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Abstract

Horospherical products of two hyperbolic spaces unify the construction of metric spaces such

as the Diestel-Leader graphs, the SOL geometry or the treebolic spaces. Given two proper, geodesi-

cally complete, Gromov hyperbolic, Busemann spaces Hp and Hq , we study the geometry of their

horospherical productH ∶=Hp &Hq through a description of its geodesics.

Speci�cally we introduce a large family of distances on Hp &Hq . We show that all these distances

produce the same large scale geometry. This description allows us to depict the shape of geodesic

segments and geodesic lines. The understanding of the geodesics’ behaviour leads us to the char-

acterization of the visual boundary of the horospherical products. Our results are based on metric

estimates on paths avoiding horospheres in a Gromov hyperbolic space.
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1 Introduction

A horospherical product is a metric space constructed from two Gromov hyperbolic spacesHp andHq .

It is included in their cartesian product Hp ×Hq and can be seen as a diagonal in it. The de�nition of

this horospherical product makes use of the so-called Busemann functions. Let us assume that there

exists a unique geodesic ray k in Hp starting at a given base point wp ∈Hp and leading in the direction

of a given point on the boundary ap ∈ ∂Hp. Then the Busemann function with respect to ap and wp
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associates to a point xp ∈ Hp the delay it has in a race towards ap against k. Given a base point and

a point on the boundary on Hp and Hq we have two respective Busemann functions. We de�ne the

height functions of these spaces Hp and Hq to be the opposite of the Busemann functions. Hence

the level-lines of the Busemann functions, which are called horospheres, are also the level-lines of the

height functions. Then the horospherical product H = Hp &Hq is built by gluing Hp with an upside

down copy of Hq along their respective horospheres. More precisely with a given height hp on Hp

(De�nition 2.1) and a given height hq on Hq , the horospherical product H = Hp & Hq is de�ned as

follows.

H ∶= {(xp, xq) ∈Hp ×Hq / hp(xp) + hq(xq) = 0}.

Since we are considering only couples of points with opposite heights in this set, we de�ne the height

on the horospherical productH as the height on the �rst component Hp. This notion of horospherical

product generalizes the description of the Diestel-Leader graphs, the SOL geometry and the Cayley

2-complexes of Baumslag-Solitar groups BS(1, n). In the second chapter of [14, Woess], the last three

exemples are presented as horocyclic products of metric spaces. We choose the name horospherical

product instead of horocyclic product since in higher dimension, level-lines according to a Busemann

function are not horocycles but horospheres. As Woess suggested in [14, W], we explore here a gener-

alization for horospherical products.

The Diestel-Leader graphs are horospherical products of two regular trees. If the two trees’ degree

are equal, their horospherical product is the Cayley graph of a lamplighter group, see [13, Woess] for

further details. A motivation to study this construction are the results from [4, Eskin, Fisher, Whyte],

[5, E,F,W] and [6, E,F,W]. They state that the Diestel-Leader graphs constructed from two regular trees

with no common divisor in their degree are vertex-transitive graphs which are not quasi-isometric to

any Cayley Graphs. The existence of such a graph was a long open problem.

The SOL geometry, one of the eight Thurston geometries, is presented in [14, Woess] as the horospher-

ical product of two hyperbolic planes. In [6, Eskin, Fisher, Whyte], they also prove rigidity results

on lattices of the SOL geometry. A third example is related to the family of Baumslag-Solitar groups

BS(1, n), their Cayley 2-complex are described in [1, Bendikov, Salo�-Coste, Salvatori, Woess] as the

horospherical product of a hyperbolic plane and a homogeneous tree. Similar rigidity results as in [4,

Eskin, Fisher, Whyte] are presented in [7, Farb, Mosher] and [8, F,M] for Baumslag-Solitar groups.

For our generalization, we require that our components Hp and Hq are two proper geodesically com-

plete Gromov hyperbolic Busemann spaces. A Busemann space is a metric space where the distance

between any two geodesics is convex, and metric space X is geodesically complete if and only if a

geodesic segment α ∶ I →X can be prolonged into a geodesic line α̂ ∶ R→X . The Busemann hypoth-

esis suits with the de�nition of horospherical product since we require that the opposite heights are

exactly equal. Furthermore, adding the hypothesis thatHp andHq are geodesically complete allows us

to prove that the horospherical productH =Hp &Hq is connected.

There are many possible choices for the distance on Hp & Hq . In this paper we work with a family

of length path metrics induced by distances on Hp ×Hq (see precise de�nition 4.2). We require that

the distance on Hp & Hq comes from a norm N on R2
that is greater than the normalized `1 norm.

Such norms are called admissible norms. A description of the distances on horospherical products is

given by Corollary 4.17. This corollary shows that any distance we described earlier provides the same

geodesic shapes, up to an additive constant depending only on Hp, Hq and on the norm N . To do so

we introduce a notion of vertical geodesics, which are geodesics heuristically "normal" to horospheres

(see precise de�nition 4.7). The shapes of geodesic segments are described in the following theorem.

Theorem 1.1. Let δ ≥ 1 and let N be an admissible norm. Let Hp and Hq be two proper, geodesically
complete, δ-hyperbolic, Busemann spaces. Let x = (xp, xq) and y = (yp, yq) be two points ofH =Hp &Hq

and let α be a geodesic segment of (H, dH,N) linking x to y. There exists a constant κ depending only on
δ and N , and there exist two vertical geodesics V1 = (V1,p, V1,q) and V2 = (V2,p, V2,q) such that:
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Figure 1: Shape of geodesic segments whenh(x) ≤ h(y)−κ inH =Hp&Hq . The neighbourhoods’ shape

are distorted since when going upward, distances are contracted in the "direction" Hp and expanded in

the "direction" Hq .

1. If h(x) ≤ h(y) − κ then α is in the κ-neighbourhood of V1 ∪ (V1,p, V2,q) ∪ V2

2. If h(x) ≥ h(y) + κ then α is in the κ-neighbourhood of V1 ∪ (V2,p, V1,q) ∪ V2

3. If ∣h(x) − h(y)∣ ≤ κ then at least one of the conclusions of 1. or 2. holds.

Speci�cally, V1 and V2 can be chosen such that x is close to V1 and y is close to V2.

This behaviour is illustrated on Figure 1 for h(x) ≤ h(y)−κ. This result is similar to the hyperbolic

case, where a geodesic segment is in the constant neighbourhood of two vertical geodesics. The heuris-

tic comprehension of Theorem 1.1 is, say in the case h(x) ≤ h(y) − κ, that a geodesic segment travels

�rst along a copy of the componentHq (which is upside down) as a geodesic in it, and last travels along

a copy of the component Hp as a geodesic in it.

To prove Theorem 1.1 we need to control the lengths of the geodesics’ projections on Hp and Hq .

This work is done in section 3. The relative distance is de�ned as the distance minus the di�erence

of height, it can be understood as the distance on horospheres. We �rst exhibit that in a hyperbolic

space the maximal height of a geodesic segment and the relative distance between the end points of

that geodesic segment are tightly related. We also have a lower bound on the length of paths avoiding

horoballs as in Proposition 1.6 p400 of [2, Bridson, Hae�iger]. Then we re�ne this last result into a con-

trol on the length of paths which avoid horoballs and which reach a given point. Since the projections

on Hp and Hq of geodesics inH are such paths, Theorem 1.1 follows.

This result leads us to show the existence of unextendabled geodesics, which are called dead-ends. This

was well known for lamplighter groups. This description of geodesic segments also allows us to prove

that for any geodesic ray k of H = Hp & Hq , there exists a vertical geodesic ray at �nite Hausdor�

distance. Therefore we classify all possible shapes for geodesic lines and then give a description of the

visual boundary ofH. The notion of Hp-type and Hq-type geodesics at scale κ are described in De�ni-

tion 5.10 and illustrated on Figure 2. They are essentially geodesics ofH in a constant κ-neighbourhood

of geodesics in a copy of Hp or in a copy of Hq in H. We show that the geodesic lines of Hp &Hq are

either Hp-type, Hq-type or both.

Theorem 1.2. Let δ ≥ 1 and let N be an admissible norm. Let Hp and Hq be two proper, geodesically
complete, δ-hyperbolic, Busemann spaces. Let H = Hp &Hq be the horospherical product of Hp and Hq .
Then there exists κ ≥ 0 depending only on δ and N such that for all geodesic α ∶ R → H of (H, dH,N) at
least one of the two following statements holds.
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Figure 2: Di�erent type of geodesics inH =Hp &Hq .

1. α is a Hp-type geodesic at scale κ ofH

2. α is a Hq-type geodesic at scale κ ofH
If a geodesic is both Hp-type and Hq-type at scale κ, it is in the κ-neighbourhood of a vertical

geodesic of Hp &Hq .

The notion of visual boundary of H2 &H2
is presented in the work of Troyanov in [12, Troyanov]

through several de�nitions of horizons. We expand the de�nition and the description of the visual

boundary in the general case of horospherical products as follows. Two geodesics are called asymptotic

if they are at �nite Hausdor� distance from each other. Let o ∈ H, the visual boundary of H is then

denoted by ∂o(H) and stands for the set of families of asymptotic geodesic rays starting at o. We have:

Theorem 1.3. Let δ ≥ 1 and letHp andHq be two proper, geodesically complete, δ-hyperbolic, Busemann
spaces. We �x base points and directions on Hp and Hq as follows, (wp, ap) ∈ Hp × ∂Hp, (wq, aq) ∈
Hq × ∂Hq . LetH =Hp &Hq be the horospherical product with respect to (wp, ap) and (wq, aq). Then the
visual boundary ofH with respect to a given point o = (op, oq) is:

∂oH =((∂Hp ∖ {ap}) × {aq})⋃({ap} × (∂Hq ∖ {aq}))

=((∂Hp × {aq})⋃({ap} × ∂Hq)) ∖ {(ap, aq)}

This last result is similar to the Proposition 6.4 of [12, Troyanov]. However, unlike Troyanov in

his work, we are focusing on minimal geodesics and not on local ones. One can see that this visual

boundary neither depends on the chosen admissible norm N nor the base point o.

The �gures of this paper depict lemmas and theorems when the two components Hp and Hq are hy-

perbolic planes H2
, hence when H = Hp &Hq is the SOL geometry. In the 2 dimensional �gures, we

picture the vertical geodesics as getting closer when going upward since the distance contracts in this

direction. In the 3 dimensional case we picture the vertical geodesics as straight lines in order to match

with their shapes in the SOL geometry.

The paper is organised with �rst Section 2 which presents Gromov hyperbolic spaces, the notion of

vertical geodesics in them and the impact of the Busemann hypothesis on the vertical geodesics. Then

Section 3 provides us with an estimate on the length of paths avoiding horoballs in hyperbolic spaces,

namely Lemma 3.8, which will be central in our control of the distances in H. In Section 4 we de�ne

the horospherical products and give an estimate of their distance through Corollary 4.17. We hence

discuss the fact that an entire family of distances are close to each others in H. Last, in Section 5, we

prove our three main results. Theorem 1.1 follows from the estimates of Corollary 4.17 on the length

of geodesic segments. The description of geodesic lines of Theorem 1.2 follows from Theorem 1.1 and

gives us the tools to prove Theorem 1.3.
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2 Context

2.1 Gromov hyperbolic spaces

The goal of this section is to recall what is a Gromov hyperbolic space and what are vertical geodesics

in such a space. Let H be a proper geodesic metric space, and d be a distance on H . A geodesic line of

H is the isometric image of an Euclidean line in H . A geodesic ray of a metric space H is the isometric

image of a half Euclidean line in H . A geodesic segment of a metric space H is the isometric image of

an Euclidean interval in H . By slight abuse, we will call geodesic, geodesic ray or geodesic segment, a

map α ∶ I →H which parametrises our given geodesic by arclength.

Let δ ≥ 0 be a non-negative number. Let x, y and z be three points of H . The geodesic triangle

[x, y] ∪ [y, z] ∪ [z, x] is called δ-slim if any of its sides is included in the δ-neighbourhood of the re-

maining two. The metric space H is called δ-hyperbolic if every geodesic triangle is δ-slim. A metric

space H is called Gromov hyperbolic if there exists δ ≥ 0 such that H is a δ-hyperbolic space.

An important property of Gromov hyperbolic spaces is that they admit a nice compacti�cation. In-

deed the Gromov boundary allows that. We call two geodesic rays of H equivalent if their images are

at �nite Hausdor� distance. Let o ∈ H be a base point. We de�ne ∂oH the Gromov boundary of H as

the set of families of equivalent rays starting from o. In fact, the boundary ∂oH does not depend on the

base point o, hence we will simply denote it by ∂H . For more details, see [10, Ghys, De La Harpe] or

chap.III H p.399 of [2, Bridson, Hae�iger].

2.2 Vertical geodesics with respect to a boundary point

In this section we �x δ ≥ 0, H a proper geodesic δ-hyperbolic space, w ∈ H a base point and a ∈ ∂H
a point on the boundary of H . We recall the de�nition of Busemann function �rstly presented in the

introduction.

∀ x ∈H, βa(x,w) = sup{lim sup
t→+∞

(d(x, k(t)) − t) ∣ k ∈ a, starting from w}.

We want a notion of height on our hyperbolic spaces, a number tending to +∞ when following a

selected direction. It is the reason why we de�ne the height on H as the opposite of the Busemann

function.

De�nition 2.1 (height with respect to a ∈ ∂H and w ∈ H). Let a ∈ ∂H be a direction in H and let
w ∈H be a base point. Then we de�ne:

∀x ∈H, h(a,w)(x) = −βa(x,w).

Let us write Proposition 2 chap.8 p.136 of [10, Ghys, De La Harpe] with our notations.

Proposition 2.2 ([10], chap.8 p.136). Let H be a hyperbolic proper geodesic metric space. Let a ∈ ∂H
and w ∈H , then:

1. lim
x→a

h(a,w)(x) = +∞

2. lim
x→b

h(a,w)(x) = −∞, ∀b ∈ ∂H ∖ {a}

3. ∀x, y, z ∈H, ∣βa(x, y) + βa(y, z) − βa(x, z)∣ ≤ 200δ.

Furthermore, a geodesic ray is in a ∈ ∂H if and only if its height tends to +∞.

Corollary 2.3. Let H be a hyperbolic proper geodesic metric space. Let a ∈ ∂H and w ∈ H , and let
α ∶ [0,+∞[→H be a geodesic ray. The two following properties are equivalent:
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1. lim
t→+∞

h(a,w)(α(t)) = +∞

2. α([0,+∞[) ∈ a.

Proof. As for any geodesic ray α ∶ [0,+∞[→ H there exists b ∈ ∂H such that α([0,+∞[) ∈ b, this

proposition is a particular case of Proposition 2.2.

We will picture our hyperbolic spaces in a way similar to the Log model for the hyperbolic plane.

We send a ∈ ∂H upward to in�nity and ∂H ∖ {a} downward to in�nity. We then call vertical the

geodesic rays that are in the equivalence class a.

De�nition 2.4 (Vertical geodesics with repsect to a ∈ ∂H). A geodesic of H which satis�es one of the
properties of Corollary 2.3 is called a vertical geodesic relatively to the point a.

