. - 864 The mean abundances of all 10 ChemCam observation points on these two nodular sandstone targets 865 are, for SiO₂, TiO₂, Al₂O₃, FeO_T, MgO, CaO, Na₂O, K₂O: 42.9±4.4, 0.9±0.1, 10.7±3.2, 24.1±4.9, 866 6.1±2.1, 5.1±1.1, 3.3±1.0, 1.3±0.7 wt. %. - 867 Mariental's sedimentology (Fig. 20) was noted to be different from other conglomerates targeted by 868 ChemCam, and its chemistry differs somewhat as well. Mariental's CaO abundance is higher than 869 any of the conglomerates and massive float rocks. Mariental's silica abundance is in between that of 870 the conglomerates and the massive targets. Its composition is more iron-poor than the conglomerates 871 (Table 1), and it lies within the relatively tight FeO_T range of the massive floats. Its MgO is 872 relatively low compared to the conglomerates, but definitely higher than the massive floats. 873 Mariental is also distinguished by the highest Al₂O₃ of any of the Bimbe clasts analyzed by 874 ChemCam. From these differences we might conclude that Mariental differs in origin from the more 875 bedded conglomerates at this Bimbe location. 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 #### 3.5. Blackfoot and Brandberg Compositions Compositional data from Blackfoot and Brandberg are sparse. Of the few targets observed by ChemCam, most either clearly belong to the Murray or Stimson formations or else they were at relatively long distances ~4.5 meters which, as discussed above, is near the limit of where the calibration can be trusted. At the edge of Brandberg, targets Roter Kamm and Hoba (Fig. 5b) are identical in composition to Murray bedrock (Supplementary Material), although Hoba lies within the Brandberg unit. Target Gibeon (Fig. 5c) was shot at longer distance and because the autofocus was made along a receding edge of the rock, the observation points were mostly out of focus. This darkgray float rock appears to have dark nodules protruding on its right side. Observation point 3 hit a dark patch and shows a strongly enriched FeO_T content. This observation might classify this rock with the Bimbe nodular sandstones, although more details on the composition are lacking. - At Blackfoot, the ChemCam targets at reasonable observing distances included Sunburst, Jefferson, and Lincoln (Tables 1, 2, 3; Fig. 2a, 3a, b, e), observed on sols 1100 and 1102. Of these, Sunburst corresponds to a relatively rare group of Stimson formation targets referred to as Cluster 1 by Bedford et al. (2020). It has high MgO, like the Bimbe and Bradbury layered targets, but its K2O is much lower, averaging 0.2 wt. % compared to 1 wt. % for the other layered targets. Additionally, Sunburst shows no detectable Rb, and its Sr is nominally less than two thirds of the Sr abundances of Chinchimane and Oranjemund (Table 3). - 895 Jefferson (shown in Supplementary Material) is the only ChemCam-sampled example of the 896 enigmatic flat-topped boulders (such as the ones that appear light-toned from orbit, e.g., Fig. 2c). Its 897 composition bears some similarities to Sunburst, both having relatively low SiO₂ (Table 1). 898 However, considering all of the layered clasts, both at Bimbe and (possibly) Sunburst at Blackfoot, 899 Jefferson is an outlier in most of the major elements. It has higher Al₂O₃ and Na₂O₄, and lower MgO and K2O, though as noted above Sunburst has even lower K2O (Table 1). Additionally, Table 2 900 901 shows that Jefferson has greater variance among its ten observation points. This is especially true for 902 Al₂O₃ and MgO, where the standard deviations are several times higher than those of the layered 903 sandstone targets. The higher standard deviations suggest that Jefferson has a larger grain size than 904 the other layered sandstone targets. Lincoln's (shown in Supplementary Material) composition is somewhat similar to Jefferson's but the differences are in a direction away from those of the layered targets. It has a slightly more felsic composition (higher Si, Al, and alkalis, and lower Mg; Table 1). The target Madison (Fig. 3e) was observed at a distance of 4.5 m; four of the five points were on Casulfate material adhering to the side of the rock. The one point that appeared to hit the relatively dark gray rock itself has a felsic composition with 55 wt. % SiO₂, 17 wt. % Al₂O₃, 4.6 wt. % Na₂O, and - 910 gray rock itself has a felsic composition with 55 wt. % SiO₂, 17 wt. % Al₂O₃, 4.6 wt. % Na₂O, at 911 2.2 wt. % K₂O, along with moderate FeO_T. This would place it near the Bimbe massive-rock - 912 composition except the Al₂O₃ and K₂O are both way too high for the Bimbe Massive group. - 913 Additionally, Madison's Sr abundance is near zero, below the RMS error of 85 ppm, far below the - 914 mean Sr abundance for the Bimbe massive targets (Table 3), suggesting more strongly that Madison - 915 is different from the Bimbe massive targets. Another target, Swan (shown in Supplementary - 916 Material) was observed by ChemCam on the Blackfoot unit, but its composition is identical to that of - 917 Stimson bedrock. The one APXS target within the Blackfoot deposit, Badlands, has an average - 918 Mars-like composition, similar to many Stimson formation APXS targets, but with elevated K₂O and - 919 Na₂O. 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 908 909 - 920 We conclude that a number of Brandberg and Blackfoot ChemCam targets have compositions - 921 synonymous with Murray and Stimson formation rocks, while several targets, including Jefferson, - 922 Lincoln, and Madison, and the APXS target Badlands, do not clearly match any other compositions. # 3.6. Compositional Comparisons to Other Gale Clasts formation, and they are within a couple hundred meters of Stimson formation outcrops. Fig. 21 shows that none of the targets observed using ChemCam are close in composition to that of the Murray formation; the same is true for the APXS targets (although, as noted in Section 3.3.3.3, based on appearances in the images, there are cobbles and pebbles at Bimbe which are likely derived from the Murray formation). The Murray targets taken for comparison in Fig. 21 are from Hartmanns Valley, located near the Bimbe unit (Supplementary Material, Section 3). Murray compositions varied somewhat across the ~350 m of vertical elevation between the lowest and the highest portions of the Murray formation investigated to date. A significant change was the reduction in CaO as the rover ascended higher in the Murray formation (e.g., Mangold et al., 2019). However, CaO is not critical to distinguishing between groups of Bimbe targets or establishing a connection to Murray materials. Overall, comparisons with other targets observed during the mission suggest some specific similarities for the conglomerates and the layered targets, which we discuss in turn below. The Bimbe sediments appear to be overlying the eroded surface cutting across strata of the Murray #### 3.6.1. Conglomerates Here we compare the Bimbe conglomerates to those observed earlier in the mission. We limit this discussion to ChemCam observations. Mangold et al. (2016) compiled the compositions from 197 observation points on conglomerates encountered early in the mission on Bradbury rise prior to Sol 540; these were called "Darwin type" in their paper. The same work characterized a number of conglomerates from between sols 540 and 670 in the vicinity of the Kimberley waypoint (Fig. 1). These have distinctly different compositions, being alkali-rich with $Na_2O/K_2O < 2.0$. The mean value (not shown) of all 40 Bimbe conglomerate and nodular sandstone observation points is nominally lower in Al_2O_3 , Na_2O , and K_2O (11.3, 3.3, and 0.7 wt. %, respectively) and substantially higher in MgO (6.3 wt. %) relative to both Bradbury and Kimberley conglomerates (Fig. 21). Further, the Bimbe conglomerate compositions do not appear to lie along any kind of mixing trend that would relate them to the other two types of conglomerates. This is especially apparent with the alkali elements (Fig. 21 b), where a trend through Kimberley and extending through Bradbury conglomerates with lower K2O would require higher Na2O for Bimbe, but Bimbe conglomerates instead have substantially lower Na₂O. One might consider, very generally speaking, that Bimbe conglomerates are basaltic, close in composition to a Mars crust average (see details in Mangold et al., 2016), and on a trend between soil composition toward the mafic end, and Bradbury conglomerates toward the felsic end. Geographically, the Bimbe unit is closer in distance to Kimberley than to the Bradbury conglomerates encountered near the beginning of the mission. The Bimbe conglomerate compositions are in some respects closer to the average composition of Kimberley conglomerates for most elements, including SiO₂ (45.2 wt. %), Al₂O₃, MgO, and Na₂O. However, K₂O and, to some extent FeO_T, spoil this potential relationship. At Kimberley, observations of sediment targets showed high K₂O abundances (Le Deit et al., 2016; Thompson et al., 2016), as high as 5.7 wt. % (Le Deit et al., 2016) with individual observation points showing even higher values, while the CheMin team reported a high proportion of the mineral sanidine (28% of crystalline material), which is inferred to be the carrier of the potassium (Treiman et al., 2016). possibility. Fig. 21 shows the Stimson formation targets observed by ChemCam using density contours based on > 300 ChemCam observation
points in the Stimson formation (Supplementary Material). The ensemble of Stimson compositions could be described as slightly bimodal, with trends in the direction of more felsic or mafic compositions. The mafic end is anchored to some degree by the composition of modern-day soil (Fig. 21). This generalization does not fit entirely, as Stimson contours trend toward somewhat higher Fe and Mg than soil, even if the description fits for Si, Al, Na, and K. For some of the plots in Fig. 21, the Stimson contours and the conglomerate scatter pattern appear to match well (for example, CaO vs. MgO in panel c, and Na₂O vs. K₂O in panel b), while some of the conglomerate points are low for Al₂O₃ and SiO₂ (panels a and d, respectively). By comparison, the targets classified as vitreous conglomerate clasts plot close to the densest part of the Stimson contour pattern in almost every case. Overall, Bimbe conglomerates match far better with Stimson formation composition than any other An equivalence test was run to compare the Bimbe conglomerates and Stimson compositions, as described in the Supplementary Material. While the match appears relatively close in some panels of Fig. 21 and in boxplots in the Supplementary Material, the test passes for generally mafic elements (Ti, Fe, Mg, Ca) plus K, but fails for alkali felsic elements (Si, Al, Na). With this result we cannot say that the two groups are clearly equivalent, but they could have the same sources, for example, if the conglomerates picked up a small amount of additional felsic material. ### 3.6.2. Nodular Sandstone Regarding nodular targets Auchab and Canico (Figs. 13, 16), some areas of the Stimson formation are dense with concretions (e.g., Banham et al., 2018). The first concretion-rich sandstone of Stimson composition was encountered at Upheaval Dome, roughly 100 meters north of Pahrump Hills (Fig. 1) in an outcrop that also contained some conglomerates (Williams et al., 2018). Overall, the Stimson concretions do not show much deviation from bulk rock composition but for FeO_T there are a number of extreme outliers to high FeO_T concentrations, particularly in the Naukluft locality (see the boxplot in the Supplementary Material; Bedford, 2019; Bedford et al., 2020). These concretions may relate to preferential cementation of the sandstone. If this is true, the sandstone in the Stimson formation could be predominately cemented by iron oxides that formed from olivine diagenesis when Stimson was buried (Yen et al., 2017; Hausrath et al., 2018). Thus if Bimbe's nodular sandstones are derived from Stimson then it would be possible that they could have Fe-rich concretions based on what has been analyzed and interpreted for the concretions at Emerson and Naukluft plateaus (Fig. 1). If these features do not distort any sedimentary structures (like laminations) then they are more likely to be concretions, which would support this hypothesis. #### 3.6.3. Layered Rocks 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 Another apparent match occurs with the Bimbe layered sandstone group (Chinchimane and Oranjemund). Mangold et al. (2015) noted that a number of float rocks observed near the edge of Bradbury Rise (Fig. 22a, b)--both before the rover entered Yellowknife Bay and after it exited--form a compositionally and morphologically distinct group. The best known of these Bradbury layered rocks is Bathurst Inlet (Figs. 1, 22a), which was observed by Mastcam, MAHLI, APXS, and ChemCam on Sol 55 (e.g., Schmidt et al., 2014; Mangold et al., 2015). Other Bradbury layered sandstones of this class and in this area were chemically analyzed only by ChemCam (Mangold et al., 2015). The re-calibrated abundances of all 109 reported ChemCam observation points on these float rocks are given in the supplementary material of Clegg et al. (2017). The mean compositions and standard deviations are plotted in Fig. 21. The match is relatively good in that the mean compositions of the two Bimbe layered targets are generally within the standard deviations even if they are not coincident with the mean Bradbury composition. The largest exceptions are Chinchimane's SiO₂ and Al₂O₃ abundances, both of which are low by a little more than the standard deviation of the Bradbury Layered group (Fig. 21). - Fig. 23 shows ChemCam relative reflectance spectra of representative members of the Bimbe layered - and nodular rock classes compared to members of the Bradbury layered rocks. Both exhibit flat to - 1015 negative spectral slopes in the near-infrared. The Bimbe rocks Chinchimane and Auchab have peak - 1016 reflectance positions near 600 nm, whereas all the Bradbury rocks exhibit longer wavelength peak - 1017 reflectances (650-675 nm). This may indicate that the Bradbury layered rocks include lower-calcium - 1018 pyroxenes and/or less olivine than the Bimbe rocks. - 1019 The equivalence test was also run on these two layered groups (Supplementary Material). The groups - fail the equivalence test for a number of elements (Ti, Al, Fe, Ca, and K), so while their - 1021 compositions appear similar in Fig. 21 and in boxplots (Supplementary Material Section 3), and they - 1022 are unique in their Mg abundances, we definitely cannot say they are equivalent. However, caution - should be exercised with conclusions of this equivalence test due to the small number of Bimbe - points (10), which is well below the recommended number of samples per group for this test. - 1025 At least one other ChemCam target along the traverse appears to have a close chemical relationship - to the Bradbury and Bimbe layered compositions. It is Pyramid Hills (Sol 692; Fig. 22f), with SiO₂ = - 42.0, $TiO_2 = 1.1$, $Al_2O_3 = 5.6$, $FeO_T = 19.4$, MgO = 10.8, CaO = 5.0, $Na_2O = 2.1$, $K_2O = 1.0$ wt. % - 1028 (Fig. 21). The standard deviations between points are also small, like the Bimbe layered targets - 1029 (Table 2), and its morphology appears to fit this class as well. The Pyramid Hills rock face was in - 1030 shadow, so its passive spectrum cannot be compared. A couple of other ChemCam targets in the area - 1031 near Pyramid Hills (Fig. 1) may also be related. The significance of this match is discussed in - 1032 Section 4.1.1. #### 3.6.4. Massive Rocks The dark-toned massive float rocks of the Bimbe unit look most like some of the dark rocks observed at a topographic high named Twin Cairns Island (Sol 343; Fig. 1) approximately 0.5 km from Yellowknife Bay (e.g., Wiens et al., 2017). ChemCam targets there consisted of Black Trout, Bull Arm, and Mallard Lake (all observed on Sol 349; Fig. 1, 22c, and Supplementary Material). Float rocks there and at Bimbe also bear a resemblance to the wind-eroded fine boulder named Jake_M (Figs. 1, 22d), observed by Mastcam, ChemCam, APXS, and MAHLI in the first 100 sols of the mission (Stolper et al., 2013). Jake M's composition falls within the range of the three targets from the Twin Cairns Island topographic high. The mean composition and standard deviation of the 33 ChemCam observation points on these Bradbury rise float rocks, including Jake M, is plotted in each of the panels of Fig. 21 and labeled "Bradbury Massive". It is apparent that the standard deviations are large for this group of targets, a feature that was already noted for Jake_M in Stolper et al. (2013); it was found to be quite heterogeneous even at the scale of the APXS footprint. Comparison of the Bimbe massive and vitreous conglomerate targets with the Bradbury massive composition shows that the Bradbury compositions appear to overlap the massive group in several respects, but the two are quite distinct in Al abundance, where the nominal Bradbury Al₂O₃ is ~17 wt. %, while all of the Bimbe massive targets are below 10 wt. %. Additionally, Bradbury massive targets are much lower in trace elements Li, Rb, and Sr. For example, the mean Sr abundance of the 33 points on the Bradbury massive targets is <200 ppm compared to a mean Sr abundance of 479 ppm in the Bimbe massive targets. Thus, the Bimbe massive targets, as seen by ChemCam, do not have the same compositions as, or similar compositions to, most of the massive targets on Bradbury rise. These two groups fail the equivalence test for all major elements but Mg (Supplementary Material Section 4). The APXS analyses of the Sonneblom/Zambezi boulder do, however, indicate a compositional similarity between this rock and an alkaline float rock, Oscar, analyzed by APXS on Bradbury Rise (Sol 516; Fig. 22e). Curiosity encountered a concentration of erosion-resistant, dark-toned float rocks on Bradbury rise between sols 503 and 526, and APXS analyzed nine of these, all of which are alkaline in composition. Other alkaline float rocks interrogated by APXS on Bradbury rise include the targets Jake_M (Fig. 22e) and Monkey Yard (Fig. 1). All the alkaline float rocks analyzed by APXS exhibit similar elemental trends: elevated Na₂O, SiO₂ and K₂O, and depleted MgO, Cr₂O₃, MnO, FeO_T and Ni relative to average Mars. However, Oscar and Zambezi have higher SiO₂ and FeO_T, and significantly lower Al₂O₃ and CaO concentrations than the other alkaline float rocks. They are also somewhat depleted in Na₂O, MgO, Cr₂O₃ and Zn relative to the other alkaline float rocks. #### 3.6.5. Blackfoot and Brandberg Of the Blackfoot and Brandberg targets, Lincoln (shown in Supplementary Material) appears to be a reasonable match to Stimson formation compositions. For the single observation point on Madison, its composition lies relatively close to the Bradbury massive targets for several elements (Table 1), but the Bradbury massive targets have much higher CaO, and at least one Bradbury massive target contained Ca-rich pyroxene (supplementary material of Stolper et al., 2013). The one Brandberg ChemCam target, Hoba, looks like Murray formation in terms of composition and petrography; its composition fits well for the Murray formation except for somewhat high K,
which is due to the observation distance (see comment in Section 3.4.4). APXS observed one Blackfoot target, Badlands, on Sol 1102 (Fig. 3f). Its composition is given in Table 4, and is overall relatively similar to Stimson formation rocks except for higher K and Na abundances. As such, it is considered to be of the Bell Island class, with somewhat lower K_2O than Bathurst Inlet (Fig. 1), a layered float clast observed by APXS at Bradbury Rise (Schmidt et al., 2014). #### 4. DISCUSSION # 4.1. Compositional Relationships to Other Gale Rocks and Outcrops: Possible Implications 4.1.1. Bimbe Layered Rock Similarity to Bradbury Layered Rocks The compositional similarity between the layered Bimbe targets and the layered Bradbury targets (Schmidt et al., 2014; Mangold et al., 2015) was noted above. Here we note their textural similarity. Only one Bimbe ChemCam target, Chinchimane, exhibits clear layering, while another target, Oranjemund, is compositionally very similar but only displays grain-scale laminations. Inspection of the rocks in Bradbury rise shows that the compositionally similar targets there exhibit both layering and no apparent layering. This is seen most clearly in Fig. 22a, where clasts at the lower right of the image are obviously layered but clasts from the same unit at the upper left, including APXS, MAHLI, and ChemCam target Bathurst Inlet (Fig. 1), are not obviously layered. This is consistent with the layered and non-layered Bimbe clasts with similar composition being related to each other; their morphological variations may suggest various levels of cementation. Additionally, Fig. 22b shows a Bradbury layered clast that is cross bedded. The Bradbury clasts in Fig. 22a (Bathurst Inlet and surrounding clasts), while not connected as a single outcrop, appear to form a distinct unit relative to the surrounding gravelly surface material. The same feature appears to occur at the location of Pyramid Hills (Fig. 22f), where the ground appears to be covered with similar clasts. ChemCam observed two other targets--Johnnie and South Park2--that may belong to the same family (see their compositions and images in the Supplementary Materials). In this location and at Bathurst Inlet near Yellowknife Bay the rocks appear to be broken fragments of an intact rock unit. The layered clasts in Bimbe (Sol 1401), Pyramid Hills (Sol 692), and Bathurst Inlet (Sol 55; Fig. 1) are not time-equivalent, given the significant difference in elevation (~100 m). Assuming that they are related, one possibility is that the rocks at Bimbe were sourced from a stratum or strata that was/were younger and located at a higher elevation than Bradbury rise, but have since eroded away completely. This stratum or strata that sourced the Bimbe rocks may have shared a similar provenance and depositional setting and process as the Bradbury layered targets. Another possibility is that the layered rocks in Bimbe were deposited from the same source and at the same time as the Bradbury layered material. Considering the bedded nature of the material surrounding Bathurst Inlet on Bradbury rise (Fig. 1, 22a), this would require an unconformable unit that draped across the elevation difference between Bimbe and this portion of Bradbury rise, somewhat like the Stimson formation drapes over the Murray formation (Banham et al., 2018). Indeed these rocks could have been strata that were slightly younger than and overlaid the Stimson formation. Several factors lend credence to this idea. The first is that, based on ChemCam observations, the composition of bedded sandstones on Bradbury Rise, for example, at the Darwin and Cooperstown waypoints (Fig. 1), is nearly the same as those of the Stimson formation (Bedford, 2019; Bedford et al., 2020), suggesting that the Stimson formation may have extended farther from Mt. Sharp than the observable portion of the Murray formation (see Williams et al., 2018). This has implications for the timing of the deposition of rocks exposed on Bradbury Rise that is not discussed here. Secondly, the fact that the Stimson formation is already found to drape unconformably over the Murray formation lends some credence to the idea of additional stratigraphically higher draping rock units. In this scenario, the draping formation that produced the Bradbury and Bimbe layered clasts would have almost completely eroded away, leaving only the rocks at Bathurst Inlet, some scattered layered clasts nearby (other layered float rocks in Mangold et al., 2015), the rocks at Pyramid Hills, and scattered layered clasts in another area having conditions that permitted long preservation, namely in the Bimbe unit. # 4.1.2. Bimbe Massive Sandstones and Relationships to Other Clasts along the Traverse As described above, the Bimbe massive sandstones are not the same composition as most of their float-rock counterparts on Bradbury rise. The massive targets have been enigmatic ever since they were first reported (e.g., Stolper et al., 2013; Schmidt et al., 2014). Their compositions are consistent with a low degree of chemical alteration, but their textures are not igneous, appearing sedimentary instead. Massive Bimbe float rocks display some faint layering as well as apparent spherical grains (lower left portion of Seeis, Fig. 11b). Similar to Jake_M on Bradbury rise (Fig. 22d), Seeis appears heavily wind scoured (Fig. 11), and the other Bimbe massive targets also show significant wind abrasion, suggesting that these clasts are very well cemented, if sedimentary in origin. Besides Bradbury rise and the heterolithic units, there is one other location along the traverse, named Bressay (Fig. 1; studied on sols 2013-2023), where massive float rocks of similar appearance were studied. While