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Abstract

Binary data matrices can represent many types of data such as social networks, votes, or
gene expression. In some cases, the analysis of binary matrices can be tackled with nonneg-
ative matrix factorization (NMF), where the observed data matrix is approximated by the
product of two smaller nonnegative matrices. In this context, probabilistic NMF assumes a
generative model where the data is usually Bernoulli-distributed. Often, a link function is
used to map the factorization to the [0, 1] range, ensuring a valid Bernoulli mean parameter.
However, link functions have the potential disadvantage to lead to uninterpretable models.
Mean-parameterized NMF, on the contrary, overcomes this problem. We propose a unified
framework for Bayesian mean-parameterized nonnegative binary matrix factorization mod-
els (NBMF). We analyze three models which correspond to three possible constraints that
respect the mean-parameterization without the need for link functions. Furthermore, we
derive a novel collapsed Gibbs sampler and a collapsed variational algorithm to infer the
posterior distribution of the factors. Next, we extend the proposed models to a nonpara-
metric setting where the number of used latent dimensions is automatically driven by the
observed data. We analyze the performance of our NBMF methods in multiple datasets
for different tasks such as dictionary learning and prediction of missing data. Experiments
show that our methods provide similar or superior results than the state of the art, while
automatically detecting the number of relevant components.

1 Introduction
Nonnegative matrix factorization (NMF) is a family of methods that approximate a nonnegative
matrix V of size F ×N as the product of two nonnegative matrices,

V ≈WH, (1)

where W has size F ×K, and H has size K ×N , often referred to as the dictionary and the
activation matrix, respectively. K is usually chosen such that FK+KN � FN , hence reducing
the data dimension.

Such an approximation is often sought after by minimizing a measure of fit between the
observed data V and its factorized approximation WH, i.e.,

W,H = arg min
W,H

D(V|WH) s.t W ≥ 0, H ≥ 0, (2)
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where D denotes the cost function, and where the notation A ≥ 0 denotes nonnegativity of the
entries of A. Typical cost functions include the squared Euclidean distance and the generalized
Kullback-Leiber divergence (Lee and Seung, 2001), the α-divergence (Cichocki et al., 2008) or
the β-divergence (Févotte and Idier, 2011). Most of these cost functions underlie a probabilistic
model for the data, such that minimization of the cost function is equivalent to joint maximum
likelihood estimation of the factors (Singh and Gordon, 2008), i.e.,

arg min
W,H

D(V|WH) = arg max
W,H

p(V|W,H), (3)

where p is a probability distribution. As such, so-called Bayesian NMF can be considered,
where the factors W and H are assumed to be random variables with prior distributions, and
inference is based on their posterior distribution, i.e.,

p(W,H|V) = p(V|W,H)p(W,H)/p(V). (4)

This has notably been addressed for different models such as Poisson (Cemgil, 2009), addi-
tive Gaussian (Schmidt et al., 2009; Alquier and Guedj, 2017), or multiplicative Exponential
(Hoffman et al., 2010).

In this paper, we are interested in Bayesian NMF for binary data matrices. Binary matrices
may represent a large variety of data such as social networks, voting data, gene expression data,
or binary images. As we shall see in Section 2, a common practice is to consider the model

p(V|W,H) =
∏
f,n

Bernoulli (vfn|φ([WH]fn)) , (5)

where φ is a link function that maps the factorization WH to the [0, 1] range.1 Although link
functions are convenient since they allow the factors to be unconstrained, and sometimes result
in tractable problems, they sacrifice the mean-parameterization of the Bernoulli likelihood (i.e.
E[V|WH] = φ(WH) instead of E[V|WH] = WH).

Mean-parameterized nonnegative binary matrix factorization (NBMF), however, does not
rely on a link function —or equivalently, considers φ(WH) = WH— and assumes the likelihood
of the data to be

p(V|W,H) =
∏
f,n

Bernoulli(vfn|[WH]fn),

which implies E[V|WH] = WH. Mean-parameterization is an interesting property of a model
because it makes the decomposition easy to interpret. Besides, in a Bernoulli likelihood, the
product WH —and, in this paper, the individual factors as well— can be interpreted as prob-
abilities. An additional advantage of dealing with probabilities is that they lay in a linear,
continuous space, where we can apply off-the-shelf clustering methods over the latent factors.
For instance, in recommender systems, we may want to cluster users by latent musical prefer-
ences, or by the latent type of product they buy. Or we may want a user to see only those
categories with a probability higher than some threshold.

Our contributions in this paper are the following:

(a) we present a unified framework for three Bayesian mean-parameterized NBMF models that
place three possible constraints on the factors;

(b) we derive a collapsed Gibbs sampler as well as collapsed variational inference algorithms,
which have never been considered for these models;

1Distributions used throughout the article are formally defined in Appendix A.
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(c) we discuss the extension of the models to a nonparametric setting —where the number of
latent components does not need to be fixed a priori— and propose an approximation that
shows excellent results with real data.

We test the performance of the models for different tasks in multiple datasets and show that
our models give similar or superior results to the state of the art, while automatically detecting
the number of relevant components. The datasets, the algorithms, and scripts to replicate all
the reported results are available through an R package. 2

2 Related work

2.1 Logistic PCA family
One of the earliest probabilistic approaches to model binary data matrices comes from PCA-
related methods. The reformulation of PCA as a probabilistic generative model with a Gaussian
likelihood (Sammel et al., 1997; Tipping and Bishop, 1999) opened the door to considering other
likelihoods such as Bernoulli models, which are more appropriate for binary observations. We
refer to it as logistic PCA. The maximum likelihood estimator in the model is given by

vfn ∼ Bernoulli (σ ([WH]fn)) , (6)

where σ is the logistic function σ(x) = 1/(1 + e−x). Note that in this model the expectation is
a non-linear transformation of the factors, such that E[V|WH] = σ(WH).