An important property of the height is to be Lipschitz.

Proposition 2.5. Let a ∈ ∂H and w ∈H . The height function ha ∶= −βa(⋅,w) is Lipschitz:

∀x, y ∈H, ∣h(a,w)(x) − h(a,w)(y)∣ ≤ d(x, y).

Proof. By using the triangular inequality we have for all x, y ∈H :

−h(a,w)(x) = βa(x,w) = sup{lim sup
t→+∞

(d(x, k(t)) − t) ∣ k vertical rays starting at w}

≤ d(x, y) + sup{lim sup
t→+∞

(d(y, k(t)) − t) ∣ k vertical rays starting at w}

≤ d(x, y) + βa(y,w) ≤ d(x, y) − h(a,w)(y).

The result follows by exchanging the roles of x and y.

From now on, we �x a given a ∈ ∂H and a given w ∈H . Therefore we simply denote the height by

h instead of h(a,w).

Proposition 2.6. Let α be a vertical geodesic ofH . We have the following control on the height along α:

∀t1, t2 ∈ R, t2 − t1 − 200δ ≤ h(α(t2)) − h(α(t1)) ≤ t2 − t1 + 200δ.

Proof. Let t1, t2 ∈ R, then:

h(α(t2)) − h(α(t1)) = β(α(t1),w) − β(α(t2),w)

= β(α(t1), α(t2)) − (β(α(t2),w) − β(α(t1),w) + β(α(t1), α(t2))).

The third point of Proposition 2.2 applied to the last bracket gives:

β(α(t1), α(t2)) − 200δ ≤ h(α(t2)) − h(α(t1)) ≤ β(α(t1), α(t2)) + 200δ. (1)

Since t↦ α(t + t2) is a vertical geodesic starting at α(t2) we have:

β(α(t1), α(t2)) = sup{ lim sup
t→+∞

(d(α(t1), k(t)) − t)∣k vertical rays starting at α(t2)}

≥ lim sup
t→+∞

(d(α(t1), α(t + t2)) − t)

≥ lim sup
t→+∞

(∣t + t2 − t1∣ − t) ≥ t2 − t1, for t large enough.

Using this last inequality in inequality (1) we get t2 − t1 − 200δ ≤ h(α(t2)) − h(α(t1)). The result

follows by exchanging the roles of t1 and t2.
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Using Proposition 2.6 with t1 = 0 and t2 = t, the next corollary holds.

Corollary 2.7. Let α be a vertical geodesic parametrised by arclength and such that h(α(0)) = 0. We
have:

∀t ∈ R, ∣h(α(t)) − t∣ ≤ 200δ.

In the sequel we want to apply the slim triangles property on ideal triangles, hence we need the

following result of [3, Coornaert, Delzant, Papadopoulos].

Property 2.8 (Proposition 2.2 page 19 of [3]). Let a, b and c be three points of X ∪ ∂X . Let α,β, γ be
three geodesics of X linking respectively b to c, c to a, and a to b. Then every point of α is at distance less
than 24δ from the union β ∪ γ.

2.3 Busemann spaces

We recall here some material from Chap.8 and Chap.12 of [11, Papadopoulos] about Busemann spaces.

Busemann spaces are metric spaces where the distance between geodesics are convex functions. To

make it more precise, a metric space X is called Busemann if it is geodesic, and if for every pair of

geodesics parametrized by arclength γ ∶ [a, b] → X and γ′ ∶ [a′, b′] → X , the following function is

convex:

Dγ,γ′ ∶ [a, b] × [a′, b′] →X

(t, t′) ↦ dX(γ(t), γ′(t′)).

As an example, all CAT (0) spaces are Busemann spaces. However, being CAT (0) is stronger than

being Busemann convex by Theorem 1.3 of [9, Foertsch, Lytchak, Schroeder]. As an example, strictly

convex Banach spaces are all Busemann spaces, but they are CAT (0) if and only if they are Hilbert

spaces. Something interesting in Busemann spaces is that two points are always linked by a unique

geodesic (see 8.1.4 p.203 of Papadopoulos [11, Papadopoulos] for further details). The next proposition

gives us informations on the height functions.

Property 2.9 (Prop. 12.1.5 in p.263 of Papadopoulos [11]). Let δ ≥ 0 be a non negative number. Let H
be a proper δ-hyperbolic, Busemann space. For every geodesic α, the function t↦ −h(α(t)) is convex.

From now on,H will be a proper, Gromov hyperbolic, Busemann space. The Busemann hypothesis

implies that the height along geodesic behaves nicely. This means that we can drop the constant 200δ
from Corollary 2.7. It is the main reason why we require our spaces to be Busemann spaces.

Proposition 2.10. Let H be a δ-hyperbolic and Busemann space and let V be a path of H . Then V is a
vertical geodesic if and only if ∃c ∈ R such that ∀t ∈ R, h(V (t)) = t + c.

Proof. Let V be a vertical geodesic in H . By Property 2.9 we have that t ↦ −h(V (t)) is convex.

Furthermore, from Corollary 2.7, we get ∣h(V (t)) − t∣ ≤ 200δ. Thereby the bounded convex function

t↦ t − h(V (t)) is constant. Then there exists a real number c such that ∀t ∈ R, h(V (t)) = t + c.
We now assume that there exists a real number c such that ∀t ∈ R, h(V (t)) = t + c. Therefore, for

all real numbers t1 and t2 we have d(V (t1), V (t2)) ≥ ∆h(V (t1), V (t2)) = ∣t1 − t2∣. By de�nition V

is a connected path, hence ∣t1 − t2∣ ≥ d(V (t1), V (t2)) which implies with the previous sentence that

∣t1 − t2∣ = d(V (t1), V (t2)), then V is a geodesic. Furthermore lim
t→+∞

h(V (t)) = +∞, which implies by

de�nition that V is a vertical geodesic.

A metric space is called geodesically complete if all its geodesic segments can be prolonged into

geodesic lines. By adding the hypothesis of geodesically completeness on a hyperbolic Busemann space

H we get that any point of H is included in a vertical geodesic line.

Property 2.11. LetH be a δ-hyperbolic Busemann geodesically complete space. Then for all x ∈H there
exists a vertical geodesic Vx ∶ R→H such that Vx contains x
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Proof. Let us consider in this proof w ∈H and a ∈ ∂H , from which we constructed the height h of our

space H . Then by de�nition we have h(a,w) = h. Proposition 12.2.4 of [11, Papadopoulos] ensures the

existence of a geodesic ray Rx ∈ a starting at x. Furthermore as H is geodesically complete Rx can be

prolonged into a geodesic Vx ∶ R→H such that Vx([0;+∞[) ∈ a. Hence Vx is a vertical geodesic from

De�nition 2.4.

In this section we de�ned all the objects we will use in hyperbolic spaces. We will now focus on

proving length estimates on speci�c paths. They will appear in Section 4 as the projection of geodesics

in a horospherical product.

3 Metric estimates in Gromov hyperbolic Busemann spaces

3.1 Metric description of geodesics

This section focuses on length estimates in Gromov hyperbolic Busemann spaces. The central result

is Lemma 3.8, which present a lower bound on the length of a path staying between two horospheres.

Before moving to the technical results of this section, let us introduce some notations.

Notation 3.1. Unless otherwise speci�ed,H will be a Gromov hyperbolic Busemann geodesically complete
proper space. Let γ ∶ I →H be a connected path. Let us denote the maximal height and the minimal height
of this path as follows:

h+(γ) = sup
t∈I

{h(γ(t))},

h−(γ) = inf
t∈I

{h(γ(t))}.

Let x and y be two points of H , we denote the height di�erence between them by:

∆h(x, y) = ∣h(x) − h(y)∣.

We de�ne the relative distance between two points x and y of H as:

dr(x, y) = d(x, y) −∆h(x, y).

Let us denote Vx a vertical geodesic containing x, we will consider it to be parametrised by arclength.
Thanks to Proposition 2.10 we choose a parametrisation by arclength such that ∀t ∈ R, h(Vx(t)) = t + 0.

The relative distance between two points quanti�es how far a point is from the nearest vertical

geodesic containing the other point. Next lemma tells us that in order to connect two points a geodesic

needs to go su�ciently high. This height is controlled by the relative distance between those two

points.

Lemma 3.2. LetH be a δ-hyperbolic and Busemann metric space, let x and y be two elements ofH such
that h(x) ≤ h(y), and let α be a geodesic linking x to y. Let us denote z = α (∆h(x, y) + 1

2dr(x, y)),
x1 ∶= Vx (h(y) + 1

2dr(x, y)) the point of Vx at height h(y) +
1
2dr(x, y) and y1 ∶= Vy (h(y) + 1

2dr(x, y))
the point of Vy at the same height h(y) + 1

2dr(x, y). Then we have:

1. h+(α) ≥ h(y) + 1
2dr(x, y) − 96δ

2. d (z, x1) ≤ 144δ

3. d (z, y1) ≤ 144δ

4. d (x1, y1) ≤ 288δ.
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Figure 3: Proof of Lemma 3.2

Proof. The lemma and its proof are illustrated on Figure 3. Following Property 2.8, the triple of geodesics

α, Vx and Vy is a 24δ-slim triangle. Since the sets {t ∈ [0, d(x, y)]∣d(α(t), Vx) ≤ 24δ} and {t ∈
[0, d(x, y)]∣d(α(t), Vy) ≤ 24δ} are closed sets covering [0, d(x, y)], their intersection is non empty.

Hence there exists t0 ∈ [0, d(x, y)], x2 ∈ Vx and y2 ∈ Vy such that d(α(t0), x2) ≤ 24δ and d(α(t0), y2) ≤
24δ. Let us �rst prove that t0 is close to ∆h(x, y) + 1

2dr(x, y). By the triangular inequality we have

that:

∣t0 − d(x,x2)∣ = ∣d(x,α(t0)) − d(x,x2)∣ ≤ d(x2, α(t0)) ≤ 24δ.

Let us denote x3 ∶= Vx(h(x) + t0) the point of Vx at height h(x) + t0, and y3 = Vy(h(y) + d(x, y) − t0)
the point of Vy at height h(y) + d(x, y) − t0. Then by the triangular inequality:

d(α(t0), x3) ≤ d(α(t0), x2) + d(x2, x3) = d(α(t0), x2) + ∣d(x,x2) − d(x,x3)∣
≤ d(α(t0), x2) + ∣d(x,x2) − t0∣ ≤ 48δ. (2)

In the last inequality we used that d(x,x3) = t0, which holds by the de�nition of x3. We show in the

same way that d(α(t0), y3) ≤ 48δ. By the triangular inequality we have d(x3, y3) ≤ 96δ. As the height

function is Lipschitz we have ∆h(x3, y3) ≤ d(x3, y3) ≤ 96δ, which provides us with:

∣1
2
dr(x, y) +∆h(x, y) − t0∣ =

1

2
∣dr(x, y) +∆h(x, y) + h(y) − h(x) − 2t0∣

= 1

2
∣h(y) + d(x, y) − t0 − (h(x) + t0)∣ =

1

2
∆h(x3, y3) ≤

96δ

2
≤ 48δ. (3)

In particular it gives us that d(z,α(t0)) ≤ 48δ. We are now ready to prove the �rst point using inequal-

ities (2) and (3):

h+(α) ≥h(α(t0)) ≥ h(x3) −∆h(α(t0), x3) ≥ h(x) + t0 − 48δ

≥h(x) + 1

2
dr(x, y) +∆h(x, y) − 96δ ≥ h(y) + 1

2
dr(x, y) − 96δ, as we have h(x) ≤ h(y).

The second point of our lemma is proved by the sequel:

d(z, x1) ≤ d(z,α(t0)) + d(α(t0), x1) ≤ 48δ + d(α(t0), x3) + d(x3, x1)

≤ 96δ + ∣t0 + h(x) − (1

2
dr(x, y) + h(y))∣ = 96δ + ∣t0 − (∆h(x, y) + 1

2
dr(x, y))∣ ≤ 144δ.

The proof of 3. is similar, and 4. is obtained from 2. and 3. by the triangular inequality.
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The next lemma shows that in the case where h(x) ≤ h(y) a geodesic linking x to y is almost

vertical until it reaches the height h(y).

Lemma 3.3. Let H be a δ-hyperbolic and Busemann space. Let x and y be two points of H such that
h(x) ≤ h(y). We de�ne x′ ∶= Vx(h(y)) to be the point of the vertical geodesic Vx at the same height as y.
Then:

∣dr(x, y) − d(x′, y)∣ ≤ 54δ. (4)

Proof. Since H is δ-hyperbolic, the geodesic triangle [x, y] ∪ [y, x′] ∪ [x′, x] is δ-slim. Then there

exists p1 ∈ [x,x′], p2 ∈ [x′, y] and m ∈ [x, y] such that d(p1,m) ≤ δ and d(p2,m) ≤ δ. Hence,

h−([x′, y]) − δ ≤ h(m) ≤ h+([x,x′]) + δ. Let Rx′ and Ry be two vertical geodesic rays respectively

contained in Vx and Vy and respectively starting at x′ and y. Then Property 2.8 used on the ideal

triangle Rx ∪Ry ∪ [x′, y] implies that h−([x′, y]) ≥ h(y) − 24δ, therefore we have h+([x,x′]) = h(y).

Then h(y) − 25δ ≤ h(m) ≤ h(y) + δ holds. It follows that m and x′ are close to each other:

d(m,x′) ≤ d(m,p1) + d(p1, x
′) ≤ δ +∆h(p1, x

′) ≤ δ +∆h(p1,m) +∆h(m,y) +∆h(y, x′)
≤ δ + d(p1,m) + 25δ + 0 ≤ 27δ. (5)

Then we give an estimate on the distance between x and m:

∣d(x,m) −∆h(x, y)∣ = ∣d(x,m) − d(x,x′)∣ ≤ d(m,x′) ≤ 27δ. (6)

However dr(x, y) = d(x, y) −∆h(x, y) and d(x, y) = d(x,m) + d(m,y), therefore:

dr(x, y) = d(x,m) + d(m,y) −∆h(x, y). (7)

Combining inequalities (6) and (7) we have ∣dr(x, y) − d(m,y)∣ ≤ 27δ. Then:

∣dr(x, y) − d(x′, y)∣ ≤ 27δ + d(x′,m) ≤ 54δ.

The lemmas of this last section allow us to prove the estimate lemmas of the next one.

3.2 Length estimate of paths avoiding horospheres

Consider a path γ and a geodesic α that links the two same points of a proper, Gromov hyperbolic,

Busemann space. We prove in this section that if the height of γ does not reach the maximal height of

the geodesic α, then γ is much longer than α. Furthermore, its length increases exponentially on the

di�erence of maximal height between γ and α. To do so we need Proposition 1.6 p400 of [2, Bridson,

Hae�iger]. We denote by l(c) the length of a path c.

Proposition 3.4 ([2]). Let X be a δ-hyperbolic geodesic space. Let c be a continuous path in X. If [p, q]
is a geodesic segment connecting the endpoints of c, then for every x ∈ [p, q]:

d(x, im(c)) ≤ δ∣ log2 l(c)∣ + 1.