it is beyond the scope of this work to describe Bressay, it is important to note that the portion it and its clasts that were explored by Curiosity are very different from the three heterolithic units described here. The areal extent of the Bressay deposit explored by Curiosity is far smaller, with most of the clasts within just one meter of each other and a few other float rocks scattered a few meters away, although a larger extent to Bressay was imaged (Williams et al., 2020). The Bressay clasts investigated by Curiosity, all of which are smaller than boulders, include conglomerates, massive sandstones, and compositionally unique ones, including at least one apparent igneous clast (Bridges et al., 2019). The composition of the massive clasts do not match those in Bimbe, but instead appear to be close to those at Bradbury Rise. The compositions of the other clasts also do not match those in Bimbe. In summary, the Bressay clasts that were investigated appear unrelated to those of Bimbe, and based on size and appearance, are also unrelated to those of Brandberg and Blackfoot. # 4.1.3. Conglomerates with Compositions Similar to Stimson, and Implications The compositional similarity of the Bimbe conglomerates to the range of Stimson compositions (Fig. 21) is significant. As noted earlier, vitreous-luster clasts (sampled by targets Wilhelmstal and Cabamba) in conglomerates are fine-grained (as observed by ChemCam standard deviations of points), and compositionally they are located near the center of the locus of Stimson compositions. Other ChemCam observation points on conglomerates have larger ranges of compositions, but generally still fall within the Stimson contours, although the two groups fail the equivalence test for Si, Al, and Na. The ChemCam observations of the Stimson formation exhibit a range of compositions. As described by Bedford (2019) and Bedford et al. (2020) there are clear felsic to mafic trends among compositions observed in the Stimson formation. These are consistent with Curiosity observations of Bagnold dunes, where grain segregation is apparent (e.g., Cousin et al., 2017b; Ehlmann et al., 2017; Johnson et al., 2017; O'Connell-Cooper et al., 2017). Stimson 1164 formation is an eolian sandstone (Banham et al., 2018), and so the preservation of compositional 1165 variations reminiscent of grain segregation in contemporary dunes is not surprising. The similarity in composition between Bimbe conglomerates and Stimson-formation rocks could imply either that their material comes from a similar or common source, or that the Bimbe 1167 1168 conglomerate clasts are actually broken-up pieces of Stimson-formation sandstones, perhaps with 1169 some felsic clasts added. These two possibilities have quite different implications. A potential 1170 objection to the first possibility is that we do not see any obvious (significant) very local precursor 1171 material for the Bagnold dunes that exist currently (e.g., Ehlmann et al., 2017). If the same is true for 1172 the Stimson formation in spite of the different directions of their sources (Banham et al., 2018; 1173 Bedford, 2019; Bedford et al., 2020), then the observation of angular Stimson-composition pebbles 1174 in the conglomerates might be inconsistent with the lack of a local source. But if the clasts are 1175 broken-up Stimson sandstones, it would imply that the conglomerates were formed in fluvial action that came much later in time, after the Stimson-precursor dunes were buried and compacted, lithified, and then exhumed. That possibility, while seeming unlikely, cannot currently be completely discounted based on our limited data set. 1178 1179 The most likely possibility seems to be that there was in fact fluvial activity that was nearly 1180 contemporaneous with (e.g., either shortly before or after) the deposition of the Stimson eolian 1181 material and that this fluvial activity deposited conglomerates containing pebbles sourced from the 1182 same or similar material to that of the Stimson eolian material. That is consistent with some 1183 outcropping of conglomerates seen earlier, relatively near Stimson material (Williams et al. 2018). At some later point in time, some conglomerate material was
broken up and transported to the heterolithic units, where it lies as described in this study. The next two sections (4.2 and 4.3) will discuss this latter step—how the material was transported to the heterolithic units and was apparently preserved. 1187 1166 1176 1177 1184 1185 1186 1188 1190 #### Comparisons of the Three Units: Similarities and Differences 4.2 - 1189 Here we consider all three heterolithic units, and their possible origins. But before going into models - of deposition, we briefly summarize features of the three units, starting with their similarities: 1) the - 1191 deposits form thin, isolated but coherent patches; 2) they are composed of unconsolidated pebbles, - 1192 cobbles and boulders with varying degrees of roundness; 3) the patches include particles derived - 1193 from the Stimson and Murray formations, and from other sources; 4) the deposits unconformably - 1194 overlie Murray and (at least in one case) Stimson formation bedrock; 5) the deposits occur on an - 1195 eroded landscape, below adjacent local ridges and surrounding buttes, mesas, and plateaus capped by - 1196 Stimson formation rocks, and are not immediately adjacent to talus slopes from these local - 1197 topographic highs, 6) there are similar boulder-rich patches in the region along the lower slopes of - 1198 Mt. Sharp in HiRISE images (Fig. 6a), and 7) those patches are distributed in a band along the lower - 1199 elevations of Mt. Sharp on slopes of about 5%. - 1200 Differences among the three units are highlighted in Table 5. Blackfoot is the only one of the three - 1201 units that physically superposes outcrops of the Stimson formation. The lithologic diversity of - 1202 Blackfoot and Bimbe includes conglomeratic boulders and cobbles. Whether conglomerates occur at - 1203 Brandberg is uncertain; if they are present, they are small (cobble-sized) and rare. The conglomerates - 1204 at Blackfoot and Bimbe may have different lithologies as compared with each other; those at - 1205 Blackfoot are small, in a greater state of disintegration, and appear to have better-rounded pebbles - 1206 within them. Some of the boulder- and cobble-sized stones at Brandberg are interpretable as Murray- 1207 formation mudstone lithic fragments; some of the cobble-sized stones at Bimbe are also interpreted 1208 as Murray-formation mudstones (though none that were analyzed for chemistry). In both cases, the - 1209 mudstone fragments are similar in color and sedimentary texture to the nearby and adjacent intact - 1210 Murray-formation outcrops. Blackfoot has no mudstone lithic fragments. Sandstones at all three units - 1211 are dark gray and exhibit "massive," "layered," and "nodular" morphologies. Only at Blackfoot and - 1212 Bimbe are light-gray and white sandstones observed (Figs. 3g, 15b, 16c)—possibly derived from - 1213 fracture-associated "halo" areas in the Stimson formation. Only at Brandberg are concretions - 1214 liberated from sandstones observed (Fig. 5d); these resemble the concretion forms observed via MSL - 1215 cameras on the east side of the Naukluft Plateau (Figs. 5e, f). - 1216 A few more differences are as follows: Brandberg exhibits a circular shape and conforms to an - 1217 arcuate ridge eroded into the adjacent Murray-formation mudstone (Fig. 4f). Some of the sandstone - boulders and cobbles at Brandberg are slab-shaped, embedded in the deposit like lawn darts, and 1218 - 1219 dipping steeply toward the center of the unit. Brandberg and Blackfoot are not cratered within their - 1220 structures; the south edge of Bimbe is superposed by one, or possibly two, impact crater(s) (Fig. 8). - 1221 The outline of Bimbe is irregular and its northeastern-most portion is a ridge. In summary, there are - 1222 - significant differences among the three heterolithic units visited by Curiosity. #### Origin of the Heterolithic Units 4.3 1223 1226 1241 - 1224 To explore the origin of the heterolithic units, we describe five different process sequences (models) - 1225 that could have led to these distinct deposits. We use illustrations (Fig. 24) showing common - elements; Each panel shows three time steps; an initial condition, delivery of the heterolithic - 1227 sediment, and subsequent landscape erosion leaving isolated patches of heterolithic units. In every - 1228 case, eolian abrasion causes erosion and deflation at variable rates around these units. In each - 1229 illustration, the gray, stippled bedrock layer represents the Stimson formation which overlies the - 1230 Murray formation (white with lines representing bedding) across an erosional unconformity. The - 1231 subsequent heterolithic unit is indicated in orange. For the first two illustrations (Fig. 24a, b), - 1232 dissection of the Stimson and Murray formations occurs simultaneously with the generation of local - 1233 heterolithic units. The travel distance of sediments is short, on the scale of the preserved sediment - pile, e.g., on the order of 50 m. In the subsequent three models (Fig. 24c-e), the initial condition is 1234 - shown as a partially dissected landscape across lower Mt. Sharp that undergoes a pulse of burial 1235 - 1236 followed by subsequent erosion which leaves isolated heterolithic units. In these three cases some - 1237 sediment may be arriving from > 10 km in the upslope direction, with an elevation drop > 1 km. The - 1238 partially dissected initial condition localizes sediment deposition on eroded Murray and Stimson 1239 - formation surfaces and exposes these rocks (and the no-longer-present conglomerate bedrock) to - 1240 entrainment and incorporation into deposits that become the heterolithic unit. #### 4.3.1 Model 1: Crater Impact and Fill (Fig. 24a) - 1242 Impacts large enough to penetrate through the Stimson formation into the Murray formation at an 1243 - earlier point in time (i.e., at a time when there was greater or complete coverage of the Murray - 1244 formation by the Stimson formation) could have resulted in local accumulations of residual pebble, - 1245 cobble, and boulder deposits. In this case broken rock of the Stimson and Murray formations would - 1246 have collected on the floor from ejecta fall-back and subsequent erosional retreat of the crater walls. - 1247 Wind erosion could then force retreat and elimination of crater walls and would eventually leave a - 1248 coarse lag of material, covering the crater floor, that is more resistant to wind abrasion than the - 1249 Murray bedrock. This model could explain the circularity of Brandberg, the arcuate ridge just 1250 outside of the unit (Fig. 4f), and the angular, steeply-dipping "lawn dart" rocks within the unit (Fig. 4d). The nearby clast observed by ChemCam (Hoba; Fig. 5a, b) has a Murray-formation composition 1252 and sedimentary texture, consistent with an expectation of local material falling into a crater. Gibeon (Fig. 5a, c) may be a remnant clast from the Stimson formation, and the clast in Fig. 5d is definitely 1254 similar to concretions that formed in the Stimson at the nearby Naukluft plateau (Fig. 5e, f). Other types of clasts may exist in Brandberg (e.g., conglomerates in Fig. 5g), depending on what overlying layers, above the Stimson formation, may have been present when the crater was formed. An impact crater of this size in the vicinity of dunes will fill with fine sediment, which may help preserve clasts 1257 1258 from erosion for some period. 1251 1253 1255 1256 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1271 1272 1273 1276 1278 1280 An impact origin is more difficult to fit with the overall shapes of Blackfoot and Bimbe, which are elliptical and irregular, respectively. Blackfoot could have been formed from an oblique impact, but if so, it does not retain the types of more telltale features seen at Brandberg, especially the surrounding ridge. Future exploration by the rover of craters excavated in Greenheugh Pediment (Stimson formation; Fig. 1) may shed light on the ability of craters to explain the heterolithic units. ### 4.3.2 Model 2: Local Valley Incision (Fig. 24b) This scenario bifurcates into two pathways, but both begin with valley incision through an erosionresistant capping unit (Fig. 24b, first two time steps). The valley widens as scarps retreat. Such retreat could have occurred when the environment was wet enough to involve cap-rock undermining by seepage and removal of debris by streams. However, no landforms are present in the current landscape that would require a role for water in the retreat of these scarps (the same point applies to 1270 Model 1, above). Progressive scarp retreat in a setting in which there is an erosion-resistant capping unit, like the Stimson formation, leads to formation of—in order of decreasing planimetric size—plateaus, mesas, and buttes (e.g., Duszyński et al., 2019). Such landscapes on Earth are usually connected to 1274 tectonism plus stream incision followed by scarp formation and retreat through a combination of 1275 weathering, creep, landslides, overland flow, and groundwater seepage (e.g. Twidale and Milnes, 1983; Howard and Selby, 1994). On Earth, boulders shed from the capstone of retreating cliffs 1277 typically do not extend far from the base of the slope (e.g. Glade et al., 2017). Shedding of material from, or disintegration of, the Murray buttes and precursors in the vicinity of the heterolithic units 1279 could potentially result in both Murray and Stimson clasts in the heterolithic units. The scarp in Fig. 24b is at least on the order of the height of the Murray buttes, e.g., 7-17 m. The local slopes from the 1281 Murray Buttes to the heterolithic units are not steep (Fig. 6b and supplementary material). 1282 Shedding of boulders and cobbles from retreating mesa and butte scarps. One way by which 1283 scarp retreat could create a deposit like Bimbe, Brandberg, or Blackfoot is by the accumulation of 1284 boulders and cobbles shed from the slopes as they fail. In particular, this would lead to
an abundance 1285 of the most erosion-resistant rocks, such as the Stimson formation capping unit. If conglomeratic 1286 bodies of rock were present just above, below, or within the otherwise sandstone capping rock unit, they too, would be incorporated in the accumulation. The problem is that much of the space between 1287 1288 Murray buttes or between the other scarps which expose the Stimson formation in the area is devoid 1289 of such boulders and cobbles. They mainly accumulate on and at the base of the scarp slope. As the 1290 scarps retreat, the destruction of boulders and cobbles apparently keeps pace with that retreat. 1291 Therefore, if this model is to explain the existence of a heterolithic unit such as Bimbe, it would 1292 require the accumulation of boulders and cobbles to be particularly thick, such that while destruction of boulders and cobbles might keep pace with scarp retreat, originally thicker accumulations of 1294 boulders at these sites has not yet been fully removed. Perhaps in the early stage of development, 1295 blocks accumulated across the valley floor and limited fetch (wind exposure) plus a rough valley 1296 floor reduced wind strength and thus abrasion, but once the mesa retreat was sufficiently wide, 1297 boulders that reached the base of the mesa were eliminated by wind abrasion. This concept could 1298 explain why boulders and cobbles are restricted to the specific heterolithic units where they are found. The coarse patches of the heterolithic sediment are not connected to the adjacent mesas. 1293 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 Decay and death of buttes. Another pathway to leave behind an accumulation of boulders and cobbles is through the decay and near-destruction of buttes. In this case, the boulders and cobbles would have been just barely displaced from their original positions as the capping rock was undermined and broke apart. The progression toward complete destruction of buttes is illustrated by Parzoch and Migon (2015) and Migon et al. (2018). In this case, we would expect the boulders and cobbles of a given heterolithic unit to be superimposed on a small, remnant hill of Murray formation bedrock. The ridge at the northeast end of Bimbe, plus the two boulder- and cobble-mantled hills named Bukalo and Bailundo (Fig. 7) provide examples that such decayed buttes likely do occur in the landscape around Bimbe. However, the bulk of the area beneath Bimbe is not a low hill that could be interpreted as a decayed mesa or butte or collection of these (see topographic contours in Fig. 6). # 4.3.3 Model 3: Landscape Burial by Mass Transport of Debris Followed by Extensive Erosion (Fig. 24c) km in length. Some features, specifically the heterolithic units, are not drawn to scale. A mass flow, either a massive landslide, rock glacier or glacier descends from Mt. Sharp and spreads across the lower slopes, scouring and depositing debris on previously-exposed Murray and Stimson formation surfaces. Subsequent wind erosion erases the trace of the scar and leaves isolated patches, most likely preserved for some time in depressions (craters, canyons, fractures). This model could account for Murray and Stimson clasts in the heterolithic units, as well as other varieties of clasts sourced from material father up Mt. Sharp. Various authors have proposed that the distinct lobate features on the middle slopes of Mt. Sharp, 20 km to the east of the Bimbe deposits, record landslides or glacial/periglacial features formed at a relatively late stage after Mt. Sharp had its present form (e.g. Model 3 starts with a partially dissected lower Mt. Sharp landscape representing an area at least 10 A weakness of this model is the lack of evidence of either an upslope landslide scar or an accumulation zone for the supply to an advancing glacier in the ablation zone. Rocks along the rover's traverse also lack glacial polish. However, the progressive erosional retreat of Mt. Sharp could have eliminated such evidence. Sediment sorting shown in Supplementary Fig. 2-4 suggests that the sediment deposit is not an unsorted matrix-supported mass typical of mass flow deposits, but is instead similar to fluvial sorting, although the infrequent large boulders call for exceptional transport ability. Anderson and Bell, 2010; Le Deit, et al., 2013; Fairen et al., 2014; García et al., 2016). Periglacial (Anderson and Bell, 2010; Le Deit, et al., 2013) and glacial (Fairen, et al., 2014) processes have been proposed as possibly active in Gale in the past. Glacial moraines are characterized by poor sorting. The presence of conglomerates at Bimbe and Blackfoot could be explained from fluvial channels occurring beneath a glacier; the conglomerates would have later been transported to their current location. Another related possibility is that these units were deposited in a perennially ice-covered lake (PICL) that formed in Gale crater (not shown in the Model drawing). On Earth, sediments of varying compositions and sizes can accumulate on the ice cover of PICLs (e.g., Rivera-Hernandez et al., 2018). For PICLs without liquid water columns (due to drainage, evaporation or sublimation of the liquid water), laterally discontinuous patches of sediment (i.e., sediment mounds) form as let-down till from the sublimation of the lake ice (Hendy et al., 2000; Hall et al., 2006). The sediment mounds consist of very poorly sorted mud to boulder sized grains. Sediment accumulated on the ice cover of PICLs can be substantial, for example Lake Miers in Antarctica has sediment piles up to several meters high, ten meters in width, and a couple tens of meters long (e.g., Bradley and Palmer, 1967). For PICLs abutting calving glaciers, let-down till can also occur as arcuate debris bands that extend across the former lake floor (Hendy et al., 2000; Hall et al., 2006). PICLs abutting calving glaciers and with liquid water columns, can also have ice-rafted poorly sorted sediments accumulate along the lake edge (which is ice-free during the summer) as a result of the ice cover being pushed towards the lake edge when glacial ice is incorporated into the lake ice (Hendy et al., 2000; Hall et al., 2006). Geomorphic evidence associated with PICLs abutting calving glaciers (Hendy et al., 2000; Hall et al., 2006) has not been observed in the vicinity of the heterolithic deposits either upslope or at the depositional sites. # 4.3.4 Model 4: Landscape Burial by Laterally Extensive Fluvial or Debris Flow Fan Deposits, Followed by Extensive Erosion (Fig. 24d) This model proposes fluvial (water dominated) or debris flow (mobilized by mud supporting matrix) transport in which successive flows descend from Mt. Sharp and spread deposits across a broad area, burying the partially eroded landscape. The heavier black lines are meant to suggest successive channel pathways common to fan construction. Similar to Model 3 (mass transport), the deposited material is mostly lost to wind abrasion over time, leaving patches of sediment, most likely preserved in the original valleys where thicker deposits would have accumulated. Also similar to Model 3, this model would result in Stimson and Murray clasts as well as other material sourced farther up Mt. Sharp Transport of clasts in stream beds within Gale crater is now widely accepted to have occurred in the Bradbury rise region. Large amounts of igneous cobbles and pebbles of sizes up to ~ 10 cm were transported from the crater rim via Peace Vallis (Fig. 1 inset) and other channels (Sautter et al., 2014, 2015, Cousin et al., 2017a). HiRISE observations have also been made of fans deposits overlying the "washboard unit" (Siccar Point group) in other parts of Gale crater (Milliken et al., 2014). Grain size analyses reported for the three heterolithic units and shown in Supplementary Fig. 2-4 are similar to gravel-bed rivers on Earth. Median grain sizes range from 9 to 16 mm. The heterolithic-unit grain size distributions are influenced by abrasion and weathering breakdown of large particles, partial burial by sand, and possible lag concentration due to wind erosion. The gravel and boulders are subangular (Powers visual scale), although ventifact shaping of the surface particles is common and obscures the original shapes of many of the larger boulders. The limited exposure on the edge of the deposits do not show matrix-supported clasts (as typifies debris flow deposits). The prominent boulders that stand out in the heterolithic units are 30 to 40 times larger than the median size of the units, and thus would probably not be mobile in flows moving the finer gravel making up most of the deposits. Two explanations are possible for this admixture of very coarse rocks with finer gravel. The flows could have originated more than 5 km away on the slopes of Mt. Sharp and swept into previously partially-dissected landscape where talus from retreating mesas could be locally incorporated in the flows. Boulders may be entrained and then carried a short 1380 distance into the passing flows. Alternatively, the flows may have incorporated sufficient fines to 1381 have densified and transformed into debris flows, which could readily carry such boulders on gentle 1382 slopes in thin flows (e.g. Whipple and Dunne, 1992). The laterally extensive occurrences of other apparent heterolithic deposits seen from orbit (e.g., one in Fig. 6a), if indeed these are genetically related to the three heterolithic units studied here, support a laterally extensive burial of the foot of Mt. Sharp. The description and study of these other units observed from orbit are beyond the scope of this paper. As mentioned for Model 3, no observations were made of deposits on the Stimson-capped mesas that would suggest such massive burial. # 4.3.5 Model 5: Localized Fluvial or Debris Flow Transport Down Dissected Plains