There are multiple maximum likelihood estimation algorithms for logistic PCA. For instance,
while Sammel et al. (1997) use a Monte-Carlo Expectation Minimization (MC-EM) algorithm,
Tipping (1999) derives a faster variational EM (vEM) algorithm. Collins et al. (2002) generalize
probabilistic PCA to the exponential family and propose a general algorithm that exploits the
duality between likelihoods in the exponential family and Bregman divergences. Later, Schein
et al. (2003) improved the algorithm of Collins et al. (2002), thanks to the optimization of a
tight upper bound by Alternate Least Squares (ALS). Finally, note that inference could also be
tackled with Polya-Gamma data augmentation schemes Polson et al. (2013).

Other models similar to logistic PCA have been proposed with various priors or constraints
over the factors. Some examples are Hernandez-Lobato et al. (2014), where the factors are given
Gaussian priors, Tomé et al. (2013), which allows one factor to have negative values, and Larsen
and Clemmensen (2015), where both factors are nonnegative. Meeds et al. (2007) consider the
same logistic link function but a three factor decomposition σ(WXH), where W and H are
binary factors that represent cluster assignments, and X is a real-valued matrix that encodes the
relations between the clusters. The expectation in these models is always E[V|WH] = σ(WH)
or E[V|WXH] = σ(WXH).

2.2 Poisson matrix factorization
For practical reasons, some works have considered Poisson matrix factorization (PMF) tech-
niques for binary data. In this case the binary nature of the data is ignored and a Poisson
likelihood is considered:

vfn ∼ Poisson([WH]fn). (7)

Different flavors of PMF have been proposed, in frequentists or Bayesian settings, and can be
found, for example, in Lee and Seung (2001); Canny (2004); Cemgil (2009); Zhou et al. (2012);

2https://github.com/alumbreras/NBMF
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Figure 1 Three possible link functions (identity induces mean-parameterization).

Gopalan et al. (2014, 2015). An advantage of PMF is that it is mean-parameterized, i.e.,
E[V|WH] = WH. Another useful advantage is that inference algorithms need only iterate over
non-zero values, which makes them very efficient for sparse matrices. In our case, a significant
disadvantage is that it assigns non-zero probabilities to impossible observations (vfn > 1).

As we discussed above, a more reasonable choice consists in replacing the Poisson distribution
with a Bernoulli distribution, possibly using some link function that maps the parameter into
a [0, 1] range, ensuring a valid Bernoulli parameter. Unfortunately, unlike Poisson models,
zeroes and ones under Bernoulli likelihoods do not represent counts but classes —a zero can be
considered as a no, while a one can be considered as a yes— and the algorithms need to iterate
over all the elements of the observation matrix. To bypass this, Zhou (2015); Zhou et al. (2016)
proposed using the alternative link function f(x) = 1−e−x, coined Bernoulli-Poisson, such that

vfn ∼ Bernoulli (f ([WH]fn)) . (8)

Thanks to the new link function, the model can be “augmented” to a Poisson model by intro-
ducing latent variables cfn such that

cfn ∼ Poisson([WH]fn) (9)
vfn = 1[cfn ≥ 1], (10)

where 1 is the set indicator function. By placing conjugate Gamma priors over the factors,
posteriors can be obtained by Gibbs sampling. Expectation in this model is E[V|WH] =
f(WH). Figure 1 shows the logistic and Bernoulli-Poisson functions. Note that each link
function has a different input domain, leading to different priors or constraints over the factors.

2.3 Bernoulli mean-parameterized matrix factorization
None of the above methods offers mean-parameterization and assumes a Bernoulli distribution
over the data. The family of mean-parameterized Bernoulli models is the basis of the models
presented in this paper. These models have first been introduced in Kabán and Bingham
(2008) (binary ICA) and Bingham et al. (2009) (Aspect Bernoulli model) where the constraints∑
k wfk = 1, hkn ∈ [0, 1], or vice versa, are imposed on the factors. The trick is that these

constraints induce convex combinations of binary elements such that
∑
k wfkhkn ∈ [0, 1], which

gives a valid Bernoulli parameter. In Bingham et al. (2009) the constraints are imposed explicitly,
and the maximum likelihood estimator is computed by using EM with an augmented version
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Table 1 Bernoulli matrix factorization methods considered in the literature. Bernoulli, Gamma,
Dirichlet distributions are denoted as Ber, Ga, and Dir, respectively. Gradient refers to Gradient-
based optimization.

Reference Likelihood Prior / Constr. Estimation

Sammel et al. (1997) Ber(σ([WH]fn)) wfk ∼ Normal(·) MC-EM
hkn ∈ R

Tipping (1999) Ber(σ([WH]fn)) wfk ∼ Normal(·) vEM
hkn ∈ R

Collins et al. (2002) Ber(σ([WH]fn)) wfk ∈ R Gradient
hkn ∈ R

Schein et al. (2003) Ber(σ([WH]fn)) wfk ∈ R ALS
hkn ∈ R

Meeds et al. (2007) Ber(σ([WXH]fn)) wfk ∼ Ber(·) Gibbs
hkn ∼ Ber(·)

Kabán and Bingham (2008) Ber([WH]fn) wkn ∼ Beta(·) VB
hn ∼ Dir(·)

Bingham et al. (2009) Ber([WH]fn)
∑
k wfk = 1 EM

hkn ∈ [0, 1]
Tomé et al. (2013) Ber(σ([WH]fn)) wfk ∈ R+ Gradient

hkn ∈ R
Larsen and Clemmensen (2015) Ber(σ([WH]fn)) wfk ∈ R+ Gradient

hkn ∈ R+

Zhou (2015) Ber(f([WH]fn)) wfk ∼ Ga(·) Gibbs
hkn ∼ Ga(·)

of the model. In Kabán and Bingham (2008) the constraint is imposed through Dirichlet and
Beta priors over the factors, and Variational Bayes (VB) estimation of their posteriors is derived
exploiting a similar augmentation scheme.