This result implies that a path of H between x and y which avoids the ball centred in the middle of

a geodesic [x, y] has length greater than an exponential in the distance d(x, y). From now on we will

add as convention that δ ≥ 1. For all δ1 ≤ δ2 a δ1-slim triangle is also δ2-slim, hence all δ1-hyperbolic

spaces are δ2-hyperbolic spaces. That is why we can assume that all Gromov hyperbolic spaces are δ-

hyperbolic with δ ≥ 1. It allows us to consider
1
δ as a well de�ned term, we hence avoid di�erent cases

in the proof of the following lemma. We also use this assumption to simplify constants appearing in

the proof. The next result is a similar control on the length of path as Proposition 3.4, but we consider

that the path is avoiding a horosphere instead of avoiding a ball in H .
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Figure 4: Proof of Lemma 3.5

Lemma 3.5. Let δ ≥ 1 and H be a proper, δ-hyperbolic, Busemann space. Let x and y ∈ H and let Vx
(respt. Vy) be a vertical geodesic containing x (respt. y). Let us consider t0 ≥ max(h(x), h(y)) and let us
denote x0 ∶= Vx(t0) and y0 ∶= Vy(t0). Assume that d(x0, y0) > 768δ.
Then for all connected path γ ∶ [0, T ] →H such that γ(0) = x, γ(T ) = y and h+(γ) ≤ h(x0) we have:

l(γ) ≥ ∆h(x,x0) +∆h(y, y0) + 2−3862
1
2δ
d(x0,y0) − 24δ. (8)

For trees when δ = 0 this Lemma still makes sense. Indeed, if δ tends to 0 then the length of the

path described in this Lemma tends to in�nity, which is consistent with the fact that such a path does

not exist in trees. The proof would use the fact that in Proposition 3.4 we have d(x, im(c)) = 0 when

δ = 0 since 0-hyperbolic spaces are real trees.

Proof. One can follow the idea of the proof on Figure 4. We will consider γ to be parametrised by

arclength. Let B(x,∆h(x0, x)) ⊂ H be the ball of radius h(x0) − h(x) centred on x, and let m ∈
B(x,∆h(x0, x)) be a point in this ball. Then:

dr(m,x) = d(m,x) −∆h(m,x) ≤ ∆h(x,x0) −∆h(m,x) ≤ ∆h(x0,m).

Let us �rst assume that h(m) ≥ h(x), then:

h(m) + dr(m,x)
2

≤ h(m) + ∆h(x0,m)
2

≤ h(m) + h(x0) − h(m)
2

= h(x0)
2

+ h(m)
2

≤ h(x0). (9)

By Lemma 3.2 we have:

d(Vx (h(m) + dr(m,x)
2

) , Vm (h(m) + dr(m,x)
2

)) ≤ 288δ.

We now assume that h(m) ≤ h(x), then:

h(x) + dr(x,m)
2

≤ h(x) + d(x,m)
2

≤ h(x) + ∆h(x,x0)
2

≤ h(x0).
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Then Lemma 3.2 provides:

d(Vx (h(x) +
dr(m,x)

2
) , Vm (h(x) + dr(m,x)

2
)) ≤ 288δ.

SinceH is a Busemann space, the function t→ d(Vx(t), Vm(t)) is convex. Furthermore t→ d(Vx(t), Vm(t))
is bounded on [0;+∞[ asH is Gromov hyperbolic, hence t→ d(Vx(t), Vm(t)) is a non increasing func-

tion. Therefore both cases h(m) ≤ h(x) and h(x) ≤ h(m) give us that:

d(x0, Vm (h(x0)) ) = d(Vx (h(x0)) , Vm(h(x0))) ≤ 288δ. (10)

In other words, all points of B(x,∆h(x0, x)) belong to a vertical geodesic passing nearby x0. By the

same reasoning we have ∀n ∈ B(y,∆h(y0, y)) :

d(y0, Vn (h(y0)) ) ≤ 288δ. (11)

Then by the triangular inequality:

d(Vm(h(x0)), Vn(h(y0))) ≥ −d(x0, Vm (h(x0)) ) + d(x0, y0) − d(y0, Vn (h(y0)) )

≥ 768δ − 288δ − 288δ ≥ 192δ. (12)

Speci�cally d(Vm(h(x0)), Vn(h(y0))) = d(Vm(h(x0)), Vn(h(x0))) > 0 which implies that m ≠ n.

Then B(x,∆h(x0, x)) ∩B(y,∆h(y0, y)) = ∅. By continuity of γ we deduce the existence of the two

following times tx ≤ ty such that:

tx = inf{t ∈ [0, T ] ∣ d(γ(t), x) = ∆h(x,x0)},
ty = sup{t ∈ [0, T ] ∣ d(γ(t), y) = ∆h(y, y0)}.

In order to have a lower bound on the length of γ we will need to split this path into three parts:

γ = γ∣[0,tx] ∪ γ∣[tx,ty] ∪ γ∣[ty ,T ].

As γ is parametrised by arclength and d(γ(0), γ(tx)) = ∆h(x,x0) we have that:

l (γ∣[0,tx]) ≥ ∆h(x,x0). (13)

For similar reasons we also have:

l (γ∣[ty ,T ]
) ≥ ∆h(y, y0). (14)

We will now focus on proving a lower bound for the length of γ∣[tx,ty].

We want to construct a path γ′ joining x1 = Vγ(tx)(h(x0)) to y1 = Vγ(ty)(h(x0)), that stays below

h(x0) and such that γ∣[tx,ty] is contained in γ′. Let x1 ∶= Vγ(tx)(h(x0)) and y1 ∶= Vγ(ty)(h(x0)). We

construct γ′ by gluing paths together:

γ′ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Vγ(tx) from x1 to γ(tx)
γ from γ(tx) to γ(ty)
Vγ(ty) from γ(ty) to y1

Applying inequalities (10) and (11) used on γ(tx) and γ(ty) we get:

d(x0, x1) ≤ 288δ, (15)

d(y0, y1) ≤ 288δ. (16)
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In order to apply Proposition 3.4 to γ′ we need to check that there exists a point A of the geodesic

segment [x1, y1] such that h(A) ≥ h(x0). Applying Lemma 3.2 to [x1, y1] and since h(x1) = h(y1) we

get:

h+([x1, y1]) ≥
dr(x1, y1)

2
+ h(x0) − 96δ = d(x1, y1)

2
+ h(x0) − 96δ.

Thanks to the triangular inequality and inequalities (15) and (16):

h+([x1, y1]) ≥
d(y0, x0) − d(x0, x1) − d(y0, y1)

2
+ h(x0) − 96δ ≥ d(x0, y0)

2
+ h(x0) − 384δ.

Since by hypothesis d(x0, y0) > 768δ, there exists a point A of [x1, y1] exactly at the height:

h(A) = d(x0, y0)
2

+ h(x0) − 384δ.

We can then apply Proposition 3.4 to get:

δ∣ log2(l(γ′))∣ + 1 ≥ d(A,γ′) ≥ ∆h(A,x0) ≥
d(x0, y0)

2
+ h(x0) − 384δ − h(x0)

≥ d(x0, y0)
2

− 384δ.

Since δ ≥ 1, last inequality implies that l(γ′) ≥ 2−3852
1
2δ
d(x0,y0)

. Now we use this inequality to have a

lower bound on the length of γ∣[tx,ty]:

l(γ∣[tx,ty]) ≥ l(γ
′) −∆h(γ(tx), x0) −∆h(γ(ty), y0)

≥ 2−3852
1
2δ
d(x0,y0) −∆h(γ(tx), x0) −∆h(γ(ty), y0). (17)

We claim that l (γ∣[tx,ty]) ≥ ∆h(γ(tx), x0) +∆h(γ(ty), y0) − 48δ, hence:

l (γ∣[tx,ty]) ≥ 2−3862
1
2δ
d(x0,y0) − 24δ, (18)

which ends the proof by combining inequality (18) with inequalities (13) and (14).

Proof of the claim. Inequality (12) withm = γ(tx) and n = γ(ty) gives d(x1, y1) ≥ 192δ. We want to

prove that h+([γ(tx), γ(ty)]) ≥ h(x1)−24δ. First, by Lemma 2.8 we have that [γ(tx), γ(ty)]∪Vγ(tx)∪
Vγ(ty) is a 24δ-slim triangle. Then there exist three times t0, t1 and t2 such that d (Vγ(tx)(t1), γ(t0)) ≤
24δ and such that d (Vγ(ty)(t2), γ(t0)) ≤ 24δ. Then:

∣t1 − t2∣ = ∆h (Vγ(tx)(t1), Vγ(ty)(t2)) ≤ d (Vγ(tx)(t1), Vγ(ty)(t2))
≤ d (Vγ(tx)(t1), γ(t0)) + d (γ(t0), Vγ(ty)(t2)) ≤ 48δ. (19)

We will show by contradiction that either t1 = h(Vγ(tx)(t1)) ≥ h(x0) or t2 = h(Vγ(ty)(t2)) ≥ h(x0).

Assume that t1 < h(x0) and t2 < h(x0). Then by the triangular inequality:

d(Vγ(tx)(t1), Vγ(ty)(t2)) ≥ d(Vγ(ty)(t2), Vγ(tx)(t2)) − d(Vγ(tx)(t2), Vγ(tx)(t1))
≥ d(Vγ(ty)(t2), Vγ(tx)(t2)) − 48δ, since ∣t1 − t2∣ ≤ 48δ by equation (19).

As H is a Busemann space, the function t ↦ d(Vγ(tx)(t), Vγ(ty)(t)) is non increasing. Furthermore,

h(x0) ≥ t2 hence:

48δ ≥ d(Vγ(tx)(t1), Vγ(tx)(t2)) ≥ d(Vγ(tx)(t2), Vγ(ty)(t2)) − 48δ

≥ d(Vγ(tx)(h(x0)), Vγ(ty)(h(x0))) − 48δ ≥ d(x1, y1) − 48δ

≥ d(x0, y0) − d(x0, x1) − d(y0, y1) − 48δ ≥ d(x0, y0) − 624δ, by inequalities (15) and (16),
≥ 49δ, since d(x0, y0) ≥ 768δ by hypothesis,
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Figure 5: Proof of Lemma 3.6

which is impossible. Therefore t1 ≥ h(x0) or t2 ≥ h(x0). We assume without loss of generality that

t1 ≥ h(x0), then:

∆h(γ(t0), Vγ(tx)(t1)) ≤ d(γ(t0), Vγ(tx)(t1)) ≤ 24δ,

which implies:

h+([γ(tx), γ(ty)]) ≥ h(γ(t0)) ≥ h (Vγ(tx)(t1)) −∆h(γ(t0), Vγ(tx)(t1)) ≥ h(x0) − 24δ,

and gives us:

l (γ∣[tx,ty]) ≥ h
+([γ(tx), γ(ty)]) − h(γ(tx)) + h+([γ(tx), γ(ty)]) − h(γ(ty))

≥ h(x0) − 24δ − h(γ(tx)) + h(x0) − 24δ − h(γ(ty))
≥ ∆h(γ(tx), x0) +∆h(γ(ty), y0) − 48δ. (20)

Next lemma shows that we are able to control the relative distance of a couple of points travelling

along two vertical geodesics.

Lemma 3.6 (Backwards control). Let δ ≥ 0 andH be a proper, δ-hyperbolic, Busemann space. Let V1 and
V2 be two vertical geodesics ofH . Then for all couple of times (t1, t2) and for all t ∈ [0, 1

2dr(V1(t1), V2(t2))]:

∣dr (V1 (t1 +
1

2
dr(V1(t1), V2(t2)) − t) , V2 (t2 +

1

2
dr(V1(t1), V2(t2)) − t)) − 2t∣ ≤ 288δ.

Proof. To simplify the computations, we use the following notation, D ∶= t2 + 1
2dr(V1(t1), V2(t2))

and ∆ = ∣t1 − t2∣. The term ∆ is the di�erence of height between V1(t1) and V2(t2) since vertical

geodesics are parametrised by their height. Then we have to prove that ∀t ∈ [0, 1
2dr(V1(t1), V2(t2))],

∣dr(V1(D−∆−t), V2(D−t))−2t∣ ≤ 288δ. We can assume without loss of generality that t1 ≤ t2. Lemma

3.2 applied with x = V1(t1) and with y = V2(t2) gives us d(V1(D), V2(D)) ≤ 288δ. Furthermore, the

relative distance is smaller than the distance, hence dr(V1(D), V2(D)) ≤ 288δ. Now if we move the
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two points backward from V1(D −∆) and V2(D) along V1 and V2, we have for t ∈ [0,D]:

dr(V1(D −∆ − t), V2(D − t)) =d(V1(D −∆ − t), V2(D − t)) −∆ (21)

≤d(V1(D −∆ − t), V1(D −∆)) + d(V1(D −∆), V2(D))
+ d(V2(D), V2(D − t)) −∆,

furthermore V1 and V2 are geodesics, then:

≤t + d(V1(D −∆), V1(D)) + d(V1(D), V2(D)) + t −∆

≤t +∆ + 288δ + t −∆ ≤ 2t + 288δ. (22)

Let us consider a geodesic α between V1(t1) and V2(t2). Since H is a Busemann space, and thanks to

Lemma 3.2 we have d (V1(D −∆ − t), α(D −∆ − t1 − t)) ≤ 144δ and d (V2(D − t), α(D − t1 + t)) ≤
144δ. Then the second part of our inequality follows:

dr(V1(D −∆ − t), V2(D − t)) =d(V1(D −∆ − t), V2(D − t)) −∆

≥d(α(D −∆ − t1 − t), α(D − t1 + t))
− d(V1(D −∆ − t), α(D −∆ − t1 − t))
− d(V2(D − t), α(D − t1 + t)) −∆

≥d(α(D −∆ − t1 − t), α(D − t1 + t)) − 288δ −∆

≥2t +∆ − 288δ −∆ ≥ 2t − 288δ. (23)

The next lemma is a slight generalisation of Lemma 3.5. The di�erence is we control the length of

a path with its maximal height instead of the distance between the projection of its extremities on a

horosphere.

Lemma 3.7. Let δ ≥ 1 and H be a proper, δ-hyperbolic, Busemann space. Let x, y ∈ H such that h(x) ≤
h(y). Let α be a path connecting x to y with h+(α) ≤ h(y)+ 1

2dr(x, y)−∆H and where ∆H is a positive
number such that ∆H > 555δ. Then:

l(α) ≥ d(x, y) + 2−5302
1
δ

∆H − 2∆H − 24δ.
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Proof. This proof is illustrated on Figure 6. Since h+(α) ≥ h(y) we have that
1
2dr(x, y) ≥ ∆H . Apply-

ing Lemma 3.6 with V1 = Vx, V2 = Vy , t1 = h(x), t2 = h(y) and t = ∆H we have:

∣dr (Vx (h(x) +
1

2
dr(x, y) −∆H) , Vy (h(y) +

1

2
dr(x, y) −∆H)) − 2∆H∣ ≤ 288δ.

Then we have:

dr (Vx (h(x) +
1

2
dr(x, y) −∆H) , Vy (h(y) +

1

2
dr(x, y) −∆H)) ≥ 2∆H − 288δ.