(Fig. The primary difference between this model and Model 4 is the proposed extent and thickness of the depositional field. In this model, localized avenues of runoff and sediment transport extend down a dissected lower Mt. Sharp landscape. Transport could be fluvial or debris-flow dominated or a mixture. In this case, the deposits would be initially relatively thin, and confined in valleys. Postburial valley-wall retreat and valley-floor dissection by wind abrasion led to the localized, elevated patches of sediment. Preservation of these coarse deposits may be attributable to exceptionally low wind abrasion rates (the landscape was already mostly dissected to its current state by earlier longerduration eolian abrasion) and the relative strength of the stones in the deposits compared to the underlying Murray formation. ### 4.3.6 Discussion 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1421 The topographic setting of the Blackfoot, Brandberg, and Bimbe suggests a localized transport and deposition origin for the deposits. The Bimbe deposit lies in a ~300 m wide, nearly flat-floored sloping valley (Supplementary Fig. 1-3). Further to the north is a deposit that from HiRISE images is very similar in appearance ("Bimbe-like surface" in Fig. 6a; Supplementary Fig. 1-3). Over a ~500 m length, starting up slope of Bimbe and ending with the northern deposit, the valley slope is about 5% (Supplementary Fig. 1-3). Fluvial gravels, confined in channel banks in river canyons, are typically coarser than 16 mm on such slopes (e.g. Dietrich et al., 2017), but on fans, these median grain sizes do occur on such steep slopes (Stock et al., 2007). The current widths of the deposits are much greater than any likely individual channel. One possible interpretation is that a succession of flows traveled downslope to this area, spread, shallowed and deposited the sediment, as a fan-like deposit bordered by mesa walls. A similar argument can be made for Blackfoot, which forms a diagonal ridge connecting a row of southwest-northeast directed ridges of bedrock bordering its southern and northern edge (Supplementary Fig. 1-1). It is an erosional remnant with scoured depressions ~4 m deep to the west and east. It rests on Murray-formation rocks to the south and rises onto Stimson formation rocks at its southern edge. The Brandberg deposit is the same elevation as Blackfoot (Supplementary Fig. 1-2). A transport path would have followed a partially etched surface into the Murray, bordered by Stimson formation capped ridges, some of which were not deeply 1418 The three investigated deposits lie downslope from Gediz Vallis, associated ridge deposits, and 1419 Greenheugh pediment (Fig. 1; e.g., Bryk et al., 2019). The stratigraphy and apparent coarse texture 1420 of the Gediz Vallis ridge deposit suggest it may be the remnant of a fan of fluvial or debris flow origin. It is possible that the deposits once extended further downslope and that distal flows may - 1422 have travelled the ~ 3 km from here downslope to the Bimbe-Blackfoot locations either during fan - 1423 construction or during subsequent erosion. It was at one time a ready supply of sediment, and could - 1424 also be a source for lithologic heterogeneity of the sediment during its erosion. This scenario - 1425 requires that at least a portion of the Gediz Vallis sedimentation postdated lithification of the - 1426 Stimson formation. The flow would have occurred before the existence of the shallow valley (Glen - 1427 Torridon; Fig. 1) separating Greenheugh pediment and VRR. The relatively short travel distance to - 1428 Bimbe would likely cause only limited rounding of sediment (Szabo et al. 2015) during their - 1429 transport and deposition as collections of float rocks. - 1430 More than one model may have given rise to the three heterolithic units. For example, the round - 1431 shape of and arcuate ridge around Brandberg (Fig. 4f) seem to be indicators of an impact crater but - 1432 Blackfoot and Bimbe seem to require other factors. The fact that Bimbe and its non-visited - 1433 companion to the north (Fig. 6a) lie in a broad valley (Supplementary Fig. 1-3) may be a clue, but - 1434 Brandberg and Blackfoot do not share that characteristic. - 1435 The bare, unconsolidated appearance of the sediment in these units, showing clear signs of wind - 1436 abrasion, raises question of whether these thin deposits were, for a period of time, buried by - sufficiently thick deposits of sand (like that in the Bagnold dunes) that exposure to wind erosion was 1437 - 1438 greatly reduced, as active erosion proceeded to cut widened valleys and local troughs into the - 1439 underlying Murray formation. Alternatively, the wind erosion rates may be exceptionally slow on the - 1440 relatively hard stones and be diminished due to the roughened surface produced by diverse grain - 1441 sizes. In either case, the current three patches are generally elevated relative to some of their - 1442 immediate surroundings, indicating greater resistance to erosion than the underlying Murray. #### 5. CONCLUSIONS 1443 - 1444 Exploration of the three heterolithic units has revealed a number of unique details. Significantly, the - 1445 presence of conglomerates with compositions that are very close to that of the Stimson formation 1446 - implies that some wet epoch must have existed after the Murray formation was eroded to nearly its - 1447 present surface, and during or after the time period that the eolian material was deposited to form the - 1448 Stimson formation. This must have been significantly later than the lacustrine activity associated - 1449 with the Murray formation, thus representing a "later wet period" in Gale crater (see Palucis et al., - 1450 2016). The conglomerates would have been formed from fluvial activity that was relatively close in - 1451 time to the deposition of the Stimson eolian strata. (However, note that these eolian strata are notable 1452 - for their lack of evidence of wet conditions; Banham et al., 2018). At some later time the - 1453 conglomerate outcrops would have been broken up and transported to where they are now found in - 1454 the heterolithic units. - 1455 The chemical similarity of float rocks explored early in the mission, classified as Bradbury layered - 1456 (Mangold et al., 2015) to two stones of similar appearance at Bimbe, and at least one located midway - 1457 between these locations, raises the possibility of the previous presence of overlying strata, above the - 1458 Stimson formation and extending northward across Bradbury rise. These rocks are notably elevated - 1459 in Mg and K. These strata, if they existed, would likely have been part of the Siccar point group, as is 1460 the Stimson formation (which also shows some elevation of Mg and K, but not to the higher values - 1461 observed in these disparate samples from Bathurst Inlet to Bimbe). - The dark, gray massive boulders and clasts of Bimbe analyzed by ChemCam are not the same 1462 - 1463 compositions as a number of similar-appearing boulders and smaller rocks at Bradbury Rise. | 1464
1465 | However, the alkaline float rock, Oscar, analyzed on Sol 516 by APXS and ChemCam, is essentially identical in composition to these Bimbe targets. | |--|--| | 1466
1467
1468
1469
1470
1471
1472 | In terms of the origins of the heterolithic units, we explore five different models that attempt to explain various attributes of the three units explored by Curiosity. Brandberg shows evidence for starting as an impact crater, while the other two units lack such evidence, suggesting that they formed by different means. Particle size analysis suggests a possible fluvial origin for the deposits, but the large boulders suggests a role played by debris flows. A common thread seems to be preservation of the sandstone clasts, cobbles, and boulders by the deposition of soils in the proposed depressions that may have characterized these units at an earlier point in time. | | 1473
1474
1475
1476 | On the observational side, large blocks with relatively flat skyward faces can result in higher apparent albedos from orbit than blocks of the same composition and morphology that are more rounded and not skyward facing. Care must be taken in interpreting the albedos of blocks observed from orbit. | | 1477 | | | 1478 | ACKNOWLEDGEMENTS | | 1479 | This work was supported by NASA's Mars Exploration Program in the US, and by CNES in France. | | 1480 | The authors gratefully acknowledge and thank all of the many people involved in the MSL program | | 1481 | which enabled these discoveries. AGF was supported by the Project "MarsFirstWater", European | | 1482 | Research Council Consolidator Grant no 818602. JF acknowledges the support of the Carlsberg | | 1483 | Foundation. Constructive reviews by M. Salvatore, E. Rampe, and an anonymous reviewer, as well | | 1484 | as editorial assistance by E. Rampe, are gratefully acknowledged. | ## 6. REFERENCES - 1486 1487 - 1488 Anderson R.B. and Bell J.F. III, 2010. Geologic mapping and characterization of Gale crater and - implications for
its potential as a Mars Science Laboratory landing site. Mars 1, 1-13, - 1490 doi:10.1555/mars.2005.1.0. - 1491 Anderson R.B., et al., 2015. ChemCam results from the Shaler outcrop in Gale crater, Mars. Icarus, - 1492 249, 2-21, doi:10.1016/j.icarus.2014.07.025. - 1493 Banham S., et al., 2018. Ancient martian aeolian processes and paleomorphology reconstructed from - the Stimson formation on the lower slope of Aeolis Mons, Gale crater, Mars. Sedimentology 65, - 1495 993-1042. doi:10.1111/sed.12469. - 1496 Banham S., et al., 2019. A rock record of complex Hesperian aeolian bedforms in Gale crater, Mars, - 1497 Ninth International Conference on Mars, #6122, Pasadena, California. - 1498 Bedford C.C., 2019. Distinguishing the geochemical effects of sedimentary processes and source - 1499 region characteristics in Gale crater, Mars. PhD thesis, Open University, - 1500 http://oro.open.ac.uk/66182/. - 1501 Bedford C.C., et al., 2020. Geochemical variation in the Stimson formation: Provenance, mineral - sorting, and a comparison with modern Martian dunes. Icarus 341, - 1503 doi:10.1016/j.icarus.2020.113622.Blair T.C., and McPherson J.G., 1999. Grain-size and textural - classification of coarse sedimentary particles, Journal of Sedimentary Research 69(1), 6–19. - 1505 doi:10.2110/jsr.69.6. - 1506 Blaney D., et al., 2014. Chemistry and texture of the rocks at "Rocknest", Gale crater: Evidence for - iron-rich cements. J. Geophys. Res., 119, 2109-2131, doi:10.1002/2013JE004590. - 1508 Bradley J. and Palmer D.F., 1967, Ice-cored moraines and ice diapirs, Lake Miers, Victoria Land, - 1509 Antarctica. NZ, J. Geol. Geophys., 10, 599–623. - 1510 Bridges N.T., and B.L. Ehlmann, 2018. The Mars Science Laboratory (MSL) Bagnold Dunes - $1511 \qquad Campaign, Phase \ I: Overview \ and \ introduction \ to \ the \ special \ issue, J. \ Geophys. \ Res. \ Planets, \ 123(1),$ - 1512 3-19, doi:10.1002/2017JE005401. - 1513 Bridges N.T., et al., 2017. Martian aeolian activity at the Bagnold Dunes, Gale crater: The view from - the surface and orbit. J. Geophys. Res. 122, doi:10.1002/2017JE005263. - 1515 Bridges J.C., et al., 2019. Askival: A silicified feldspathic cumulate sample in Gale crater. Lunar and - 1516 Planetary Science Conference, 50, 2345. - 1517 Bryk A.B., et al., 2019. What was the original extent of the Greenheugh Pediment and Gediz Vallis - 1518 Ridge deposits in Gale crater? Ninth International Conference on Mars, #6296, Pasadena California. - 1519 Calef F.J., III, and Parker, T., 2016. MSL Gale merged orthophoto mosaic (25 centimeter per pixel - 1520 scale). NASA Planetary Data System (PDS) Annex, U.S. Geological Survey. - 1521 http://bit.ly/MSL_Basemap. - 1522 Campbell C.V., 1967. Lamina, laminaset, bed and bedset. Sedimentology 8, 7-26, - 1523 doi:10.1111/j.1365-3091.1967.tb01301.x. - 1524 Campbell J.L., et al., 2012. Calibration of the Mars Science Laboratory Alpha Particle X-ray - 1525 Spectrometer. Spa. Sci. Rev., 170, 317, doi:10.1007/s11214-012-9873-5. - 1526 Clegg S.M., et al., 2017. Recalibration of the Mars Science Laboratory ChemCam instrument with an - expanded geochemical database. Spectrochim. Acta B, 129, 64-85. - 1528 Cousin A., et al., 2017a. Classification of igneous rocks analyzed by ChemCam at Gale crater, Mars. - 1529 Icarus 288, 265-283. - 1530 Cousin A., et al., 2017b. Geochemistry of the Bagnold Dune Field as observed by ChemCam, and - comparison with other Aeolian deposits at Gale crater. JGR Planets 122, 10.1002/2017JE005261. - 1532 Dietrich W.E., Palucis M.C., Williams R.M.E., Lewis K.W., Rivera-Hernandez F., and Sumner D.Y., - 1533 2017. Fluvial gravels on Mars: Analysis and implications, In Tsutsumi D., and Laronne, J.B. (Eds.), - 1534 Gravel-Bed Rivers: Processes and Disasters, John Wiley & Sons, doi:10.1002/9781118971437.ch28. - 1535 Duszynski F. and Migon P., 2015. Boulder aprons indicate long-term gradual and non-catastrophic - evolution of cliffed escarpments, Stolowe Mts, Poland. Geomorphology 250, 63-77, - 1537 doi:10.1016/j.geomorph.2015.08.007. - 1538 Duszyński F., Migoń P., and Strzelecki M.C., 2019. Escarpment retreat in sedimentary tablelands - 1539 and cuesta landscapes Landforms, mechanisms and patterns. Earth-Science Reviews 196, 102890, - 1540 doi:10.1016/j.earscirev.2019.102890. - Edgar L.A., et al., 2017. Shaler: in situ analysis of a fluvial sedimentary deposit on Mars. - 1542 Sedimentology 65, 96-122. doi:10.1111/sed.12370. - 1543 Edgett K. S., et al., 2012. Curiosity's Mars Hand Lens Imager (MAHLI) investigation, Space - 1544 Science Reviews 170, 259–317. doi:10.1007/s11214-012-9910-4. - 1545 Edgett K.S., et al., 2018. Multi-cycle sedimentary rocks on Mars and implications, Lunar Planet Sci. - 1546 IL, 1669. The Lunar and Planetary Institute, Houston, TX. - 1547 Ehlmann B.L., et al., 2017. Chemistry, mineralogy, and grain properties at Namib and High Dunes, - 1548 Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations, J. Geophys. Res. - 1549 Planets, 122, 2510-2543, doi:10.1002/2017JE005267. - 1550 Fairen A.G., et al., 2014. A cold hydrothermal system in Gale crater, Mars. Planet. Spa. Sci. 93-94, - 1551 101-118, doi:10.1016/j.pss.2014.03.002. - 1552 Fraeman A.A., et al., 2016. The stratigraphy and evolution of lower Mount Sharp from spectral, - morphological, and thermophysical orbital data sets. J. Geophys. Res. Planets 121, 1713–1736. - 1554 doi:10.1002/2016jE005095. - Fraeman A.A., et al., 2019. Synergistic ground and orbital observations of iron oxides on Mt. Sharp - and Vera Rubin Ridge. J. Geophys. Res. Planets, subm. - 1557 Francis R., et al., 2017. AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: - 1558 Deployment and results of initial science team use. Science Robotics 2, eaan4582, - 1559 doi:10.1126/scirobotics.aan4582. - 1560 Frydenvang J., et al., 2017. Discovery of silica-rich lacustrine and eolian sedimentary rocks in Gale - 1561 crater, Mars. Geophys. Res. Lett. doi:10.1002/2017GL073323. - 1562 García C.R., Nieto Masot A., and Schnabel S., 2016. Morfologías fluvio-glaciares del cráter Gale y - 1563 sus análogos terrestres, como evidencias del clima frío y húmedo del Marte primitive. In: Nieto - 1564 Masot, A. (Ed.), Tecnologías de la Información Geográfica en el Análisis Espacial: Aplicaciones en - los Sectores Público, Empresarial y Universitario, 247–268. Universidad de Extremadura, España. - 1566 Glade R.C, Anderson R.S., and Tucker G.E., 2017. Block-controlled hillslope form and persistence - of topography in rocky landscapes, Geology, doi:10.1130/G38665.1. - 1568 Grotzinger J.P., et al., 2013. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale - 1569 crater, Mars. Science 343, doi:10.1126/science.1242777. - 1570 Grotzinger J.P., et al., 2015. Deposition, exhumation, and paleoclimate of an ancient lake deposit, - 1571 Gale crater, Mars. Science, 350, aac7575, doi: 10.1126/science.aac7575. - 1572 Hall B.L., Hendy C.H., and Denton G.H., 2006. Lake-ice conveyor deposits: Geomorphology, - 1573 sedimentology, and importance in reconstructing the glacial history of the Dry Valleys. Geomorph. - 1574 75, 143-156, doi:10.1016/j.geomorph.11.025. - 1575 Hausrath E.M., Ming D.W., Peretyazhko T.S., and Rampe E.B., 2018. Reactive transport and mass - 1576 balance modeling of the Stimson sedimentary formation and altered fracture zones constrain - diagenetic conditions at Gale crater, Mars. Earth Planet. Sci. Lett. 491, 1-10, - 1578 doi:10.1016/j.epsl.2018.02.037. - 1579 Hendy C.H., Sadler A.J., Denton G.H. and Hall B.L., 2000, Proglacial lake-ice conveyors: a new - mechanism for deposition of drift in polar environments, Geogr. Ann., 82, 249–270. - 1581 Howard A.D. and Selby M.J., 1994. Rock slopes. In Geomorphology of Desert Environments, - 1582 Abrahams AD, Parsons AJ (eds). Chapman and Hall: London; 123-172, doi:10.1007/978-94- - 1583 015-8254-4_7. - 1584 Johnson J.R., et al., 2015. ChemCam passive reflectance spectroscopy of surface materials at the - 1585 Curiosity landing site, Mars. Icarus 249, 74-92, doi:10.1016/j.icarus.2014.02.028. - 1586 Johnson J.R., et al., 2017. Visible/near-infrared spectral diversity from in situ observations of the - 1587 Bagnold Dune Field sands in Gale crater, Mars. J. Geophys. Res. Planets, 122, 2655-2684, - 1588 doi:10.1002/2016JE005187. - 1589 Kirk R.L., et al., 2008. Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo - images: Meter-scale slopes of candidate Phoenix landing sites, J. Geophys. Res., 113, E00A24, - 1591 doi:10.1029/2007JE003000. - 1592 Kronyak R.E., et al., 2019. Mineral-filled fractures as indicators of multigenerational fluid flow in - the Pahrump Hills member of the Murray formation, Gale crater, Mars, Earth Spa. Sci., 6, 238-265, - 1594 doi:10.1029/2018EA000482. - 1595 Le Deit L., Hauber E., Fueten F., Pondrelli M., Rossi A.P., and Jaumann R., 2013. Sequence of - 1596 infilling events in Gale crater, Mars: Results from morphology, stratigraphy, and mineralogy. J. - 1597 Geophys. Res. Planets. 118, 2439-2473, doi:10.1002/2012JE004322.2013. - 1598 Le Deit L., et al., 2016. The potassic sedimentary rocks in Gale crater, Mars, as seen by ChemCam - on board Curiosity. J. Geophys. Res. Planets. 121, doi:10.1002/2015JE004987. - 1600 Le Mouelic S., et al., 2015. The ChemCam Remote Micro-Imager at Gale crater: Review of the first - 1601 year of operations on Mars. Icarus, 249, 93-107, doi:10.1016/j.icarus.2014.05.030. - 1602 Maki J.D. et al., 2012., The Mars Science Laboratory engineering cameras, Space Sci. Rev., 170, 77- - 1603 93, doi:10.1007/s11214-012-9882-4. - Malin M. and Edgett K.S., 2000. Sedimentary rocks of early Mars. Science 290, 1927-1937, - 1605 doi:10.1126/science.290.5498.1927. - 1606 Malin M. C., et al., 2017. The Mars Science Laboratory (MSL) mast cameras and descent imager: - 1607 Investigation and instrument descriptions, Earth and Space Science 4(8) 506–539. - 1608
doi:10.1002/2016EA000252. - 1609 Mangold N., et al., 2015. Chemical variations in Yellowknife Bay Formation sediments analyzed by - the Curiosity rover on Mars. J. Geophys. Res. Planets 120, 452-482, doi:10.1002/2014JE004681. - Mangold N., et al., 2016. Composition of conglomerates analyzed by the Curiosity rover: - 1612 Implications for Gale crater crust and sediment sources. J. Geophys. Res. Planets 121, 353-387, - 1613 doi:10.1002/2015JE004977. - Mangold N., et al., 2017, Classification scheme for sedimentary and igneous rocks in Gale crater, - 1615 Mars, Icarus 284, 1-17, doi:10.1016/j.icarus.2016.11.005. - Mangold N., et al., 2019, Chemical alteration of fine-grained sedimentary rocks at Gale crater, - 1617 Icarus, 321, 619-631, doi: 10.1016/j.icarus.2018.11.004. - 1618 Maurice S., et al., 2012. The ChemCam Instruments on the Mars Science Laboratory (MSL) Rover: - 1619 Science Objectives and Mast Unit. Spa. Sci. Rev. 170, 95-166, doi:10.1007/s11214-012-9912-2. - 1620 Maurice S., et al., 2016. ChemCam activities and discoveries during the Mars Science Laboratory - nominal mission in Gale crater, Mars. J. Anal. At. Spectrom., doi:10.1039/c5ja00417a. - 1622 McEwen A.S., et al., 2007. Mars Reconnaissance Orbiter's High Resolution Imaging Science - 1623 Experiment (HiRISE). J. Geophys. Res. Planets 112, E05S02, doi:10.1029/2005JE002605. - 1624 Meslin P.-Y., et al., 2017. Egg Rock encounter: Analysis of an iron-nickel meteorite found in Gale - crater by Curiosity. Lunar Planet. Sci. XLVIII, 2258, The Lunar and Planetary Institute, Houston, - 1626 TX. - 1627 Migon P., Rozycka M., Jancewicz K., Duszynski F., 2018. Evolution of sandstone mesas—following - landform decay until death. Prog. Phys. Geogr. 42, 588-606, doi: 10.1177/0309133318795837. - 1629 Milliken R.E., Grotzinger J.P., and Thomson B.J., 2010. Paleoclimate of Mars as captured by the - stratigraphic record in Gale crater. Geophys. Res. Lett. 37, doi:10.1029/2009GL041870. - Milliken R.E., Ewing R.C., Fischer W.W., and Hurowitz J., 2014. Windblown sandstones cemented - by sulfate and clay minerals in Gale crater, Mars. Geophys. Res. Lett. 41, 1149–1154, - 1633 doi:10.1002/2013GL059097. - Morris R.V., et al., 2016. Silicic volcanism on Mars evidenced by tridymite in high-SiO₂ - sedimentary rock at Gale crater. Proc. Nat. Acad. Sci. 113(26), 7071-7076, - 1636 doi:10.1073/pnas.1607098113. - Nachon M., et al., 2014. Calcium sulfate veins characterized by the ChemCam instrument at Gale - 1638 crater, Mars. J. Geophys. Res., 119, 1991-2016, doi:10.1002/2013JE004588. - 1639 Nachon M., et al., 2017. Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, - 1640 Gale crater, Mars. Icarus, doi:10.1016/j.icarus.2016.08.026. - 1641 Newsom H. E., et al., 2018 A buried aeolian lag deposit at an unconformity between the Murray and - 1642 Stimson formation at Marias Pass, Gale crater, Mars, Abstract 2263, Lunar Planet. Sci. IL, 2263, The - 1643 Lunar and Planetary Institute, Houston, TX. - O'Connell-Cooper C.D., et al., 2017. APXS-derived chemistry of the Bagnold dune sands: - 1645 Comparisons with Gale Crater soils and the global Martian average, J. Geophys. Res. Planets, 122, - 1646 2623–2643, doi:10.1002/2017JE005268. - 1647 Palucis M.C., et al., 2014. The origin and evolution of the Peace Vallis fan system that drains to the - 1648 Curiosity landing area, Gale crater, Mars. J. Geophys. Res. Planets 119, 705-728, - 1649 doi:10.1002/2013JE004583. - 1650 Palucis, M.C., Dietrich W.E., Williams R.M.E., Hayes A.G., Parker T., Sumner D.Y., Mangold N., - 1651 Lewis K., and Newsom H., 2016, Sequence and relative timing of large lakes in Gale crater (Mars) - after the formation of Mount Sharp, J. Geophys. Res. Planets, 121, 472–496, doi:10.1002/ - 1653 2015JE004905. - 1654 Parker, T., and Calef, F. J., III., 2016. MSL Gale merged digital elevation model (1 meter per pixel - scale). NASA Planetary Data System (PDS) Annex, U.S. Geological Survey. - 1656 http://bit.ly/MSL_DEM. - 1657 Parzoch, K., and Migon, P., 2015. Deciphering the origin of allochthonous sandstone boulder trains - 1658 within a mudstone escarpment, Stołowe Mountains, SW Poland. Zeitschrift für Geomorphologie 59, - $1659 \qquad 103\text{-}122, \\ doi: 10.1127/zfg_suppl/2015/S-00176.$ - 1660 Payré V., et al., 2017. Alkali trace elements with ChemCam: Calibration update and geological - implications of the occurrence of alkaline rocks in Gale crater, Mars. J. Geophys. Res. 122, doi: - 1662 10.1002/2016JE005201. - 1663 Rampe E.B., et al., 2017. Mineralogy of an ancient lacustrine mudstone succession from the Murray - formation, Gale crater, Mars. Earth Planet. Sci. Lett. 472, 172-185, doi:10.1016/j.epsl.2017.04.021. - 1665 Rice, M.S., et al., 2017. Geologic overview of the Mars Science Laboratory rover mission at The - Kimberley, Gale crater, Mars, Journal of Geophysical Research Planets, 122(1):2-20, - 1667 doi:10.1002/2016JE005200. - Rivera-Hernández F., Sumner D.Y., Mackey T.J., Hawes I., Andersen D.T., 2018, In a PICL: The - sedimentary deposits and facies of perennially ice-covered lakes, Sedimentology, doi: - 1670 10.1111/sed.12522. - Rivera- Hernández F., et al., 2019. Using ChemCam LIBS data to constrain grain size in rocks on - Mars: Proof of concept and application to rocks at Yellowknife Bay and Pahrump Hills, Gale crater. - 1673 Icarus 321, 82-98, doi:10.1016/j.icarus.2018.10.023. - 1674 Sautter V., et al., 2014. Igneous mineralogy at Bradbury rise: The first ChemCam campaign. J. - 1675 Geophys. Res., 119, 30-46, doi:10.1002/2013JE004472. - 1676 Sautter V., et al., 2015. Direct evidence for silica-rich crust in the southern hemisphere of Mars: - 1677 Implications for Noachian magmatism. Nature Geoscience 8, 605-609, doi:10.1038/NGEO2474. - 1678 Sautter V., et al., 2016. Magmatic complexity on early Mars as seen through a combination of - orbital, in situ, and meteorite data. Lithos 254-255, 36-52, doi:10.1016/j.lithos.2016.02.023. - 1680 Schieber J., et al., 2016. Encounters with an unearthly mudstone: Understanding the first mudstone - 1681 found on Mars. Sedimentology 64, 311-358, doi:10.1111/sed.12318. - 1682 Schmidt M.E., et al., 2014. Geochemical diversity in first rocks examined by the Curiosity Rover in - 1683 Gale crater: Evidence and significance of an alkali and volatile-rich igneous source. J. Geophys. Res. - 1684 119, 64-81, doi:10.1002/2013JE004481. - 1685 Stack K.M., et al., 2014. Diagenetic origin of nodules and hollow nodules of the Sheepbed Member, - 1686 Yellowknife Bay Formation, Gale crater, Mars. J. Geophys. Res. 119, 1637-1664, - 1687 doi:10.1002/2014JE004617. - 1688 Stock J.D., Schmidt K.M., and Miller D.M., 2007. Controls on alluvial fan long-profiles. Geological - 1689 Society of America Bulletin, 120; no. 5/6; p. 619–640; doi: 10.1130/B26208. - 1690 Stolper E.M., et al., 2013. The petrochemistry of Jake_M: A Martian mugearite. Science 341, - 1691 doi:10.1126/science.1239463. - 1692 Sun V.Z., et al., 2019. Late-stage diagenetic concretions in the Murray formation, Gale crater, Mars. - 1693 Icarus 321, 866-890, doi:10.1016/j.icarus.2018.12.030. - 1694 Szabo T., Domokos G., Grotzinger J.P., and Jerolmack D.J., 2015. Reconstructing the transport - history of pebbles on Mars, Nature Communications, doi:10.1038/ncomms9366. - 1696 Terry, J.P., Goff, J., 2014. Megaclasts: Proposed revised nomenclature at the coarse end of the - 1697 Udden-Wentworth gain-size scale for sedimentary particles. J. Sediment. Res. 84, 192–197. - 1698 doi:10.2110/jsr.2014.19. - Thompson L.M., et al., 2016. Potassium-rich sandstones within the Gale impact crater, Mars: The - 1700 APXS perspective. Journal of Geophysical Research: Planets, 121(10), 1981-2003, - 1701 doi:10.1002/2016JE005055. - 1702 Thomson B.J., et al., 2011. Constraints on the origin and evolution of the layered mound in Gale - 1703 Crater, Mars using Mars Reconnaissance Orbiter data. Icarus, 214, 413–432, - 1704 doi:10.1016/j.icarus.2011.05.002. - 1705 Treiman A.H., et al., 2016. Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone - 1706 on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale crater), J. - 1707 Geophys. Res. Planets 121, 75-106, doi:10.1002/2015JE004932. - 1708 Twidale C.R. and Milnes A.R., 1983. Slope processes active late in arid scarp retreat, Z. Geomorph, - 1709 27(3), 343-361. - 1710 Van Bommel, S.J., et al., 2017. Modeling and mitigation of sample relief effects applied to chemistry - 1711 measurements by the Mars Science Laboratory Alpha Particle X-ray Spectrometer, X-Ray - 1712 Spectrometry 46(4), 229–236, doi:10.1002/xrs.2755 - 1713 Watkins, J.A., et al., 2019. Geometry and significance of an erosional unconformity - on Mars, base Stimson formation, Gale crater. Journal of Geophysical Research Planets, accepted. - 1715 Wentworth C.K., 1922. A scale of grade and class terms for clastic sediments. The Journal of - 1716 Geology 30, 377-392, doi:10.1086/622910. - 1717 Whipple K.X. and Dunne T., 1992. The influence of debris-flow rheology on fan morphology, - 1718 Owens Valley, California. Geological Society of America 104, 887-900, doi:10.1130/0016- - 1719 7606(1992)104<0887:TIODFR>2.3.CO;2. - Wiens R.C., et al., 2012. The ChemCam Instruments on the Mars Science Laboratory (MSL) Rover: - Body Unit and Combined System Performance. Spa. Sci. Rev. 170, 167-227, doi:10.1007/S11214- - 1722 012-9902-4. - 1723 Wiens R.C., et al., 2013. Pre-flight calibration and initial data processing for the ChemCam laser- - 1724 induced breakdown spectroscopy instrument on the Mars Science Laboratory rover. Spectrochim. - 1725 Acta B, 82, 1-27, doi:10.1016/j.sab.2013.02.003. - Wiens R.C., et al., 2017. Centimeter to decimeter spherical features in Gale crater sediments, Mars. - 1727 Icarus 289, 144-156, doi:10.1016/j.icarus.2017.02.003. - Williams R.M.E., et al., 2013. Martian fluvial conglomerates at Gale Crater. Science 340, 1068- - 1729 1072,