Table 1 presents a summary of the methods presented in Sections 2.1-2.3 that use a Bernoulli
likelihood.

2.4 Others
Some models have also been proposed to find binary decompositions, that is, matrix factoriza-
tions where W and H contain binary elements. For instance, Zhang et al. (2009) aim to min-
imize a Euclidean distance or, equivalently, maximize a Gaussian likelihood under the binary
constraint. Similarly, the “discrete basis problem” of Miettinen et al. (2008) aims to minimize
a L1-norm under the same constraint. In Slawski et al. (2013), an algorithm is proposed to re-
trieve the exact factorization when one of the factors is constrained to be binary, and the other
one to be stochastic, i.e.,

∑
k hkn = 1. More recently Rukat et al. (2017) proposed a Bayesian

model for the Boolean matrix factorization problem, where WH is a Boolean product. Çapan
et al. (2018) proposed sum-conditioned Poisson factorization models that apply to binary data.

In the general model defined by Eq. (5), we are essentially assuming that V ≈ φ(WH). This
can be seen as a one-layer generative network with input H, weight W and non-linearity φ(·).
As such it is possible to conceive more general models by stacking various layers or modeling W
and H as the outputs of deep networks themselves. In the context of recommendation systems,
where binary matrices can represent either binary ratings or implicit feedback, this has been for
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example considered in He et al. (2017); Xue et al. (2017).

3 Mean-parameterized Bernoulli models

3.1 Models
Let us consider a mean-parameterized Bernoulli model for an observed binary matrix V and
two latent factors W, H:

vfn ∼ Bernoulli([WH]fn). (11)

To guarantee valid Bernoulli parameters, we can impose three possible sets of constraints on the
factors such that

∑
k wfkhkn ∈ [0, 1]:

(c1) (c2) (c3)

hkn ∈ [0, 1]
∑
k hkn = 1

∑
k hkn = 1∑

k wfk = 1 wfk ∈ [0, 1]
∑
k wfk = 1

In a Bayesian setting, we may place Beta and Dirichlet priors over the factors to respect
these constraints:

Beta-Dir (c1)
hkn ∼ Beta(αk, βk)

wf ∼ Dirichlet(γ)

Dir-Beta (c2)
hn ∼ Dirichlet(η)

wfk ∼ Beta(αk, βk)

Dir-Dir (c3)
hn ∼ Dirichlet(η)

wf ∼ Dirichlet(γ)

where hn denotes the n-th column of the matrix H, and wf denotes the f -th row of the matrix
W. The Beta parameters are positive real numbers αk, βk ∈ R++ and the Dirichlet parameters
are K-dimensional vectors of positive real numbers γ,η ∈ RK++.

Note that each element wfk and hkn can be interpreted as a probability. We can either
merely impose that the elements of a row wf or a column hn lie between 0 and 1, or, more
strongly, that they sum up to one. This implies a difference in modeling. On the one hand,
imposing that the elements lie between 0 and 1 induce non-exclusive components. On the other
hand, the sum-to-one constraint induces exclusive components, i.e., the more likely a component
is, the less likely are the others. Fig. 2 displays simulated matrices generated from each of the
models.

The first two models, Beta-Dir and Dir-Beta, are symmetric. Indeed, estimating W (resp.,
H) in one model is equivalent to estimating H (resp., W) in the other model after transposing
the matrix V. As such, in the rest of the paper, we will only consider the Beta-Dir model and
the Dir-Dir model.

The Aspect Bernoulli model of Bingham et al. (2009) is built over Eq. (11), and considers
that the factors W and H are deterministic parameters which satisfy the constraint (c2). The
factors are estimated by maximum likelihood with EM. The binary ICA of Kabán and Bing-
ham (2008) corresponds to the Beta-Dir model, and inference is performed with VB. In the
following sections, we present inference methods for the posterior distributions of W and H
in the Beta-Dir and Dir-Dir models. Because these distributions are intractable, we propose
novel collapsed Gibbs sampling and collapsed variational inference strategies. We also derive a
nonparametric approximation where the number of latent dimensions K does not need to be
fixed a priori.
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(a) Beta-Dir

(b) Dir-Beta

(c) Dir-Dir

Figure 2 Synthetic 100 × 100 matrices drawn from the three generative models with K = 4.
Matrices on the left are generated with αk = βk = γk = ηk = 1. Matrices on the right are
generated with αk = βk = γk = ηk = 0.1. For better visualization, rows and columns are
re-ordered according to complete linkage clustering (Sørensen, 1948) using the hclust function
in R (R Core Team, 2017).

3.2 Connections with latent Dirichlet allocation (LDA).
The proposed models have connection with topic models, in particular with LDA (Blei et al.,
2003), described by

hn ∼ Dirichlet(γ) (12)
vn|hn ∼ Multinomial (Ln,Whn). (13)

Here, V is the so-called “bag-of-words” representation of a corpus of documents, i.e., vfn rep-
resents the number of occurrences of word f in document n. Ln is the total number of words
in document n, i.e., Ln =

∑
f vfn. The columns of W are assumed to sum to 1, such that wfk

represents the probability of word f in topic k, and hkn represents the probability of topic k in
document n. In standard LDA, no prior distribution is assumed on W, though it is common
practice to assume Dirichlet distributions column-wise. The observation model is multinomial,
with a total “budget” of Ln words to distribute in each document n. In contrast, the binary data
models presented in this article are based on independent Bernoulli observations, and cannot
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be recast as multinomial. An LDA-like model may arise if we assume that each column of V
contains only one 1, and the rest are zeros (i.e. Ln = 1 for all n). This setting is however not
considered in the article.