Furthermore, Lemma 3.3 applied on Vx (h(x) + 1
2dr(x, y) −∆H) and Vy (h(y) + 1

2dr(x, y) −∆H)
gives (notice that the only di�erence between the two sides of the following inequality is the height in

the vertical geodesic Vx):

dr (Vx (h(x) +
1

2
dr(x, y) −∆H) , Vy (h(y) +

1

2
dr(x, y) −∆H))

≤ d(Vx (h(y) +
1

2
dr(x, y) −∆H) , Vy (h(y) +

1

2
dr(x, y) −∆H)) + 54δ.

Then:

d(Vx (h(y) +
1

2
dr(x, y) −∆H) , Vy (h(y) +

1

2
dr(x, y) −∆H)) ≥ 2∆H − 342δ > 768δ. (24)

Let us denote t0 = h(y)+ 1
2dr(x, y)−∆H . Thanks to inequality (24) the hypothesis of Lemma 3.5 holds

with x0 = Vx (h(y) + 1
2dr(x, y) −∆H) and y0 = Vy (h(y) + 1

2dr(x, y) −∆H). Applying this lemma

on α provides:

l(α) ≥ ∆h(x,x0) +∆h(y, y0) + 2−3862
1
2δ
d(x0,y0) − 24δ

≥ h(y) + 1

2
dr(x, y) −∆H − h(x) + h(y) + 1

2
dr(x, y) −∆H − h(y) + 2−3862

1
2δ
d(x0,y0) − 24δ

≥ ∆h(y, x) + dr(y, x) − 2∆H + 2−3862
1
2δ
d(x0,y0) − 24δ

≥ d(x, y) − 2∆H + 2−3862
1
2δ

(2∆H−288δ) − 24δ, by equation (24).

≥ d(x, y) + 2−5302
1
δ

∆H − 2∆H − 24δ.

This previous lemma tells us that a path needs to reach a su�cient height for its length not to

increase to much. We give now a generalization of Lemma 3.7, where the path reaches a given low

height before going to its end point. This lemma will be the central result for the understanding of the

geodesic shapes in a horospherical product.

Lemma 3.8. Let δ ≥ 1 and H be a proper, δ-hyperbolic, Busemann space. Let x, y,m ∈ H such that
h(m) ≤ h(x) ≤ h(y) and let α ∶ [0, T ] → H be a path connecting x to y such that h−(α) = h(m). With
the notation ∆H = h(y) + 1

2dr(x, y) − h
+(α) we have:

l(α) ≥ 2∆h(x,m) + d(x, y) + 2−8502
1
δ

∆H − 1 −max(0,2∆H) − 1700δ.

Proof. This proof is illustrated on Figure 7. We �rst assume that ∆H > 850δ, we postpone the other

cases to the end of this proof. Let Vx and Vm be vertical geodesics respectively containing x and m.

We call x1 = Vx(h(y)) and m1 = Vm(h(y)) the points of Vx and Vm at height h(y). First, Lemma 3.3

provides ∣d(x1, y)−dr(x, y)∣ ≤ 54δ. Then we consider a geodesic triangle between the three points x1,

m1 and y. Lemma 3.2 tells us that h+([x1, y]) ≥ h(y) + 1
2dr(x1, y) − 96δ ≥ h(y) + 1

2dr(x, y) − 123δ.
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Figure 7: Proof of Lemma 3.8

Since [x1, y] is included in the δ-neighbourhood of the two other sides of the geodesic triangle, one of

the two following inequalities holds:

1) h+([x1,m1]) ≥ h(y) +
1

2
dr(x, y) − 124δ

2) h+([m1, y]) ≥ h(y) +
1

2
dr(x, y) − 124δ.

We �rst assume 1) that h+([x1,m1]) ≥ h(y) + 1
2dr(x, y) − 124δ, hence:

d(x1,m1) ≥ dr(x, y) − 248δ. (25)

Let us denote m0 = Vm(h(x)) the point of Vm at height h(x). By considering the 2δ-slim quadrilat-

eral between the points x,x1,m0,m1 we have that [x1,m1] is in the 2δ- neighbourhood of [x1, x] ∪
[x,m0] ∪ [m0,m]. Furthermore dr(x, y) ≥ 2(h+(α) − h(y)) + 2∆H ≥ 2∆H ≥ 1700δ by assumption,

then h+([x1,m1]) ≥ h(y)+ 1
2dr(x, y)−124δ ≥ h(y)+726δ. Since h+([x1, x]) = h+([m0,m1]) = h(y)

we have that h+([x,m0]) ≥ h+([x1,m1]) − 2δ ≥ h(y) + 724δ. Moreover:

dr(x,m0) = d(x,m0) ≥ h+([x,m0]) − h(x) ≥ h(y) − h(x) + 724δ ≥ ∆h(x, y) + 724δ,

which allows us to use Lemma 3.6 on Vx and Vm with t = 1
2dr(x,m0)−∆h(x, y) ≥ 0 and t1 = t2 = h(x).

It gives:

∣dr(Vx(h(x) +∆h(x, y)), Vm(h(x) +∆h(x, y))) − dr(x,m0) + 2∆h(x, y)∣ ≤ 288δ,

which implies in particular:

dr(Vx(h(y)), Vm(h(y))) + 2∆h(x, y) − 288δ ≤ dr(x,m0). (26)

Combining inequalities (25) and (26) we have d(x,m0) = dr(x,m0) ≥ dr(x, y) + 2∆h(x, y) − 536δ.

Lemma 3.3 used on x and m then gives:

dr(x,m) ≥ d(x,m0) − 54δ ≥ dr(x, y) + 2∆h(x, y) − 590δ. (27)
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Let us denote α1 the part of α linking x to m and α2 the part of α linking m to y. We have:

h+(α1) ≤h+(α) ≤ h(y) +
1

2
dr(x, y) −∆H ≤ h(x) +∆h(x, y) + 1

2
dr(x, y) −∆H

≤h(x) + 1

2
(2∆h(x, y) + dr(x, y)) −∆H ≤ h(x) + 1

2
(dr(x,m) + 590δ) −∆H , by inequality (27).

≤h(x) + 1

2
dr(x,m) + 295δ −∆H ≤ h(x) + 1

2
dr(x,m) −∆H ′,

with ∆H ′ = ∆H − 295δ. By assumption ∆H > 850δ, hence ∆H ′ > 555δ which allows us to apply

Lemma 3.7 on α1. It follows:

l(α1) ≥d(x,m) + 2−5302
1
δ

∆H′ − 2∆H ′ − 24δ

≥∆h(x,m) + dr(x,m) + 2−8252
1
δ

∆H − 2∆H − 614δ, since ∆H ′ = ∆H − 295δ.

≥∆h(x,m) + dr(x, y) − 590δ + 2−8252
1
δ

∆H − 2∆H − 614δ, by inequality (27)

≥∆h(x,m) + dr(x, y) + 2−8252
1
δ

∆H − 2∆H − 1204δ.

We use in the following inequalities that l(α2) ≥ d(m,y) ≥ ∆h(m,y), we have:

l(α) ≥ l(α1) + l(α2) ≥ ∆h(x,m) + dr(x, y) + 2−8252
1
δ

∆H − 2∆H − 1204δ +∆h(m,y)

≥ 2∆h(x,m) +∆h(x, y) + dr(x, y) + 2−8252
1
δ

∆H − 2∆H − 1204δ

≥ 2∆h(x,m) + d(x, y) + 2−8252
1
δ

∆H − 2∆H − 1204δ

≥ 2∆h(x,m) + d(x, y) + 2−8502
1
δ

∆H − 1 − 2∆H − 1700δ,

≥ 2∆h(x,m) + d(x, y) + 2−8502
1
δ

∆H − 1 −max(0,2∆H) − 1700δ, since ∆H > 850δ ≥ 0,

which ends the proof for case 1).

Now assume that 2) holds, which is h+([m1, y]) ≥ h(y) + 1
2dr(x, y) − 124δ. It implies d(m1, y) ≥

dr(x, y) − 248δ, then:

h+(α2) ≤h+(α) ≤ h(y) +
1

2
dr(x, y) −∆H ≤ h(y) + 1

2
dr(m1, y) + 124δ −∆H

≤ h(y) + 1

2
dr(m1, y) −∆H ′′,

with ∆H ′′ = ∆H − 124δ. Lemma 3.3 provides us with:

dr(m,y) ≥ d(m1, y) − 54δ ≥ dr(x, y) − 302δ. (28)

Since ∆H > 850δ, we have ∆H ′′ > 726δ which allows us to apply Lemma 3.7 on α2. It follows that:

l(α2) ≥d(y,m) + 2−5302
1
δ

∆H′′ − 2∆H ′′ − 24δ

≥∆h(y,m) + dr(y,m) + 2−6542
1
δ

∆H − 2∆H − 272δ, since ∆H ′′ = ∆H − 124δ.

≥∆h(y,m) + dr(x, y) + 2−6542
1
δ

∆H − 2∆H − 574δ, by inequality (26).

Hence:

l(α) ≥ l(α1) + l(α2) ≥ ∆h(x,m) +∆h(y,m) + dr(x, y) + 2−6542
1
δ

∆H − 2∆H − 574δ

≥ 2∆h(x,m) +∆h(y, x) + dr(x, y) + 2−6542
1
δ

∆H − 2∆H − 574δ

≥ 2∆h(x,m) + d(x, y) + 2−6542
1
δ

∆H − 2∆H − 574δ

≥ 2∆h(x,m) + d(x, y) + 2−8502
1
δ

∆H − 1 −max(0,2∆H) − 1700δ.
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There remains to treat the case when ∆H ≤ 850δ, where ∆H = h(y)+ 1
2dr(x, y)−h

+(α). Let n denote

a point of α such that h(n) = h+(α). Ifm comes before n, we have l(α) ≥ d(x,m)+d(m,n)+d(n, y).

Otherwise n comes before m and we have l(α) ≥ d(x,n) + d(n,m) + d(m,y). Since h(m) ≤ h(x) ≤
h(y) ≤ h(n) we always have:

l(α) ≥ ∆h(x,m) +∆h(m,n) +∆h(n, y)
≥ ∆h(x,m) +∆h(m,x) +∆h(x, y) +∆h(y, n) +∆h(y, n) ≥ 2∆h(x,m) +∆h(x, y) + 2(h+(α) − h(y))
≥ 2∆h(x,m) +∆h(x, y) + dr(x, y) − 2∆H ≥ 2∆h(m,x) + d(x, y) − 1700δ.

Furthermore ∆H ≤ 850δ, then 2−8502
1
δ

∆H ≤ 1. Therefore:

l(α) ≥ 2∆h(m,x) + d(x, y) + 2−8502
1
δ

∆H − 1 −max(0,2∆H) − 1700δ,

which ends the proof for the remaining case.

4 Horospherical products

4.1 De�nitions

In this part we generalize the de�nition of horospherical product, as seen in [5, Eskin, Fisher, Whyte] for

two trees or two hyperbolic planes, to any pair of proper, geodesically complete, Gromov hyperbolic,

Busemann spaces. We recall that given a proper, δ-hyperbolic space H with distinguished a ∈ ∂H
and w ∈ H , we de�ned the height function on H in De�nition 2.1 from the Busemann functions with

respect to a and w.

De�nition 4.1 (Horospherical product). Let Hp and Hq be two δ−hyperbolic spaces. We �x the base
points wp ∈ Hp, wq ∈ Hq and the directions in the boundaries ap ∈ ∂Hp, aq ∈ ∂Hq . We consider their
heights functions hp and hq respectively on Hp and Hq . We de�ne the horospherical product of Hp and
Hq , denoted Hp &Hq = H, by:

H ∶= {(xp, xq) ∈Hp ×Hq / hp(xp) + hq(xq) = 0}.

From now on, with slight abuse, we omit the base points and �xed points on the boundary in the

construction of the horospherical product. The metric spaceH refers to a horospherical product of two

Gromov hyperbolic Busemann spaces. We choose to denote Hp and Hq the two components in order

to identify easily which objects are in which component.

One of our goals is to understand the shape of geodesics in H according to a given distance on it. In a

cartesian product the chosen distance changes the behaviour of geodesics. However we show that in a

horopsherical product the shape of geodesics does not change for a large family of distances, up to an

additive constant.

We will de�ne the distances on Hp &Hq = H as length path metrics induced by distances on Hp ×Hq .

A lot of natural distances on the cartesian product Hp ×Hq come from norms on the vector space R2
.

Let N be such a norm and let us denote dN ∶= N(dHp , dHq), the length lN(γ) of a path γ = (γp, γq) in

the metric space (Hp ×Hq, dN) is de�ned by:

lN(γ) = sup
θ∈Θ([t1,t2])

(
nθ−1

∑
i=1

dN(γ(θi), γ(θi+1))) .

Where Θ([t1, t2]) is the set of subdivisions of [t1, t2]. Then the N -path metrics onH is:

De�nition 4.2 (TheN -path metrics onH). LetN be a norm on the vector space R2. TheN -path metric
on H ∶= Hp &Hq , denoted by dH,N , is the length path metric induced by the distance N(dHp , dHq) on
Hp ×Hq . For all x and y inH we have:

dH,N(x, y) = inf{lN(γ)∣γ path inH linking x to y}. (29)
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Any norm N on R2
can be normalized such that N(1,1) = 1. We call admissible any such norm

which satis�es an additional condition.

De�nition 4.3 (Admissible norm). Let N be a norm on the vector space R2 such that N(1,1) = 1. The
norm N is called admissible if and only if for all real a and b we have:

N(a, b) ≥ a + b
2

. (30)

Since all norms are equivalent in R2, there exists a constant CN ≥ 1 such that:

N(a, b) ≤ CN
a + b

2
. (31)

As an example, any lp norm with p ≥ 1 is admissible.

Property 4.4. Let N be an admissible norm on the vector space R2. Let γ ∶= (γp, γq) ⊂ Hp ×Hq be a
connected path. Then we have:

lHp(γp) + lHq(γq)
2

≤ lN(γ) ≤ CN
lHp(γp) + lHq(γq)

2
.

Proof. Let γ ∶= (γp, γq) ∶ [t1, t2] →Hp ×Hq be a connected path and θ a subdivision of [t1, t2], then by

the de�nition of the length:

lN(γ) ≥
nθ−1

∑
i=1

dN(γ(θi), γ(θi+1)) =
nθ−1

∑
i=1

N(dHp(γp(θi), γp(θi+1)), dHq(γq(θi), γq(θi+1)))

≥
nθ−1

∑
i=1

1

2
(dHp(γp(θi), γp(θi+1)) + dHq(γq(θi), γq(θi+1))), since N is admissible.

≥ 1

2
(
nθ−1

∑
i=1

dHp(γp(θi), γp(θi+1)) +
nθ−1

∑
i=1

dHq(γq(θi), γq(θi+1))) .

Any couple of subdivision θ1 and θ2 can be merge into a subdivision θ that contains θ1 and θ2. Fur-

thermore the last inequality holds for any subdivision θ, hence by taking the supremum on all the

subdivisions we have:

lN(γ) ≥
lHp(γp) + lHq(γq)

2
.