DOI: 10.1126/science.1237317. - 1730 Williams R.M.E., Stack K.M., Dietrich W.E., Gupta S., Minitti M.E., Wiens R.C., 2018. Select - observations of the coarse sediment record at Gale crater from Mars Science Laboratory cameras. - 1732 Geological Society of America Abstracts with Programs 50(6). doi:10.1130/abs/2018AM-320812. - 1733 Williams R.M.E., Malin M.C., Edgett K.S., Wiens R.C., Yingst R.A., Stack K.M., Gupta S., Heydari - 1734 E., Bridges J., Sautter V., Cousin A., Gasnault O., 2020. Diversity of float rocks at Bressay on Vera - 1735 Rubin ridge, Gale crater, Mars. Lunar Planet. Sci. 51, 2305. - 1736 Yen A.S., et al., 2017. Multiple stages of aqueous alteration along fractures in mudstone and - sandstone strata in Gale crater, Mars. Earth Planet. Sci. Lett. 471, 186-198, - 1738 doi:10.1016/j.epsl.2017.04.033. - 1739 Yingst R.A., et al., 2016. MAHLI on Mars: lessons learned operating a geoscience camera on a - landed payload robotic arm. Geosci. Instrum. Method. Data Syst. 5, 205–217, doi:10.5194/gi-5-205- - 1741 2016. - 1742 | | | # | dist. | | | | | | | | | | | |-------------------|----------|--------|-------|------------------------|------------------|------------------|--------------------------------|------|------|-----|------|-----|-------| | Bimbe Targets | Sequence | points | (m) | Group | SiO ₂ | TiO ₂ | Al ₂ O ₃ | FeO⊤ | MgO | CaO | Na₂O | K₂O | SUM | | Aussenkehr | 01401 | 10 | 2.61 | Massive | 51.5 | 1.06 | 8.2 | 17.5 | 1.9 | 5.1 | 4.3 | 1.1 | 90.7 | | AEGIS_post_1406a | 15900 | 9 | 2.88 | Massive | 56.9 | 1.00 | 8.6 | 17.9 | 2.6 | 3.1 | 4.8 | 1.1 | 95.9 | | Lucala | 01407 | 5 | 2.62 | Massive | 55.4 | 1.41 | 8.8 | 15.8 | 2.3 | 3.4 | 4.9 | 1.3 | 93.4 | | Sonneblom_CCAM | 04407 | 9 | 2.25 | Massive | 54.4 | 0.90 | 7.0 | 17.3 | 3.0 | 5.2 | 4.6 | 0.8 | 93.3 | | Seeis | 04409 | 9 | 2.39 | Massive | 54.2 | 1.08 | 8.7 | 16.2 | 2.5 | 5.9 | 4.6 | 1.1 | 94.4 | | Bungo | 03407 | 10 | 2.54 | Conglomerate | 44.2 | 0.92 | 9.8 | 19.5 | 7.2 | 6.7 | 2.7 | 0.2 | 91.3 | | Balombo | 05407 | 10 | 2.83 | Conglomerate | 43.9 | 0.92 | 10.3 | 18.2 | 7.1 | 7.5 | 3.0 | 0.7 | 91.6 | | Seeheim | 01409 | 5 | 2.52 | Conglomerate | 51.2 | 0.89 | 13.2 | 13.7 | 4.5 | 6.1 | 4.4 | 1.1 | 94.9 | | Wilhelmstal | 02409 | 9 | 2.53 | Conglom. Vitreous | 45.5 | 0.95 | 11.0 | 19.2 | 7.2 | 5.8 | 3.4 | 0.4 | 93.4 | | Cabamba | 02407 | 10 | 2.47 | Conglom. Vitreous | 47.2 | 1.04 | 12.2 | 19.2 | 4.9 | 5.7 | 3.5 | 0.6 | 94.2 | | AEGIS_post_1400a | 15900 | 9 | 2.59 | Knobby SS
(Stimson) | 45.3 | 0.86 | 11.4 | 19.1 | 7.7 | 5.7 | 3.1 | 0.5 | 93.8 | | Auchab | 01400 | 5 | 5.20 | Nodular SS | 43.5 | 0.95 | 11.4 | 26.4 | 7.2 | 5.0 | 3.2 | 1.8 | 99.5 | | Canico | 02401 | 5 | 2.52 | Nodular SS | 42.3 | 0.95 | 10.0 | 21.9 | 4.9 | 5.3 | 3.3 | 0.7 | 89.4 | | Chinchimane | 03401 | 5 | 2.28 | Layered | 40.4 | 1.17 | 6.1 | 20.2 | 11.7 | 5.2 | 1.9 | 1.1 | 87.9 | | Oranjemund | 03409 | 10 | 2.95 | Massive / Layered | 44.1 | 1.17 | 6.5 | 20.1 | 11.3 | 5.2 | 2.1 | 0.9 | 91.3 | | Mariental | 05409 | 5 | 4.17 | Other | 48.7 | 1.05 | 15.5 | 17.6 | 5.2 | 8.2 | 3.7 | 0.4 | 100.4 | | Blackfoot Targets | | | | | | | | | | | | | | | Sunburst | 02100 | 10 | 2.36 | Stimson Cluster #1 | 42.4 | 0.92 | 8.2 | 19.4 | 12.5 | 4.7 | 1.6 | 0.2 | 90.0 | | Jefferson | 02102 | 10 | 2.94 | Other | 44.0 | 1.30 | 10.2 | 20.3 | 9.5 | 4.4 | 2.5 | 0.4 | 92.5 | | Lincoln | 04102 | 5 | 2.96 | Other | 46.2 | 1.07 | 11.7 | 20.5 | 7.8 | 4.5 | 2.8 | 0.7 | 95.3 | Dist. = distance; SS = sandstone; see text for definition of other terms Table 2. Standard deviations between observation point compositions for major elements in wt. % for ChemCam targets in the Bimbe and Blackfoot units. | Bimbe Targets | Group | SiO ₂ | TiO ₂ | Al_2O_3 | FeO _⊤ | MgO | CaO | Na₂O | K ₂ O | SUM | |-------------------|------------------------|------------------|------------------|-----------|------------------|-----|-----|------|------------------|-----| | Aussenkehr | Massive | 4.5 | 0.50 | 2.8 | 1.9 | 0.7 | 3.4 | 1.0 | 0.5 | 5.3 | | AEGIS_post_1406a | Massive | 7.3 | 0.28 | 3.9 | 3.1 | 0.8 | 1.8 | 1.2 | 0.5 | 6.5 | | Lucala | Massive | 5.5 | 0.70 | 4.8 | 1.6 | 0.7 | 2.8 | 0.9 | 0.7 | 6.4 | | Sonneblom_CCAM | Massive | 6.9 | 0.26 | 2.6 | 3.7 | 1.3 | 3.1 | 0.5 | 0.4 | 4.3 | | Seeis | Massive | 6.6 | 0.56 | 3.9 | 4.5 | 1.0 | 4.3 | 0.7 | 0.8 | 4.7 | | Bungo | Conglomerate | 2.1 | 0.09 | 2.6 | 1.1 | 1.3 | 1.0 | 0.4 | 0.1 | 3.1 | | Balombo | Conglomerate | 6.8 | 0.13 | 2.6 | 2.5 | 2.5 | 4.3 | 1.2 | 0.3 | 5.9 | | Seeheim | Conglomerate | 9.7 | 0.09 | 3.0 | 7.3 | 2.2 | 2.7 | 1.7 | 1.1 | 3.6 | | Wilhelmstal | Conglom. Vitreous | 1.7 | 0.06 | 1.0 | 0.7 | 0.9 | 0.6 | 0.4 | 0.1 | 2.1 | | Cabamba | Conglom. Vitreous | 3.7 | 0.07 | 2.6 | 1.6 | 1.4 | 1.1 | 0.6 | 0.3 | 3.4 | | AEGIS_post_1400a | Knobby SS
(Stimson) | 1.6 | 0.09 | 2.8 | 1.0 | 2.3 | 0.8 | 0.5 | 0.1 | 3.0 | | Auchab | Nodular SS | 1.9 | 0.08 | 2.3 | 3.2 | 1.9 | 0.8 | 0.6 | 0.6 | 2.5 | | Canico | Nodular SS | 6.2 | 0.15 | 4.1 | 5.6 | 1.8 | 1.5 | 1.4 | 0.1 | 5.3 | | Chinchimane | Layered | 1.1 | 0.10 | 0.2 | 0.4 | 0.9 | 1.0 | 0.2 | 0.2 | 1.0 | | Oranjemund | Massive/Layered | 1.7 | 0.12 | 0.6 | 0.6 | 1.2 | 1.3 | 0.3 | 0.4 | 1.5 | | Mariental | Other | 4.9 | 0.39 | 2.6 | 5.1 | 1.3 | 4.1 | 0.9 | 0.3 | 3.0 | | Blackfoot Targets | | | | | | | | | | | | Sunburst | Stimson Cluster #1 | 1.5 | 0.17 | 0.8 | 0.7 | 0.8 | 1.3 | 0.2 | 0.1 | 1.9 | | Jefferson | Other | 2.2 | 0.30 | 3.2 | 1.0 | 2.7 | 1.0 | 0.5 | 0.1 | 3.3 | | Lincoln | Other | 1.9 | 0.37 | 2.7 | 1.1 | 3.3 | 0.8 | 0.5 | 0.3 | 2.6 | Table 3. Selected trace-element abundances for ChemCam targets in the Bimbe and Blackfoot units. Abundances are in parts per million. | Bimbe Targets | Group | Li | Rb | Sr | |--------------------|------------------------|------|-------|------| | Aussenkehr | Massive | 32.1 | 48.8 | 487 | | AEGIS_post_1406a | Massive | 33.9 | 67.2 | 458 | | Lucala | Massive | 23.6 | 74.5 | 673 | | Sonneblom_CCAM | Massive | 27.9 | <57.9 | 387 | | Seeis | Massive | 27.8 | 69.2 | 473 | | Bungo | Conglomerate | 10.3 | <26.0 | <98 | | Balombo | Conglomerate | 14.1 | <56.3 | <133 | | Seeheim | Conglomerate | 8.6 | 91.8 | <167 | | Wilhelmstal | Conglom. Vitreous | 10.7 | <26.0 | <103 | | Cabamba | Conglom. Vitreous | 10.1 | <42.0 | <120 | | AEGIS_post_1400a | Knobby SS
(Stimson) | 20.1 | 61.4 | <129 | | Auchab | Nodular SS | 11.6 | <39.5 | <96 | | Canico | Nodular SS | 8.9 | <34.6 | <168 | | Chinchimane | Layered | 17.4 | 38.7 | 173 | | Oranjemund | Massive/Layered | 11.8 | 52.2 | 152 | | Mariental | Other | 21.3 | <26.9 | <115 | | Blackfoot Targets* | | | | | | Sunburst | Stimson Cluster #1 | 14.6 | 31.0 | <118 | | Jefferson | Other | | 28.7 | <147 | | Lincoln | Other | 14.9 | | <96 | 1754 *Rb abundance for Lincoln was not computed; for Sunburst and Jefferson the results are each based on a single point. Table 4. APXS compositions for targets at Bimbe and Blackfoot. | Element | Sonneblom | Stat. | Zambezi | Stat. | Funda1 | Stat. | Funda2 | Stat. | Funda3 | Stat. | Funda4 | Stat. | Badlands | Stat. | |-------------------|-----------|-------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|-------| | Na ₂ O | 3.92 | 0.14 | 4.52 | 0.2 | 3.2 | 0 | 3.14 | 0.14 | 3 | 0.14 | 3.21 | 0.14 | 3.25 | 0.14 | | MgO | 4.55 | 0.17 | 2.64 | 0.08 | 7.27 | 0.17 | 7.72 | 0.17 | 7.09 | 0.17 | 7.26 | 0.17 | 8.42 | 0.25 | | Al_2O_3 | 9.22 | 0.19 | 9.23 | 0.19 | 10.42 | 0.29 | 10.38 | 0.29 | 9.35 | 0.19 | 9.5 | 0.29 | 8.86 | 0.19 | | SiO_2 | 54.08 | 0.64 | 59.25 | 0.64 | 47.22 | 0.54 | 46.18 | 0.54 | 42.34 | 0.54 | 47.99 | 0.54 | 43.57 | 0.54 | | P_2O_5 | 0.71 | 0.05 | 0.57 | 0.05 | 1.18 | 0.07 | 1.09 | 0.07 | 1.03 | 0.07 | 1.23 | 0.07 | 0.74 | 0.05 | | SO_3 | 4.3 | 0.05 | 2.87 | 0.05 | 3.22 | 0.12 | 3.23 | 0.12 | 9.5 | 0.22 | 4.22 | 0.12 | 5.08 | 0.07 | | Cl | 1.02 | 0.02 | 0.71 | 0.02 | 1.11 | 0.05 | 1.31 | 0.05 | 1.3 | 0.06 | 1.33 | 0.05 | 1.52 | 0.02 | | K_2O | 2.61 | 0.08 | 3.17 | 0.1 | 0.61 | 0.04 | 0.49 | 0.02 | 0.51 | 0.04 | 0.62 | 0.04 | 0.93 | 0.04 | | CaO | 3.83 | 0.04 | 2.96 | 0.04 | 6.55 | 0.01 | 7.04 | 0.01 | 9.18 | 0.13 | 6.83 | 0.1 | 5.86 | 0.07 | | TiO_2 | 0.86 | 0.03 | 0.82 | 0.03 | 1.22 | 0.05 | 1.05 | 0.05 | 0.9 | 0.05 | 0.97 | 0.05 | 0.89 | 0.03 | | Cr_2O_3 | 0.08 | 0.01 | 0.03 | 0.01 | 0.28 | 0.03 | 0.26 | 0.03 | 0.26 | 0.03 | 0.25 | 0.03 | 0.39 | 0.01 | | MnO | 0.22 | 0.01 | 0.21 | 0.01 | 0.35 | 0.03 | 0.39 | 0.03 | 0.29 | 0.03 | 0.33 | 0.03 | 0.40 | 0.01 | | FeO | 14.37 | 0.2 | 12.69 | 0.13 | 17.22 | 0.2 | 17.56 | 0.2 | 15.12 | 0.2 | 16.14 | 0.2 | 19.87 | 0.26 | | Ni | 0.012 | 0.001 | 0.0056 | 0.001 | 0.0239 | 0.0035 | 0.0227 | 0.0035 | 0.0294 | 0.004 | 0.0209 | 0.003 | 0.0485 | 0.003 | | Zn | 0.0184 | 0.001 | 0.0169 | 0.001 | 0.0605 | 0.0035 | 0.0431 | 0.003 | 0.0334 | 0.0025 | 0.0437 | 0.0025 | 0.0449 | 0.002 | | Br | 0.0208 | 0.001 | 0.0033 | 0.0005 | 0.024 | 0.0015 | 0.0245 | 0.0015 | 0.0274 | 0.0015 | 0.0209 | 0.0015 | 0.0277 | 0.001 | Stat. = statistical uncertainty (precision). Units are weight percent. 1756 Table 5. Differing characteristics of the three heterolithic units in this study. | | Blackfoot | Brandberg | Bimbe | |---|--------------------------|--------------------|-------------------------------| | Rover studied on sols | 1099-1104 | 1158-1160 | 1399-1410 | | Elevation | -4434 to -4432 m | -4435 to -4432 m | -4417 to -4426 m | | Approximate size | 1730 m^2 | 1600 m^2 | 16800 m^2 | | Shape | Semi-elliptical | Nearly circular | Irregular | | Arcuate ridge at perimeter | No | Yes | No | | Steeply-dipping sediments | No | Yes | No | | Contains a several-meter ridge? | No | No | Yes | | Superposes Stimson formation? | Yes | No | No | | Stimson-like concretions? | No | Yes | Perhaps, in Auchab and Canico | | Contains mudstone lithic fragments (possible Murray)? | No? | Yes | Yes | | Light gray-white sandstones? | Yes | No | Yes | |
Contains conglomerates? | Yes, small, disagregated | Possibly | Yes | ### FIGURES 1760 1761 1768 Fig. 1. The Curiosity rover field site occurs on the lower northwest slope of the 5-km-high Aeolis Mons (Mt. Sharp), a mountain of predominantly stratified sediments in Gale crater. Gale is a ~154 km diameter impact structure. The white trace indicates the rover traverse from landing until September 2019. The inset shows the location of the field site within Gale crater. The three heterolithic units studied by the rover are indicated by gray-filled circles. Waypoints are indicated by black circles. Targets mentioned in the text that are outside of the heterolithic units are indicated by triangles. Other features mentioned in the text are also indicated. - 1769 Fig. 2. (a) The Curiosity rover and the Blackfoot heterolithic unit (within blue dashed outline) as 1770 imaged by HiRISE on 04 September 2015. Yellow trace indicates rover traverse, from north 1771 toward southwest. Locations of boulders A and B and the sites of two rover stops on Blackfoot 1772 are indicated. Locations of ChemCam targets Sunburst, Swan, Lincoln, Jefferson, Madison, and 1773 the APXS/MAHLI target Badlands, are indicated in green. (b) Boulder A is dark-toned when 1774 viewed from above; the rock is a dark gray sandstone and it has a surface that is rough at a 1775 centimeter scale. (c) Boulder B is light-toned when viewed from above (e.g. HiRISE images); 1776 the rock is a dark-gray sandstone; bedding is apparent; the skyward-facing surface is smooth at a centimeter scale and coated with eolian dust. (d) Blackfoot as seen from the north on Sol 1094 1777 1778 when the rover was parked at the position shown in (a). Boulders A and B and the locations of (e), (f), and (g) are indicated. (e) The north and east margins of the Blackfoot heterolithic unit 1779 1780 overlie dark-gray, cross-bedded eolian Stimson formation sandstones. (f) North edge of 1781 Blackfoot reveals the deposit in cross-section; here, it consists of a jumble of angular cobbles and 1782 pebbles; cobbles display a variety of orientations relative to their internal sedimentary structures 1783 (bedding). Dark-toned eolian sand has filled some of the gaps between stones. (g) Many of the open fractures which cut through Stimson formation sandstones exhibit a light-toned, fracture-1784 parallel, altered zone (a "halo;" see Frydenvang et al., 2017 and Yen et al., 2017). Here a fracture 1785 and associated halo follow the red trace and are abruptly truncated where covered by the 1786 1787 Blackfoot heterolithic unit; this indicates that the fracture and fluids responsible for the "halo" 1788 alteration did not penetrate the Blackfoot deposit; i.e., one of the indicators that the deposit is not 1789 a lithic unit. (h) At its west-southwest end, the Blackfoot unit directly overlies mudstones of the 1790 Murray formation. (i) The cobbles and boulders of Blackfoot display a range of orientations, 1791 relative to their internal structure (bedding). Some of them protrude from the surface, others rest 1792 on the surface. - 1793 Fig. 3. (a) Typical Blackfoot surface, with scattered cobbles, small boulders, pebbles, and sand of 1794 various orientations (relative to internal sedimentary structure, such as bedding), colors, and 1795 lithologies. Two key examples are highlighted: A cross-stratified sandstone boulder (ChemCam 1796 target named Sunburst) and a conglomeratic cobble. (b) Dark-gray sandstone target named 1797 Sunburst. White and light-gray sand grains are readily distinguished because of their contrast 1798 relative to the majority of grains, which are dark gray. (c) Example of a light-gray conglomeratic 1799 cobble, protruding from the surface. The orange-brown material on part of this stone is eolian 1800 dust. (d) Pebbles in an otherwise light-gray sandy matrix in a conglomeratic stone protruding - 1801 from the surface at Blackfoot. (e) ChemCam target Madison; inset shows the image location on - the rock face. The large, light-toned feature consists of the remains of a fracture wall vein - 1803 composed of calcium sulfate. More importantly, the image shows light-toned sand grains, which - 1804 contrast with the bulk of dark-toned sand grains (much more difficult to see) in this rock. - Madison is a dark-gray sandstone. (f) APXS/MAHLI target, Badlands. This stone, too, is a dark- - 1806 gray sandstone. Unlike Madison and Sunburst, Badlands has no light-toned sand grains; they are - 1807 all dark gray. The sizes of two larger grains are indicated; most grains are smaller and difficult to - distinguish from each other and their intergranular cement. Brownish-orange patches are - 1809 depressions (some of them, perhaps, may be sockets from which sand grains have been removed) - 1810 containing eolian dust. (g) Two examples of the light-toned sandstone or pebbly conglomerate - 1811 fragments which occur at Blackfoot. - 1812 Fig. 4. (a) Brandberg and the Curiosity rover as viewed by HiRISE on Sol 1159. Yellow trace - 1813 indicates the rover traverse; drive direction was from northeast to southwest. ChemCam targets - 1814 are indicated by name. (b) Eastern Brandberg. In this scene, Brandberg is downhill from the - 1815 rover; the near side of Brandberg forms a shallow depression. Rover tracks provide scale. Eolian - 1816 bedforms explain the faint lineated texture observable in HiRISE images. (c) Brandberg as - viewed from the northeast. (d) Examples of steeply dipping cobble-sized angular clasts in - 1818 Brandberg. (e) Examples of clast variety in northeastern Brandberg. The largest boulder-sized - 1819 clasts dip toward the center of the circular landform. Boulders with relatively flat, skyward- - 1820 facing surfaces are coated with dust and thus appear light-toned when seen from above in - 1821 HiRISE images. The ChemCam target, Gibeon, is indicated. (f) Red/cyan stereo pair anaglyph - 1822 produced from two HiRISE images; the dashed yellow arc indicates a ridge that might be an - indicator that Brandberg occurs within the eroded remains of an impact structure. - 1824 Fig. 5. (a) Sol 1160 view of the variety of boulders, cobbles, and pebbles which compose the - Brandberg deposit. Yellow outlines indicate locations of panels b, c, d, g, h, and i. (b) Dust- - 1826 coated, fractured Murray-formation lithic clast target named Hoba. (c) Dark-gray sandstone - 1827 cobble target named Gibeon. The inset shows enlargement of a single grain or concretion, - 1828 representative of the larger grains (or typical concretion size) in this rock, ~2 mm. (d) Sandstone - with concretions. (e) Example sandstone with concretions (target named Maiberg) liberated from - 1830 Stimson formation bedrock on the east side of Naukluft Plateau, imaged on Sol 1277; shown - here for comparison. (f) Sedimentary structure and texture details of Maiberg. (g) Examples of - 1832 candidate, rare conglomeratic stones at Brandberg. (h) Example of angular, cobble-sized - 1833 fragment of cross-bedded sandstone. (i) Example lithic fragment of Murray-formation bedrock - 1834 incorporated into the Brandberg deposit; white arrows indicate erosion-resistant concretions; - 1835 compare with (j): Example of intact Murray-formation bedrock south of Brandberg which - 1836 contains similar concretions (white arrows). - Fig. 6. (a) Local context of Bimbe on the lower slopes of Mt. Sharp, between the Murray buttes - 1838 to the south, Naukluft Plateau and some of the Bagnold dunes to the east, and Baynes Mountain - 1839 to the north. The white trace is the Curiosity rover traverse; the drive direction was from - 1840 northeast (upper right) toward the south (bottom left of center). Blue box indicates the location of - 1841 (b): Bimbe with ChemCam, APXS, and MAHLI targets indicated in yellow. Green dots indicate - 1842 ChemCam targets, red dots indicate APXS targets, and black dots indicate rover parking spots. - 1843 The inset, a 3x expanded view of the area inside the white circle next to target Auchab, shows an - example of light- and dark-toned boulders as observed from the orbiting HiRISE camera. The - white trace is the Curiosity rover traverse; the drive direction was from the northeast (upper - 1846 right) toward the south (bottom center). The elevation contours are derived from HiRISE stereo- - pair products calibrated to Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA), - topography by Parker and Calef (2016). - 1849 Fig. 7. A ridge on the northeast side of Bimbe, which trends northeast-southwest (azimuth - 1850 ~65.5°), is mantled with cobbles and small boulders in Mastcam images (inset). The ridge - 1851 resembles nearby boulder- and cobble-mantled hills named Bukalo and Bailundo (insets). These - 1852 are likely examples of buttes that have weathered to the point that they are hills with remnants of - the capping rock taking the form of small boulders and cobbles (cf. Migon et al., 2018). - 1854 Fig. 8. Stereo pair anaglyph of Bimbe (large, dark-toned patch) and its vicinity. Most of the - boulders observed at Bimbe occur on the elevated portions of the south margin of Bimbe. The - 1856 feature within the dashed yellow ellipse, indicated with a "?," might be the eroded remains of an - impact structure. Definitive impact craters are labeled with "c" and probable impact structures - 1858 are labeled with "i". Dark-toned eolian sand, expressed as bedforms, has collected in the impact - structure depressions. Features labeled "MB" are a couple of the Murray buttes. - Fig. 9. (a) Work site for sols 1405–1410, viewed from the east. Names of targets investigated - using ChemCam, Mastcam, APXS, and MAHLI are indicated. The dashed yellow trace - approximately indicates the crest of a low ridge line that defines the southern margins of Bimbe. - 1863 (b) Navcam view of the work site. ChemCam, APXS, and MAHLI targets are indicated (except - 1864 Mariental, which is to the left of this scene. The stone labeled