3.3 Bayesian inference
In this paper, we opt for Bayesian inference of the latent factors W and H. This means that
we seek to characterize the posterior distribution p(W,H|V). The posterior in the considered
models is not available in closed form and we will resort to numerical approximations (Markov
Chain Monte Carlo sampling, variational inference). Another possible route is to seek point
estimates through either constrained maximum likelihood (ML) or maximum a posteriori (MAP)
estimation. For example, given Eq. (11) and the set of constraints (c1), maximum likelihood
estimation writes

min
W,H

− log p(V|WH) =
∑
f,n

vfn log([WH]fn) + (1− vfn) log(1− [WH]fn)

subject to (1) wfk, hkn ≥ 0, (2)
∑
k

wfk = 1, (3) hkn ∈ [0, 1]. (14)

Such optimization problems may be tackled with, e.g., majorization-minimization (Bingham
et al., 2009) or proximal gradient descent (Udell et al., 2016). Though it can be computationally
more costly, we favored Bayesian inference for the following reasons. Characterizing the full
posterior provides a measure of uncertainty over the latent parameters and over predicted values
of V. As we will show later, it allows in turn to infer the rank K of the factorization, a very
desirable property that is more difficult to obtain with point estimation methods. Finally,
Bayesian inference is rather customary in topic models such as LDA or Discrete Component
Analysis (Buntine and Jakulin, 2006), and our work intends to follow similar principles.

4 Inference in the Beta-Dir model
In this section, we derive a collapsed Gibbs sampler (Liu, 1994) for the Beta-Dir model. First,
we will augment the model with latent indicator variables Z so that it becomes conjugate. Then
the collapsed Gibbs sampler consists in marginalizing out the factors W and H, thus running
a Gibbs sampler over the indicator variables Z only. The interest of collapsed Gibbs sampling
is that it offers improved mixing properties of the Markov chains, i.e., better exploration of the
parameter space, thanks to the reduced dimensionality. We use a superscript, as in x(j), to
indicate the j-th sample of a chain (after burn-in). After sampling, given a collection of samples
Z(j) from the posterior, we will be able to directly sample from the posteriors of interest p(W|V)
and p(H|V).

4.1 Augmented model
We can augment the Beta-Dir model with indicator variables zfn, that contain component
assignments from the Dirichlet factor, as shown in Bingham et al. (2009). More precisely, zfn
is a vector of dimension K with elements zfkn ∈ {0, 1} such that only one element equals to
one and all the others equal to zero. In other words, zfn ∈ {e1, . . . , eK}, where ek is the k-th

8



γ wf zfn vfn hkn

αk

βk
F NK

(a) Partially augmented Beta-Dir model

γ wf zfn vfn cfn hn η

F N

(b) Fully augmented Dir-Dir model

Figure 3 Augmented models

canonical vector of RK . The augmented model is a mixture model described by:3

hkn ∼ Beta(αk, βk) (15)
wf ∼ Dirichlet(γ) (16)

zfn|wf ∼ Discrete(wf ) (17)

vfn|hn, zfn ∼ Bernoulli

(∏
k

h
zfkn

kn

)
. (18)

Indeed, marginalizing zfn from Eqs. (17)-(18) leads to Eq. (11) as shown next. From Eqs. (17)-
(18) we have

p(vfn|wf ,hn) =
∑
k

p(zfn = ek|wf )Bernoulli(vfn|hkn, zfkn) (19)

=
∑
k

wfk h
vfn

kn (1− hkn)1−vfn , (20)

and thus p(vfn = 1|wf ,hn) = [WH]fn and p(vfn = 0|wf ,hn) = 1− [WH]fn, i.e., vfn has the
marginal distribution given by Eq. (11). A graphical representation of the augmented model
is shown in Fig. 3-(a). Let us think of a recommender system application, where columns of
V are users, and rows are items. An interpretation of the above model is the following. Each
item f is characterized by a probability over topics, wf . Then, for each user-item pair, a topic
k (indicated by zfn) is activated with probability wfk, and the probability that the user n
consumes this item (vfn = 1) is hkn.

Denoting by Z the F×K×N tensor with entries zfkn, the joint probability in the augmented
model is given by:

p(V,Z,W,H) = p(W)p(Z|W)p(H)p(V|H,Z) = F∏
f=1

(
p(wf )

N∏
n=1

p(zfn|wf )

) N∏
n=1

 K∏
k=1

p(hkn)

F∏
f=1

p(vfn|hn, zfn)

 . (21)

3Some readers may be more accustomed to the alternative notation where the “one-hot" variable zfn is
replaced by an integer-valued index zfn ∈ {1, . . . ,K}. In this case, the Bernoulli parameter in Eq. (18) becomes
hzfnn.
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4.2 Collapsed Gibbs sampler
Thanks to the previous augmentation, and exploiting conjugacy, we can now marginalize out
W and H from Eq. (21). The marginalized distribution has the following structure:

p(V,Z) =

∏
f

p(Zf )︷ ︸︸ ︷∫
p(wf )

∏
n

p(zfn|wf ) dwf

∏
n

p(vn|Zn)︷ ︸︸ ︷∫ ∏
k

p(hkn)
∏
f

p(vfn|hn, zfn) dhn, (22)

where Zf denotes the K ×N matrix with entries {zfkn}kn, Zn denotes the F ×K matrix with
entries {zfkn}fk. Let us define the following four variables that act as counters:

Lfk =
∑
n

zfkn, Mkn =
∑
f

zfkn,

Akn =
∑
f

zfknvfn, Bkn =
∑
f

zfknv̄fn.

where v̄fn = 1− vfn. Akn and Bkn count how many times the component k is associated to a
“positive” observation (vfn = 1) and to a “negative” observation (v̄fn = 1) in the n-th sample.
Then we have the following expressions (derivations are available in Appendix B.1):

p(Zf ) =
Γ(
∑
k γk)∏

k Γ(γk)