Furthermore, we have that ∀a, b ∈ R, N(a, b) ≤ CN a+b
2 , hence:

nθ−1

∑
i=1

dN(γ(θi), γ(θi+1)) ≤
CN
2

(
nθ−1

∑
i=1

dHp(γp(θi), γ(θi+1)) +
nθ−1

∑
i=1

dHq(γq(θi), γq(θi+1)))

≤ CN
lHp(γp) + lHp(γp)

2

Since last inequality holds for any subdivision θ, we have that lN(γ) ≤ CN
lHp(γp)+lHp(γp)

2 .

The de�nition of height on Hp and Hq is used to construct a height function on Hp &Hq .

De�nition 4.5 (Height on H). The height h(x) of a point x = (xp, xq) ∈ Hp &Hq is de�ned as h(x) =
hp(xp) = −hq(xq).

On Gromov hyperbolic spaces we have that de distance between two points is greater than their

height di�erence. The same occurs on horospherical products given with an admissible norm. Let x
and y be two points ofH, and let us denote ∆h(x, y) ∶= ∣h(x) − h(y)∣ their height di�erence.
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Lemma 4.6. Let N be a admissible norm, and let dH,N the distance onH = Hp &Hq induced by N . Let
x = (xp, xq) and y = (yp, yq) be two points ofH, we have:

∀x, y ∈ H, dH,N(x, y) ≥ ∆h(x, y). (32)

Proof. Since N is admissible we have:

dH,N(x, y) ≥
dHp(xp, yp) + dHq(yp, yq)

2
≥ ∆h(xp, yp) +∆h(xq, yq)

2
≥ ∆h(xp, yp) = ∆h(x, y).

Following Proposition 2.10, we de�ne a notion of vertical paths in a horospherical product.

De�nition 4.7 (Vertical paths in H). Let V ∶ R → H be a connected path. We say that V is vertical if
and only if there exists a parametrisation by arclength of V such that h(V (t)) = t for all t.

Actually, a vertical path of a horospherical product is a geodesic.

Lemma 4.8. Let N be an admissible norm. Let V ∶ R → H be a vertical path. Then V is a geodesic of
(H, dH,N).

Proof. Let t1, t2 ∈ R. The path V is vertical therefore ∆h(V (t1), V (t2)) = ∣t1−t2∣. Since V is connected

and parametrised by arclength, we have that:

∣t1 − t2∣ = lN (V∣[t1,t2]) ≥ dH,N(V (t1), V (t2))
≥ ∆h(V (t1), V (t2)) = ∣t1 − t2∣.

Then dH,N(V (t1), V (t2)) = ∣t1 − t2∣, which ends the proof.

Such geodesics are called vertical geodesics. Next proposition tells us that vertical geodesics of

Hp &Hq are exactly couples of vertical geodesics of Hp and Hq .

Proposition 4.9. LetN be an admissible norm and let V = (Vp, Vq) ∶ R→H be a geodesic of (H, dH,N).
The two following properties are equivalent:

1. V is a vertical geodesic of (H, dH,N)

2. Vp and Vq are respectively vertical geodesics of Hp and Hq .

Proof. Let us �rst assume that V be a vertical geodesic, we have for all real t that h(Vp(t)) = h(V (t)) =
t, hence ∀t1, t2 ∈ R:

dHp(Vp(t1), Vp(t2)) ≥ ∆h(Vp(t1), Vp(t2)) = ∣t1 − t2∣. (33)

Similarly we have that dHq(Vq(t1), Vq(t2)) ≥ ∣t1 − t2∣. Using that N is admissible and that V is a

geodesic we have:

dHp(Vp(t1), Vp(t2)) = 2
dHp(Vp(t1), Vp(t2)) + dHq(Vq(t1), Vq(t2))

2
− dHq(Vq(t1), Vq(t2))

≤ 2dH,N(V (t1), V (t2)) − ∣t1 − t2∣ = ∣t1 − t2∣.

21



Combine with inequality (33) we have that dHp(Vp(t1), Vp(t2)) = ∣t1−t2∣, henceVp is a vertical geodesic

of Hp. Similarly, Vq is a vertical geodesic Hq .

Let us assume that Vp and Vq are vertical geodesics of Hp and Hq . Let t1, t2 ∈ R, we have:

dH,N(V (t1), V (t2)) = sup
θ∈Θ([t1,t2])

(
nθ−1

∑
i=1

dN(V (θi), V (θi+1)))

= sup
θ∈Θ([t1,t2])

(
nθ−1

∑
i=1

N(dHp(Vp(θi), Vp(θi+1)), dHq(Vq(θi), Vq(θi+1))))

= sup
θ∈Θ([t1,t2])

(
nθ−1

∑
i=1

N(∆h(Vp(θi), Vp(θi+1)),∆h(Vq(θi), Vq(θi+1))))

= sup
θ∈Θ([t1,t2])

(N(1,1)
nθ−1

∑
i=1

∆h(Vp(θi), Vp(θi+1)))

= N(1,1)∆h(Vp(t1), Vp(t2)) = ∣t1 − t2∣, since N(1,1) = 1.

Where Θ([t1, t2]) is the set of subdivision of [t1, t2]. Hence the proposition is proved.

This previous result is the main reason why we are working with distances which came from ad-

missible norms.

De�nition 4.10. A geodesic ray ofH =Hp &Hq is called vertical if it is a subset of a vertical geodesic.

A metric space is called geodesically complete if all its geodesic segments can be prolonged into

geodesic lines. If Hp and Hq are proper hyperbolic geodesically complete Busemann spaces, their

horospherical productH is connected.

Property 4.11. LetHp andHq be two proper, geodesically complete, δ-hyperbolic, Busemann spaces. Let
H = Hp &Hq be their horospherical product. Then H is connected, furthermore 1

2(dHp + dHq) ≤ dH ≤
2CN(dHp + dHq).

Proof. Let x = (xp, xq) and y = (yp, yq) be two points of H. From Property 2.11, there exists a vertical

geodesic Vxq such that xq is in the image of Vxq , and there exists a vertical geodesic Vyp such that yp is

in the image of Vyp . Let y′q be the point of Vxq at height h(yq). Let αp be a geodesic of Hp linking xp to

yp and let α′q be a geodesic of Hq linking y′q to yq . We will connect x to y with a path composed with

pieces of αp, α
′

q , Vxq and Vyp .

We �rst link (xp, xq) to (yp, y′q) with αp and Vxq . It is possible since Vxq is parametrised by its height.

More precisely we construct the following path c1:

∀t ∈ [0, d(xp, yp)], c1(t) = (αp(t), Vxq( − h(αp(t)))).

Since Vxq is parametrised by its height, we have h (Vxq( − h(αp(t)))) = −h(αp(t)) which implies

c1(t) ∈ H. Furthermore, using the fact that the height is 1-Lipschitz, we have ∀t1, t2 ∈ [0, d(xp, yp)]:

dHq(Vxq( − h(αp(t1))), Vxq( − h(αp(t2)))) = ∣h(αp(t1)) − h(αp(t2))∣ ≤ dHp(αp(t1), αp(t2)).

Hence c1,q ∶ t ↦ Vxq( − h(αp(t))) is a connected path such that l(c1,q) ≤ l(αp) ≤ dHp(xp, yp). Hence

c1 is a connected path linking (xp, xq) to (yp, y′q). Using Property 4.4 on c1 provides us with:

lN(c1) ≤
CN
2

(l(c1,q) + l(αp)) ≤ CN l(αp)

≤ CNdHp(xp, yp)
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Figure 8: Example of horospherical product which is not connected. The number in a vertex is the

height of that vertex.

We recall that by de�nition y′q = Vxq(h(yq)). We show similarly that c2 ∶ t↦ (Vyp(−h(α′q(t))), α′q(t))
is a connected path linking (yp, y′q) to (yp, yq) such that:

l(c2) ≤ CNdHq(y′q, yq) ≤ CN(dHq(y′q, xq) + dHq(xq, yq))
= CN(∆h(xq, yq) + dHq(xq, yq)), since y′q = Vxq(h(yq))
≤ 2CNdHq(xq, yq).

Hence, there exists a connected path c = c1 ∪ c2 linking x to y such that:

l(c) ≤ CNdHp(xp, yp) + 2CNdHq(xq, yq) ≤ 2CN(dHp(xp, yp) + dHq(xq, yq)). (34)

However if the two componentsHp andHq are not geodesically complete,Hmay not be connected.

Example 4.12. LetHp andHq be two graphs, constructed from an in�nite line Z (indexed by Z) with an
additional vertex glued on the 0 for Hp and on the −2 for Hq . Their construction are illustrated on �gure
8. They are two 0-hyperbolic Busemann spaces which are not geodesically complete. Let wp ∈ Hp be the
vertex indexed by 0 in Hp, and let wq ∈ Hq be the vertex indexed by −2 in Hq . We choose them to be the
base points of Hp and Hq . Since ∂Hp and ∂Hq contain two points each, we �x in both cases the point of
the boundary ap or aq to be the one that contains the geodesic ray indexed by N. On �gure 8, we denoted
the height of a vertex inside this one. Then the horospherical productH =Hp &Hq taken with the `1 path
metric is not connected. Since some vertices ofHp andHq are not contained in a vertical geodesic, one may
not be able to adapt its height correctly while constructing a path joining (xp

−1, x
q
(2,1)

) to (xp
(0,−1)

, xq
(2,1)

).

It is not clear that a horospherical product is still connected without the hypothesis that Hp and

Hq are Busemann spaces. In that case we would need a "coarse" de�nition of horospherical product.

Indeed, the height along geodesics would not be smooth as in Proposition 2.10, therefore the condition

requiring to have two exact opposite heights would not suits.

4.2 Examples

A �rst example of horospherical product is the family of Diestel-Leader graphs. They are by construc-

tion horospherical products of two trees.
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De�nition 4.13 (Diestel-Leader graph DL(p, q)). Let p ≥ 2 and q ≥ 2 be two integers. Let Tp be the
p-homogeneous tree and Tq be the q-homogeneous tree. The two graphs Tp and Tq are 0-hyperbolic proper
geodesically complete Busemann spaces. The Diestel-Leader graph DL(p, q) is de�ned by DL(p, q) =
Tp & Tq .

We see Tp and Tq as connected metric spaces with the usual distance on them. By choosing half of

the `1 path metric onDL(p, q), this horospherical product becomes a graph with the usual distance on

it. Indeed, the set of vertices of DL(p, q) is then de�ned by the subset of couples of vertices of Tp × Tq
included in DL(p, q). In this horospherical product, two points (xp, xq) and (yp, yq) of DL(p, q) are

connected by an edge if and only if xp and yp are connected by an edge in Tp and if xq and yq are

connected by an edge in Tq . Furthermore, when p = q, there is a one-to-one correspondance between

DL(q, q) and the Cayley graph of the lamplighter group Zq ≀Z, see [13, Woess] for further details.

The SOL geometry is the Riemannian manifold with coordinates (x, y, z) ∈ R3
and with the Rieman-

nian metric ds2 = dz2 + e2zdx2 + e−2zdy2
. It is the horospherical product of two hyperbolic planes, it is

described in [14, Woess]. Let us consider H2
the Log model of the hyperbolic plane, de�ned as the Rie-

mannian manifold with coordinates (x, z) ∈ R2
and with the Riemannian metric ds2 = dz2 + e−2zdx2

.

We �x w = (0,0) as the base point of H and the "upward" direction a as the point on the boundary. In

that case the height function in regards to (a,w) taken on a point (x, z) ∈ H is h(a,w)(x, z) = z. We

now look at the horospherical product H2 &H2 ∶= {(x1, z1, x2, z2) ∈ R2 ×R2∣z1 = −z2} taken with the

`2 path metric. Since the second and the fourth variable are exactly opposite, we merge them into one.

Hence we have that H2 &H2
is isometric to the space {(x1, x2, z1) ∈ R3} with the metric

ds2 = dz2
1 + e−2z1dx2

1 + dz2
1 + e2z1dx2

2 = 2dz2
1 + e−2z1dx2

1 + e2z1dx2
2.

Changing the coordinates by dividing x1 and x2 by two tells us that this space is isometric to SOL.

Depending on the case, we either used the `1 path metric or the `2 path metric. Proposition 4.18 tells

us that it does not matter, up to an additive uniform constant. Quasi-isometric rigidity results have

been proved in the Diestel-Leader graphs and the SOL geometry with the same techniques in [5, Eskin,

Fisher, Whyte] and [6, E,F,W].

The horospherical product of a hyperbolic plane and a regular tree has been studied as the 2-complex of

Baumslag-Solitar groups in [1, Bendikov, Salo�-Coste, Salvatori, Woess]. They are called the treebolic

spaces. The distance they choose on the treebolic spaces is similar to ours. In fact our Proposition 4.17

and their Proposition 2.8 page 9 (in [1]) tell us they are equal up to an additive constant. Rigidity results

on the treebolic spaces were brought up in [7, Farb, Mosher] and [8, F,M].

The previous examples were already known, however our construction still works for many other

spaces. As an example, a geodesically complete manifold with a curvature lower than a negative con-

stant could be used as the component Hp or Hq in the horospherical product.

4.3 Length of geodesic segments in H

From now on, unless otherwise speci�ed,Hp andHq will always be two proper, geodesically complete,

δ-hyperbolic, Busemann spaces with δ ≥ 1, and N will always be an admissible norm. Let x and y be

two points of H ∶= Hp &Hq , and let α be a geodesic of H connecting them. We �rst prove an upper

bound on the length of α by computing the length of a path γ ⊂ H linking x to y

Lemma 4.14. Let x and y be points of the horospherical product H = Hp &Hq . There exists a path γ
connecting x = (xp, xq) to y = (yp, yq) such that:

lN(γ) ≤ dr(xq, yq) + dr(xp, yp) +∆h(x, y) + 1152δCN .
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Proof. Without loss of generality, we assume h(x) ≤ h(y). One can follow the idea of the proof on Fig-

ure 9. We consider Vxp and Vyp two vertical geodesics ofHp containing xp and yp respectively. Similarly

let Vxq and Vyq be two vertical geodesics of Hq containing xq and yq respectively. We will use them to

construct γ. Let A1 be the point of the vertical geodesic (Vxp , Vxq) ⊂ H at height h(x) − 1
2dr(xq, yq)

and A2 be the point of the vertical geodesic (Vxp , Vyq) ⊂ H at the same height h(x) − 1
2dr(xq, yq). Let

A3 be the point of the vertical geodesic (Vxp , Vyq) at height h(y) + 1
2dr(xp, yp) and A4 be the point of

the vertical geodesic (Vyp , Vyq) at the same height h(y) + 1
2dr(xp, yp). Then γ ∶= γ1 ∪ γ2 ∪ γ3 ∪ γ4 ∪ γ5

is constructed as follows:

- γ1 is the part of (Vxp , Vxq) linking x to A1.

- γ2 is a geodesic linking A1 to A2. Such a geodesic exists by Property 4.11.

- γ3 is the part of (Vxp , Vyq) linking A2 to A3.

- γ4 is a geodesic linking A3 to A4. Such a geodesic exists by Property 4.11.

- γ5 is the part of (Vyp , Vyq) linking A4 to y.