"angular sandstone," imaged by - MAHLI on Sol 1407, is also shown in Fig. 15 and was not a named target. For scale, the width of - the rover wheel (right of lower center) is 40 cm. - 1867 Fig. 10. (a) Boulder containing targets Sonneblom (ChemCam, APXS, MAHLI) and Zambezi - 1868 (APXS, MAHLI). The boulder is a dark-gray, pitted sandstone; the locations of the MAHLI - views in (b) and (c) are indicated. (b and c) Close-up views of the surface; the yellow arrows - 1870 point to several individual grains. - 1871 Fig. 11. (a) Context for two ChemCam targets, Seeis and Aegis 1406a, on two separate stones at - 1872 Bimbe. (b) Seeis target; yellow outline indicates location of ChemCam RMI coverage, 4x inset - 1873 indicates examples of the largest (mm-scale) grains. (c) AEGIS_1406a target; yellow outline - 1874 indicates the location of the ChemCam RMI coverage shown to the right. (d) Close-up view, - 1875 with red crosshairs indicating LIBS observation points on AEGIS_1406a. - 1876 Fig. 12. (a) Dark-gray sandstone cobble target named Oranjemund. White box indicates location - 1877 of expanded view in (b); yellow outline indicates ChemCam RMI coverage in (c). (b) View - 1878 showing grain-scale bedding, which runs diagonally from upper left to lower right. (c) Close-up - 1879 view of Oranjemund; inset shows 3x expanded view with measurements on features that could - be among the larger sand grains in the rock (i.e., most of the grains are smaller than \sim 400 μ m). - Oranjemund is compositionally identical to layered target Chinchimane (Fig. 14). - 1882 Fig. 13. (a) Local context for ChemCam target Auchab; yellow outline indicates location of - panel (b): closer view of knobby gray target Auchab; yellow outline indicates ChemCam RMI - 1884 coverage in (c). Note the nearby angular, cross-bedded sandstone clast. Both stones are - surrounded by windblown sand and overlie reddish Murray-formation bedrock. (c) ChemCam - 1886 RMI mosaic showing the nodular texture of Auchab. - 1887 Fig. 14 (a) Local context for layered gray sandstone cobble target Chinchimane. Note the - differences in cobble orientation relative to their bedding structure, as well as the diversity of - cobble colors, response to sunlight, and sedimentary structure and texture. (b) Mastcam-100 - 1890 view. Bedding is approximately parallel and thin (sand grain scale thickness). A fracture filled - with a while material (vein) cuts across bedding. The yellow outline indicates the location of the - 1892 ChemCam RMI coverage shown in (c), where a few individual sand grains can be identified in a - well cemented and well sorted sandstone. - 1894 Fig. 15. Angular sandstone cobble with fine-grained interbeds. (a) Location (white arrow) of the - cobble relative to the larger boulders in the rover workspace during sols 1405–1410. (b) Highest - spatial resolution view of the cobble. Coarser grains are ~700 µm; the skyward rock face cuts - 1897 steeply across the original bedding. A recessed interval of ~1 cm thickness consists of grains too - small to resolve. - 1899 Fig. 16. (a) Example showing diversity of cobble and boulder orientations, sedimentary - 1900 structures, and colors at Bimbe. The white circles indicate examples of white stones shown in - 1901 (c); the yellow circles indicate examples of "red" stones in (c). (b) Knobby sandstone target, - 1902 Canico. (c) Examples of "red" (left) and white (center and right) cobbles which are minor - 1903 constituents of the Bimbe deposit; locations and relative sizes are shown in (a). The red stone at - the lower left in (c) has a white vein cutting across bedding within the stone. - $1905 \qquad \hbox{Fig. 17. (a) Conglomeratic boulder containing MAHLI targets Tumba and Funda; the latter was} \\$ - also an APXS target. (b) Conglomeratic boulder, ~60 cm wide, that includes veins that cut across - 1907 the sandy matrix (inset). (c) Conglomeratic boulder that includes the ChemCam target Balombo - 1908 (yellow outline indicates RMI image coverage). - 1909 Fig. 18. (a) Conglomeratic boulder investigated via four ChemCam targets. (b-e) Respective - 1910 RMI views and LIBS target areas of Seeheim, Bungo, Cabamba, and Wilhelmstal. Note the - vitreous luster of Wilhelmstal, and similarity to Cabamba. - 1912 Fig. 19. (a) Conglomeratic boulder that includes the APXS/MAHLI target, Funda, and the - 1913 MAHLI target, Tumba. White arrows indicate recessed white objects similar to Funda; blue - arrows indicate light-gray and white protrusive pebble clasts. (b) Close-up view of white, - 1915 recessed, banded object (clast or void fill) comprising the target Funda. (c) Pebble clast target - 1916 named Tumba. (d) Close-up view of a portion of the Tumba pebble clast, showing that it is a - 1917 sandstone; arrows point to a few example grains. - 1918 Fig. 20. (a) Conglomeratic boulder with ChemCam target, Mariental. Inset shows the entire - boulder. (b) Close-up view of Mariental and the locations of ChemCam LIBS observations. - 1920 Recessive white features are interpreted to be similar to Funda (Fig. 19). - 1921 Fig. 21. Major-element abundances, in wt. %, of ChemCam targets at Bimbe. Larger symbols - indicate averages of individual targets for Aussenkehr, Lucala, Seeis, Sonneblom, - 1923 AEGIS post 1406a ("Massive," red dots); Wilhelmstal, Cabamba ("Vitreous Conglomerate, - 1924 blue diamonds, also includes AEGIS_post_1400a); Chinchimane, Oranjemund ("Bimbe - 1925 Layered," yellow dots), Auchab and Canico ("Nodular SS," brown dots). Smaller symbols - 1926 represent individual observation points for the conglomerates ("Conglomerate Pts"), which have - 1927 more diverse compositions. Circles indicate groupings of Bimbe layered (yellow), massive (red), - 1928 and vitreous conglomerate (blue) targets. Standard deviations between individual LIBS - 1929 observation points within a target are given in Table 2. Upper limits on precision for individual - 1930 point observations are shown in each panel, taken from 480 Sheepbed measurements (Mangold - et al., 2015). Also shown are the mean compositions, and standard deviations of the means, of - other types of targets observed nearby and earlier along the traverse. These include Murray, Mars - soil, two groups of conglomerates, ChemCam target Pyramid Hills, and a group of massive - 1934 targets from Bradbury rise. Stimson formation compositions are shown as contours where each - 1935 contour represents equal weighting in terms of density of samples (see text and Supplementary - 1936 Material). - 1937 Fig. 22. Rocks observed on Bradbury rise that match Bimbe float rocks in terms of morphology - and composition in some cases, and only in morphology in other cases. (a) Bathurst_Inlet, - observed Sol 55, and (b) Nullataktok (Sol 336), found in the same area, have similar - 1940 compositions and morphologies to the Bimbe layered clasts. Bradbury massive targets (c) Bull - Arm and (d) Jake M do not match the compositions of the Bimbe massive targets, although they - bear morphological resemblances. (e) Oscar (observed Sol 516) does match the Bimbe massive - 1943 target compositions. (f) Pyramid Hills (observed north of Hidden Valley on Sol 692) is a close - match to the Bimbe layered compositions, as well as to the Bradbury layered targets, e.g., (a) and - 1945 (b). Locations of these targets are shown on Fig. 1. - 1946 Fig. 23. ChemCam relative reflectance spectra of representative samples of the Bimbe layered - and nodular rocks, along with sample spectra from the Bradbury layered rocks. The Bimbe - 1948 rocks show either flat near-infrared spectra or downturns that begin near 600 nm, whereas the - 1949 Bradbury rocks have peak reflectance wavelengths near 650-675 nm. - 1950 Fig. 24. Possible scenarios for formation of the heterolithic units. Each panel shows three time - steps. The grey stippled top layer is the Stimson formation, the white bedded unit is the Murray, - and the orange records the heterolithic unit. (a) Impact penetrates through the Stimson formation - into the Murray formation, creating a crater whose walls erosionally retreat through time. (b) - 1954 Incision into a resistant Stimson cap rock (either by wind or water) that creates buttes and sheds - 1955 Stimson and Murray blocks into a narrow valley. Further erosional retreat leaves isolated - patches. Alternately, buttes decay in place to create the heterolithic units. Sediments are - 1957 protected from weathering in the original location of the incision, or boulders shed from the - mesas are collected in certain areas that are not subject to erosion. (c) Mass transport of debris, - 1959 either dry or by glacial processes, followed by extensive erosion that obscures the original source - region. (d) Large-scale fluvial or debris flow fan deposits followed by erosion. (e) Localized - 1961 fluvial or debris flow followed by erosion. # 1963 **<u>Tasks:</u>** 1. Send to co-authors for comments 1965 2. Submit by 5/25. ### 1827 FIGURES - 1829 Fig. 1. The Curiosity rover field site occurs on the lower northwest slope of the 5-km-high Aeolis - 1830 Mons (Mt. Sharp), a mountain of predominantly stratified sediments in Gale crater. Gale is a - 1831 ~154 km diameter impact structure. The white trace indicates the rover traverse from landing - 1832 until September 2019. The inset shows the location of the field site within Gale crater. The three - 1833 heterolithic units studied by the rover are indicated by gray-filled circles. Waypoints are - 1834 indicated by black circles. Targets mentioned in the text that are outside of the heterolithic units - are indicated by triangles. Other features mentioned in the text are also indicated. - 1836 Fig. 2. (a) The Curiosity rover and the Blackfoot heterolithic unit (within blue dashed outline) as - imaged by HiRISE on 04 September 2015. Yellow trace indicates rover traverse, from north - 1838 toward southwest. Locations of boulders A and B and the sites of two rover stops on Blackfoot -
are indicated. Locations of ChemCam targets Sunburst, Swan, Lincoln, Jefferson, Madison, and - 1840 the APXS/MAHLI target Badlands, are indicated in green. (b) Boulder A is dark-toned when - viewed from above; the rock is a dark gray sandstone and it has a surface that is rough at a - centimeter scale. (c) Boulder B is light-toned when viewed from above (e.g. HiRISE images); - 1843 the rock is a dark-gray sandstone; bedding is apparent; the skyward-facing surface is smooth at a - 1844 centimeter scale and coated with eolian dust. (d) Blackfoot as seen from the north on Sol 1094 - when the rover was parked at the position shown in (a). Boulders A and B and the locations of - 1846 (e), (f), and (g) are indicated. (e) The north and east margins of the Blackfoot heterolithic unit - overlie dark-gray, cross-bedded eolian Stimson formation sandstones. (f) North edge of - 1848 Blackfoot reveals the deposit in cross-section; here, it consists of a jumble of angular cobbles and - 1849 pebbles; cobbles display a variety of orientations relative to their internal sedimentary structures - 1850 (bedding). Dark-toned eolian sand has filled some of the gaps between stones. (g) Many of the - open fractures which cut through Stimson formation sandstones exhibit a light-toned, fracture- - parallel, altered zone (a "halo;" see Frydenvang et al., 2017 and Yen et al., 2017). Here a fracture - and associated halo follow the red trace and are abruptly truncated where covered by the - 1854 Blackfoot heterolithic unit; this indicates that the fracture and fluids responsible for the "halo" - 1855 alteration did not penetrate the Blackfoot deposit; i.e., one of the indicators that the deposit is not - 1856 a lithic unit. (h) At its west-southwest end, the Blackfoot unit directly overlies mudstones of the - 1857 Murray formation. (i) The cobbles and boulders of Blackfoot display a range of orientations, - 1858 relative to their internal structure (bedding). Some of them protrude from the surface, others rest - on the surface. - 1860 Fig. 3. (a) Typical Blackfoot surface, with scattered cobbles, small boulders, pebbles, and sand of - various orientations (relative to internal sedimentary structure, such as bedding), colors, and - 1862 lithologies. Two key examples are highlighted: A cross-stratified sandstone boulder (ChemCam - target named Sunburst) and a conglomeratic cobble. (b) Dark-gray sandstone target named - Sunburst. White and light-gray sand grains are readily distinguished because of their contrast - 1865 relative to the majority of grains, which are dark gray. (c) Example of a light-gray conglomeratic - 1866 cobble, protruding from the surface. The orange-brown material on part of this stone is eolian - dust. (d) Pebbles in an otherwise light-gray sandy matrix in a conglomeratic stone protruding - 1868 from the surface at Blackfoot. (e) ChemCam target Madison; inset shows the image location on - 1869 the rock face. The large, light-toned feature consists of the remains of a fracture wall vein - 1870 composed of calcium sulfate. More importantly, the image shows light-toned sand grains, which - 1871 contrast with the bulk of dark-toned sand grains (much more difficult to see) in this rock. - 1872 Madison is a dark-gray sandstone. (f) APXS/MAHLI target, Badlands. This stone, too, is a dark- - 1873 gray sandstone. Unlike Madison and Sunburst, Badlands has no light-toned sand grains; they are - 1874 all dark gray. The sizes of two larger grains are indicated; most grains are smaller and difficult to - distinguish from each other and their intergranular cement. Brownish-orange patches are - depressions (some of them, perhaps, may be sockets from which sand grains have been removed) - 1877 containing eolian dust. (g) Two examples of the light-toned sandstone or pebbly conglomerate - 1878 fragments which occur at Blackfoot. - 1879 Fig. 4. (a) Brandberg and the Curiosity rover as viewed by HiRISE on Sol 1159. Yellow trace - 1880 indicates the rover traverse; drive direction was from northeast to southwest. ChemCam targets - are indicated by name. (b) Eastern Brandberg. In this scene, Brandberg is downhill from the - 1882 rover; the near side of Brandberg forms a shallow depression. Rover tracks provide scale. Eolian - 1883 bedforms explain the faint lineated texture observable in HiRISE images. (c) Brandberg as - viewed from the northeast. (d) Examples of steeply dipping cobble-sized angular clasts in - Brandberg. (e) Examples of clast variety in northeastern Brandberg. The largest boulder-sized - 1886 clasts dip toward the center of the circular landform. Boulders with relatively flat, skyward- - facing surfaces are coated with dust and thus appear light-toned when seen from above in - 1888 HiRISE images. The ChemCam target, Gibeon, is indicated. (f) Red/cyan stereo pair anaglyph - 1889 produced from two HiRISE images; the dashed yellow arc indicates a ridge that might be an - indicator that Brandberg occurs within the eroded remains of an impact structure. - 1891 Fig. 5. (a) Sol 1160 view of the variety of boulders, cobbles, and pebbles which compose the - Brandberg deposit. Yellow outlines indicate locations of panels b, c, d, g, h, and i. (b) Dust- - 1893 coated, fractured Murray-formation lithic clast target named Hoba. (c) Dark-gray sandstone - 1894 cobble target named Gibeon. The inset shows enlargement of a single grain or concretion, - 1895 representative of the larger grains (or typical concretion size) in this rock, ~2 mm. (d) Sandstone - 1896 with concretions. (e) Example sandstone with concretions (target named Maiberg) liberated from - 1897 Stimson formation bedrock on the east side of Naukluft Plateau, imaged on Sol 1277; shown - $1898 \qquad \text{here for comparison. (f) Sedimentary structure and texture details of Maiberg. (g) Examples of} \\$ - 1899 candidate, rare conglomeratic stones at Brandberg. (h) Example of angular, cobble-sized - 1900 fragment of cross-bedded sandstone. (i) Example lithic fragment of Murray-formation bedrock - incorporated into the Brandberg deposit; white arrows indicate erosion-resistant concretions; - 1902 compare with (j): Example of intact Murray-formation bedrock south of Brandberg which - 1903 contains similar concretions (white arrows). - 1904 Fig. 6. (a) Local context of Bimbe on the lower slopes of Mt. Sharp, between the Murray buttes - 1905 to the south, Naukluft Plateau and some of the Bagnold dunes to the east, and Baynes Mountain - 1906 to the north. The white trace is the Curiosity rover traverse; the drive direction was from - 1907 northeast (upper right) toward the south (bottom left of center). Blue box indicates the location of - 1908 (b): Bimbe with ChemCam, APXS, and MAHLI targets indicated in yellow. Green dots indicate - 1909 ChemCam targets, red dots indicate APXS targets, and black dots indicate rover parking spots. - 1910 The inset, a 3x expanded view of the area inside the white circle next to target Auchab, shows an - 1911 example of light- and dark-toned boulders as observed from the orbiting HiRISE camera. The - 1912 white trace is the Curiosity rover traverse; the drive direction was from the northeast (upper - right) toward the south (bottom center). The elevation contours are derived from HiRISE stereo- - pair products calibrated to Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA), - 1915 topography by Parker and Calef (2016). - 1916 Fig. 7. A ridge on the northeast side of Bimbe, which trends northeast-southwest (azimuth - 1917 ~65.5°), is mantled with cobbles and small boulders in Mastcam images (inset). The ridge - 1918 resembles nearby boulder- and cobble-mantled hills named Bukalo and Bailundo (insets). These - 1919 are likely examples of buttes that have weathered to the point that they are hills with remnants of - the capping rock taking the form of small boulders and cobbles (cf. Migon et al., 2018). - 1921 Fig. 8. Stereo pair analyph of Bimbe (large, dark-toned patch) and its vicinity. Most of the - boulders observed at Bimbe occur on the elevated portions of the south margin of Bimbe. The - 1923 feature within the dashed yellow ellipse, indicated with a "?," might be the eroded remains of an - impact structure. Definitive impact craters are labeled with "c" and probable impact structures - 1925 are labeled with "i". Dark-toned eolian sand, expressed as bedforms, has collected in the impact - structure depressions. Features labeled "MB" are a couple of the Murray buttes. - 1927 Fig. 9. (a) Work site for sols 1405–1410, viewed from the east. Names of targets investigated - 1928 using ChemCam, Mastcam, APXS, and MAHLI are indicated. The dashed yellow trace - 1929 approximately indicates the crest of a low ridge line that defines the southern margins of Bimbe. - 1930 (b) Navcam view of the work site. ChemCam, APXS, and MAHLI targets are indicated (except - 1931 Mariental, which is to the left of this scene. The stone labeled "angular sandstone," imaged by - 1932 MAHLI on Sol 1407, is also shown in Fig. 15 and was not a named target. For scale, the width of - the rover wheel (right of lower center) is 40 cm. - 1934 Fig. 10. (a) Boulder containing targets Sonneblom (ChemCam, APXS, MAHLI) and Zambezi - 1935 (APXS, MAHLI). The boulder is a dark-gray, pitted sandstone; the locations of the MAHLI - views in (b) and (c) are indicated. (b and c) Close-up views of the surface; the yellow arrows - 1937 point to several individual grains. - 1938 Fig. 11. (a) Context for two ChemCam targets, Seeis and Aegis 1406a, on two separate stones at - 1939 Bimbe. (b) Seeis target; yellow outline indicates location of ChemCam RMI coverage, 4x inset - 1940 indicates examples of the largest (mm-scale) grains. (c) AEGIS_1406a target; yellow outline - indicates the location of the ChemCam RMI coverage shown to the right. (d) Close-up view, - 1942 with red crosshairs indicating LIBS observation points on AEGIS_1406a. - 1943 Fig. 12. (a) Dark-gray sandstone cobble
target named Oranjemund. White box indicates location - 1944 of expanded view in (b); yellow outline indicates ChemCam RMI coverage in (c). (b) View - showing grain-scale bedding, which runs diagonally from upper left to lower right. (c) Close-up - 1946 view of Oranjemund; inset shows 3x expanded view with measurements on features that could - be among the larger sand grains in the rock (i.e., most of the grains are smaller than \sim 400 μ m). - 1948 Oranjemund is compositionally identical to layered target Chinchimane (Fig. 14). - 1949 Fig. 13. (a) Local context for ChemCam target Auchab; yellow outline indicates location of - 1950 panel (b): closer view of knobby gray target Auchab; yellow outline indicates ChemCam RMI - 1951 coverage in (c). Note the nearby angular, cross-bedded sandstone clast. Both stones are - 1952 surrounded by windblown sand and overlie reddish Murray-formation bedrock. (c) ChemCam - 1953 RMI mosaic showing the nodular texture of Auchab. - 1954 Fig. 14 (a) Local context for layered gray sandstone cobble target Chinchimane. Note the - 1955 differences in cobble orientation relative to their bedding structure, as well as the diversity of - 1956 cobble colors, response to sunlight, and sedimentary structure and texture. (b) Mastcam-100 - 1957 view. Bedding is approximately parallel and thin (sand grain scale thickness). A fracture filled - 1958 with a while material (vein) cuts across bedding. The yellow outline indicates the location of the - 1959 ChemCam RMI coverage shown in (c), where a few individual sand grains can be identified in a - 1960 well cemented and well sorted sandstone. - 1961 Fig. 15. Angular sandstone cobble with fine-grained interbeds. (a) Location (white arrow) of the - cobble relative to the larger boulders in the rover workspace during sols 1405–1410. (b) Highest - spatial resolution view of the cobble. Coarser grains are ~700 μm; the skyward rock face cuts - steeply across the original bedding. A recessed interval of ~1 cm thickness consists of grains too - 1965 small to resolve. - 1966 Fig. 16. (a) Example showing diversity of cobble and boulder orientations, sedimentary - structures, and colors at Bimbe. The white circles indicate examples of white stones shown in - 1968 (c); the yellow circles indicate examples of "red" stones in (c). (b) Knobby sandstone target, - 1969 Canico. (c) Examples of "red" (left) and white (center and right) cobbles which are minor - 1970 constituents of the Bimbe deposit; locations and relative sizes are shown in (a). The red stone at - the lower left in (c) has a white vein cutting across bedding within the stone. - 1972 Fig. 17. (a) Conglomeratic boulder containing MAHLI targets Tumba and Funda; the latter was - also an APXS target. (b) Conglomeratic boulder, ~60 cm wide, that includes veins that cut across - 1974 the sandy matrix (inset). (c) Conglomeratic boulder that includes the ChemCam target Balombo - 1975 (yellow outline indicates RMI image coverage). - 1976 Fig. 18. (a) Conglomeratic boulder investigated via four ChemCam targets. (b-e) Respective - 1977 RMI views and LIBS target areas of Seeheim, Bungo, Cabamba, and Wilhelmstal. Note the - $1978 \qquad \hbox{vitreous luster of Wilhelmstal, and similarity to Cabamba}.$ - 1979 Fig. 19. (a) Conglomeratic boulder that includes the APXS/MAHLI target, Funda, and the - 1980 MAHLI target, Tumba. White arrows indicate recessed white objects similar to Funda; blue - arrows indicate light-gray and white protrusive pebble clasts. (b) Close-up view of white, - 1982 recessed, banded object (clast or void fill) comprising the target Funda. (c) Pebble clast target - 1983 named Tumba. (d) Close-up view of a portion of the Tumba pebble clast, showing that it is a - 1984 sandstone; arrows point to a few example grains. - 1985 Fig. 20. (a) Conglomeratic boulder with ChemCam target, Mariental. Inset shows the entire - boulder. (b) Close-up view of Mariental and the locations of ChemCam LIBS observations. - 1987 Recessive white features are interpreted to be similar to Funda (Fig. 19). - 1988 Fig. 21. Major-element abundances, in wt. %, of ChemCam targets at Bimbe. Larger symbols - 1989 indicate averages of individual targets for Aussenkehr, Lucala, Seeis, Sonneblom, - 1990 AEGIS_post_1406a ("Massive," red dots); Wilhelmstal, Cabamba ("Vitreous Conglomerate, - blue diamonds, also includes AEGIS_post_1400a); Chinchimane, Oranjemund ("Bimbe - 1992 Layered," yellow dots), Auchab and Canico ("Nodular SS," brown dots). Smaller symbols - 1993 represent individual observation points for the conglomerates ("Conglomerate Pts"), which have - 1994 more diverse compositions. Circles indicate groupings of Bimbe layered (yellow), massive (red), - and vitreous conglomerate (blue) targets. Standard deviations between individual LIBS - 1996 observation points within a target are given in Table 2. Upper limits on precision for individual - 1997 point observations are shown in each panel, taken from 480 Sheepbed measurements (Mangold - et al., 2015). Also shown are the mean compositions, and standard deviations of the means, of - 1999 other types of targets observed nearby and earlier along the traverse. These include Murray, Mars - 2000 soil, two groups of conglomerates, ChemCam target Pyramid Hills, and a group of massive - 2001 targets from Bradbury rise. Stimson formation compositions are shown as contours where each - 2002 contour represents equal weighting in terms of density of samples (see text and Supplementary - 2003 Material). - 2004 Fig. 22. Rocks observed on Bradbury rise that match Bimbe float rocks in terms of morphology - and composition in some cases, and only in morphology in other cases. (a) Bathurst_Inlet, - 2006 observed Sol 55, and (b) Nullataktok (Sol 336), found in the same area, have similar - 2007 compositions and morphologies to the Bimbe layered clasts. Bradbury massive targets (c) Bull - 2008 Arm and (d) Jake_M do not match the compositions of the Bimbe massive targets, although they - 2009 bear morphological resemblances. (e) Oscar (observed Sol 516) does match the Bimbe massive - 2010 target compositions. (f) Pyramid Hills (observed north of Hidden Valley on Sol 692) is a close - 2011 match to the Bimbe layered compositions, as well as to the Bradbury layered targets, e.g., (a) and - 2012 (b). Locations of these targets are shown on Fig. 1. - 2013 Fig. 23. ChemCam relative reflectance spectra of representative samples of the Bimbe layered - and nodular rocks, along with sample spectra from the Bradbury layered rocks. The Bimbe - 2015 rocks show either flat near-infrared spectra or downturns that begin near 600 nm, whereas the - 2016 Bradbury rocks have peak reflectance wavelengths near 650-675 nm. - Fig. 24. Possible scenarios for formation of the heterolithic units. Each panel shows three time - steps. The grey stippled top layer is the Stimson formation, the white bedded unit is the Murray, - and the orange records the heterolithic unit. (a) Impact penetrates through the Stimson formation - 2020 into the Murray formation, creating a crater whose walls erosionally retreat through time. (b) - 2021 Incision into a resistant Stimson cap rock (either by wind or water) that creates buttes and sheds - 2022 Stimson and Murray blocks into a narrow valley. Further erosional retreat leaves isolated - 2023 patches. Alternately, buttes decay in place to create the heterolithic units. Sediments are - 2024 protected from weathering in the original location of the incision, or boulders shed from the - mesas are collected in certain areas that are not subject to erosion. (c) Mass transport of debris, - 2026 either dry or by glacial processes, followed by extensive erosion that obscures the original source - 2027 region. (d) Large-scale fluvial or debris flow fan deposits followed by erosion. (e) Localized - 2028 fluvial or debris flow followed by erosion. # 2030 <u>Tasks:</u> 2031 1. Send to co-authors for comments 2032 2. Submit by 5/25. Fig. 1 Fig. 1. The Curiosity rover field site occurs on the lower northwest slope of the 5-km-high Aeolis Mons (Mt. Sharp), a mountain of predominantly stratified sediments in Gale crater. Gale is a ~154 km diameter impact structure. The white trace indicates the rover traverse from landing until September 2019. The inset shows the location of the field site within Gale crater. The three heterolithic units studied by the rover are indicated by gray-filled circles. Waypoints are indicated by black circles. Targets mentioned in the text that are outside of the heterolithic units are indicated by triangles. Other features mentioned in the text are also indicated. Fig. 2. (a) The Curiosity rover and the Blackfoot heterolithic unit (within blue dashed outline) as imaged by HiRISE on 04 September 2015. Yellow trace indicates rover traverse, from north toward southwest. Locations of boulders A and B and the sites of two rover stops on Blackfoot are indicated. Locations of ChemCam targets Sunburst, Swan, Lincoln, Jefferson, Madison, and the APXS/MAHLI target Badlands, are indicated in green. (b) Boulder A is dark-toned when viewed from above; the rock is a dark gray sandstone and it has a surface that is rough at a centimeter scale. (c) Boulder B is light-toned when viewed from above (e.g. HiRISE images); the rock is a dark-gray sandstone; bedding is apparent; the skyward-facing surface is smooth at a centimeter scale and coated with eolian dust. (d) Blackfoot as seen from the north on Sol 1094 when the rover was parked at the position shown in (a). Boulders A and B and the locations of (e), (f), and (g) are indicated. (e) The north and east margins of the Blackfoot heterolithic unit overlie dark-gray, cross-bedded eolian Stimson formation sandstones. (f) North edge of Blackfoot reveals the deposit in cross-section; here, it consists of a jumble of angular cobbles and pebbles; cobbles display a variety of orientations relative to their internal sedimentary