∏
k Γ(γk + Lfk)

Γ(
∑
k γk +N)

(23)

p(vn|Zn) =
∏
k

Γ(αk + βk)

Γ(αk)Γ(βk)

Γ(αk +Akn)Γ(βk +Bkn)

Γ(αk + βk +Mkn)
. (24)

The posterior of the indicator variables p(Z|V) is not available in closed form and the
proposed collapsed Gibbs sampler consists in iteratively sampling each vector zfn given the
current value of the other indicator vectors. Let L¬fnfk , M¬fnkn , A¬fnkn , B¬fnkn be the state of the
counters when the tube (f, n) of the tensor Z is left out of the sums:

L¬fnfk = Lfk − zfkn, M¬fnkn = Mkn − zfkn,

A¬fnkn = Akn − zfknvfn, B¬fnkn = Bkn − zfknv̄fn.

In Appendix B.2 we show that the conditional posterior of zfn given the remaining variables
Z¬fn is given by:

p(zfn|Z¬fn,V) ∝
∏
k

[
(γk + L¬fnfk )

(αk +A¬fnkn )vfn(βk +B¬fnkn )v̄fn

αk + βk +M¬fnkn

]zfkn

. (25)

This expression needs to be normalized to ensure a valid probability distribution. This can be
easily done by computing the right-hand side of Eq. (25) for every of the K possible values of
zfn and normalizing by the sum. Eq. (25) shows that the probability of choosing a component
k depends on the number of elements already assigned to that component. More precisely, it
depends on the one hand on the number of elements assigned to component k in column n. On
the other hand, it also depends on the proportion of elements in row f assigned to component
k that explain ones (if vfn = 1) or zeros (if vfn = 0) in V in the total number of elements

10
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Figure 4 Illustration of the Gibbs samplers. Colors represent component assignments (a value
of k). When sampling an element (dashed circle) the probability of each component depends on
the number of elements with thick circles in the same row or column that are currently assigned
to that component.

Algorithm 1: Collapsed Gibbs sampler for Beta-Dir
Input: Observed matrix V ∈ {0, 1}F×N
Parameters: α,β,γ
Output: Samples Z(1), ...,Z(J)

Initialize: Random initialization of Z
for j = 1 to J do

for f = 1 to F do
for n = 1 to N do

if vfn not missing then
Sample z

(j)
fn ∼ p(zfn|Z¬fn,V) (Eq.(25))

end
end

end
end

associated to k in that row (see Figure 4). The parameters γk, αk, βk act as pseudo-counts: they
give a priori belief about how many elements are assigned to each component.

Our collapsed Gibbs sampling is summarized in Alg. (1). Note that, although Alg. (1) does
not explicitly include it, we must draw samples during an initial burn-in phase (as required by
any MCMC method) before collecting the last J samples, after the chain has converged to the
stationary distribution. Note also that the algorithm can readily deal with incomplete matrices
by simply skipping missing entries (i.e., the loop over f and n only runs over available entries).

Latent factors posteriors. Thanks to conjugacy, the conditional posteriors of W and H given
Z and V are given by:

wf |Zf ∼ Dirichlet(γ +
∑
n

zfn) (26)

hkn|Zn,vn ∼ Beta(αk +Akn, βk +Bkn). (27)
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The conditional posterior expectations are given by:

Ewf
[wf |Zf ] =

γ +
∑
n zfn∑

k γk +
∑
k

∑
n zfkn

=
γ +

∑
n zfn∑

k γk +N
(28)

Ehkn
[hkn|Zn,vn] =

αk +Akn
αk +Akn + βk +Bkn

=
αk +

∑
f zfknvfn

αk + βk +
∑
f zfkn

, (29)

where we used the equalities
∑
kn zfkn = N and Akn +Bkn =

∑
f zfkn. Using the law of total

expectation, i.e., E[X] = EY [EX [X|Y ]], and given a set a samples Z(j), it follows that the
marginal posterior expectations of the latent factors can be computed as:

Ewf
[wf |V] = EZ[Ewf

[wf |V,Z]] = EZf
[Ewf

[wf |Zf ]] ≈
γ + 1

J

∑
j

∑
n z

(j)
fn∑

k γk +N
(30)

Ehkn
[hkn|V] = EZn [Ehkn

[hkn|Zn,vn]] ≈ 1

J

∑
j

αk +
∑
f z

(j)
fknvfn

αk + βk +
∑
f z

(j)
fkn

. (31)

Prediction. The predictive posterior distribution of an unseen data sample v∗fn given the
available data V is given by

p(v∗fn|V) =

∫
p(v∗fn|wf ,hn)p(wf ,hn|V) dwfdhn

= E[wfhn|V]v
∗
fn(1− E[wfhn|V])1−v∗fn . (32)

Because the predictive posterior is a Bernoulli distribution, its expectation is given by
E[wfhn|V], which can be approximated using samples W(j), H(j) from the distributions given
by Eqs. (26)-(27) given Z = Z(j):

E[v∗fn|V] = E[wfhn|V] ≈ 1

J

∑
j

w
(j)
f h(j)

n . (33)

4.3 Collapsed variational inference
Given the collapsed model of Eqs. (22)-(24) we may derive a mean-field Collapsed Variational
Bayes algorithm (CVB) (Teh et al., 2007) by assuming that the posterior factorizes as q(Z) =∏
fn q(zfn). The key of CVB is that its free energy is a strictly better bound on the evidence

than the free energy of the standard, i.e., uncollapsed, VB. We compute the CVB updates by
applying the mean-field VB updates to the collapsed model:

q(zfn|V) ∝ exp{Eq(Z¬fn)[log p(V,Z)]}, (34)

where the expectations are taken over the variational posterior. This leads us to

q(zfn|V)

∝
∏
k

exp

{
Eq[log(γk + L¬fnfk )]