In factA1 andA2 are close to each other. Indeed, the two pointsA1 = (A1,p,A1,q) andA2 = (A2,p,A2,q)
are characterised by the two geodesics (Vxp , Vxq) and (Vxp , Vyq). Then, because −h(y) = hq(yq) ≤
hq(xq), Lemma 3.2 applied on xq and yq in Hq gives us dHq(A1,q,A2,q) ≤ 288δ. Furthermore Property

4.11 provides us with dH,N ≤ 2CN(dHp + dHq), however we have that A1,p = A2,p hence:

dH,N(A1,A2) ≤ 576δCN . (35)

Lemma 3.2 applied on xp and yp provides similarly:

dH,N(A3,A4) ≤ 576δCN , (36)

which gives us:

lN(γ) =lN(γ1) + lN(γ2) + lN(γ3) + lN(γ4) + lN(γ5)
=dH,N(x,A1) + dH,N(A1,A2) + dH,N(A2,A3) + dH,N(A3,A4) + dH,N(A4, y)

Since γ1, γ3 and γ5 are vertical geodesics, we have:

=∆h(x,A1) + dH,N(A1,A2) +∆h(A2,A3) + dH,N(A3,A4) +∆h(A4, y)

=1

2
dr(xq, yq) + dH,N(A1,A2) +

1

2
dr(xq, yq) +

1

2
dr(xp, yp) +∆h(x, y) + dH,N(A3,A4) +

1

2
dr(xp, yp)

≤dr(xq, yq) + dr(xp, yp) +∆h(x, y) + 1152δCN , by inequalities (35) and (36).

We are aiming to use Lemma 3.8 on the two components αp ⊂Hp and αq ⊂Hq of α to obtain lower

bounds on their lengths. We hence need the following lemma to ensure us that when α is a geodesic,

the exponential term in the inequality of Lemma 3.8 will be small.

Lemma 4.15. Let C = 2853δCN + 2851 and let e ∶ R → R be a map de�ned by ∀t ∈ R, e(t) = 1
C 2C

−1t −
2 max(0, t). Then ∀t ∈ R:

1. e(t) ≥ −7C2

2. ( e(t) ≤ 2853δCN ) ⇒ ( t ≤ 3C2 ).
Proof. For all time t, we have that e(t) = 1

C 2C
−1t−2 max(0, t) ≤ 1

C 2C
−1t−2t =∶ e1(t). The derivative of

e1 is e′1(t) =
log(2)
C2 2C

−1t − 2, which is non negative ∀t ≥ C log2 ( 2
log(2)C

2) and non positive otherwise.

Then ∀t ∈ R:

e1(t) ≥ e1 (log2 (
2

log(2)C
2)) ≥ 2C

log(2) − 2C log2 (
2

log(2)C
2) ≥ 2C

log(2) − 4C log2 (
√

2

log(2)C)

≥ 2C

log(2) − 4

√
2

log(2)C
2 ≥ −4

√
2

log(2)C
2 ≥ −7C2.
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∆h(x, y)

≤ 144δ

≤ 144δ

Figure 9: Construction of the path γ when h(x) ≤ h(y) for Lemma 4.14.

Since C ≥ 2
log(2) we have 3C2 ≥ C log2(C3) ≥ C log2 ( 2

log(2)C
2), then e1 is non decreasing on

[C log2(C3);+∞[. We show that e1(3C2) ≥ 2853δCN :

e1(3C2) ≥ e1(C log2(C3)) = 1

C
2
C log2(C3)

C − 2C log2(C3) = C(C − 6 log2(C)).

Since C ≥ 2851
we have C − 6 log2(C) ≥ 1 and since C ≥ 2853δCN we have that e1(3C2) ≥ C × 1 ≥

2853δCN which provides ∀t ∈ [3C2;+∞[ we have e1(t) ≥ 2853δCN . Furthermore ∀t ∈ R+
, e1(t) =

e(t), hence ∀t ∈ [3C2;+∞[ we have e(t) ≥ 2853δCN which implies point 2. of this lemma.

The following lemma provides us with a lower bound matching Lemma 4.14, and a �rst control on

the heights a geodesic segment must reach.

Lemma 4.16. Let x = (xp, xq) and y = (yp, yq) be two points of H = Hp &Hq such that h(x) ≤ h(y).
Let α = (αp, αq) be a geodesic segment ofH linking x to y. Let C0 = (2853δCN + 2851)2, we have:

1. l(α) ≥ ∆h(x, y) + dr(xq, yq) + dr(xp, yp) − 15C0

2. h+(α) ≥ h(y) + 1
2dr(xp, yp) − 3C0

3. h−(α) ≤ h(x) − 1
2dr(xq, yq) + 3C0.

Proof. Let us denote ∆H+ = h(y) + 1
2dr(xp, yp) − h

+(α) and ∆H− = h−(α) − (h(x) − 1
2dr(xq, yq)).

Let m be a point of α at height h−(α) = h(x) − 1
2dr(xq, yq) + ∆H−

, and n be a point of α at height

h+(α) = h(y) + 1
2dr(xp, yp) −∆H+

. Then Lemma 3.8 used on αp gives us:

l(αp) ≥2∆h(xp,mp) + d(xp, yp) + 2−8502
1
δ

∆H+ − 1 − 2 max(0,∆H+) − 1700δ

≥2h(xp) − 2(h(xp) −
1

2
dr(xq, yq) +∆H−) + d(xp, yp) + 2−8502

1
δ

∆H+ − 1

− 2 max(0,∆H+) − 1700δ

≥dr(xq, yq) + dr(xp, yp) +∆h(x, y) + 2−8502
1
δ

∆H+ − 1 − 2 max(0,∆H+) − 2∆H− − 1700δ.
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Since h(xq) ≥ h(yq) and h(nq) = h(yq)− 1
2dr(xp, yp)+∆H+

, Lemma 3.8 used on αq provides similarly:

l(αq) ≥ dr(xp, yp) + dr(xq, yq) +∆h(x, y) + 2−8502
1
δ

∆H− − 1 − 2 max(0,∆H−) − 2∆H+ − 1700δ.

Hence by Property 4.4:

lN(α) ≥ 1

2
(l(αp) + l(αq)) ≥dr(xp, yp) + dr(xq, yq) +∆h(x, y) − 1700δ + 2−8512

1
δ

∆H−

+ 2−8512
1
δ

∆H+ − 2 max(0,∆H−) − 2 max(0,∆H+) − 1. (37)

Furthermore, we know by Lemma 4.14 that lN(α) ≤ ∆h(x, y) + dr(xp, yp) + dr(xq, yq) + 1152δCN .

Since CN ≥ 1 we have:

2852δCN ≥2−8512
1
δ

∆H− − 2 max(0,∆H−) + 2−8512
1
δ

∆H+ − 2 max(0,∆H+) − 1.

Let us denote S ∶= max{∆H−,∆H+}. Therefore we have 2−8512
1
δ
S − 2 max(0, S) − 1 ≤ 2852δCN . By

assumption δ ≥ 1 hence 2−8512
1
δ
S−2 max(0, S) ≤ 2853δCN . Furthermore, forC = 2853δCN +2851

, we

have both 2−851 ≥ 1
C and

1
δ ≥

1
C . Then we have

1
C 2

S
C − 2 max(0, S) ≤ 2853δCN . Lemma 4.15 provides

S ≤ 3C2 = 3C0 which implies points 2. and 3. of our lemma. Lemma 4.15 also provides us with:

−14C0 ≤2−8512
1
δ

∆H− − 2 max(0,∆H−) + 2−8512
1
δ

∆H+ − 2 max(0,∆H+).

Last inequality is a lower bound of the term we want to remove in inequality (37). The �rst point of

our lemma hence follows since 1700δ + 1 ≤ C0.

Combining Lemma 4.14 and 4.16 we get the following corollary.

Corollary 4.17. LetN be an admissible norm and let C0 = (2853δCN +2851)2. The length of a geodesic
segment α connecting x to y in (H, dH,N) is controlled as follows:

∣lN(α) − (∆h(x, y) + dr(xp, yp) + dr(xq, yq))∣ ≤ 15C0,

which gives us a control on the N -path metric, for all points x and y inH we have:

∣dH,N(x, y) − (∆h(x, y) + dr(xp, yp) + dr(xq, yq))∣ ≤ 15C0.

This result is central as it shows that the shape of geodesics does not depend on the N -path metric

chosen for the distance on the horospherical product.

Corollary 4.18. Let r ≥ 1. For all x and y inH =Hp &Hq we have:

∣dH,`r(x, y) − dH,`1(x, y)∣ ≤ 30(5706δ + 2851)2.

Proof. The `r norm inequalities provide us with:

r
√
dHp

r + dHq r ≤ dHp + dHq ≤ 2
r−1
r r

√
dHp

r + dHq r.

Hence we have

r√2
2

(dHp + dHq) ≤ r
√
dHp

r + dHq r ≤ dHp+dHq . Then the `r norms are admissible norms

with C`r ≤ 2, which ends the proof.

The next corollary tells us that changing this distance does not change the large scale geometry of

H.

Corollary 4.19. Let N1 and N2 be two admissible norms. Then the metric spaces (H, dH,N1) and
(H, dH,N2) are quasi-isometric.

The control on the distances of Lemma 4.17 will help us understand the shape of geodesic segments

and geodesic lines in a horospherical product.
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5 Shapes of geodesics and visual boundary of H

5.1 Shapes of geodesic segments

In this section we focus on the shape of geodesics. We recall that in all the following Hp and Hq are

assumed to be two proper, geodesically complete, δ-hyperbolic, Busemann spaces with δ ≥ 1, and N is

assumed to be an admissible norm.

The next lemma gives a control on the maximal and minimal height of a geodesic segment in a

horospherical product. It is similar to a traveller problem, who needs to walk from x to y passing by

m and n. This result follows from the inequalities on maximal and minimal heights of Lemma 4.16

combined with Lemma 4.14.

Lemma 5.1. Let x = (xp, xq) and y = (yp, yq) be two points of H = Hp &Hq such that h(x) ≤ h(y).
Let N be an admissible norm and let α = (αp, αq) be a geodesic of (H, dH,N) linking x to y. Let C0 =
(2853δCN + 2851)2, we have:

1. ∣h−(α) − (h(x) − 1
2dr(xq, yq))∣ ≤ 4C0

2. ∣h+(α) − (h(y) + 1
2dr(xp, yp))∣ ≤ 4C0.

Proof. Let us consider a point m of α such that h(m) = h−(α) and a point n of α such that h(n) =
h+(α). Then m comes before n or n comes before m. In both cases, since h(m) ≤ h(x) ≤ h(y) ≤ h(n)
and by Lemma 4.6 we have:

lN(α) ≥ ∆h(x, y) + 2(h(x) − h−(α)) + 2(h+(α) − h(y))
≥ ∆h(x, y) + 2(h(x) − h−(α)) + dr(xp, yp) − 6C0, by Lemma 4.16.

Furthermore Lemma 4.14 provides lN(α) ≤ ∆h(x, y) + dr(xp, yp) + dr(xq, yq) +C0 , hence:

∆h(x, y) + dr(xp, yp) + dr(xq, yq) +C0 ≥ ∆h(x, y) + 2(h(x) − h−(α)) + dr(xp, yp) − 6C0,

which implies (h(x) − 1
2dr(xq, yq))−h

−(α) ≤ 4C0. In combination with the third point of Lemma 4.16

it proves the �rst point of our Lemma 5.1. The second point is proved similarly.

Lemma 5.2. Let N be an admissible norm and let C0 = (2853δCN + 2851)2. Letx = (xp, xq) and
y = (yp, yq) be two points of H = Hp &Hq . Let α = (αp, αq) be a geodesic of (H, dH,N) linking x to y.
Then there exist two points a = (ap, aq), b = (bp, bq) of α such that h(a) = h(x), h(b) = h(y) with the
following properties:

1. If h(x) ≤ h(y) − 7C0 then:

(a) h−(α) = h−([x, a]) and h+(α) = h+([b, y])
(b) ∣dr(xq, aq) − dr(xq, yq)∣ ≤ 16C0 and dr(xp, ap) ≤ 22C0

(c) ∣dr(yp, bp) − dr(xp, yp)∣ ≤ 16C0 and dr(yq, bq) ≤ 22C0

(d) ∣dH,N(a, b) −∆h(a, b)∣ ≤ 13C0.

2. If h(y) ≤ h(x)−7C0 then (a), (b), (c) and (d) hold by switching the roles of x and y and switching
the roles of a and b.

3. If ∣h(x) − h(y)∣ ≤ 7C0 at least one of the two previous conclusions is satis�ed.

Lemma 5.2 is illustrated on Figure 10. Its notations will be used in all section 5.
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Figure 10: Notations of Lemma 5.2.

Proof. Let us consider a point m of α such that h(m) = h−(α) and a point n of α such that h(n) =
h+(α). We �rst assume that m comes before n in α oriented from x to y. Let us call a the �rst point

between m and n at height h(x) and b the last point between m and n at height h(y). Property (a)
of our Lemma is then satis�ed. Let us denote α1 the part of α linking x to a, α2 the part of α linking

a to b and α3 the part of α linking b to y. We have that m is a point of α1 and that n is a point of α3.

Inequalities 2. and 3. of Lemma 4.16 used on α1 provide lN(α1) ≥ d(x,m) + d(m,a) ≥ 2∆h(x,m) ≥
dr(xq, yq) − 6C0 and similarly lN(α3) ≥ dr(xp, yp) − 6C0. Furthermore we have lN(α2) ≥ ∆h(x, y).

Combining lN(α1) = lN(α) − lN(α2) − lN(α3) and Lemma 4.14 we have:

lN(α1) ≤ ∆h(x, y) + dr(xp, yp) + dr(xq, yq) +C0 −∆h(x, y) − dr(xp, yp) + 6C0

≤ dr(xq, yq) + 7C0. (38)

We have similarly that lN(α3) ≤ dr(xp, yp) + 7C0 and that dH,N(a, b) = lN(α2) ≤ ∆h(x, y) + 13C0. It

gives us ∣dH,N(a, b) −∆h(x, y)∣ ≤ 13C0, point (d) of our lemma. Furthermore, using Lemma 5.1 on α
and α1 provides:

∣h−(α) − (h(x) − 1

2
dr(xq, yq))∣ ≤ 4C0,

∣h−(α1) − (h(x) − 1

2
dr(xq, aq))∣ ≤ 4C0.

Since h−(α) = h−(α1) we have:

∣dr(xq, aq) − dr(xq, yq)∣ ≤ 16C0, (39)

which is the �rst inequality of (b). Using the �rst point of Lemma 4.16 on α1 in combination with

inequality (38) gives us:

dr(xq, yq) + 7C0 ≥lN(α1) ≥ ∆h(x, a) + dr(xp, ap) + dr(xq, aq) − 15C0

≥dr(xp, ap) + dr(xq, aq) − 15C0

≥dr(xp, ap) + dr(xq, yq) − 31C0, by inequality (39).

Then dr(xp, yp) ≤ 38C0 the second inequality of point (b) holds. We prove similarly the inequality

(c) of this lemma. This ends the proof when m comes before n. If n comes before m, the proof is still
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working by orienting α from y to x hence switching the roles between x and y.

We will now prove that if h(x) ≤ h(y) − 7C0 then m comes before n on α oriented from x to y.