structures (bedding). Dark-toned eolian sand has filled some of the gaps between stones. (g) Many of the open fractures which cut through Stimson formation sandstones exhibit a light-toned, fracture-parallel, altered zone (a "halo;" see Frydenvang et al., 2017 and Yen et al., 2017). Here a fracture and associated halo follow the red trace and are abruptly truncated where covered by the Blackfoot heterolithic unit; this indicates that the fracture and fluids responsible for the "halo" alteration did not penetrate the Blackfoot deposit; i.e., one of the indicators that the deposit is not a lithic unit. (h) At its west-southwest end, the Blackfoot unit directly overlies mudstones of the Murray formation. (i) The cobbles and boulders of Blackfoot display a range of orientations, relative to their internal structure (bedding). Some of them protrude from the surface, others rest on the surface. FIG 3 Fig. 3. (a) Typical Blackfoot surface, with scattered cobbles, small boulders, pebbles, and sand of various orientations (relative to internal sedimentary structure, such as bedding), colors, and lithologies. Two key examples are highlighted: A cross-stratified sandstone boulder (ChemCam target named Sunburst) and a conglomeratic cobble. (b) Dark-gray sandstone target named Sunburst. White and light-gray sand grains are readily distinguished because of their contrast relative to the majority of grains, which are dark gray. (c) Example of a light-gray conglomeratic cobble, protruding from the surface. The orange-brown material on part of this stone is eolian dust. (d) Pebbles in an otherwise light gray sandy matrix in a conglomeratic stone protruding from the surface at Blackfoot. (e) ChemCam target Madison; inset shows the image location on the rock face. The large, light-toned feature consists of the remains of a fracture wall vein composed of calcium sulfate. More importantly, the image shows light-toned sand grains, which contrast with the bulk of darktoned sand grains (much more difficult to see) in this rock. Madison is a dark-gray sandstone. (f) APXS/MAHLI target, Badlands. This stone, too, is a dark-gray sandstone. Unlike Madison and Sunburst, Badlands has no light-toned sand grains; they are all dark gray. The sizes of two larger grains are indicated; most grains are smaller and difficult to distinguish from each other and their intergranular cement. Brownish-orange patches are depressions (some of them, perhaps, may be sockets from which sand grains have been removed) containing eolian dust. (g) Two examples of the light-toned sandstone or pebbly conglomerate fragments which occur at Blackfoot. FIG 4 Fig. 4. (a) Brandberg and the Curiosity rover as viewed by HiRISE on Sol 1159. Yellow trace indicates the rover traverse; drive direction was from northeast to southwest. ChemCam targets are indicated by name. (b) Eastern Brandberg. In this scene, Brandberg is downhill from the rover; the near side of Brandberg forms a shallow depression. Rover tracks provide scale. Eolian bedforms explain the faint lineated texture observable in HiRISE images. (c) Brandberg as viewed from the northeast. (d) Examples of steeply dipping cobble-sized angular clasts in Brandberg. (e) Examples of clast variety in northeastern Brandberg. The largest boulder-sized clasts dip toward the center of the circular landform. Boulders with relatively flat, skyward-facing surfaces are coated with dust and thus appear light-toned when seen from above in HiRISE images. The ChemCam target, Gibeon, is indicated. (f) Red/cyan stereo pair anaglyph produced from two HiRISE images; the dashed yellow arc indicates a ridge that might be an indicator that Brandberg occurs within the eroded remains of an impact structure. FIG 5 Fig. 5. (a) Sol 1160 view of the variety of boulders, cobbles, and pebbles which compose the Brandberg deposit. Yellow outlines indicate locations of panels b, c, d, g, h, and i. (b) Dust-coated, fractured Murray-formation lithic clast target named Hoba. (c) Dark-gray sandstone cobble target named Gibeon. The inset shows enlargement of a single grain or concretion, representative of the larger grains (or typical concretion size) in this rock, ~2 mm. (d) Sandstone with concretions. (e) Example sandstone with concretions (target named Maiberg) liberated from Stimson formation bedrock on the east side of Naukluft Plateau, imaged on Sol 1277; shown here for comparison. (f) Sedimentary structure and texture details of Maiberg. (g) Examples of candidate, rare conglomeratic stones at Brandberg. (h) Example of angular, cobble-sized fragment of cross-bedded sandstone. (i) Example lithic fragment of Murray-formation bedrock incorporated into the Brandberg deposit; white arrows indicate erosion-resistant concretions; compare with (j): Example of intact Murray-formation bedrock south of Brandberg which contains similar concretions (white arrows). Fig. 6. (a) Local context of Bimbe on the lower slopes of Mt. Sharp, between the Murray buttes to the south, Naukluft Plateau and some of the Bagnold dunes to the east, and Baynes Mountain to the north. The white trace is the Curiosity rover traverse; the drive direction was from northeast (upper right) toward the south (bottom left of center). Blue box indicates the location of (b): Bimbe with ChemCam, APXS, and MAHLI targets indicated in yellow. Green dots indicate ChemCam targets, red dots indicate APXS targets, and black dots indicate rover parking spots. The inset, a 3x expanded view of the area inside the white circle next to target Auchab, shows an example of light-and dark-toned boulders as observed from the orbiting HiRISE camera. The white trace is the Curiosity rover traverse; the drive direction was from the northeast (upper right) toward the south (bottom center). The elevation contours are derived from HiRISE stereo pair products calibrated to Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA), topography by Parker and Calef (2016). Fig. 7. A ridge on the northeast side of Bimbe, which trends northeast-southwest (azimuth ~65.5°), is mantled with cobbles and small boulders in Mastcam images (inset). The ridge resembles nearby boulder- and cobble-mantled hills named Bukalo and Bailundo (insets). These are likely examples of buttes that have weathered to the point that they are hills with remnants of the capping rock taking the form of small boulders and cobbles (cf. Migoń et al., 2018). Fig. 8. Stereo pair analyph of Bimbe (large, dark-toned patch) and its vicinity. Most of the boulders observed at Bimbe occur on the elevated portions of the south margin of Bimbe. The feature within the dashed yellow ellipse, indicated with a "?," might be the eroded remains of an impact structure. Definitive impact craters are labeled with "c" and probable impact structures are labeled with "i". Dark-toned eolian sand, expressed as bedforms, has collected in the impact structure depressions. Features labeled "MB" are a couple of the Murray buttes. #### FIG 9a ### FIG 9b Fig. 9. (a) Work site for sols 1405–1410, viewed from the east. Names of targets investigated using ChemCam, Mastcam, APXS, and MAHLI are indicated. The dashed yellow trace approximately indicates the crest of a low ridge line that defines the southern margins of Bimbe. (b) Navcam view of the work site. ChemCam, APXS, and MAHLI targets are indicated (except Mariental, which is to the left of this scene. The stone labeled "angular sandstone," imaged by MAHLI on Sol 1407, is also shown in Fig. 15 and was not a named target. For scale, the width of the rover wheel (right of lower center) is 40 cm. Fig. 10. (a) Boulder containing targets Sonneblom (ChemCam, APXS, MAHLI) and Zambezi (APXS, MAHLI). The boulder is a dark-gray, pitted sandstone; the locations of the MAHLI views in (b) and (c) are indicated. (b and c) Close-up views of the surface; the yellow arrows point to several individual grains. Fig. 11. (a) Context for two ChemCam targets, Seeis and Aegis_1406a, on two separate stones at Bimbe. (b) Seeis target; yellow outline indicates location of ChemCam RMI coverage, 4x inset indicates examples of the largest (mmscale) grains. (c) AEGIS_1406a target; yellow outline indicates the location of the ChemCam RMI coverage shown to the right. (d) Close-up view, with red crosshairs indicating LIBS observation points on AEGIS_1406a. **FIG 12** Fig. 12. (a) Dark-gray sandstone cobble target named Oranjemund. White box indicates location of expanded view in (b); yellow outline indicates ChemCam RMI coverage in (c). (b) View showing grain-scale bedding, which runs diagonally from upper left to lower right. (c) Close-up view of Oranjemund; inset shows 3x expanded view with measurements on features that could be among the larger sand grains in the rock (i.e., most of the grains are smaller than \sim 400 μ m). Oranjemund is compositionally identical to layered target Chinchimane (Fig. 14). Fig. 13. (a) Local context for ChemCam target Auchab; yellow outline indicates location of panel (b): closer view of knobby gray target Auchab; yellow outline indicates ChemCam RMI coverage in (c). Note the nearby angular, crossbedded sandstone clast. Both stones are surrounded by windblown sand and overlie reddish Murray-formation bedrock. (c) ChemCam RMI mosaic showing the nodular texture of Auchab. **FIG 14** Fig. 14 (a) Local context for layered gray sandstone cobble target Chinchimane. Note the differences in cobble orientation relative to their bedding structure, as well as the diversity of cobble colors, response to sunlight, and sedimentary structure and texture. (b) Mastcam-100 view. Bedding is approximately parallel and thin (sand grain scale thickness). A fracture filled with a while material (vein) cuts across bedding. The yellow outline indicates the location of the ChemCam RMI coverage shown in (c), where a few individual sand grains can be identified in a well cemented and well sorted sandstone. Fig. 15. Angular sandstone cobble with
fine-grained interbeds. (a) Location (white arrow) of the cobble relative to the larger boulders in the rover workspace during sols 1405–1410. (b) Highest spatial resolution view of the cobble. Coarser grains are $^{\sim}700~\mu m$; the skyward rock face cuts steeply across the original bedding. A recessed interval of $^{\sim}1$ cm thickness consists of grains too small to resolve. **FIG 16** Fig. 16. (a) Example showing diversity of cobble and boulder orientations, sedimentary structures, and colors at Bimbe. The white circles indicate examples of white stones shown in (c); the yellow circles indicate examples of "red" stones in (c). (b) Knobby sandstone target, Canico. (c) Examples of "red" (left) and white (center and right) cobbles which are minor constituents of the Bimbe deposit; locations and relative sizes are shown in (a). The red stone at the lower left in (c) has a white vein cutting across bedding within the stone. FIG 17 Fig. 17. (a) Conglomeratic boulder containing MAHLI targets Tumba and Funda; the latter was also an APXS target. (b) Conglomeratic boulder, ~60 cm wide, that includes veins that cut across the sandy matrix (inset). (c) Conglomeratic boulder that includes the ChemCam target Balombo (yellow outline indicates RMI image coverage). Fig. 18. (a) Conglomeratic boulder investigated via four ChemCam targets. (b-e) Respective RMI views and LIBS target areas of Seeheim, Bungo, Cabamba, and Wilhelmstal. Note the vitreous luster of Wilhelmstal, and similarity to Cabamba. Fig. 19. (a) Conglomeratic boulder that includes the APXS/MAHLI target, Funda, and the MAHLI target, Tumba. White arrows indicate recessed white objects similar to Funda; blue arrows indicate light-gray and white protrusive pebble clasts. (b) Close-up view of white, recessed, banded object (clast or void fill) comprising the target Funda. (c) Pebble clast target named Tumba. (d) Close-up view of a portion of the Tumba pebble clast, showing that it is a sandstone; arrows point to a few example grains. Fig. 20. (a) Conglomeratic boulder with ChemCam target, Mariental. Inset shows the entire boulder. (b) Close-up view of Mariental and the locations of ChemCam LIBS observations. Recessive white features are interpreted to be similar to Funda (Fig. 19). **FIG 21** 4.0 3.0 2.0 40 Bimbe • Soil 44 46 48 50 SiO, 52 **Pyramid Hills** 42 Murray 54 Precision 56 58 Fig. 21. Major-element abundances, in wt. %, of ChemCam targets at Bimbe. Larger symbols indicate averages of individual targets for Aussenkehr, Lucala, Seeis, Sonneblom, AEGIS_post_1406a ("Massive," red dots); Wilhelmstal, Cabamba ("Vitreous Conglomerate," blue diamonds; also includes AEGIS_post_1400a); Chinchimane, Oranjemund ("Bimbe Layered," yellow dots), Auchab and Canico ("Nodular SS," brown dots). Smaller symbols represent individual observation points for the conglomerates ("Conglomerate Pts"), which have more diverse compositions. Circles indicate groupings of Bimbe layered (yellow), massive (red), and vitreous conglomerate (blue) targets. Standard deviations between individual LIBS observation points within a target are given in Table 2. Upper limits on precision for individual point observations are shown in each panel, taken from 480 Sheepbed measurements (Mangold et al., 2015). Also shown are the mean compositions, and standard deviations of the means, of other types of targets observed nearby and earlier along the traverse. These include Murray, Mars soil, two groups of conglomerates, the ChemCam target Pyramid Hills, and a group of massive targets from Bradbury rise. Stimson formation compositions are shown as contours where each contour represents equal weighting in terms of density of samples (see text and Supplementary Material). Fig. 22. Rocks observed on Bradbury rise that match Bimbe float rocks in terms of morphology and composition in some cases, and only in morphology in other cases. (a) Bathurst Inlet, observed Sol 55, and (b) Nullataktok (Sol 336), found in the same area, have similar compositions and morphologies to the Bimbe layered clasts. Bradbury massive targets (c) Bull Arm and (d) Jake_M do not match the compositions of the Bimbe massive targets, although they bear morphological resemblances. (e) Oscar (observed Sol 516) does match the Bimbe massive target compositions. (f) Pyramid Hills (observed north of Hidden Valley on Sol 692) is a close match to the Bimbe layered compositions, as well as to the Bradbury layered targets, e.g., (a) and (b). Locations of these targets are shown on Fig. 1. 29 Fig. 23. ChemCam relative reflectance spectra of representative samples of the Bimbe layered and nodular rocks, along with sample spectra from the Bradbury layered rocks. The Bimbe rocks show either flat near-infrared spectra or downturns that begin near 600 nm, whereas the Bradbury rocks have peak reflectance wavelengths near 650-675 nm. (a) (b) (c) (d) (e) Fig. 24. Possible scenarios for formation of the heterolithic units. Each panel shows three time steps. The grey stippled top layer is the Stimson formation, the white bedded unit is the Murray, and the orange records the heterolithic unit. (a) Impact penetrates through the Stimson formation into the Murray formation, creating a crater whose walls erosionally retreat through time. (b) Incision into a resistant Stimson cap rock (either by wind or water) that creates buttes and sheds Stimson and Murray blocks into a narrow valley. Further erosional retreat leaves isolated patches. Alternately, buttes decay in place to create the heterolithic units. Sediments are protected from weathering in the original location of the incision, or boulders shed from the mesas are collected in certain areas that are not subject to erosion. (c) Mass transport of debris, either dry or by glacial processes, followed by extensive erosion that obscures the original source region. (d) Large-scale fluvial or debris flow fan deposits followed by erosion. (e) Localized fluvial or debris flow followed by erosion. ### **Supplemental Material** # ORIGIN AND COMPOSITION OF THREE HETEROLITHIC BOULDER- AND COBBLE-BEARING DEPOSITS OVERLYING THE MURRAY AND STIMSON FORMATIONS, GALE CRATER, MARS R.C. Wiens et al. #### Contents | 1. | Figures Showing Contour Lines Near the Heterolithic Units | 2 | |-----|---|----------| | 2. | Description of Particle Size Measurements | <i>6</i> | | 3. | Description of Reference Points and Contours in Figure 21, and Supporting Figures | 10 | | 4. | Description and Results of Equivalence Tests | 16 | | 5. | Some Unique Compositional Features of the Bimbe Float Rocks | 18 | | 6. | The Heights of the Murray Buttes | 19 | | 7. | Additional References for Supplemental Section | 21 | | 8. | Compositions of Individual ChemCam Observation Points, Bimbe | 22 | | 9. | Compositions from Individual ChemCam Observation Points: Blackfoot, Brandberg | 23 | | 10. | Images of ChemCam Heterolithic-Unit Targets Not in the Main Body of the Paper | 24 | | 11. | Images of ChemCam Bradbury Targets Not in the Main Body of the Paper | 36 | | 12. | Images of Other Targets from Zabriskie Plateau (Johnnie, South_Park2) | 40 | | 13. | Designations of Images Used in the Paper | 44 | #### 1. Figures Showing Contour Lines Near the Heterolithic Units Supplemental Fig. 1-1. HiRISE image mosaic and 1 m elevation contour map (highlighted with brightly colored lines) that shows the Blackfoot deposit to be an erosional remnant that crosses the scour trend of the topography. Blackfoot is the smooth grey-toned deposit (Sol 1099 marks center area). Black and white arrows mark where Blackfoot is overlying the Murray (black) and Stimson (white) formations. Colored contours reveal the parallel ridges (dashed lines) that Blackfoot bridges and the aligned depressions bordering the deposit. Supplemental Fig. 1-2. HiRISE image mosaic with colored 1 m elevation contours showing the location and elevation of Brandberg relative to Blackfoot. Supplemental Fig. 1-3. HiRISE image with 10 m elevation contour intervals. Orange contour crosses the Bimbe deposit. Red contour crosses a similar deposit to the north. Supplemental Fig. 1-4. Topographic map of a larger area along the rover traverse from the lower edge of Gediz Vallis (lower right center) and Greenheugh pediment to the heterolithic units, showing contour lines at 5 m intervals, and red contour lines at 25 m intervals. Compare with Fig. 1. #### 2. Description of Particle Size Measurements Four steps were taken to arrive at a particle size distribution for each heterolithic unit. 1) Mastcam Mosaics that provide extensive close view of particles across a patch were inspected, and then individual photographs were selected for analysis. 2) For each image, a line was drawn across the field of particles. These transects were chosen based on being close to the rover, appearing representative of the deposit, and to be approximately equidistant from the rover at all points. 3) For all stones bigger than three pixels, the major and minor axes of each stone that crossed the transect were measured manually. 4) Conversion from pixels to millimeters was made using Eq. 1 given the Instantaneous Field of View (IFOV) for each camera and a manually-estimated distance from the rover. Measurements of Mastcam-100 (M100) and Mastcam-34 (M34) images were made. The number of stones counted for each heterolithic unit ranged from 150 to 319 (Table 1). The M100 analysis gives a finer size distribution than the M34 dataset. Values used here rely on the more highly resolved M100 data. $$D_i = 1000(x \tan \alpha) \tag{1}$$ where D = particle size along dimension i (mm) x = distance from rover (m) $\alpha = IFOV$ for a given camera Supplemental Fig. 2-1 IFOV curves for several cameras onboard Curiosity. Supplemental Fig. 2-2. Example of measurements made along a transect across the Bimbe deposit. Supplemental Fig. 2-3. Size distribution by short and
long axis for the three heterolithic units. | | Bimbe | | Brandberg | | Blackfoot | | Bimbe | Brandberg | Blackfoot | |-------------|--------------|--------|-----------|--------|-----------|--------|--------|-----------|-----------| | | MR-
06853 | | MR_05247 | | MR_04868 | | | | | | | a-axis | c-axis | a-axis | c-axis | a-axis | c-axis | b-axis | b-axis | b-axis | | n | 155 | 155 | 319 | 319 | 150 | 150 | | | | | Mean (mm) | 27.3 | 14.6 | 22.7 | 17.2 | 31.6 | 19.8 | 21.7 | 24.3 | 25.4 | | D50 (mm) | 11.9 | 6.3 | 17.9 | 9.2 | 21.1 | 12.9 | 9.3 | 13.2 | 16.0 | | D84 (mm) | 38.3 | 21.3 | 55.2 | 29.6 | 46.6 | 30.2 | 32.9 | 44.1 | 39.9 | | D16 (mm) | 5.3 | 2.7 | 4.9 | 2.8 | 10.5 | 6.0 | 3.8 | 4.3 | 7.0 | | Min
(mm) | 2.4 | 1.3 | 1.8 | 1.4 | 3.8 | 2.5 | 3.0 | 1.7 | 3.4 | | Max