Eq[log(αk +A¬fnkn )]vfnEq[log(βk +B¬fnkn )]v̄fn

Eq[logM¬fnkn ]

}
. (35)

The expectations of the form Eq(z)[log(x+z)] are expensive to compute. A simpler alternative is
CVB0 (Asuncion et al., 2009), which uses a zero-order Taylor approximation Eq(z)[log(x+z)] ≈
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log(x+Eq(z)[z])] and has been shown to give, in some cases, better inference results than CVB.
Under the CVB0 version our update becomes

q(zfn|V) ∝
∏
k

(γk + Eq[L¬fnfk ])
(αk + Eq[A¬fnkn ])vfn(βk + Eq[B¬fnkn ])v̄fn

αk + βk + Eq[M¬fnkn ]
, (36)

which has a similar structure to the collapsed Gibbs sampler in Eq. (25). Overall, the collapsed
VB algorithm has the same structure as the Gibbs sampler summarized in Alg. (1). Note that
when the data matrix is too large for batch processing, one can routinely resort to stochastic
variational inference (Hoffman et al., 2013).

Latent factors posteriors. The variational distributions of the factors can be obtained from
the uncollapsed version:

q(wf ) = Dirichlet(γ +
∑
n

Eq[zfn]) (37)

q(hkn) = Beta(αk + Eq[Akn], βk + Eq[Bkn])). (38)

The Taylor approximation breaks the theoretical guarantees of their superiority over the ones
given by uncollapsed VB. Still, they have been reported to work better than VB in practice.
Another drawback of the approximation is the loss of convergence guarantees. Although we do
not address this issue here, this has been recently addressed by Ishiguro et al. (2017), where
an annealing strategy is used to gradually decrease the portion of the variational posterior
changes.

Prediction. The predictive posterior can be computed as in Eq. (32), and its expectation is
computed using the variational approximations of the factors, i.e.,

E[v∗fn|V] = E[wfhn|V] ≈ Eq(wf )[wf ]Eq(hn)[hn]. (39)

4.4 Approximating infinite components
Recall that in the augmented model, the component assignments zfn have a Discrete distribution
such that (Eqs. (16)-(17))

wf ∼ Dirichlet(γ)

zfn|wf ∼ Discrete(wf ).

The variable wf may be integrated out leading to the expression of p(Zf ) given by Eq.(23). In
Appendix B.2, we show that the prior conditionals are given by:

p(zfn = ek|Z¬fn) =
γk + L¬fnfk∑
k γk +N − 1

. (40)

Let us assume from now that the Dirichlet prior parameters are such that γk = γ/K, where γ
is a fixed nonnegative scalar, so that:

p(zfn = ek|Z¬fn) =
γ/K + L¬fnfk

γ +N − 1
. (41)

The conditional prior given by Eq. (41) is reminiscent of the Chinese Restaurant process (CRP)
(Aldous, 1985; Anderson, 1991; Pitman, 2002). In the limit when K → ∞, the probability of
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assigning zfn to component k is proportional to the number L¬fnfk of current assignments to
that component. Let K+ denote the current number of non-empty components (i.e., such that
L¬fnfk > 0). Then the probability of choosing an empty component is

p(zfn = ek|Z¬fn, L¬fnfk = 0) = lim
K→∞

(K −K+)
γ/K

γ +N − 1
=

γ

γ +N − 1
. (42)

Note that the latter probability does not depend on K. In practice, we set K to a large
value and observed self-pruning of the number of components, hence achieving to automatic
order selection, similar to Hoffman et al. (2010). Implementing exact inference in the truly
nonparametric model

Zf ∼ CRP(γ) (43)

vn|Zn ∼ p(vn|Zn) (44)

is more challenging. This is because there is a CRP for each feature f , and some empty com-
ponents may become unidentifiable in the limit. This is a known issue that could be addressed
using for example a Chinese Restaurant Franchise process (Teh et al., 2006) but is beyond the
scope of this article.

5 Inference in the Dirichlet-Dirichlet model
The methodology to obtain a collapsed Gibbs sampler for the Dir-Dir model is similar to the
approach followed for the Beta-Dir model. It is possible to augment the model with the same
auxiliary variable zfn and compute the expression of p(zfn|Z¬fn,V) in closed form. However,
the expression of the conditional posterior, given in Appendix C, involves combinatorial com-
putations and is infeasible in practice. As such, we propose an alternative Gibbs sampler that
relies on a double augmentation, presented next. Obtaining a variational collapsed algorithm
for the Dir-Dir model is not straightforward, even using the double augmentation, and is left
for future work.

5.1 Fully augmented model
Unlike the Beta-Dir model, the Dir-Dir model is not fully conjugate after a first augmentation.
We propose a second augmentation with a new indicator variable cfn ∈ {e1, . . . , eK}, that plays
a similar role to zfn The fully augmented version is:

hn ∼ Dirichlet(η) (45)
wf ∼ Dirichlet(γ) (46)

cfn|hn ∼ Discrete(hn) (47)
zfn|wf ∼ Discrete(wf ) (48)

vfn =
∑
k

cfknzfkn. (49)
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To show that this is a valid augmentation, note that vfn can only be nonzero (and equal to 1)
if cfn = zfn. Then, the marginal probability of vfn = 1 is given by

p(vfn = 1|wf ,hn) =
∑
k

p(vfn = 1, zfn = cfn = ek|wf ,hn) (50)

=
∑
k

p(zfn = ek|wf )p(cfn = ek|hn) (51)

=
∑
k

wfkhkn, (52)

and we thus recover the Bernoulli model of Eq. (11) as announced. Compared to the Beta-Dir
model and using our recommender system analogy, this means that, in each user-item pair, the
user also activates one topic, and then consumes the item if the user active topic is equal to the
item active topic. The Dir-Dir model makes a stronger assumption than the Beta-Dir since
the user can only activate one topic per item. A graphical representation of the fully augmented
model is given in Fig. 3-(b). In the following, we denote by C the F ×K×N tensor with entries
cfkn, and by Cn the F ×K matrix with entries {cfkn}fk.