Let us assume that h(x) ≤ h(y) − 7C0. We will proceed by contradiction, let us assume that n comes

before m, using h(m) ≤ h(x) ≤ h(y) ≤ h(n) it implies:

lN(α) ≥dH,N(x,n) + dH,N(n,m) + dH,N(m,y) ≥ ∆h(x,n) +∆h(n,m) +∆h(m,y)
≥∆h(x, y) +∆h(y, n) +∆h(m,x) +∆h(x, y) +∆h(y, n) +∆h(m,x) +∆h(x, y)
≥2∆h(x, y) +∆h(x, y) + 2∆h(m,x) + 2∆(y, n)
≥14C0 +∆h(x, y) + 2(h(x) − h−(α)) + 2(h+(α) − h(y)).

However Lemma 4.16 applied on α provides h+(α) ≥ h(y) + 1
2dr(xp, yp) − 3C0 and h−(α) ≤ h(x) −

1
2dr(xq, yq) + 3C0. Then:

lN(α) ≥14C0 +∆h(x, y) + dr(xp, yp) + dr(xq, yq) − 12C0

≥∆h(x, y) + dr(xp, yp) + dr(xq, yq) + 2C0,

which contradict Lemma 4.14. Hence, if h(x) ≤ h(y) − 7C0, the point m comes before the point n and

by the �rst part of the proof, 1. holds. Similarly, if h(y) ≤ h(x) − 7C0 then n comes before m and then

2. holds. Otherwise when ∣h(x) − h(y)∣ ≤ 7C0 both cases could happened, then 1. or 2. hold.

This previous lemma essentially means that if x is su�ciently below y, the geodesic α �rst travels

in a copy ofHq in order to "loose" the relative distance between xq and yq , then it travels upward using

a vertical geodesic from a to b until it can "lose" the relative distance between xp and yp by travelling

in a copy of Hp. It looks like three successive geodesics of hyperbolic spaces, glued together. The idea

is that the geodesic follows a shape similar to the path γ we constructed in Lemma 4.14. We formalize

this in the following theorem, which tells us that a geodesic segment is in the constant neighbourhood

of three vertical geodesics. It can be understood as an extension of the fact that in a hyperbolic space,

a geodesic segment is in a constant neighbourhood of two vertical geodesics.

Theorem 5.3. Let N be an admissible norm. Let x = (xp, xq) and y = (yp, yq) be two points of H =
Hp &Hq and let α be a geodesic segment of (H, dH,N) linking x to y. Let C0 = (2853δCN + 2851)2, there
exist two vertical geodesics V1 = (V1,p, V1,q) and V2 = (V2,p, V2,q) such that:

1. If h(x) ≤ h(y) − 7C0 then α is in the 196C0CN -neighbourhood of V1 ∪ (V1,p, V2,q) ∪ V2

2. If h(x) ≥ h(y) + 7C0 then α is in the 196C0CN -neighbourhood of V1 ∪ (V2,p, V1,q) ∪ V2

3. If ∣h(x) − h(y)∣ ≤ 7C0 then at least one of the conclusions of 1. or 2. holds.

Speci�cally V1 and V2 can be chosen such that x is close to V1 and y is close to V2.

Figure 11 pictures the 196C0CN -neighbourhood of such vertical geodesics when h(x) ≤ h(y)−7C0.

When ∣h(x) − h(y)∣ ≤ 7C0, there are two possible shapes for a geodesic segment. In some cases, two

points can be linked by two di�erent geodesics, one of type 1 and one of type 2.

Proof. Let m = (mp,mq) be a point of α such that h(m) = h−(α), and n = (np, nq) be a point of α
such that h(n) = h+(α). Then by Lemma 5.1 we have:

∣∆h(x,m) − 1

2
dr(xq, yq)∣ ≤ 4C0. (40)

We show similarly that:

∣∆h(y, n) − 1

2
dr(xp, yp)∣ ≤ 4C0. (41)
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Figure 11: Theorem 5.3. The neighbourhood’s shapes are distorted since when going upward, distances

are contracted in the "direction" Hp and expanded in the "direction" Hq .

In the �rst case we assume that h(x) ≤ h(y) − 7C0. With notations as in Lemma 5.2, and by inequality

(38), we have that lN([x, a]) ≤ dr(xq, yq) + 7C0, hence:

lN([x,m]) =lN([x, a]) − lN([a,m]) ≤ dr(xq, yq) + 7C0 −∆h(a,m)

≤1

2
dr(xq, yq) + 11C0, since ∆h(x,m) = ∆h(a,m). (42)

It follows from this inequality that:

dHp(xp,mp) =2dHp×Hq(x,m) − dHq(xq,mq) ≤ 2dH,N(x,m) − dHq(xq,mq)

≤2lN([x,m]) − dHq(xq,mq) ≤ dr(xq, yq) + 22C0 −∆h(x,m) ≤ 1

2
dr(xq, yq) + 26C0.

Then:

dr(xp,mp) =dHp(xp,mp) −∆h(x,m) ≤ 1

2
dr(xq, yq) + 26C0 −∆h(x,m)

≤30C0, by inequality (40).

Similarly dr(xq,mq) ≤ 30C0. Let us consider the vertical geodesic Vmp of Hp containing mp, and the

vertical geodesic Vxq of Hq containing xq . Let us denote x′p the point of Vmp at the height h(x). Since

dr(xp,mp) ≤ 30C0, Lemma 3.3 applied on xp and mp provides dHp(xp, x′p) ≤ 31C0. We will then

consider two paths of Hp. The �rst one is α1,p = [xp,mp], the part of αp linking xp to mp. The second

one is [mp, x
′

p] a piece of vertical geodesic linking mp to x′p. We show that these two paths have close

length. Using Property 4.4 with inequalities (40) and (42) provides us with:

lHp([xp,mp]) ≤ 2lN([x,m]) − lHq([xq,mq]) ≤ 2(1

2
dr(xq, yq) + 11C0) −∆h(x,m)

≤ ∆h(x,m) + 30C0

Furthermore lHp([xp,mp]) ≥ ∆h(x,m) and we know that lHp([mp, x
′

p]) = ∆h(x,m), hence:

∣lHp([xp,mp]) − lHp([mp, x
′

p])∣ ≤ 30C0
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We already proved that their end points are also close to each other d(xp, x′p) ≤ 31C0. Since δ ≤ C0, the

property of hyperbolicity of Hp gives us that α1,p is in the (31 + 30 + 1)C0 = 62C0-neighbourhood of

[mp, x
′

p], a part of the vertical geodesic Vmp . We show similarly that α1,q is in the 62C0-neighbourhood

of Vxq . SinceN is an admissible norm, Property 4.11 gives us thatα1 is in the 124C0CN -neighbourhood

of (Vmp , Vxq). We show similarly thatα3, the portion ofα linkingn to y, is in the 124C0CN -neighbourhood

of (Vyp , Vnq). We now focus on α2, the portion of α linking m to n. Let us denote [mp, np] the path

α2,p and [mq, nq] the path α2,q . Then Lemma 5.1 provides us with:

∣∆h(m,n) − (∆h(x, y) + 1

2
dr(xq, yq) +

1

2
dr(xp, yp))∣ ≤ 8C0. (43)

However from Lemma 4.14 and since 1152δCN ≤ C0:

lN(α2) =lN(α) − lN(α1) − lN(α3)
≤∆h(x, y) + dr(xp, yp) + dr(xq, yq) +C0 −∆h(x,m) −∆h(n, y)

≤∆h(x, y) + 1

2
dr(xp, yp) +

1

2
dr(xq, yq) + 9C0, by inequalities (40) and (41).

It follows from this inequality and the fact that N is admissible that:

dHp(mp, np) ≤ 2lN(α2) − dHq(mq, nq) ≤ 2∆h(x, y) + dr(xp, yp) + dr(xq, yq) + 18C0 −∆h(m,n)
≤ ∆h(m,n) + 34C0, by inequality (43).

Thus:

dr(mp, np) =dHp(mp, np) −∆h(m,n) ≤ 34C0.

In the same way we have dr(mq, nq) ≤ 34C0. Let us denote n′p the point of Vmp at the height h(np).

Since dr(xp,mp) ≤ 34C0, Lemma 3.3 applied on mp and np provides:

dHp(mp, n
′

p) ≤ 35C0 (44)

Hence we have proved thatα2,p and [mp, n
′

p] have their end points close to each other. Let us now prove

that these paths have close lengths. We have that lHp([mp, n
′

p]) = ∆h(m,n), and from inequalities

(40) and (41) we have:

lHp([mp, np]) ≤ 2lN(α2,p) − lHq([mq, nq]) = 2(lN(α) − lN(α1) − lN(α3)) −∆h(m,n)

≤ 2(15C0 +∆h(x, y) + dr(xp, yp) + dr(xq, yq) −∆h(x,m) −∆h(n, y)) −∆h(m,n)

≤ 2(∆h(x, y) + dr(xp, yp) + dr(xq, yq) −∆h(x,m) −∆h(n, y)) −∆h(m,n)

≤ 2(∆h(x, y) +∆h(x,m) +∆h(n, y) + 16C0) −∆h(m,n) + 30C0 ≤ ∆h(m,n) + 62C0

As lHp([mp, np]) ≥ ∆h(m,n) we obtain:

∣lHp([mp, np]) − lHp([mp, n
′

p])∣ ≤ 62C0 (45)

Then by similar arguments as for the path α1,p, inequalities (44) and (45) show that α2,p is in the

(35 + 62 + 1)C0 = 98C0 neighbourhood of Vmp . Similarly we prove that α2,q is in the 98C0 neigh-

bourhood of Vnq . Since N is an admissible norm, Property 4.11 gives us that α2 is in the 196C0CN -

neighbourhood of (Vmp , Vnq).

In the second case, we assume that h(y) ≤ h(x) − 7C0. Then by switching the role of x and y, Lemma

5.2 gives us the result identically.

In the third case, we assume that ∣h(x) − h(y)∣ ≤ 7C0. Then Lemma 5.2 tells us that on of the two

previous situations prevails, which proves the result.
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5.2 Coarse monotonicity

The fact that a geodesic is following a vertical geodesic is related to the next de�nition.

De�nition 5.4. Let C be a non negative number. A geodesic α ∶ I → H of H = Hp & Hq is called
C-coarsely increasing if ∀t1, t2 ∈ I :

( t2 > t1 +C ) ⇒ ( h(α(t2)) > h(α(t2)) ).

The geodesic α is called C-coarsely decreasing if ∀t1, t2 ∈ I :

( t2 > t1 +C ) ⇒ ( h(α(t2)) < h(α(t2)) ).

The next lemma links the coarse monotonicity and the fact that a geodesic segment is close to

vertical geodesics.

Lemma 5.5. Let N be an admissible norm and let C0 = (2853δCN + 2851)2. Let x = (xp, xq) and
y = (yp, yq) be two points of H = Hp &Hq and let α be a geodesic segment of (H, dH,N) linking x to y.
Letm ∈ α and n ∈ α be two points inH such that h−(α) = h(m) and h+(α) = h(n). We have:

1. If h(x) ≤ h(y)−7C0, then α is 17C0-coarsely decreasing on [x,m] and 17C0-coarsely increasing
on [m,n] and 17C0-coarsely decreasing on [n, y].

2. If h(x) ≥ h(y) + 7C0, then α is 17C0-coarsely increasing on [x,n] and 17C0-coarsely decreasing
on [n,m] and 17C0-coarsely increasing on [m,n].

3. If ∣h(x) − h(y)∣ ≤ 7C0 then the conclusions of 1. or 2. holds.

Proof. Assume that h(x) ≤ h(y) − 7C0. Then from inequality (42) in the proof of Theorem 5.3,

lN([x,m]) ≤ 1
2dr(xq, yq) + 11C0. Furthermore Lemma 5.1 gives us that ∣∆h(x,m) − 1

2dr(xq, yq)∣ ≤
4C0. Then:

lN([x,m]) ≤ ∆h(x,m) + 15C0. (46)

We will proceed by contradiction, assume that [x,m] is not 15C0-coarsely decreasing, then there exists

i1 ∈ α, i2 ∈ α such that h(i1) = h(i2) and l([i1, i2]) > 15C0. Hence:

lN([x,m]) ≥ lN([x, i1]) + lN([i1, i2]) + lN([i2,m]) ≥ ∆h(x, i1) + lN([i1, i2]) +∆h(i2,m)
> ∆h(x,m) + 15C0,

which contradicts inequality (46). Then [x,m] is 15C0-coarsely decreasing. We show in a similar way

that [m,n] is 17C0-coarsely increasing and that [n, y] is 15C0-coarsely decreasing. This proves the

�rst point of our lemma. The second point is proved by switching the roles of x and y. We now assume

∣h(x) − h(y)∣ ≤ 7C0, as in the proof of Theorem 5.3 the inequality (42) or a corresponding inequality

holds, which ends the proof.

5.3 Shapes of geodesic rays and geodesic lines

In this section we are focusing on using the previous results to get informations on the shapes of

geodesic rays and geodesic lines. We �rst link the coarse monotonicity of a geodesic ray to the fact

that it is close to a vertical geodesic. Let λ ≥ 1 and c ≥ 0, a (λ, c)-quasigeodesic of the metric space

(H, dH,N) is the image of a function φ ∶ R→H verifying that ∀t1, t2 ∈ R:

∣t1 − t2∣
λ

− c ≤ dH,N(φ(t1), φ(t2)) ≤ λ∣t1 − t2∣ + c (47)
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Lemma 5.6. Let N be an admissible norm and let C0 = (2853δCN + 2851)2. Let α = (αp, αq) be a
geodesic ray of (H, dH,N) and let K be a positive number such that α is K-coarsely monotone. Then αp
and αq are (1,26C0 + 8K)-quasigeodesics.

Proof. Let t1 and t2 be two times. Let us denote x = (xp, xq) = α(t1) and y = (yp, yq) = α(t2). We

apply Lemma 5.2 on the part of α linking x to y denoted by [x, y]. By K-coarse monotonicity of α we

have that d(x, a)H,N ≤K and dH,N(b, y) ≤K . Hence using d) of Lemma 5.2:

∆h(x, y) ≤ dH,N(x, y) ≤ dH,N(x, a) + dH,N(a, b) + dH,N(b, y) ≤K +∆h(a, b) + 13C0 +K
≤ ∆h(x, y) +∆h(x, a) +∆h(b, y) + 13C0 + 2K ≤ ∆h(x, y) + 13C0 + 4K.

Furthermore, dHp(xp, yp) ≥ ∆h(xp, yp) = ∆h(x, y) and dHq(xq, yq) ≥ ∆h(x, y). Since N is an admis-

sible norm we have:

∆h(x, y) ≤ dHp(xp, yp) = 2dHp×Hq(x, y) − dHq(xq, yq) ≤ 2dH,N(x, y) − dHq(xq, yq)
≤ 2∆h(x, y) + 13C0 + 4K −∆h(x, y) ≤ ∆h(x, y) + 13C0 + 4K.