(mm) | 630.0 | 290.0 | 464.6 | 261.7 | 231.4 | 112.6 | 370.8 | 409.3 | 111.8 | Table 2-1. Results of particle size analysis. The intermediate axis was calculated by estimating the Corey Shape Factor (CSF) to be 0.6 and solving for the intermediate axis in the definition (CSF = $c/(ab)^{1/2}$). Supplemental Fig. 2-4. Size analysis results for the three heterolithic units, Blackfoot (blue), Brandberg (red), and Bimbe (yellow), compared to 174 river bed deposits analyzed in 12 rivers in Alberta, Canada (reported by Shaw and Kellerhals, 1982). Scattered boulders, not counted in the line transects analyzed, occurred in all three deposits. ## 3. Description of Reference Points and Contours in Figure 21, and Supporting Figures. Targets were chosen to represent typical chemistry of the formations (eolian Stimson and lacustrine Murray) and soil in Gale crater. A few targets were chosen to represent each class by picking homogeneous targets without obvious diagenetic textures (nodules, high-silica halos, etc.), within 4 m target distance of the instrument at the time of analysis, and major-element oxide totals close to 100% (except soils), while removing points in bedrock targets that hit Casulfate veins, soil, and relatively rare out-of-focus points. Each plotted reference point is the average composition of the ChemCam observation points. Murray formation: To represent Hartmann's Valley (HV) Murray, 33 points from the following targets were used: "Andara" (sol 1375), "Okoloti" (sol 1375), "Khorixas" (sol 1375), "Koes" (sol 1380), "Onawa" (sol 1380), "Rundu" (sol 1382), "Aegis_post_1383a," and "Epembe" (sol 1385). These targets represent the area from just above the "Oudam" drill location to a location due east from Bimbe between Bimbe and Helgas Dune. HV Murray is stratigraphically just below Bimbe and serves as a comparison of the Murray bedrock that underlies Bimbe. The soil data point is represented by 20 points from three soils observed throughout the mission up to Sol 1108: "Portage" (Sol 89), "Kings_Peak" (Sol 778), and "Utopia" (Sol 1108). Stimson formation compositions are based on ChemCam observation points targeting both normal and concretion-rich Stimson facies at the Emerson plateau (sols 990-1154) and Naukluft plateau (sols 1279-1352) localities. ChemCam observation points of the Stimson formation that targeted obvious alteration features such as calcium-sulfate mineral veins or fracture associated halos were excluded from the dataset, as were those outside the 95–105 % total sum of oxide range. Contours for FeO_T, Al₂O₃, MgO, CaO, Na₂O, K₂O, SiO₂ and total alkalis used 331 points for observations at distances < 4 m. The density contour plots in Fig. 21 show the density distribution of a dataset between x and y composition variables, similar to a 2D histogram. Targets within 4 m of the instrument were used. Due to the small sampling footprint of the ChemCam LIBS laser (350–550 µm for distances of 2–7 m from the rover mast, Maurice et al., 2016), analyses of sedimentary targets with a heterogeneous mineral assemblage are often not representative of whole rock compositions, particularly if the target is coarse-grained (grain diameter >1 mm; Cousin et al., 2017). Density contours generate a better approximation of the bulk composition than the mean as the focus is not skewed by extreme outlying values. Density contours can also highlight subgroups of data with unique compositions aiding in the identification of endmembers within the dataset. This method has proven useful to illustrate the compositional foci and geochemical trends across stratigraphic groups in Gale crater (Bedford et al., 2019), in addition to determining volcanic/magmatic endmember compositions for Gale igneous float and clast (Edwards et al., 2017). Contours for the ChemCam Stimson formation are generated using the MATLAB dscatter algorithm (MathWorks Inc, 2003-2004). Density is calculated by the number of data points within each pixel (bin) of a grid and smoothed according to the methods of Eilers and Goeman (2004). For the Stimson formation dataset we generated the density contours using a bin size of 100×100 and a smoothing factor of 20 using a total of 331 ChemCam observation points. Contour lines are defined as the number of smoothed data points within each bin and are based on their level step which is set in this study to 1×10^{-3} . The average number of smoothed data points per bin represented by the contour can be calculated by multiplying the sample number by the level step and contour number. For example, the fourth contour towards the focus for the Stimson formation will have an average of $331 \times 1\times 10^{-3} \times 4 = 1.3$ smoothed data points per bin. The Stimson formation bedrock has a high density of concretions in certain areas. Overall, the concretions do not show much deviation from bulk rock composition but for FeO_T there are a number of extreme outliers to high iron concentrations, particularly in the Naukluft plateau locality (see the boxplot below). These concretions seem to relate to preferential cementation of the sandstone. If this is true, the sandstone of the Stimson formation is predominately iron-oxide forming from olivine diagenesis when Stimson formation precursor material was buried (e.g., Hausrath et al., 2018). So if the nodular Bimbe is derived from overlying Stimson then it would be possible that it could have Fe-rich concretions based on what has been analyzed and interpreted for the concretions at the Emerson and Naukluft plateaus. If these features don't distort any sedimentary structures (like laminations) then they are more likely to be concretions. Supplemental Fig. 3-1. Boxplot showing distribution of FeO_T in different populations of Stimson formation targets. Circles with crosses indicate the means; asterisk symbols indicate outliers. The boxplot figures below are provided to supplement Fig. 21. Circles with crosses indicate the means; asterisk symbols indicate outliers. L = layered; M = massive. Supplemental Fig. 3-2. Boxplot of SiO₂. See details above. Supplemental Fig. 3-3. Boxplot of TiO₂. See details above. Supplemental Fig. 3-4. Boxplot of Al₂O₃. See details above. Supplemental Fig. 3-5. Boxplot of FeO_T. See details above. Supplemental Fig. 3-6. Boxplot of MgO. See details above. Supplemental Fig. 3-7. Boxplot of CaO. See details above. Supplemental Fig. 3-8. Boxplot of Na₂O. See details above. Supplemental Fig. 3-9. Boxplot of K₂O. See details above. ### 4. Description and Results of Equivalence Tests Two-sample equivalence tests were conducted using Minitab v17 for each major element oxide (SiO₂, TiO₂, Al₂O₃, FeO_T, MgO, CaO, Na₂O, and K₂O) that defines the datasets. More details are given in Appendix D of Bedford et al. (2019). The precision of the measurements were based on the standard deviations of the Sheepbed Mudstones, a large ensemble of measurements on a fine-grained homogeneous bedrock at Yellowknife Bay (Mangold et al. 2015). Equivalence tests were carried out between Bimbe Massive and Bradbury Massive sandstone targets, Bimbe Layered and Bradbury Layered targets, and Bimbe conglomerates and Stimson sandstones. The results are given below. Although Fig. 21 and the boxplots in the previous section indicate significant similarities between the two layered groups and between Bimbe conglomerates and Stimson, the equivalence test does not give a unanimously positive response. In the case of the layered groups, care must be exercised due to the small sample size for Bimbe. Table 4-1, Bimbe conglomerates and Stimson (reference). | | Diff of | SE of | EI | Differen | ce≤-EI | Difference | Equiv | | | |-------------------|---------|-------|------------|----------|---------|------------|---------|-------|--| | | means | diff | | T-value | P-value | T-Value | P-value | (Y/N) | | | SiO_2 | -2.79 | 0.69 | ±3.30 | 0.74 | 0.23 | - 8.85 | 0.00 | N | | | TiO_2 | -0.01 | 0.02 | ±0.20 | 12.15 | 0.00 | -10.59 | 0.00 | Y | | | Al_2O_3 | -2.21 | 0.39 | ± 0.90 | -3.37 | 1.00 | -8.00 | 0.00 | N | | | FeO_T | -0.11 | 0.43 | ±1.20 | 2.55 | 0.01 | -3.07 | 0.00 | Y | | | MgO | -0.28 | 0.32 | ± 1.40 | 3.48 | 0.00 | -5.22 | 0.00 | Y | | | CaO | -0.09 | 0.32 | ± 1.00 | 3.44 | 0.00 | -2.89 | 0.00 | Y | | | Na ₂ O | -0.12 | 0.13 | ± 0.30 | 1.40 | 0.08 | -3.16 | 0.00 | N | | | K_2O | -0.09 | 0.06 | ±0.20 | 1.86 | 0.03 | -4.61 | 0.00 | Y | | Table 4-2, Bimbe massive and Bradbury massive sandstone targets (reference). | | Diff of | SE of | EI | Differen | ce≤-EI | Difference | Equiv | | |-------------------|---------|-------|------------|----------|---------|------------|---------|-------| | | means | diff | | T-value | P-value | T-Value | P-value | (Y/N) | | SiO_2 | 5.54 | 1.23 | ± 3.30 | 7.19 | 0.00 | 1.82 | 0.96 | N | | TiO_2 | -0.13 | 0.15 | ± 0.20 | 0.47 | 0.32 | -2.25 | 0.02 | N | | Al_2O_3 | -8.76 | 1.02 | ± 0.90 | -7.73 | 1.00 | -9.50 | 0.00 | N | | FeO_T | -0.67 | 0.94 | ± 1.20 | 2.00 | 0.03 | -0.57 | 0.29 | N | | MgO | -0.81 | 0.34 | ± 1.40 | 1.75 | 0.04 | -6.49 | 0.00 | Y | | CaO | -2.83 | 0.69 | ± 1.00 | -2.63 | 1.00 | -5.52 | 0.00 |
N | | Na ₂ O | -0.24 | 0.27 | ± 0.30 | 0.23 | 0.41 | -1.97 | 0.03 | N | | K ₂ O | 0.06 | 0.11 | ±0.20 | 2.27 | 0.01 | -1.25 | 0.11 | N | Table 4-3, Bimbe layered and Bradbury layered targets (reference). | | Diff of | SE of | EI | Differen | ce≤-EI | Difference | Equiv | | | |-------------------|---------|-------|------------|----------|---------|------------|---------|-------|--| | | means | diff | | T-value | P-value | T-Value | P-value | (Y/N) | | | SiO_2 | -0.98 | 0.64 | ±3.30 | 3.62 | 0.00 | -6.67 | 0.00 | Y | | | TiO_2 | -0.33 | 0.04 | ±0.20 | -3.21 | 1.00 | -12.87 | 0.00 | N | | | Al_2O_3 | -1.35 | 0.18 | ±0.90 | -2.51 | 0.99 | -12.63 | 0.00 | N | | | FeO_T | -0.92 | 0.17 | ±1.20 | 1.61 | 0.06 | -12.36 | 0.00 | N | | | MgO | -0.64 | 0.35 | ± 1.40 | 5.87 | 0.00 | -2.17 | 0.02 | Y | | | CaO | 0.61 | 0.32 | ± 1.00 | 5.06 | 0.00 | -1.23 | 0.12 | N | | | Na ₂ O | -0.11 | 0.07 | ± 0.30 | 2.68 | 0.01 | -5.94 | 0.00 | Y | | | K_2O | -0.26 | 0.10 | ±0.20 | -0.58 | 0.72 | -4.46 | 0.00 | N | | #### 5. Some Unique Compositional Features of the Bimbe Float Rocks ChemCam observation point #3 of the conglomerate Balombo revealed one of the stronger fluorine peaks observed by ChemCam, calibrating to ~1.5 wt. % F. This corresponded to a relatively strong increase in calcium, to ~18 wt. % CaO, suggesting the presence of a small amount of CaF₂ in this observation. Among the 30 spectra obtained on this observation point (one per laser pulse), the compositions remain steady, indicating that the Ca-F enrichment region is deeper than the laser pit. The pit itself appears light toned. Fluorine has been observed in other locations in Gale, including in soils and sediments as well as in igneous float rocks. It was often observed associated with Al and P, suggesting fluorapatite, but other times associated only with Ca, suggesting fluorite (Forni et al., 2015; Cousin et al., 2017; Nachon et al., 2016). ### 6. The Heights of the Murray Buttes Measurements were made to estimate the heights of the Murray Buttes using the MSL WebGIS. The topography is from Parker and Calef (2016), derived from HiRISE stereo pair DEMs registered to MGS MOLA elevations. An example plot below shows how the measurements were made, along with a table of the results. The butte designations are those adopted by the MSL team. The rover path is also shown, from north (top), past Bimbe, and to the south. A key issue is that all of the Murray Buttes occur on a slope; thus, the terrain north of each butte is lower than the terrain south of each butte. This means that the maximum height of a given butte is really from the north side to the highest point on the butte top. Instead of doing just a "maximum" height, a minimum and maximum were estimated. Overall, with one exception, these range from about 7 m (minimum) to 17 m (maximum) with an average of 8 m (min) to 12 m (max). | Butte
name | highest
elevation on
butte (m) | low
elevation on
one side (m) | low el. on
other side
(m) | max height
(m) | min height
(m) | | | |---------------|--------------------------------------|-------------------------------------|---------------------------------|-------------------|-------------------|--|--| | M1a | -4404 | -4419 | -4416 | 15 | 12 | | | | M1b | -4402 | -4410 | -4409 | 8 | 7 | | | | M2 | -4400 | -4408 | -4409 | 8 | 9 | | | | M3 | -4400 | -4412 | -4408 | 12 | 8 | | | | M4 | -4392 | -4407 | -4402 | 15 | 10 | | | | M5 | -4395 | -4407 | -4402 | 12 | 7 | | | | М6 | -4389 | -4398 | -4398 | 9 | 9 | | | | M7a | -4379.4 | -4396.7 | -4383.8 | 17.3 | 4.4 | | | | M7b | -4384.6 | -4398.5 | -4393.4 | 13.9 | 8.8 | | | | M8 | -4369.7 | -4385.4 | -4374.7 | 15.7 | 5.0 | | | | M9a | -4376.6 | -4388.0 | -4386.0 | 11.4 | 9.4 | | | | M9b | -4374.4 | -4386.2 | -4381.2 | 11.8 | 6.8 | | | | М9с | -4373.4 | -4385.5 | -4381.8 | 12.1 | 8.4 | | | | M9d | -4370.6 | -4380.7 | -4377.3 | 10.1 | 6.7 | | | | M9e | -4369.7 | -4378.2 | -4377.2 | 8.5 | 7.5 | | | | M10 | -4389.4 | -4406.2 | -4395.9 | 16.8 | 6.5 | | | | M11 | -4380.0 | -4394.0 | -4388.3 | 14.0 | 8.3 | | | | M12 | -4370.5 | -4383.5 | -4379.5 | 13.0 | 9.0 | | | | | | | Averages | 12.4 | 7.9 | | | ### 7. Additional References for Supplemental Section Bedford C.C., Bridges J.C., Schwenzer S.P., Wiens R.C., Rampe E., Frydenvang J., and Gasda P.J., 2019. Alteration trends and geochemical source region characteristics preserved in the fluviolacustrine sedimentary record of Gale crater, Mars. Geochim. Cosmochim. Acta 246, 234-266, doi:10.1016/j.gca.2018.11.031. Edwards P.H., et al., 2017. Basalt-trachybasalt samples from Gale crater, Mars. Met. Planet. Sci. 52, 2031-2410, doi:10.1111/maps.12953. Eilers P.H.C., and Goeman J.J., 2004. Enhancing scatterplots with smoothed densities: Bioinformatics 20(5), 623-628, doi:10.1016/j.sab.2013.05.003. Forni O., et al., 2013. Independent component analysis classification of laser induced breakdown spectroscopy spectra. Spectrochim. Acta B 86, 31–41. Shaw J. and Kellerhals R., 1982. The composition of recent alluvial gravels in Alberta river beds, Alberta Research Council Bulletin 41, 151 pp., https://ags.aer.ca/publications/BUL_041.html. ### 8. Compositions of Individual ChemCam Observation Points, Bimbe Also included are accuracies and standard deviations of the individual spectra (25) within each observation point. Observation points are arranged consecutively for each target. | Target | SiO2 | acc | stdev | | acc | stdev | Al2O3 | acc | stdev | FeOT | acc | stdev | MgO | acc | stdev | CaO a | cc s | stdev | Na2O | acc | stdev | K20 | | | Total | |--------------------------------------|--------------|------------|------------|--------------|------|-------|--------------|------------|------------|--------------|------------|------------|-------------|------------|-------|-------------|------------|------------|--------------|------|-------|--------------|--------------|------|------------------| | Auchab | 45.9 | 5 | 0.8 | 1.04 | 0.5 | 0.03 | 15.2 | 3.6 | 0.5 | 24.1 | 4.5 | 1.3 | 3.9 | 1.8 | 0.1 | 5.3 | 1.8 | 0.3 | 4.24 | 0.74 | 0.1 | 2.81 | 1.17 | 0.08 | 102.47 | | Auchab
Auchab | 43.8
41.6 | 5.1 | 0.5 | 1.02
0.91 | 0.5 | 0.04 | 11.7
9.2 | 3.6 | 0.6 | 28.2 | 4.7 | 0.7 | 8.8
7.7 | 2.4 | 0.4 | | 1.4 | 0.2 | 3.17
2.81 | 0.63 | 0.17 | 1.54 | 1.09 | 0.08 | 102.09
98.17 | | Auchab | 41.6 | 5.3 | 0.7 | 0.87 | 0.47 | 0.04 | 9.8 | 3.5 | 0.5 | 28 | 4.7 | 1.3 | 7.5 | 2.2 | 0.3 | 5.6 | 1.9 | 0.5 | 2.98 | 0.62 | 0.14 | 1.59 | 1.11 | 0.13 | 98.08 | | Auchab
aegis post 1400a | 44.7
45.3 | 5 | 0.6 | 0.89 | 0.47 | 0.04 | 11.3 | 3.5 | 0.4 | 22.1
19.2 | 4.3 | 0.8 | 8.1
6.9 | 2.3 | 0.4 | | 1.9 | 0.5 | 2.97
3.65 | 0.62 | 0.11 | 0.67 | 0.72 | 0.08 | 96.92
93.73 | | aegis_post_1400a | 44.8 | 5 | 0.3 | 0.84 | 0.46 | 0.02 | 8.3 | 3.4 | 0.2 | 20.8 | 4.2 | 0.2 | 10.3 | 2.6 | 0.8 | 4.1 | 1.5 | 0.9 | 2.64 | 0.62 | 0.09 | 0.65 | 0.71 | 0.1 | 92.33 | | aegis_post_1400a
aegis_post_1400a | 42
48.1 | 5.2
4.9 | 0.5
1.2 | 1.02
0.82 | 0.5 | 0.04 | 10.1
15.5 | 3.5 | 0.3
2.5 | 19.9
17.8 | 4.1
3.8 | 0.2 | 5.5
5.5 | 1.9 | 0.1 | 5.1 | 1.7 | 0.4 | 3.15 | 0.63 | 0.2 | 0.63 | 0.7 | 0.06 | 87.46
97.7 | | aegis_post_1400a | 45 | 5 | 0.5 | 0.81 | 0.45 | 0.02 | 10 | 3.5 | 0.6 | 18.8 | 3.9 | 0.4 | 8.8 | 2.4 | 0.3 | | 2.2 | 0.3 | 3.05 | 0.63 | 0.15 | 0.38 | 0.6 | 0.03 | 93.67 | | aegis_post_1400a | 46.7 | 4.9 | 0.3 | 0.87 | 0.47 | 0.03 | 14.8 | 3.6 | 1.4 | 18.8 | 3.9 | 0.3 | 6 | 2 | 0.3 | 5.9 | 2 | 0.2 | 3.35 | 0.64 | 0.15 | 0.5 | 0.65 | 0.02 | 96.98 | | aegis_post_1400a
aegis_post_1400a | 44.7
45.5 | 5 | 0.5 | 0.7 | 0.42 | 0.01 | 7.5
13.6 | 3.4 | 0.3
1.5 | 18
19.7 | 3.8 | 0.5 | 12.1
6.5 | 2.9 | 0.5 | 6.8
5.3 | 1.8 | 0.4 | 2.12
3.3 | 0.63 | 0.09 | 0.48 | 0.64 | 0.03 | 92.39
95.27 | | aegis_post_1400a | 45.4 | 5 | 0.3 | 0.9 | 0.47 | 0.02 | 11.9 | 3.6 | 0.2 | 18.6 | 3.9 | 0.3 | 8 | 2.3 | 0.6 | 5.3 | 1.8 | 0.4 | 3.5 | 0.65 | 0.16 | 0.7 | 0.73 | 0.03 | 94.33 | | Aussenkehr
Aussenkehr | 48.5
51.8 | 4.9 | 1.2 | 1.46
0.63 | 0.61 | 0.09 | 5.3
8.2 | 3.1 | 0.5 | 20.3
19 | 4.1
3.9 | 1.1 | 2.1 | 1.6 | 0.1 | | 1.6 | 0.7 | 4.38
3.47 | 0.76 | 0.21 | 0.93 | 0.84 | 0.19 | 87.56
88.46 | | Aussenkehr | 54.6 | 5.1 | 1.9 | 1.11 | 0.52 | 0.12 | 9.4 | 3.5 | 0.7 | 15.1 | 3.4 | 0.9 | 1.4 | 1.5 | 0.1 | 3.4 | 1.3 | 0.5 | 5.45 | 0.93 | 0.42 | 0.96 | 0.85 | 0.17 | 91.42 | | Aussenkehr
Aussenkehr | 42.1
56.1 | 5.2 | 0.6
1.7 | 0.69
1.01 | 0.42 | 0.02 | 2.7
11.6 | 2.8
3.5 | 0.3 | 19.4
18.9 | 3.9 | 0.2 | 3.5
1.3 | 1.7 | 0.1 | | 1.3 | 0.6 | 2.05
4.61 | 0.63 | 0.1 | 0.2
1.71 | 0.54 | 0.06 | 83.65
98.81 | | Aussenkehr | 48.6 | 4.9 | 0.7 | 1.8 | 0.7 | 0.39 | 8.2 | 3.4 | 0.8 | 15.8 | 3.5 | 0.7 | 2.1 | 1.6 | 0.2 | | 2.2 | 1 | 4.27 | 0.74 | 0.15 | 1.21 | 0.97 | 0.10 | 88.91 | | Aussenkehr
Aussenkehr | 55.8
56.2 | 5.2
5.2 | 1.4 | 0.63 | 0.4 | 0.03 | 9.6
11.7 | 3.5 | 0.8 | 15.3
18.5 | 3.4 | 1.7 | 1.4 | 1.5 | 0.2 | | 1.1 | 0.6 | 5.47
4.54 | 0.93 | 0.43 | 1.61 | 1.11 | 0.26 | 97.54
97.13 | | Aussenkehr | 52.2 | 5.2 | 0.5 | 1.91 | 0.73 | 0.22 | 6.1 | 3.2 | 0.3 | 16.6 | 3.6 | 0.9 | 1.7 | 1.6 | 0.1 | 1.6 | 1 | 0.2 | 4.83 | 0.75 | 0.12 | 1.12 | 0.93 | 0.1 | 86.1 | | Aussenkehr | 49.4 | 4.9 | 1.1 | 0.79 | 0.45 | 0.08 | 8.8 | 3.5 | 0.9 | 16.3
23 | 3.6
4.4 | 1.6 | 1.7 | 1.6 | 0.4 | | 1.9 | 0.7 | 4.16 | 0.72 | 0.23 | 0.93 | 0.84 | 0.24 | 87.84
85.47 | | Canico
Canico | 40
36.4 | 5.5 | 0.8 | 1.05 | 0.52 | 0.04 | 8.1
8.7 | 3.4 | 0.4 | 28.5 | 4.4 | 0.8 | 5 | 1.9 | 0.2 | | 1.7 | 0.6 | 2.54 | 0.62 | 0.08 | 0.66 | 0.71 | 0.06 | 86.38 | | Canico | 44.7 | 5 | 0.5 | 0.78 | 0.44 | 0.02 | 8.1 | 3.4 | 0.2 | 19.7 | 4 | 0.4 | 7.3 | 2.2 | 0.2 | 5 | 1.7 | 0.5 | 2.75 | 0.62 | 0.11 | 0.73 | 0.75 | 0.05 | 89 | | Canico
Canico | 38.5
52 | 5.7 | 0.4 | 0.81 | 0.49 | 0.04 | 17.3 | 3.4 | 0.2 | 24.6
13.5 | 4.5
3.2 | 0.5 | 5.1
2.1 | 1.9 | 0.1 | | 2.2 | 0.9 | 2.54
5.77 |
0.62 | 0.1 | 0.76 | 0.76 | 0.05 | 87.45
98.66 | | Chinchimane | 40.4 | 5.4 | 0.5 | 1.32 | 0.57 | 0.06 | 6 | 3.2 | 0.6 | 20.3 | 4.1 | 0.2 | 12.4 | 3 | 0.7 | | 1.5 | 0.4 | 2.01 | 0.63 | 0.1 | 1.15 | 0.94 | 0.11 | 87.95 | | Chinchimane
Chinchimane | 41.8 | 5.2 | 0.8 | 1.18 | 0.53 | 0.05 | 6.4 | 3.2 | 0.5 | 19.7
20.6 | 4 | 0.2 | 11.3 | 2.8 | 0.4 | | 1.7 | 0.4 | 2.14
1.78 | 0.62 | 0.09 | 1.56
0.98 | 1.1
0.86 | 0.11 | 88.99
88.27 | | Chinchimane | 38.8 | 5.4 | 0.6 | 1.1 | 0.54 | 0.05 | 5.9
5.9 | 3.2 | 0.3 | 20.5 | 4.1 | 0.6 | 12.6 | 2.9 | 1.2 | | 1.6 | 0.6 | 1.77 | 0.64 | 0.09 | 0.98 | 0.86 | 0.11 | 86.3 | | Chinchimane | 40.7 | 5.4 | 0.4 | 1.05 | 0.5 | 0.06 | 6.2 | 3.2 | 0.4 | 19.9 | 4.1 | 0.3 | 10.4 | 2.7 | 0.9 | | 2.2 | 0.6 | 2.03 | 0.63 | 0.12 | 1.01 | 0.88 | 0.13 | 88.02 | | aegis_post_1406a
aegis_post_1406a | 56.4
58.4 | 5.2
5.2 | 0.7
1.5 | 0.64 | 0.49 | 0.01 | 4.5
4.6 | 3 | 0.3 | 18.4
20.9 | 3.9
4.2 | 1.7 | 2.5 | 1.7 | 0.1 | | 1.3 | 0.2 | 7.27 | 0.93 | 0.18 | 0.7 | 0.73 | 0.06 | 92.42
98.81 | | aegis_post_1406a | 71.5 | 5.5 | 2.2 | 0.8 | 0.45 | 0.07 | 8.6 | 3.4 | 1.3 | 14.1 | 3.2 | 2.3 | 1.8 | 1.6 | 0.2 | 2.2 | 1.1 | 0.4 | 4.43 | 0.77 | 0.43 | 1.26 | 0.99 | 0.27 | 104.64 | | aegis_post_1406a
aegis_post_1406a | 51.1
63.4 | 5.3 | 0.4 | 1.56
0.88 | 0.63 | 0.12 | 6.3
13.4 | 3.2 | 0.6
1.8 | 17.8
13.8 | 3.8 | 0.9 | 3.3
1.2 | 1.7 | 0.2 | 1.8 | 1 | 0.6 | 4.93
5.44 | 0.86 | 0.3 | 0.83
2.07 | 0.79 | 0.09 | 91.85
102.05 | | aegis_post_1406a | 57.1 | 5.2 | 2.8 | 0.83 | 0.46 | 0.04 | 8.7 | 3.5 | 0.8 | 21.8 | 4.3 | 0.8 | 2.5 | 1.6 | 0.7 | 0.7 | 0.9 | 0.5 | 4.14 | 0.72 | 0.52 | 1.23 | 0.98 | 0.18 | 97.02 | | aegis_post_1406a
aegis_post_1406a | 47.7
49.7 | 4.9
4.9 | 0.5 | 1.22 | 0.54 | 0.08 | 8.6
6.7 | 3.4 | 0.2 | 20.9
18.5 | 4.2
3.9 | 0.7 | 3.5 | 1.7 | 0.3 | 1.8 | 1.1 | 0.3 | 3.29 | 0.64 | 0.27 | 0.87 | 0.81 | 0.1 | 87.8
86.72 | | aegis_post_1406a | 56.9 | 5.2 | 0.8 | 0.93 | 0.48 | 0.03 | 16.1 | 3.7 | 0.9 | 14.5 | 3.3 | 1 | 2.1 | 1.6 | 0.3 | 5.8 | 1.9 | 1 | 4.45 | 0.77 | 0.33 | 1.3 | 1 | 0.15 | 102.04 | | Lucala
Lucala | 59.6
47.5 | 5.3
4.9 | 2.8 | 0.62
1.87 | 0.4 | 0.02 | 11.5
4.4 | 3.5 | 1.4 | 13.7
18.3 | 3.2 | 2.8 | 2.2 | 1.6 | 0.6 | 1.9
7.9 | 1
2.5 | 0.6 | 5.19
4.28 | 0.9 | 0.59 | 1.69
0.59 | 1.13 | 0.32 | 96.54
87.92 | | Lucala | 51.8 | 4.9 | 0.9 | 2.13 | 0.72 | 0.15 | 2.9 | 2.8 | 0.7 | 15.6 | 3.8 | 0.5 | 2.6 | 1.6 | 0.2 | | 1.4 | 0.5 | 6.13 | 0.74 | 0.34 | 0.59 | 0.68 | 0.07 | 87.92
85.34 | | Lucala | 58 | 5.2 | 0.8 | 1.73 | 0.68 | 0.12 | 12.8 | 3.6 | 0.7 | 15.7 | 3.5 | 0.7 | 1.3 | 1.5 | 0.1 | | 1.2 | 0.4 | 5.31 | 0.91 | 0.2 | 1.99 | 1.19 | 0.2 | 99.9 | | Lucala
Cabamba | 60.1
40.9 | 5.3 | 0.9 | 1.04 | 0.42 | 0.27 | 12.5 | 3.6 | 1.5 | 15.8
20.6 | 3.5
4.1 | 3.5
0.3 | 6.4 | 1.6 | 0.9 | | 0.9 | 0.2 | 3.78
2.54 | 0.68 | 0.15 | 0.29 | 0.57 | 0.34 | 97.3
88.3 | | Cabamba | 46.8 | 4.9 | 0.9 | 1.01 | 0.5 | 0.02 | 13.6 | 3.6 | 1.2 | 19 | 3.9 | 0.6 | 4.3 | 1.8 | 0.1 | 5.7 | 1.9 | 0.3 | 3.62 | 0.66 | 0.15 | 0.82 | 0.79 | 0.1 | 94.79 | | Cabamba
Cabamba | 46.2
49.9 | 5 | 0.4 | 1.16 | 0.52 | 0.03 | 11
11.8 | 3.5 | 0.3 | 20.4
19.3 | 4.1 | 0.3 | 4.3 | 1.8 | 0.1 | | 1.9 | 0.4 | 3.72 | 0.67 | 0.12 | 0.91 | 0.83 | 0.11 | 93.22
95.96 | | Cabamba | 49.1 | 4.9 | 0.4 | 1.03 | 0.55 | 0.03 | 17.4 | 3.7 | 0.4 | 16.2 | 3.5 | 0.8 | 2.7 | 1.6 | 0.3 | | 2.3 | 0.3 | 3.64 | 0.66 | 0.11 | 0.74 | 0.57 | 0.04 | 97.56 | | Cabamba | 49.4 | 4.9 | 0.3 | 1.11 | 0.52 | 0.05 | 12.2 | 3.6 | 0.6 | 20.2
17.7 | 4.1
3.8 | 0.2 | 4.7
3.9 | 1.8 | 0.2 | | 1.6 | 0.2 | 4.19 | 0.73 | 0.12 | 0.96 | 0.85 | 0.04 | 97.22
97.68 | | Cabamba
Cabamba | 49.5
50.4 | 4.9 | 1.2 | 1.02 | 0.5 | 0.04 | 15.3 | 3.6 | 0.4 | 20.3 | 4.1 | 0.4 | 5.3 | 1.7 | 0.1 | | 1.4 | 0.2 | 3.26 | 0.72 | 0.21 | 0.79 | 0.77 | 0.19 | 95.58 | | Cabamba | 40.3 | 5.4 | 0.5 | 0.98 | 0.49 | 0.02 | 9.4 | 3.5 | 0.4 | 21.2 | 4.2 | 0.3 | 6.4 | 2.1 | 0.6 | | 2.3 | 1.1 | 2.58 | 0.62 | 0.11 | 0.3 | 0.57 | 0.02 | 88.49 | | Cabamba
Bungo | 49 | 4.9
5.1 | 0.4 | 0.91 | 0.47 | 0.02 | 10.2 | 3.5 | 0.7 | 17.4
20.2 | 3.7
4.1 | 0.6 | 9 | 2.1 | 0.2 | | 1.7 | 0.2 | 3.59
2.38 | 0.66 | 0.08 | 0.54 | 0.66 | 0.05 | 93.67
91.39 | | Bungo | 46 | 5 | 0.9 | 0.83 | 0.46 | 0.02 | 10.1 | 3.5 | 0.8 | 18.1 | 3.8 | 0.6 | 7.1 | 2.1 | 0.6 | | 2.1 | 1.2 | 2.68 | 0.62 | 0.18 | 0.27 | 0.56 | 0.11 | 91.62 | | Bungo
Bungo | 45.7
43.9 | 5.1 | 0.7 | 0.89 | 0.47 | 0.01 | 7.9
8.5 | 3.4 | 0.8 | 20.1
19.2 | 4.1 | 0.5 | 8.7
6.2 | 2.4 | 0.5 | | 1.8 | 0.5 | 2.54 | 0.62 | 0.09 | 0.22 | 0.55 | 0.03 | 91.49
89.01 | | Bungo | 44.6 | 5 | 0.3 | 0.89 | 0.47 | 0.03 | 8.2 | 3.4 | 0.2 | 19.1 | 4 | 0.3 | 7 | 2.1 | 0.2 | 6.9 | 2.2 | 0.3 | 2.82 | 0.62 | 0.1 | 0.34 | 0.59 | 0.02 | 89.94 | | Bungo
Bungo | 48.3
43.6 | 4.9
5.1 | 0.4 | 0.88 | 0.47 | 0.02 | 16.5
11.4 | 3.7 | 0.7 | 17.7
19.1 | 3.8 | 0.4 | 4.8
6.3 | 1.9 | 0.1 | | 2.1 | 0.5 | 3.65
2.8 | 0.67 | 0.1 | 0.37 | 0.6 | 0.02 | 98.68
92.46 | | Bungo | 42.7 | 5.2 | 0.7 | 0.92 | 0.48 | 0.03 | 8.7 | 3.5 | 0.6 | 19.8 | 4 | 0.5 | 7.8 | 2.3 | 0.6 | 7.8 | 2.4 | 1.1 | 2.36 | 0.62 | 0.2 | 0.23 | 0.55 | 0.07 | 90.21 | | Bungo
Bungo | 43.8
40.5 | 5.1
5.4 | 0.4
1.1 | 0.92
1.16 | 0.48 | 0.02 | 8.9
7.6 | 3.5 | 0.9 | 20.8 | 4.2 | 0.5 | 8.5
6.6 | 2.4 | 0.4 | | 1.9
2.4 | 1.4 | 2.48 | 0.62 | 0.11 | 0.17 | 0.53 | 0.02 | 91.14
86.71 | | Sonneblom_ccam | 53.6 | 5.4 | 1.1 | 0.93 | 0.53 | 0.06 | 6.4 | 3.4 | 0.6 | 17.3 | 3.7 | 0.8 | 3.2 | 1.7 | 0.1 | | 2.5 | 0.5 | 4.55 | 0.62 | 0.38 | 0.15 | 0.75 | 0.05 | 94.61 | | Sonneblom_ccam | 48.8 | 4.9 | 0.9 | 1.4 | 0.59 | 0.16 | 5.3 | 3.1 | 1.1 | 19.9 | 4.1 | 0.3 | 3.5 | 1.7 | 0.2 | | 2.4 | 0.5 | 3.64 | 0.66 | 0.2 | 0.99 | 0.87 | 0.3 | 91.08 | | Sonneblom_ccam
Sonneblom_ccam | 53.9
49.1 | 5.1
4.9 | 0.7 | 0.77 | 0.44 | 0.01 | 9.3
3.9 | 3.5
2.9 | 1.6 | 16.6
18.6 | 3.6 | 0.3 | 2.2
3.3 | 1.6 | 0.3 | | 2.2 | 0.4 | 4.18
5.34 | 0.73 | 0.26 | 1.36
0.54 | 1.03
0.66 | 0.41 | 95.11
90.51 | | Sonneblom_ccam | 61 | 5.3 | 2.4 | 0.59 | 0.39 | 0.02 | 7.1 | 3.3 | 1.2 | 15.7 | 3.5 | 1.7 | 2.2 | 1.6 | 0.3 | | 1.4 | 0.6 | 5.1 | 0.89 | 0.46 | 0.89 | 0.82 | 0.15 | 96.56 | | Sonneblom_ccam
Sonneblom_ccam | 46.3
50.6 | 4.9 | 0.9 | 0.84
1.2 | 0.46 | 0.06 | 5.8
3.9 | 3.2
2.9 | 0.3 | 20
19.9 | 4.1 | 0.3 | 5.9
3.3 | 1.7 | 0.7 | | 2.3 | 0.2 | 4.39
5.16 | 0.76 | 0.46 | 0.39 | 0.61 | 0.05 | 84.56
91.78 | | Sonneblom_ccam | 67.7 | 5.4 | 0.9 | 0.61 | 0.39 | 0.01 | 10.9 | 3.5 | 0.8 | 8.3 | 2.4 | 1.4 | 1.5 | 1.5 | 0.1 | 2 | 1 | 0.3 | 4.5 | 0.78 | 0.21 | 1.37 | 1.03 | 0.09 | 96.84 | | Sonneblom_ccam
Balombo | 58.5
41.8 | 5.2 | 1.1 | 0.96 | 0.49 | 0.07 | 10.4
9.1 | 3.5 | 0.8
1.2 | 19.6
21.1 | 4.2 | 0.3 | 1.9
9.3 | 1.6
2.5 | 0.6 | 1.5
3.9 | 1.4 | 0.3 | 4.91
2.52 | 0.85 | 0.28 | 0.8 | 0.78 | 0.13 | 98.61
89.29 | | Balombo | 44.3 | 5 | 1 | 1.17 | 0.53 | 0.07 | 11.6 | 3.6 | 2 | 19.7 | 4 | 0.6 | 6.4 | 2.1 | 0.6 | 6.5 | 2.1 | 0.4 | 3.02 | 0.63 | 0.22 | 0.58 | 0.68 | 0.09 | 93.28 | | Balombo
Balombo | 28.5
42 | 5.2 | 0.8 | 0.84 | 0.46 | 0.05 | 6.2
10 | 3.2 | 0.4 | 16.2
20.1 | 3.5
4.1 | 0.5 | 4.5
7.4 | 1.8 | 0.3 | | 3.8
2.5 | 0.7 | 2.65 | 0.62 | 0.05 | 0.25 | 0.56 | 0.03 | 76.39
91.54 | | Balombo | 43.9 | 5.1 | 1 | 1.02 | 0.48 | 0.05 | 10 | 3.5 | 1.4 | 20.1 | 4.1 | 0.3 | 9.2 | 2.5 | 0.9 | | 1.5 | 0.4 | 2.83 | 0.62 | 0.13 | 0.8 | 0.71 | 0.03 | 92.1 | | Balombo | 44.1 | 5 | 0.6 | 0.86 | 0.46 | 0.06 | 11 | 3.5 | 1.2 | 17 | 3.7 | 0.4 | 6.8 | 2.1 | 0.7 | | 2.8 | 0.5 | 3.05 | 0.63 | 0.23 | 0.76 | 0.76 | 0.11 | 93.37 | | Balombo
Balombo | 55.4
44.4 | 5.1 | 1.5
0.4 | 0.7 | 0.42 | 0.02 | 12.3
9.9 | 3.6 | 1.5
0.7 | 15.9
19.9 | 3.5
4.1 | 0.9 | 8.3 | 1.9
2.3 | 1.2 | 4.1 | 1.5 | 0.8 | 3.68
2.86 | 0.67 | 0.38 | 1.31
0.81 | 1.01
0.78 | 0.27 | 98.28
93.07 | | Balombo | 44.4 | 5 | 0.7 | 0.86 | 0.46 | 0.04 | 7.1 | 3.3 | 0.5 | 18.5 | 3.9 | 0.3 | 11.1 | 2.8 | 0.6 | | 2.2 | 1.5 | 2.27 | 0.62 | 0.1 | 0.78 | 0.77 | 0.07 | 92.07 | | Balombo
Seeheim | 50.1
60.5 | 5.3 | 0.5 | 0.86 | 0.46 | 0.02 | 15.6
16.5 | 3.6 | 0.3 | 13.3
5.5 | 3.1
2.1 | 0.3 | 3.1
2.7 | 1.7 | 0.2 | | 1.3 | 0.3 | 5.9
6.44 | 0.97 | 0.14 | 0.43
2.37 | 1.2 | 0.03 | 96.13
98.11 | | Seeheim | 62.3 | 5.3 | 0.6 | 0.82 | 0.45 | 0.02 | 15.3 | 3.6 | 0.5 | 6 | 2.1 | 0.5 | 1.9 | 1.6 | 0.1 | 3.3 | 1.3 | 0.3 | 5.81 | 0.96 | 0.2 | 2.03 | 1.19 | 0.11 | 97.47 | | Seeheim
Seeheim | 47.1
45.9 | 4.9 | 0.5 | 0.91 | 0.47 | 0.02 | 13.9
9.7 | 3.6 | 0.8 | 17.1
19.5 | 3.7 | 0.5 | 5.2
7.3 | 1.9 | 0.2 | | 2.3 | 0.6 | 3.93 | 0.69 | 0.13 | 0.48 | 0.64 | 0.09 | 95.78
93.92 | | Seeheim | 40.2 | 5.4 | 0.8 | 1 | 0.49 | 0.04 | 10.5 | 3.5 | 0.9 | 20.2 | 4.1 | 0.3 | 5.2 | 1.9 | 0.2 | 9.4 | 2.8 | 0.4 | 2.6 | 0.62 | 0.27 | 0.15 | 0.53 | 0.04 | 89.24 | | Wilhelmstal
Wilhelmstal | 46.7
43.7 | 4.9
5.1 | 0.4 | 0.93 | 0.48 | 0.03 | 10.9