5.2 Collapsed Gibbs sampling
In this section we show that W and H can be marginalized from the joint probability of the
fully augmented model and then propose a collapsed Gibbs sampler for p(Z,C|V). The joint
probability is given by:

p(V,Z,C) =
∏
f,n

p(vfn|zfn, cfn)
∏
f

p(Zf )
∏
n

p(Cn), (53)

where

p(Zf ) =
Γ(
∑
k γk)∏

k Γ(γk)

∏
k Γ(γk +

∑
n zfkn)

Γ(
∑
k γk +N)

(54)

p(Cn) =
Γ(
∑
k ηk)∏

k Γ(ηk)

∏
k Γ(ηk +

∑
f cfkn)

Γ(
∑
k ηk + F )

(55)

p(vfn|zfn, cfn) = δ(vfn −
∑
k

cfknzfkn), (56)

and where δ denotes the Dirac delta function. Following Section 4.2 and Appendix B.2, the
prior conditional are given by:

p(zfn|Z¬fn) ∝
∏
k

(γk + L¬fnfk )zfkn (57)

p(cfn|C¬fn) ∝
∏
k

(ηk +Q¬fnkn )cfkn . (58)

where Q¬fnkn =
∑
f ′ 6=f cf ′kn and L¬fnfk =

∑
n′ 6=n zfkn′ is as before. When vfn = 1, cfn and zfn

must be assigned to the same component (cfn = zfn). To respect this constraint, we may sample
them together from the posterior. Introducing the vector xfn such that xfn = zfn = cfn, the
conditional posterior is given by:

p(xfn|Z¬fn,C¬fn, vfn = 1) ∝
∏
k

[
(γk + L¬fnfk )(ηk +Q¬fnkn )

]xfkn

. (59)
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Algorithm 2: Collapsed Gibbs sampler for Dir-Dir
Input: Observed matrix V ∈ {0, 1}F×N
Parameters: γ,η
Output: Samples Z(1), ...,Z(J), C(1), ...,C(J)

Initialize: Random initialization of Z and C
for j = 1 to J do

for f = 1 to F do
for n = 1 to N do

if vfn not missing then
if vfn = 1 then

Sample x ∼ p(x|Z¬fn,C¬fn,V) (Eq. (59))
z

(j)
fn = x

c
(j)
fn = x

else
Sample z

(j)
fn ∼ p(zfn|Z¬fn,C,V) (Eq. (60))

Sample c
(j)
fn ∼ p(zfn|Z,C¬fn,V) (Eq. (61))

end
end

end
end

end

When vfn = 0, we can assign to one of the two auxiliary variables any component not currently
assigned to the other auxiliary variable. The respective conditional posteriors are given by:

p(zfn|Z¬fn, cfn, vfn = 0) ∝
∏
k

[
(γk + L¬fnfk )(1− cfkn)

]zfkn

(60)

p(cfn|zfn,C¬fn, vfn = 0) ∝
∏
k

[
(ηk +Q¬fnkn )(1− zfkn)

]cfkn

. (61)

A pseudo-code of the resulting Gibbs sampler is given in Alg. (2). As with the Beta-Dir model,
we set γk = γ/K with K large to emulate a nonparametric setting (note that η does not need
to depend on K itself).

Latent factors posteriors and prediction. The conditional posteriors of the latent factors
given Z and C are given by:

wf |Zf ∼ Dirichlet(γ +
∑
n

zfn) (62)

hn|Cn ∼ Dirichlet(η +
∑
f

cfn). (63)

As done with the Beta-Dir model, we may use the law of total expectation and the samples z(j)
fn
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to obtain Monte-Carlo estimates of the posterior expectations:

Ewf
[wf |V] = EZ[Ewf

[wf |V,Z]] = EZf
[Ewf

[wf |Zf ]] ≈
γ + 1

J

∑
j

∑
n z

(j)
fn∑

k γk +N
(64)

Ehn
[hn|V] = EC[Ehn

[hn|V,C]] = ECn
[Ehn

[hn|Cn]] ≈
η + 1

J

∑
j

∑
f c

(j)
fn∑

k ηk + F
. (65)

As in the Beta-Dir model, W and H can be sampled in a second step given a collection of
samples of Z and C. The predictive posterior and its expectation can be computed as in Eqs.
(32), (33).

6 Experiments
We show the performance of the proposed NBMF methods for different tasks in multiple
datasets. The datasets, the algorithms, and scripts to replicate all the reported results are
available through our R package.

6.1 Datasets
We consider five different public datasets, described next and displayed in Fig. 5.

Animals (animals). The animals dataset (Kemp et al., 2006) contains 50 animals and 85
binary attributes such as nocturnal, hibernates, small or fast. The matrix takes vfn = 1 if
animal n has attribute f .

Last.fm (lastfm). We use a binarized subset of the Last.fm dataset (Celma, 2010) where rows
correspond to users and columns correspond to musical artists. The matrix takes vfn = 1 if
user n has listened to artist f at least once. The matrix has F = 285 rows andN = 1226 columns.

Paleontological data (paleo). The NOW (New and Old Worlds) fossil mammal database
contains information of fossils found in specific paleontological sites (NOW, 2018). From the
original paleontological data, we build a matrix where each row is a genus, each column is a
location, and vfn = 1 if genus f has been found at location n. We used the same pre-processing
as in Bingham et al. (2009) (i.e., we discarded small and infrequent genus, locations with only
one genus and kept locations with longitude between 0 and 60 degrees East) and obtained a
matrix with F = 253 rows and N = 902 columns.