Hence:

dH,N(x, y) − 26C0 − 8K ≤ dHp(xp, yp) ≤ dH,N(x, y) + 26C0 + 8K,

By de�nition we have xp = αp(t1), yp = αp(t2) and dH,N(x, y) = ∣t1−t2∣. Then αp is a (1,26C0+8K)-

quasigeodesic ray. We prove similarly that αq is a (1,26C0 + 8K)-quasigeodesic ray.

We will now make use of the rigidity property of quasi-geodesics in Gromov hyperbolic spaces,

presented in Theorem 3.1 p.41 of [3, Coornaert, Delzant, Papadopoulos].

Theorem 5.7 ([3]). LetH be a δ-hyperbolic geodesic space. If f ∶ R→H is a (λ, k)-quasi geodesic, then
there exists a constantκ > 0 depending only on δ, λ and k such that the image of f is in theκ-neighbourhood
of a geodesic in H .

Lemma 5.8. Let N be an admissible norm and let T1 and T2 be two real numbers. Let α = (αp, αq) ∶
[T1,+∞[→ H be a geodesic ray of (H, dH,N). Let K be a positive number such that α is K-coarsely
monotone. Then there exists a constant κ > 0 depending only on K , δ and N such that α is in the κ-
neighbourhood of a vertical geodesic ray V ∶ [T2;+∞[→ H and such that dH,N(α(T1), V (T2)) ≤ κ.

Proof. We assume without loss of generality that lim
t→+∞

h(α(t)) = +∞. Let C0 = (2853δCN + 2851)2
,

by Lemma 5.6, αp is a (1,26C0 + 8K)-quasi geodesic ray. Then Theorem 5.7 says there exists κp > 0
depending only on 26C0 + 8K and δ such that αp is in the κp-neighbourhood of a geodesic Vp. Since

C0 depends only on δ and N , κp depends only on K , δ and N . Then lim
t→+∞

h(α(t)) = +∞ gives us

lim
t→+∞

h(Vp(t)) = +∞ which implies that Vp is a vertical geodesic of Hp. We will now build the vertical

geodesic we want in Hq . We have lim
t→+∞

h(αq(t)) = −∞ and by Lemma 5.6:

∆h(αq(t1), αq(t2)) − 26C0 − 8K ≤ dHq(αq(t1), αq(t2)) ≤ ∆h(αq(t1), αq(t2)) + 26C0 + 8K.

SinceHq is Busemann, there exists a vertical geodesic ray β starting at αq(T1). Since β is parametrised

by its height, αq ∪ β is also a (1,26C0 + 8K)-quasi geodesic, hence there exists κq and Vq depending

only onK , δ andN such that αq∪β is in the κq-neighbourhood of Vq . Since lim
t→−∞

h(Vq(t)) = +∞, Vq is

a vertical geodesic ofHq . Furthermore, by Property 4.11, dH,N ≤ 2CN(dHp +dHq), hence there exists κ
depending only on K , δ and N such that α is in the κ-neighbourhood (for dH,N ) of (Vp, Vq), a vertical

geodesic of (H, dH,N). Since h(α(t)) ≥ h(α(T1)) − 26C0 − 8K =∶M , α is in the κ-neighbourhood of

(Vp([M − κ;+∞[), Vq(] −∞;−M + κ])) which is a vertical geodesic ray.

We will now show that the starting points of α and V are close to each other. Let us denote T ′1 a time
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such that dH,N(α(T1), V (T ′1)) ≤ κ, then ∆h(α(T1), V (T ′1)) ≤ κ, hence ∣T ′1 −M ∣ ≤ 26C0 + 8K + κ.

Then by the triangular inequality:

dH,N(α(T1), V (M − κ)) ≤dH,N(α(T1), V (T ′1)) + dH,N(V (T ′1), V (M − κ))

≤κ + 26C0 + 8K + κ + κ = 26C0 + 8K + 3κ

Let us denote κ′ ∶= 26C0 + 8K + 3κ ≥ κ and T2 ∶= M − κ. Hence α ∶ [T1;+∞[→ H is in the κ′-
neighbourhood of a vertical geodesic ray V ∶ [T2 ∶ +∞[→ H, we have dH,N(α(T1), V (T2)) ≤ κ′ and

κ′ depends only on δ and K .

Lemma 5.9. Let N be an admissible norm and let α ∶ R+ → H be a geodesic ray of (H, dH,N). Then α
changes its 17C0-coarse monotonicity at most once.

Proof. Let α ∶ R+ →H be a geodesic ray. Thanks to Lemma 5.5 α changes at most twice of 17C0-coarse

monotonicity. Indeed, assume it changes three times, applying Lemma 5.5 on the geodesic segment

which includes these three times provides a contradiction. We will show in the following that it actu-

ally only changes once.

Assume α changes twice of 17C0-coarse monotonicity. Then αmust be �rst 17C0-coarsely increas-

ing or 17C0-coarsely decreasing. We assume without loss of generality that α is �rst 17C0-coarsely

decreasing. Then there exist t1, t2, t3 ∈ R such that α is 17C0-coarsely decreasing on [α(t1), α(t2)]
then 17C0-coarsely increasing on [α(t2), α(t3)] then 17C0-coarsely decreasing on [α(t3), α(+∞)[.
Hence Lemma 5.8 applied on [α(t3), α(+∞)[ implies that there exists κ > 0 depending only on δ (since

the constant of coarse monotonicity depends only on δ) and a vertical geodesic ray V = (Vp, Vq) such

that [α(t3), α(+∞)[ is in the κ-neighbourhood of V . Since h+([α(t3), α(+∞)[) < +∞, we have that

lim
t→+∞

h(α(t)) = −∞, hence there exists t4 ≥ t3 such that h(α(t4)) ≤ h(α(t1)) − 7C0. Then Lemma 5.5

tells us that α is �rst 17C0-coarsely increasing, which contradicts what we assumed.

We have classi�ed the possible shapes of geodesic rays. Since geodesics lines are two geodesic rays

glued together, we will be able to classify their shapes too.

De�nition 5.10. Let N be an admissible norm and let α = (αp, αq) ∶ R → H be a path of (H, dH,N).
Let κ ≥ 0.

1. α is called Hp-type at scale κ if and only if:

(a) αp is in a κ-neighbourhood of a geodesic of Hp

(b) αq is in a κ-neighbourhood of a vertical geodesic of Hq .

2. α is called Hq-type at scale κ if and only if:

(a) αq is in a κ-neighbourhood of a geodesic of Hq

(b) αp is in a κ-neighbourhood of a vertical geodesic of Hp.

The Hp-type paths follow geodesics of Hp, meaning that they are close to a geodesic in a copy of

Hp insideH. The Hq-type paths follow geodesics of Hq .

Remark 5.11. In a horospherical product, being close to a vertical geodesic is equivalent to be both Hp-
type and Hq-type.

Theorem 5.12. Let N be an admissible norm. There exists κ ≥ 0 depending only on δ and N such that
for any α ∶ R→H geodesic of (H, dH,N) at least one of the two following statements holds.

1. α is a Hp-type geodesic at scale κ of (H, dH,N)

2. α is a Hq-type geodesic at scale κ of (H, dH,N)
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Figure 12: Di�erent type of geodesics inH =Hp &Hq .

Proof. It follows from Lemma 5.9 that α changes its coarse monotonicity at most once. Otherwise there

would exist a geodesic ray included in α that changes at least two times of coarse monotonicity. We

cut α in two coarsely monotone geodesic rays α1 ∶ [0,+∞[→ H and α2 ∶ [0,+∞[→ H such that up to a

parametrization α1(0) = α2(0) and α1 ∪α2 = α. By Lemma 5.8 there exists κ1 and κ2 depending only

on δ such that α1 is in the κ1-neighbourhood of a vertical geodesic ray V1 = (V1,p, V1,q) ∶ [0;+∞[→ H
and such that α2 is in the κ2-neighbourhood of a vertical geodesic ray V2 = (V2,p, V2,q) ∶ [0;+∞[→ H.

This lemma also gives us dH,N(α1(0), V1(0)) ≤ κ1 and dH,N(α2(0), V2(0)) ≤ κ2.

Assume that lim
t→+∞

h(V1,p(t)) = lim
t→+∞

h(V2,p(t)) = +∞, then they are both vertical rays hence are close

to a common vertical geodesic ray. Furthermore lim
t→+∞

h(V1,q(t)) = lim
t→+∞

h(V2,q(t)) = −∞ in that case.

Let Wq be the non continuous path of Hq de�ned as follows.

Wq(t) = { V1,q(−t) ∀t ∈] −∞; 0]
V2,q(t) ∀t ∈]0;+∞[

We now prove that Wq ∶ R → Hq is a quasigeodesic of Hq . Let t1 and t2 be two real numbers. Since

V1,q and V2,q are geodesics, dHq(Wq(t1),Wq(t2)) = ∣t1 − t2∣ if t1 and t2 are both non positive or both

positive. Thereby we can assume without loss of generality that t1 is non positive and that t2 is positive.

We also assume without loss of generality that ∣t1∣ ≥ ∣t2∣. The quasi-isometric upper bound is given by:

dHq(Wq(t1),Wq(t2)) = dHq(V1,q(−t1), V2,q(t2))
≤ dHq(V1,q(−t1), V1,q(0)) + dHq(V1,q(0), V2,q(0)) + dHq(V2,q(0), V2,q(t2))
≤ ∣t1∣ + κ1 + κ2 + ∣t2∣
≤ ∣t1 − t2∣ + κ1 + κ2, since t1 and t2 have di�erent signs.

It remains to prove the lower bound of the quasi-geodesic de�nition on Wq .

dHq(Wq(t1),Wq(t2)) = dHq(V1,q(−t1), V2,q(t2))

≥ 1

2CN
dH,N(V1(−t1), V2(t2)) − dHp(V1,p(−t1), V2,p(t2))

≥ 1

2CN
dH,N(α(t1), α(t2)) −

κ1 + κ2

CN
− dHp(V1,p(−t1), V2,p(t2)). (48)

The Busemann assumption on Hp provides us with:

dHp(V1,p(−t1), V2,p(−t1)) ≤ dHp(V1,p(0), V2,p(0)) ≤ κ1 + κ2.
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Since α is a geodesic and by using the triangular inequality on (48) we have:

dHq(Wq(t1),Wq(t2)) ≥
∣t1 − t2∣
2CN

− dHp(V1,p(−t1), V2,p(−t1)) − dHp(V2,p(−t1), V2,p(t2)) −
κ1 + κ2

CN

≥ ∣t1 − t2∣
2CN

−∆h(V2,q(−t1), V2,q(t2) − ( 1

CN
+ 1) (κ1 + κ2).

Assume that ∆h(V2,q(−t1), V2,q(t2)) ≤ ∣t1−t2∣
4CN

, then:

dHq(Wq(t1),Wq(t2)) ≥
∣t1 − t2∣
4CN

− ( 1

CN
+ 1) (κ1 + κ2).

HenceWq is a ( 1
4CN

, ( 1
CN

+ 1) (κ1 + κ2)) quasi-geodesic, which was the remaining case. Since κ1 and

κ2 depend only on δ and N , there exists a constant κ′ depending only on δ and N such that V1,q ∪V2,q

is in the κ′-neighbourhood of a geodesic of Hq . The geodesic α is a Hq-type geodesic in this case.

Assume lim
t→+∞

h(V1,p(t)) = lim
t→+∞

h(V2,p(t)) = −∞, we prove similarly thatα is aHp-type geodesic.

If a geodesic is both Hp-type at scale κ and Hq-type at scale κ, then it is in a κ-neighbourhood of

a vertical geodesic ofH.

5.4 Visual boundary of H

We will now look at the visual boundary of our horospherical products. This notion is described for the

SOL geometry in the work of Troyanov [12, Troyanov] through the objects called geodesic horizons.

We extend one of the de�nitions presented in page 4 of [12, Troyanov] for horospherical products.

De�nition 5.13. Two geodesic of a metric space X are called asymptotically equivalent if they are at
�nite Hausdor� distance from each other.

De�nition 5.14. LetX be a metric space and let o be a base point ofX . The visual boundary ofX is the
set of asymptotic equivalence classes of geodesic rays α ∶ R+ → such that α(0) = o. It is denoted ∂oX .

We will use a result of [11, Papadopoulos] to describe the visual boundary of horospherical products.

Property 5.15 (Property 10.1.7 p.234 of [11]). LetX be a proper Busemann space, let q be a point inX
and let r ∶ [0,+∞[→ X be a geodesic ray. Then, there exists a unique geodesic ray r′ starting at q that is
asymptotic to r.

Theorem 5.16. Let N be an admissible norm. We �x base points and directions (wp, ap) ∈ Hp × ∂Hp,
(wq, aq) ∈Hq×∂Hq . LetH =Hp&Hq be the horospherical product with respect to (wp, ap) and (wq, aq).
Then the visual boundary of (H, dH,N) with respect to a base point o = (op, oq) is given by:

∂oH =((∂Hp ∖ {ap}) × {aq})⋃({ap} × (∂Hq ∖ {aq}))

=((∂Hp × {aq})⋃({ap} × ∂Hq)) ∖ {(ap, aq)}

The fact that (ap, aq) is not allowed as a direction inH is understandable since both heights in Hp

and Hq would tend to +∞, which is impossible by the de�nition ofH.

Proof. Let α be a geodesic ray. Lemma 5.9 implies that there exists t0 ∈ R such that α is coarsely

monotone on [t0,+∞[. Then Lemma 5.8 tells us that α([t0,+∞[) is at �nite Hausdor� distance from

a vertical geodesic ray V = (Vp, Vq), hence α is also at �nite Hausdor� distance from V . Since Hp

is Busemann and proper, Property 5.15 ensure us there exists V ′

p a vertical geodesic ray such that Vp
and V ′

p are at �nite Hausdor� distance with V ′

p(0) = op. Similarly, there exists V ′

q a vertical geodesic

ray of Hq with V ′

q (0) = oq such that Vq and V ′

q are at �nite Hausdor� distance. Since there is at least
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one vertical geodesic ray V ′ = (V ′

q , V
′

p) in every asymptotic equivalence class of geodesic rays, ∂oH is

the set of asymptotic equivalence classes of vertical geodesic rays starting at o. Hence an asymptotic

equivalence class can be identi�ed by the couple of directions of a vertical geodesic ray. Then ∂oH can

be identi�ed to:

((∂Hp ∖ {ap}) × {aq})⋃({ap} × (∂Hq ∖ {aq})).

the union between downward directions and upward directions, which proves the theorem.

Example 5.17. In the case of SOL, Hp and Hq are hyperbolic planes H2, hence their boundaries are
∂Hp = ∂H2 = S1 and ∂Hq = S1. Then ∂oSOL can be identi�ed to the following set:

(S1 ∖ {ap}) × {aq}⋃{ap} × (S1 ∖ {aq}). (49)

It can be seen as two lines at in�nity, one upward {ap} × (S1 ∖ {aq}) and the other one downward (S1 ∖
{ap}) × {aq} .

It is similar to Proposition 6.4 of [12, Troyanov], however it is not the same result.

A possible way of generalising Theorems 5.3, 5.12 and 5.16 is looking at what happens when the Buse-

mann hypothesis of our components Hp and Hq is removed. However in that case it is already unclear

how to make a relevant de�nition for the horospherical product.
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