10 | 3.5 | 0.8 | 19.8 | 4.1 | 0.4 | 6.7
7.2 | 2.1 | 0.3 | | 1.7 | 0.5 | 3.62 | 0.66 | 0.11 | 0.4 | 0.61 | 0.02 | 93.93
91.38 | | Wilhelmstal | 48.1 | 4.9 | 0.7 | 0.9 | 0.47 | 0.04 | 11.1 | 3.5 | 0.8 | 17.7 | 3.8 | 0.4 | 6.8 | 2.1 | 0.2 | 5.9 | 1.8 | 0.1 | 4.26 | 0.74 | 0.17 | 0.67 | 0.72 | 0.01 | 95.44 | | Wilhelmstal | 45.3 | 5 | 1.5 | 0.88 | 0.47 | 0.06 | 10 | 3.5 | 1.1 | 19 | 3.9 | 0.9 | 8.8 | 2.4 | 0.4 | 5.5 | 1.8 | 0.6 | 2.92 | 0.62 | 0.12 | 0.31 | 0.58 | 0.02 | 92.62 | | Wilhelmstal
Wilhelmstal | 47.1
46.2 | 4.9 | 0.6 | 0.88 | 0.47 | 0.03 | 11.6
12.7 | 3.6 | 0.9 | 18.7 | 3.9 | 0.5 | 7.2
6.6 | 2.2 | 0.3 | 5.7 | 1.9 | 0.4 | 3.14 | 0.63 | 0.17 | 0.29 | 0.57 | 0.01 | 95
94.76 | | Wilhelmstal | 44 | 5.1 | 0.4 | 1.02 | 0.5 | 0.03 | 9.5 | 3.5 | 0.4 | 19.9 | 4.1 | 0.3 | 7.5 | 2.2 | 0.2 | 6.1 | 2 | 0.2 | 3.02 | 0.63 | 0.19 | 0.34 | 0.59 | 0.01 | 91.35 | | Wilhelmstal
Wilhelmstal | 45.6
43.2 | 5.1 | 0.4 | 1.03 | 0.49
 0.03 | 11.6
11.6 | 3.6 | 0.8 | 19.2
19.1 | 3.9 | 0.3 | 8.2 | 2.3 | 0.2 | | 1.9 | 0.2 | 2.96
3.17 | 0.62 | 0.1 | 0.25 | 0.56 | 0.02 | 95.89
90.25 | | Oranjemund | 40.6 | 5.4 | 0.7 | 1.16 | 0.53 | 0.06 | 6.5 | 3.2 | 0.2 | 21.6 | 4.3 | 0.3 | 11.2 | 2.8 | 0.3 | 4.4 | 1.5 | 0.6 | 2.66 | 0.62 | 0.11 | 0.23 | 0.55 | 0.06 | 88.37 | | Oranjemund
Oranjemund | 43.5
42 | 5.1
5.2 | 0.5 | 0.93 | 0.48 | 0.04 | 6.9
5.1 | 3.3 | 0.2 | 19.7
20.3 | 4.1 | 0.4 | 12.4 | 2.9 | 0.3 | 5.4 | 1.8 | 0.4 | 1.9
2.23 | 0.63 | 0.06 | 0.68 | 0.72 | 0.07 | 92.01
89.32 | | Oranjemund | 45.1 | 5.2 | 1.4 | 1.21 | 0.54 | 0.08 | 6.8 | 3.3 | 0.7 | 20.3 | 4.1 | 0.3 | 11.1 | 2.8 | 0.6 | 4.1 | 1.5 | 0.4 | 2.36 | 0.62 | 0.14 | 1.22 | 0.97 | 0.19 | 92.19 | | Oranjemund | 44.8 | 5 | 0.6 | 1.31 | 0.57 | 0.08 | 7 | 3.3 | 0.3 | 19.8 | 4 | 0.3 | 9.6 | 2.5 | 0.3 | 5.8 | 1.9 | 0.5 | 2.1 | 0.63 | 0.17 | 1.21 | 0.97 | 0.13 | 91.58 | | Oranjemund
Oranjemund | 44.5
44.7 | 5 | 0.4 | 1.22 | 0.54 | 0.13 | 6.1
7 | 3.2 | 0.3 | 19.7
19.5 | 4 | 0.3 | 11.6 | 2.8 | 0.8 | | 2.1 | 0.7 | 1.77
2.04 | 0.64 | 0.09 | 0.7
1.27 | 0.73 | 0.05 | 91.79
91.61 | | Oranjemund | 44.6 | 5 | 0.9 | 1.05 | 0.5 | 0.04 | 5.9 | 3.2 | 0.4 | 19.5 | 4 | 0.2 | 11 | 2.8 | 0.5 | 6.4 | 2.1 | 1.3 | 2.14 | 0.62 | 0.25 | 0.98 | 0.86 | 0.09 | 91.6 | | Oranjemund
Oranjemund | 46.9
44.4 | 4.9
5 | 0.7 | 1.12 | 0.52 | 0.02 | 7.1
6.3 | 3.3 | 0.1 | 19.7
20.5 | 4.1 | 0.3 | 12.3 | 2.9 | 0.6 | | 1.2 | 0.3 | 2.06
1.88 | 0.63 | 0.13 | 1.42 | 1.05
0.91 | 0.16 | 93.82
91.02 | | Seeis | 54.1 | 5.1 | 2.8 | 0.7 | 0.42 | 0.02 | 9.6 | 3.5 | 1.4 | 14.8 | 3.3 | 0.8 | 2.7 | 1.6 | 0.3 | 8.6 | 2.6 | 1.8 | 4.86 | 0.85 | 0.19 | 1.44 | 1.06 | 0.23 | 96.85 | | Seeis | 51.2 | 5 | 2.2 | 1.67 | 0.66 | 0.17 | 5.2 | 3.1 | 0.5 | 18.8 | 3.9 | 1.4 | 3.1 | 1.7 | 0.5 | | 1.2 | 1 | 5.17 | 0.9 | 0.42 | 0.27 | 0.56 | 0.06 | 88.14 | | Seeis
Seeis | 65.6
51.8 | 5.3 | 1.8 | 0.7
2.29 | 0.42 | 0.02 | 15.4
7.1 | 3.6 | 2.1
0.7 | 4.6
18.8 | 3.9 | 2.8
0.2 | 0.6
2.7 | 1.5 | 0.3 | | 0.9
2.3 | 1.3 | 5.5
4.76 | 0.94 | 0.28 | 2.75
1.4 | 1.17 | 0.18 | 96.11
96.28 | | Seeis | 50 | 5 | 1 | 0.8 | 0.45 | 0.04 | 4.8 | 3 | 0.8 | 18.1 | 3.8 | 0.4 | 2.9 | 1.7 | 0.1 | 7.9 | 2.5 | 0.3 | 4.95 | 0.86 | 0.18 | 0.44 | 0.62 | 0.06 | 90.02 | | Seeis
Seeis | 64.4
55.1 | 5.3
5.1 | 1.3
4.4 | 0.76
1.21 | 0.44 | 0.15 | 12.6
12.1 | 3.6 | 1.4 | 16.8
18.5 | 3.6 | 1.5 | 1.2
2.5 | 1.5 | 0.3 | | 0.9 | 1.3 | 3.85
4.33 | 0.68 | 0.32 | 1.52 | 1.09 | 0.18 | 101.8
97.89 | | Seeis | 46.9 | 4.9 | 0.9 | 0.66 | 0.41 | 0.01 | 5.1 | 3.1 | 0.5 | 17.5 | 3.7 | 0.3 | 2.8 | 1.6 | 0.1 | 11.8 | 3.1 | 0.5 | 3.39 | 0.65 | 0.2 | 0.37 | 0.6 | 0.09 | 88.47 | | Seeis | 48.5 | 4.9 | 0.4 | 0.94 | 0.48 | 0.06 | 6.8 | 3.3 | 0.4 | 18.3 | 3.8 | 0.2 | 3.8 | 1.7 | 0.1 | 10.8 | 3 | 0.3 | 4.34 | 0.75 | 0.2 | 0.54 | 0.66 | 0.07 | 93.93 | | Mariental
Mariental | 43.8
44.1 | 5.1 | 0.4 | 0.85 | 0.46 | 0.05 | 12.3
17.6 | 3.6 | 0.2 | 17.8
23.8 | 3.8
4.5 | 0.2 | 3.7 | 1.9 | 0.1 | | 3.2
1.7 | 0.3 | 2.51
4.85 | 0.62 | 0.06 | 0.14 | 0.52 | 0.01 | 95.4
100.82 | Mariental
Mariental | 51.4
55.2 | 5.1 | 0.7 | 0.71
1.68 | 0.42 | 0.01 | 18.5
13.6 | 3.7 | 0.6 | 9.7
18.6 | 2.6
3.9 | 1.1 | 4.8
5.3 | 1.8 | 0.4 | 12.2
4.6 | 3.2
1.6 | 1.5
0.4 | 4.21
3.56 | 0.73 | 0.31 | 0.18 | 0.54 | 0.07 | 101.75
103.23 | ### 9. Compositions from Individual ChemCam Observation Points: Blackfoot, Brandberg Major-element abundances (wt. %) of all ChemCam observation points in (and in some cases near) the Blackfoot and Brandberg units, as well as several targets on Zabriskie Plateau that appear related to the Bimbe Layered targets. Columns are included for accuracies and for standard deviations of the 25 individual spectra within each observation point. Observation points are arranged consecutively for each target. Data from target Gibeon were of low quality and were not archived. | Sequence | Target | Location | Dist. (m) | SiO2 | acc | stdev | riO2 a | эсс | stdev | AI2O3 | acc | stdev I | FeOT | acc s | stdev I | MgO | асс | stdev C | aO | acc | stdev I | Na2O | асс | stdev | K2O a | acc : | stdev Total | |----------------|--------------------------------|------------------------------------|--------------|--------------|------------|------------|--------|------|-------|-------------|------------|---------|--------------|-------|---------|--------------|------------|---------|--------------|-----|---------|--------------|------|-------|--------------|--------------|--------------------------| | 01100 | Swan | Blackfoot | 2.83 | 50.9 | 5 | 0.9 | 1.16 | 0.53 | 0.04 | 14.6 | 3.6 | 1.1 | 16.5 | 3.6 | 0.9 | 3.9 | 1.7 | 0.4 | 7 | 2.3 | 0.3 | 4.08 | 0.71 | 0.34 | 1.49 | 1.06 | 0.18 99.62 | | 01100 | Swan | Blackfoot | 2.83 | 51.6 | 5 | 0.4 | 1.25 | 0.55 | 0.14 | 15.1 | 3.6 | 0.5 | 15.6 | 3.5 | 0.3 | 4.3 | 1.8 | 0.2 | 6.5 | 2.1 | 0.4 | 4.16 | 0.72 | 0.22 | 1.53 | 1.07 | 0.12 100.13 | | 01100 | Swan | Blackfoot | 2.83 | 48.9 | 4.9 | 0.7 | 1.42 | 0.59 | 0.08 | 12.8 | 3.6 | 0.3 | 19.6 | 4.2 | 0.5 | 5.1 | 1.9 | 0.3 | 5.1 | 1.7 | 0.5 | 3.15 | 0.63 | 0.16 | 1.65 | 1.1 | 0.14 97.82 | | 01100 | Swan | Blackfoot | 2.83 | 47.4 | 4.9 | 0.7 | 1.09 | 0.51 | 0.06 | 11.3 | 3.5 | 0.4 | 17.5 | 3.8 | 0.4 | 6.3 | 2 | 0.5 | 7.9 | 2.5 | 0.3 | 2.43 | 0.61 | 0.11 | 0.69 | 0.74 | 0.05 94.63 | | 01100 | Swan | Blackfoot | 2.83 | 47 | 5 | 1.2 | 1.53 | 0.62 | 0.07 | 11 | 3.5 | 0.7 | 19.4 | 4.1 | 0.8 | 4.9 | 1.8 | 0.3 | 6.8 | 2.2 | 0.6 | 2.58 | | 0.16 | | 1.01 | 0.17 94.58 | | 01100 | Swan | Blackfoot | 2.83 | 46.7 | 5 | 0.6 | 1.47 | 0.61 | 0.09 | 12.2 | 3.6 | 0.5 | 20.9 | 4.3 | 0.5 | 4.8 | 1.8 | 0.2 | 5.2 | 1.7 | 0.4 | 2.61 | 0.61 | | | 0.94 | 0.12 95.08 | | 01100 | Swan | Blackfoot | 2.83 | 45.7 | 5 | 0.6 | 1.41 | 0.59 | 0.13 | 10.1 | 3.5 | 0.5 | 18.2 | 3.9 | 0.2 | 7.2 | 2.1 | 0.4 | 5.1 | 1.7 | 0.7 | 2.36 | | 0.1 | 1.06 | 0.89 | 0.07 91.28 | | 01100 | Swan | Blackfoot | 2.83 | 49.3 | 5 | 0.7 | 1.95 | 0.45 | 0.07 | 16 | 3.7 | 0.3 | 17.2 | 3.7 | 0.3 | 4.6 | 1.8
2.1 | 0.3 | 7.1 | 2.3 | 0.3 | 3.32 | 0.64 | 0.18 | | 0.68 | 0.05 98.85 | | 01100 | Swan | Blackfoot
Blackfoot | 2.83
2.83 | 43.8
47.6 | 5.1
4.9 | 1.2 | 1.95 | 0.74 | 0.17 | 10.2 | 3.5 | 0.2 | 20.9 | 4.3 | 0.2 | 6.6
5.6 | 1.9 | 0.2 | 6.3
5.4 | 1.8 | 0.3 | 2.89 | 0.61 | 0.08 | 0.91
1.06 | 0.83 | 0.06 93.02
0.19 96.42 | | 02100 | Sunburst | Blackfoot | 2.37 | 42.1 | 5.2 | 0.8 | 0.83 | 0.46 | 0.05 | 9 | 3.5 | 0.8 | 20.2 | 4.3 | 0.2 | 14.2 | 3.2 | 0.7 | 3.5 | 1.3 | 0.5 | 1.54 | 0.65 | 0.12 | | 0.55 | 0.04 91.55 | | 02100 | Sunburst | Blackfoot | 2.37 | 41.6 | | 0.7 | 1.31 | 0.57 | 0.11 | 8.1 | 3.4 | 0.2 | 19.6 | 4.2 | 0.2 | 11.8 | 2.9 | 0.4 | 3.6 | 1.3 | 0.1 | 1.67 | 0.65 | 0.14 | | 0.57 | 0.05 87.93 | | 02100 | Sunburst | Blackfoot | 2.37 | 41.8 | | 0.5 | 1.01 | 0.5 | 0.05 | 7.3 | 3.3 | 0.3 | 19.8 | 4.2 | 0.2 | 13.2 | 3.1 | 0.4 | 3.7 | 1.3 | 0.3 | 1.48 | 0.64 | 0.09 | | 0.54 | 0.02 88.48 | | 02100 | Sunburst | Blackfoot | 2.37 | 43 | 5.1 | 0.7 | 0.77 | 0.44 | 0.02 | 7.8 | 3.4 | 0.4 | 18.9 | 4 | 0.5 | 12.4 | 3 | 1.4 | 6.1 | 2 | 1.1 | 1.6 | 0.65 | 0.14 | 0.12 | 0.53 | 0.03 90.74 | | 02100 | Sunburst | Blackfoot | 2.37 | 41.5 | 5.3 | 0.8 | 0.91 | 0.47 | 0.04 | 8.5 | 3.4 | 0.5 | 18.9 | 4.1 | 0.6 | 12.7 | 3 | 0.7 | 4.5 | 1.6 | 0.9 | 1.56 | 0.65 | 0.16 | 0.17 | 0.55 | 0.06 88.89 | | 02100 | Sunburst | Blackfoot | 2.37 | 41.9 | 5.2 | 0.5 | 0.9 | 0.47 | 0.06 | 7.8 | 3.4 | 0.1 | 19.1 | 4.1 | 0.2 | 12.5 | 3 | 0.3 | 4.2 | 1.5 | 0.2 | 1.64 | 0.65 | 0.04 | 0.21 | 0.56 | 0.02 88.26 | | 02100 | Sunburst | Blackfoot | 2.37 | 45 | 5 | 0.6 | 0.82 | 0.45 | 0.07 | 7.9 | 3.4 | 0.3 | 18.5 | 4 | 0.2 | 12.7 | 3 | 0.5 | 5.2 | 1.7 | 0.8 | 1.53 | 0.65 | 0.08 | 0.31 | 0.59 | 0.06 91.9 | | 02100 | Sunburst | Blackfoot | 2.37 | 45.2 | 5 | 0.5 | 0.94 | 0.48 | 0.04 | 10.1 | 3.5 | 0.4 | 19.6 | 4.2 | 0.4 | 11.3 | 2.8 | 0.3 | 4.1 | 1.4 | 0.5 | 2.15 | 0.62 | 0.07 | 0.33 | 0.6 | 0.02 93.75 | | 02100 | Sunburst | Blackfoot | 2.37 | 41.8 | | 0.7 | 0.7 | 0.42 | 0.02 | 7.4 | 3.3 | 0.9 | 18.7 | 4 | 0.3 | 11.9 | 2.9 | 0.4 | 7.7 | 2.4 | 1.6 | 1.35 | 0.63 | 0.2 | 0.13 | 0.54 | 0.02 89.57 | | 02100 | Sunburst | Blackfoot | 2.37 | 40.4 | 5.4 | 0.5 | 0.96 | 0.49 | 0.07 | 8.5 | 3.4 | 0.4 | 20.6 | 4.3 | 0.2 | 12 | 2.9 | 0.5 | 4.8 | 1.6 | 0.4 | 1.7 | 0.65 | 0.09 | | 0.57 | 0.04 89.1 | | 01102 | Madison | Blackfoot | 4.56 | 55.2 | 5.1 | 1.2 | 1.34 | 0.57 | 0.07 | 17.4 | 3.7 | 1.5 | 19.6 | 4.2 | 0.8 | 2.1 | 1.6 | 0.3 | 2.6 | 1.1 | 0.3 | 4.55 | 0.79 | 0.28 | 2.2 | 1.18 | 0.17 104.93 | | 01102 | Madison | Blackfoot | 4.56 | 6.7 | 6.7 | 3 | 0.2 | 0.25 | 0.11 | 1.3 | 2.6 | 0.3 | 1 | 1.6 | 1.1 | 1.6 | 1.5 | 0.3 | 45 | 8.2 | 1.4 | 0.43 | 0.38 | 0.05 | 0.17 | 0.55 | 0.03 56.39 | | 01102
01102 | Madison | Blackfoot | 4.56
4.56 | 8.3
9.8 | | 4.2
2.7 | 0.46 | 0.34 | 0.13 | 0.7 | 2.6 | 0.1 | 2.8
4.1 | 1.8 | 1.6 | 2.2 | 1.6 | 0.3 | 43.5
42.5 | 7.8 | 2.4 | 0.44 | 0.38 | 0.04 | 0.18 | 0.55 | 0.06 58.23
0.04 60.87 | | | Madison | Blackfoot | | | | _ | | | | | | | | 2 | - | | | | | | 1.9 | | | | 0.21 | 0.00 | | | 01102
02102 | Madison
Jefferson | Blackfoot
Blackfoot | 4.56
2.97 | 10.6
41.9 | | 3.2
0.6 | 0.53 | 0.37 | 0.08 | 0.7
7.4 | 2.6
3.4 | 0.1 | 4.6
21.5 | 4.4 | 0.7 | 2.4 | 1.6
2.8 | 0.2 | 39.3 | 7.3 | 0.4 | 0.51
2.2 | 0.4 | 0.19 | | 0.54 | 0.03 58.71
0.08 89.11 | | 02102 | Jefferson | Blackfoot | 2.97 | 44.9 | 5.2 | 0.6 | 1.26 | 0.55 | 0.07 | 8.7 | 3.5 | 0.7 | 20.8 | 4.3 | 0.7 | 9.2 | 2.5 | 1.2 | 4.3 | 1.5 | 0.4 | 2.63 | 0.61 | 0.18 | 0.36 | 0.61 | 0.04 92.08 | | 02102 | Jefferson | Blackfoot | 2.97 | 46 | 5 | 0.7 | 1.4 | 0.59 | 0.11 | 12.9 | 3.6 | 0.8 | 19.6 | 4.2 | 0.2 | 6.8 | 2.1 | 0.5 | 5.6 | 1.9 | 0.3 | 3.04 | 0.62 | 0.23 | 0.6 | 0.7 | 0.08 95.88 | | 02102 | Jefferson | Blackfoot | 2.97 | 43.4 | 5.1 | 0.4 | 0.86 | 0.46 | 0.1 | 10.3 | 3.5 | 0.6 | 20.5 |
4.3 | 0.3 | 11.8 | 2.9 | 1.4 | 4.4 | 1.5 | 0.3 | 2.18 | 0.62 | 0.12 | | 0.58 | 0.07 93.82 | | 02102 | Jefferson | Blackfoot | 2.97 | 44.2 | | 0.7 | 1.31 | 0.57 | 0.07 | 10.4 | 3.5 | 1 | 20.4 | 4.3 | 0.2 | 9.5 | 2.5 | 1.3 | 4.3 | 1.5 | 0.4 | 2.15 | 0.62 | 0.18 | | 0.58 | 0.05 92.49 | | 02102 | Jefferson | Blackfoot | 2.97 | 41.5 | 5.3 | 0.6 | 0.87 | 0.47 | 0.03 | 6.9 | 3.3 | 0.4 | 21 | 4.4 | 0.3 | 14.3 | 3.2 | 1.3 | 4.3 | 1.5 | 0.6 | 1.92 | 0.64 | 0.09 | 0.24 | 0.57 | 0.03 91.13 | | 02102 | Jefferson | Blackfoot | 2.97 | 45.1 | 5 | 1.3 | 0.97 | 0.49 | 0.06 | 10 | 3.5 | 1.5 | 20 | 4.2 | 0.4 | 9 | 2.4 | 1.1 | 5.5 | 1.8 | 0.4 | 2.42 | 0.61 | 0.25 | 0.43 | 0.63 | 0.06 93.46 | | 02102 | Jefferson | Blackfoot | 2.97 | 42.2 | 5.2 | 1 | 1.96 | 0.74 | 0.19 | 8.7 | 3.5 | 0.9 | 20.7 | 4.3 | 0.4 | 8.8 | 2.4 | 0.5 | 2.3 | 1.1 | 0.2 | 2.47 | 0.61 | 0.17 | 0.5 | 0.66 | 0.06 87.71 | | 02102 | Jefferson | Blackfoot | 2.97 | 42.5 | | 0.7 | 1.29 | 0.56 | 0.06 | 9 | 3.5 | 0.8 | 20.1 | 4.2 | 0.3 | 10.2 | 2.6 | 0.9 | 5.1 | 1.7 | 0.4 | 2.17 | 0.62 | 0.27 | 0.38 | 0.62 | 0.06 90.8 | | 02102 | Jefferson | Blackfoot | 2.97 | 48.6 | 4.9 | 0.5 | 1.35 | 0.58 | 0.09 | 17.8 | 3.7 | 0.7 | 17.9 | 3.9 | 0.6 | 4.4 | 1.8 | 0.5 | 4.7 | 1.6 | 0.2 | 3.68 | | 0.1 | 0.62 | 0.71 | 0.12 98.97 | | 04102 | Lincoln | Blackfoot | 2.97 | 43.7 | 5.1 | 0.6 | 1.73 | 0.68 | 0.09 | 11.4 | 3.5 | 0.5 | 20.7 | 4.3 | 1 | 4.7 | 1.8 | 0.1 | 4.7 | 1.6 | 0.3 | 3.32 | | 0.1 | | 0.79 | 0.05 91.08 | | 04102 | Lincoln | Blackfoot | 2.97 | 48.7 | 4.9 | 1.4 | 0.98 | 0.49 | 0.06 | 10.6 | 3.5 | 0.9 | 20.5 | 4.3 | 0.5 | 9 | 2.4 | 0.8 | 3.4 | 1.3 | 0.3 | 2.68 | 0.61 | 0.24 | | 0.86 | 0.19 96.96 | | 04102
04102 | Lincoln | Blackfoot | 2.97
2.97 | 45.2
47 | 5 | 0.6 | 0.89 | 0.47 | 0.04 | 8.8
11.3 | 3.5 | 0.3 | 21.6
18.7 | 4.4 | 0.2 | 12.8
7.5 | 2.2 | 0.6 | 4.1 | 1.4 | 0.4 | 2.08 | 0.63 | 0.13 | 0.42 | 0.63 | 0.08 95.88
0.06 94.65 | | 04102 | Lincoln | Blackfoot | 2.97 | 46.3 | 5 | 0.5 | 0.91 | 0.47 | 0.03 | 16.2 | 3.5 | 0.4 | 20.9 | 4.3 | 0.3 | 5.1 | 1.9 | 0.6 | 5.5
5 | 1.7 | 0.2 | 3.25 | 0.64 | 0.13 | | 0.79 | 0.00 94.05 | | 01160 | Roter_Kamm | Brandberg | 3.76 | 44.2 | 5.1 | 0.3 | 0.83 | 0.40 | 0.02 | 11.7 | 3.6 | 0.1 | 21.7 | 4.4 | 0.3 | 10.1 | 2.6 | 1.1 | 3 | 1.7 | 0.3 | 2.69 | 0.61 | 0.14 | | 1.07 | 0.02 97.83 | | 01160 | Roter Kamm | Brandberg | 3.76 | 49.7 | 5.1 | 0.7 | 0.82 | 0.45 | 0.06 | 13.3 | 3.6 | 0.4 | 21.3 | 4.4 | 0.4 | 7.6 | 2.2 | 0.6 | 3.2 | 1.2 | 0.4 | 3.13 | 0.63 | 0.15 | | 1.15 | 0.1 100.98 | | 01160 | Roter Kamm | Brandberg | 3.76 | | 5 | 0.7 | 0.93 | 0.48 | 0.2 | 13.3 | 3.6 | 0.5 | 20.5 | 4.3 | 0.6 | 3.7 | 1.7 | 0.2 | 8.7 | 2.7 | 1 | 2.83 | 0.62 | 0.1 | | 1.01 | 0.14 96.93 | | 01160 | Roter_Kamm | Brandberg | 3.76 | 53.8 | 5.1 | 0.5 | 0.92 | 0.48 | 0.05 | 15.2 | 3.6 | 0.7 | 19.1 | 4.1 | 0.6 | 6.6 | 2.1 | 0.4 | 3.4 | 1.3 | 0.4 | 3.64 | 0.66 | 0.09 | 1.76 | 1.13 | 0.06 104.42 | | 01160 | Roter_Kamm | Brandberg | 3.76 | 52.8 | 5 | 0.5 | 0.87 | 0.47 | 0.04 | 16.7 | 3.7 | 0.3 | 19 | 4.1 | 0.5 | 5.2 | 1.9 | 0.2 | 4.7 | 1.6 | 0.5 | 3.61 | 0.66 | 0.18 | 1.61 | 1.09 | 0.1 104.45 | | 02160 | Hoba | Brandberg | 4.56 | 50 | 5 | 0.6 | 0.79 | 0.45 | 0.02 | 16.4 | 3.7 | 0.5 | 21 | 4.4 | 0.6 | 7 | 2.1 | 0.2 | 2.3 | 1 | 0.4 | 3.67 | 0.66 | 0.08 | 2.03 | 1.17 | 0.11 103.21 | | 02160 | Hoba | Brandberg | 4.56 | 51.8 | 5 | 0.6 | 0.83 | 0.46 | 0.03 | 17.1 | 3.7 | 0.6 | 19.7 | 4.2 | 0.8 | 7.1 | 2.1 | 0.3 | 2.7 | 1.1 | 0.3 | 3.95 | 0.69 | 0.08 | 1.83 | 1.14 | 0.08 104.91 | | 02160 | Hoba | Brandberg | 4.56 | 52.3 | 5 | 0.6 | 0.88 | 0.47 | 0.04 | 16.8 | 3.7 | 0.9 | 20.1 | 4.2 | 0.8 | 5.7 | 1.9 | 0.2 | 3.2 | 1.2 | 0.3 | 3.58 | 0.66 | 0.13 | | 1.18 | 0.15 104.76 | | 02160 | Hoba | Brandberg | 4.56 | 41.6 | 5.3 | 4.5 | 0.78 | 0.44 | 0.1 | 9.9 | 3.5 | 0.7 | 20.4 | 4.3 | 0.8 | 5.7 | 1.9 | 1.1 | 9.4 | 2.8 | 2.8 | 2.1 | 0.62 | 0.42 | 0.57 | 0.69 | 0.12 90.42 | | 02160 | Hoba | Brandberg | 4.56 | 48.8 | 4.9 | 1.2 | 0.88 | 0.47 | 0.05 | 14.8 | 3.6 | 0.8 | 21.1 | 4.4 | 0.8 | 9 | 2.4 | 0.3 | 2.2 | 1 | 0.3 | 2.96 | 0.62 | 0.15 | 1.7 | 1.11 | 0.12 101.45 | | 01692 | Pyramid Hills | Zabriskie Plat. | 2.26 | 38.8 | 5.6 | 0.4 | 1.05 | 0.5 | 0.11 | 6.1 | 3.2 | 0.4 | 18.9 | 4 | 0.2 | 10.7 | 2.7 | 0.4 | 5.4 | 1.8 | 0.4 | 2.56 | 0.61 | 0.11 | 0.36 | 0.61 | 0.04 83.9 | | 01692
01692 | Pyramid Hills | Zabriskie Plat. | 2.26 | 41.1 | 5.3 | 0.8 | 0.97 | 0.49 | 0.05 | 4.8
5.8 | 3 | 0.3 | 19.8 | 4.2 | 0.2 | 12.5
10.1 | 3 | 0.5 | 3.8
4.8 | 1.4 | 0.2 | 1.87
2.29 | 0.64 | 0.06 | 0.74 | 0.76
1.05 | 0.06 85.54 | | | Pyramid Hills | Zabriskie Plat. | | | 5.1 | | | | | | 3.2 | | | | | 10.1 | 2.6 | | | 1.7 | | 2.29 | | | | | 0.00 | | 01692
01692 | Pyramid Hills
Pyramid Hills | Zabriskie Plat.
Zabriskie Plat. | 2.26 | 43.1
42.7 | 5.1
5.2 | 1.7 | 1.09 | 0.51 | 0.11 | 6.3
4.9 | 3.2 | 0.3 | 19.6
19.5 | 4.2 | 0.3 | 11.5 | 2.4 | 0.2 | 5.4
5.6 | 1.8 | 0.4 | 1.8 | 0.62 | 0.12 | | 0.87
1.01 | 0.09 87.62
0.12 88.69 | | 01694 | Johnnie | Zabriskie Plat. | 4.26 | 45.8 | 5.2 | 0.5 | 0.8 | 0.36 | 0.18 | 8.6 | 3.5 | 0.5 | 19.5 | 4.1 | 0.3 | 11.3 | 2.8 | 0.4 | 6.9 | 2.2 | 0.5 | 2.68 | 0.61 | 0.09 | | 0.76 | 0.12 88.69 | | 01694 | Johnnie | Zabriskie Plat. | 4.26 | 41.3 | 5.3 | 0.9 | 0.86 | 0.45 | 0.02 | 8.4 | 3.4 | 0.3 | 24.5 | 4.6 | 1.2 | 13.1 | 3.1 | 0.6 | 2.9 | 1.2 | 0.4 | 2.38 | 0.61 | 0.19 | | 0.86 | 0.09 90.44 | | 01694 | Johnnie | Zabriskie Plat. | 4.26 | 40.1 | 5.5 | 0.5 | 1.42 | 0.59 | 0.05 | 7.5 | 3.4 | 0.2 | 28.3 | 4.9 | 0.8 | 10.2 | 2.6 | 0.6 | 4.4 | 1.5 | 0.5 | 2.5 | 0.61 | 0.13 | | 0.81 | 0.08 95.3 | | 01694 | Johnnie | Zabriskie Plat. | 4.26 | 45.1 | 5.5 | 0.4 | 1.02 | 0.5 | 0.05 | 9.1 | 3.5 | 0.4 | 21.7 | 4.4 | 0.5 | 11.5 | 2.8 | 0.5 | 3.4 | 1.3 | 0.2 | 2.73 | 0.61 | 0.12 | | 0.93 | 0.08 95.78 | | 01694 | Johnnie | Zabriskie Plat. | 4.26 | 42.1 | | 0.5 | 1.89 | 0.72 | 0.06 | 9.5 | 3.5 | 0.3 | 27.8 | 4.9 | 0.7 | 6.7 | 2.1 | 0.4 | 4.2 | 1.5 | 0.4 | 2.99 | 0.62 | 0.11 | | 0.83 | 0.08 96.19 | | 02694 | South_Park2 | Zabriskie Plat. | 2.24 | 39.6 | 5.5 | 0.2 | 0.87 | 0.47 | 0.02 | 5.1 | 3.1 | 0.3 | 19.2 | 4.1 | 0.2 | 13.4 | 3.1 | 0.3 | 5.5 | 1.8 | 0.3 | 1.73 | 0.65 | 0.05 | | 0.55 | 0.02 85.58 | | 02694 | South_Park2 | Zabriskie Plat. | 2.24 | 39.4 | 5.5 | 0.3 | 0.87 | 0.47 | 0.04 | 6.5 | 3.2 | 0.6 | 18.9 | 4.1 | 0.5 | 10.9 | 2.7 | 0.6 | 6.3 | 2.1 | 0.9 | 1.73 | 0.65 | 0.17 | 0.23 | 0.57 | 0.04 84.88 | | 02694 | South_Park2 | Zabriskie Plat. | 2.24 | 44.3 | 5.1 | 1 | 1.02 | 0.5 | 0.08 | 8.5 | 3.4 | 0.3 | 18.5 | 4 | 0.6 | 6.1 | 2 | 0.2 | 6.8 | 2.2 | 0.6 | 2.99 | 0.62 | 0.14 | 0.51 | 0.66 | 0.03 88.79 | | 02694 | South_Park2 | Zabriskie Plat. | 2.24 | 43.7 | 5.1 | 0.7 | 0.89 | 0.47 | 0.03 | 6.8 | 3.3 | 0.7 | 19.4 | 4.1 | 0.3 | 12.9 | 3 | 1.4 | 3.1 | 1.2 | 0.7 | 2.37 | 0.61 | 0.15 | 0.32 | 0.6 | 0.03 89.42 | | 02694 | South Park2 | Zabriskie Plat. | 2.24 | 42.6 | 5.2 | 0.7 | 0.73 | 0.43 | 0.03 | 8.4 | 3.4 | 0.5 | 17.8 | 3.9 | 0.4 | 10.2 | 2.6 | 1.4 | 6.9 | 2.2 | 1 | 2.73 | 0.61 | 0.14 | 0.61 | 0.7 | 0.06 90.06 | ## 10. Images of ChemCam Heterolithic-Unit Targets Not in the Main Body of the Paper. These images are available with the given target names in the Planetary Data System at https://pds-geosciences.wustl.edu/msl/msl-m-chemcam-libs-4_5-rdr-v1/mslccm_1xxx/extras/ AEGIS_post_1400a, Mastcam image. AEGIS_post_1400a, RMI mosaic. Aussenkehr, Mastcam image. Aussenkehr, RMI mosaic. Lucala, Mastcam image. Lucala, RMI mosaic. Jefferson, Mastcam image. Jefferson, RMI mosaic. Lincoln, Mastcam image. Lincoln, RMI mosaic Swan, Mastcam image. Swan, RMI mosaic. # 11. Images of ChemCam Bradbury Targets Not in the Main Body of the Paper. Black Trout, Mastcam Image Black Trout, RMI mosaic. Mallard Lake, Mastcam image Mallard Lake, RMI mosaic. # 12. Images of Other Targets from Zabriskie Plateau (Johnnie, South_Park2) Johnnie, Mastcam image. Johnnie, RMI mosaic. South_Park2, Mastcam image. South_Park2, RMI image. #### 13. Designations of Images Used in the Paper - Fig. 1: Mosaic of images acquired by the MRO CTX and HiRISE cameras assembled by Calef and Parker (2016). - Fig. 2a: HiRISE image ESP_042682_1755, acquired on 04 September 2015. - Fig. 2b: Portion of Mastcam-34 image 1100ML0048710700500554C00. - Fig. 2c: Portion of Mastcam-34 image 1100ML0048710620500546C00. - Fig. 2d-e: Portions of a Mastcam-34 Sol 1094 mosaic (sequence mcam04850). - Fig. 2f: Portion of a Mastcam-100 Sol 1099 mosaic (sequence mcam04868). - Fig. 2g: Portion of Sol 1098 Navcam Left-B camera product NLB 494970804ILTLF0492374NCAM00266M1. - Fig. 2h: Portion of Sol 1104 MAHLI landscape image 1104MH0003250050401144E01. - Fig. 2i: Portion of a Mastcam-34 mosaic acquired on Sol 1100 (sequence mcam04871). - Fig. 3a: Portion of a Mastcam-34 mosaic acquired on Sol 1100 (sequence mcam04871). - Fig. 3b: Portion of Mastcam-100 image 1100MR0048770020600964E01. - Fig. 3c-d: Portions of a Mastcam-34 mosaic acquired on Sol 1100 (sequence mcam04871). - Fig. 3e: Portion of ChemCam RMI image product 1103_CRM_CCAM01102_Madison and a portion of Mastcam-100 image 1103MR0048880000601026E01. - Fig. 3f: Portion of MAHLI focus merge product 1103MH0005210000401138R00. - Fig. 3g: Portion of Mastcam-34 image 1100ML0048711100500594C00. - Fig. 4a: Portion of HiRISE image ESP_043539_1755 acquired on MSL Sol 1159 (10 November 2015). - Fig. 4b: Portion of a Sol 1163 Mastcam-34 mosaic (sequence mcam05263). - Fig. 4c: Portion of a Sol 1158 Mastcam-34 mosaic (sequence mcam05242). - Fig. 4d: Portion of Mastcam-34 image 1158ML0052420350502024C0. - Fig. 4e: Portion of a Sol 1160 Mastcam-100 mosaic (sequence mcam05247). - Fig. 4f: Anaglyph created from portions of HiRISE stereo pair images PSP_009149_1750 and PSP_009294_1750. - Fig. 5a: Portion of a Sol 1160 Mastcam-100 mosaic (sequence mcam05247). - Fig. 5b: ChemCam RMI image product 1160_CRM_CCAM2160_Hoba. - Fig. 5c: ChemCam RMI image product 1160_CRM_CCAM3160_Gibeon. - Fig. 5d: Portion of Mastcam-100 image 1160MR0052470570602057E01. - Fig. 5e: Portion of Mastcam-100 image
1277MR0059970040304226E01. - Fig. 5f: Portion of MAHLI focus merge product 1278MH000170000500011R00. - Fig. 5g: Portion of a mosaic of Mastcam-100 images 1160MR0052470550602055E01 and 1160MR0052470620602062E01. - Fig. 5h: Portion of Mastcam-100 image 1160MR0052470310602031E01. - Fig. 5i: Portion of Mastcam-100 image 1160MR0052470600602060E01. - Fig. 5j: Portion of a Sol 1178 Mastcam-100 mosaic (sequence mcam05336). - Fig. 6: Portions of a HiRISE image mosaic constructed by Calef and Parker (2016). - Fig. 7: Base map is a portion of HiRISE image ESP_035917_1755. Insets for northeast Bimbe ridge and Bukalo are portions of a Sol 1387 Mastcam-100 mosaic (sequence mcam06815); inset for Bailundo is a portion of a Sol 1398 Mastcam-100 mosaic (sequence mcam06839). - Fig. 8: Stereo analyph constructed from portions of MRO HiRISE images PSP_009716_1755 and PSP_009650_1755. - Fig. 9a: Portion of a Sol 1402 Mastcam-100 mosaic (sequence mcam06869). - Fig. 9b: Portion of a mosaic of Navcam RDR image products: - NLB 522233603ILTLF0560000NCAM00353M1.IMG, - NLB_522233635ILTLF0560000NCAM00353M1.IMG, - NLB_522234307ILTLF0560000NCAM07753M1.IMG, - NLB_522234337ILTLF0560000NCAM07753M1.IMG, - NLB_522234369ILTLF0560000NCAM07753M1.IMG, - NLB 522234401ILTLF0560000NCAM07753M1.IMG, - NLB 522234590ILTLF0560000NCAM00654M1.IMG, - NLB 522234624ILTLF0560000NCAM00654M1.IMG, and - NLB_522234657ILTLF0560000NCAM00654M1.IMG. - Fig. 10a: Portion of a Sol 1407 Mastcam-34 mosaic (sequence mcam06889). - Fig. 10b: Portion of MAHLI image 1407MH0001900010502809C00. - Fig. 10c: Portion of MAHLI focus merge product 1408MH0001630000502842R00. - Fig. 11a: Composite of a portion of Sol 1405 Navcam Left-B product NLB_522234590ILTLF0560000NCAM00654M1 and Mastcam-100 images 1409MR0068990000702206E01 (Seeis) and 1409MR0069000010702208E01 (Aegis 1406a). - Fig. 11b: Portion of Mastcam-100 image 1409MR0068990000702206E01. - Fig. 11c: Portion of Mastcam-100 image 1409MR0069000010702208E01. - Fig. 11d: ChemCam RMI image product 1406_CRM_CCAM15900_aegis_post_1406a. - Fig. 12a-b: Portions of Mastcam-100 image 1408MR0068970460702184C00. - Fig. 12c: ChemCam RMI image product 1409_CRM_CCAM03409_Oranjemund. - Fig. 13a: Portion of Mastcam-34 image 1399ML0068480000601724E01. - Fig. 13b: Portion of Mastcam-100 image 1400MR0068560000702022E01. - Fig. 13c: ChemCam RMI image product 1400_CRM_CCAM01400_Auchab. - Fig. 14a: Portion of a Sol 1401 Mastcam-34 mosaic (sequence mcam06865). - Fig. 14b: Portion of Mastcam-100 image 1401MR0068610000702028E01. - Fig. 14c: ChemCam RMI image product 1401_CRM_CCAM03401_Chinchimane. - Fig. 15a: Portion of Sol 1405 Left-B Navcam image product NLB 522233635ILTLF0560000NCAM00353M1. - Fig. 15b: Portion of MAHLI image 1407MH0006270010502776C00. - Fig. 16a: Portion of a Sol 1401 Mastcam-34 mosaic (sequence mcam06865). - Fig. 16b: ChemCam RMI image product 1401_CRM_CCAM02401_Canico. - Fig. 16c -- Portions of a Sol 1401 Mastcam-34 mosaic (sequence mcam06865). - Fig. 17a: Portion of a Sol 1407 Mastcam-34 mosaic (sequence mcam06889). - Fig. 17b-c: Portions of a Sol 1408 Mastcam-100 mosaic (sequence mcam06898). - Fig. 18a: Portion of a Sol 1409 mosaic of Mastcam-100 and Mastcam-34 images (sequence mcam06889). - Fig. 18b: Portion of ChemCam RMI image product 1409_CRM_CCAM01409_Seeheim. - Fig. 18c: Portion of ChemCam RMI image product 1407_CRM_CCAM03407_Bungo. - Fig. 18d: Portion of ChemCam RMI image product 1407_CRM_CCAM02407_Cabamba. - Fig. 18e: Portion of ChemCam RMI image product 1409_CRM_CCAM02409_Wilhelmstal. Fig. 19a: Portion of a mosaic of MAHLI images 1407MH0006270010502774C00 and 1407MH0006270010502776C00. Fig. 19b: Portion of MAHLI focus merge product 1411MH0005840000503006R00. Fig. 19c-d: Portions of MAHLI focus merge product 1411MH0005840000503000R00. Fig. 20a: Portion of Mastcam-100 image 1410MR0069050010702210E01. Inset is a portion of a Sol 1402 Mastcam-100 mosaic (sequence mcam06869). Fig. 20b: ChemCam RMI image product 1410_CRM_CCAM05409_Mariental. Fig. 22a: Portion of Mastcam-34 image 0052ML0002400070102217E01; inset is a composite of MAHLI images 0054MH0000160010100280C00 and 0054MH0000180010100312C00, Fig. 22b: Portion of Mastcam-100 image 0336MR0013560000301059E01. Fig. 22c: Portion of Mastcam-100 image 0349MR0014160000301161E01. Fig. 22d: Portion of a mosaic of Mastcam-100 images 0044MR0002040290102567E01, 0044MR0002040220102560E01, 0044MR0002040150102553E01, and 0044MR0002040080102546E01. Fig. 22e: Portion of Mastcam-100 image 0516MR0020340000303244E01; inset is a portion of MAHLI focus merge product 0516MH0002650000200986R00. Fig. 22f: Portion of Mastem-100 image 0692MR0029280000402215E01.