Catalan parliament (parliament). We created a list of the current members of the Catalan
parliament and collected the information of who follows whom on Twitter (March 2018). With
this data, we created a square adjacency matrix where vfn = 1 if member f follows member n.
There are seven political groups represented. The resulting matrix has 135 rows and columns
(F = N).

UN votes (unvotes). The United Nations General Assembly Voting Data is a dataset that
contains the roll-call votes in the UN General Assembly between 1946-2017 (Voeten, 2013).
Votes can be yes, no, or abstention. From this data, we created a matrix where vfn = 1 if
country f voted yes to the call n, vfn = 0 if it voted no, and a missing value if the country did
not participate in that call or was not a member of the UN at that time. Next, abstention votes
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Figure 5 Datasets. Black entries correspond to vfn = 1 and white entries correspond to zero
values. In the unvote dataset, blue entries represent “abstention” values and red entries are
missing votes. For best visualization, rows and columns are re-ordered with complete linkage
clustering, except for 1) parliament in which parliament members are sorted by parliamentary
group and 2) unvotes where votes are sorted chronologically.

will be treated as either negative votes (no) or missing data, as specified in each experiment.
The resulting matrix has F = 200 rows and N = 5429 columns.

6.2 Methods and setting
State-of-the-art methods. We compare our proposed methods with the following state-of-
the-art methods for binary data.

logPCA-K. Probabilistic PCA with Bernoulli likelihood. We use the algorithm presented in
Collins et al. (2002). The notation logPCA-K will embed the chosen number of components K
(e.g., logPCA-8 signifies K = 8). We used the R package logisticPCA (Landgraf and Lee, 2015)
with default parameters.

bICA-K. The binary ICA method introduced in Kabán and Bingham (2008), which uses un-
collapsed mean-field variational inference over the partially augmented model (Eqs. (15)-(18)).
This is also a parametric method that requires setting K.

Proposed methods. Our proposed methods are as follows.
Beta-Dir GS. Estimation in the Beta-Dir model with collapsed Gibbs sampling. Beta pa-
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rameters are set to αk = βk = 1. To emulate a nonparametric setting, the Dirichlet parameters
are set to γk = 1/K and the number of components is set to K = 100.

Beta-Dir VB. Estimation in the Beta-Dir model with collapsed variational Bayes (CVB0).
Beta parameters are set to αk = βk = 1. To emulate a nonparametric setting, we set γk = 1/K
and K = 100.

Dir-Dir GS. Estimation in the Dir-Dir model with collapsed Gibbs sampling. To emulate
a nonparametric setting, we set γk = 1/K, ηk = 1, and K = 100.

c-bICA-K. Collapsed bICA. The algorithm corresponds to Beta-Dir VB with
αk = βk = γk = 1. It is the collapsed version of bICA-K using CVB0 and without the
nonparametric approximation.

Implementation details. For each dataset, we ran some preliminary experiments to assess
the number of iterations needed by the algorithms to converge. For the Gibbs samplers, we
set a conservative burn-in phase of 4,000 iterations and kept the last 1,000 samples of Z after
burn-in. A total number of 500 iterations where used for the variational algorithms. In every
experiment, we initialized the Gibbs samplers with a random tensor Z such that zfn = ek
with random k. We did not find a special sensitivity to the initial state of the Gibbs Sampler,
but we chose a random initialization as a good practice. We also tried initializing with some
variational steps, which is another common practice, but did not see significant improvements.
Similarly, we initialized the variational algorithms with a random E[Z] such that E[zfn] = ek
with random k. Our variational algorithms are sensitive to the initial state when some
components are empty. Because an empty component has a lower probability of being chosen,
in practice the variational algorithms are not capable of refilling it again. Initializing from a
random state with lots of used components is, therefore, a safer way to avoid these local maxima.

Estimators. The algorithms Beta-Dir GS and Dir-Dir GS return samples from the posterior
of p(W,H|V). Point estimates of the dictionary W and data expectation V̂ = WH are
computed by averaging (posterior mean) and by Eq. (33), respectively. Beta-Dir VB, bICA
and c-bICA return variational approximations of the posterior of W and H. Point estimates
of W and V̂ are computed from the variational distribution mean and by Eq. (39). logPCA
returns maximum likelihood (ML) estimates Ŵ and Ĥ. The data expectation is computed as
V̂ = σ(ŴĤ).

Sensitivity to hyperparameters. When using Dirichlet priors, inferences may be quite
sensitive especially for small values of its concentration parameter (Steck and Jaakkola,
2003). For the setting described in Section 6.4, we have tested our algorithms under toy
data generated from the model, setting the concentration parameter to 1. We have repeated
different inferences with the concentration parameter of the estimator ranging from 0.1 to
10 and observed very small variations on the perplexity (around 0.1, and decreasing as
the size of the observed data increases). Thus, for the sake of simplicity, we have therefore
decided to set the concentrations parameters to 1 which corresponds to a uniform Dirichlet prior.

Computational cost. The time complexity of the collapsed algorithms is O(FKN) (assuming,
for the sake of simplicity, that the Multinomial random number generator is O(1)). Note that,
unlike some non-mean-parameterized Bernoulli models (Zhou, 2015), or all Poisson models,
zeros cannot be ignored because they represent another category, not a lack of observation or a
zero-count.
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Figure 6 Reconstructed matrices for the parliament dataset.

6.3 Dictionary learning and data approximation
6.3.1 Experiments with the parliament dataset

First, we want to form an idea of how well the different models can fit original data. We focus
on the parliament dataset, which has reasonable size and a clear structure. We applied the
three proposed nonparametric methods Beta-Dir GS, Beta-Dir VB, Dir-Dir GS and the state-
of-the-art methods bICA and logPCA. For each method, we compute the negative log-likelihood
of the data approximation V̂, which serves as a measure of fit:

D(V|V̂) = −
∑
fn

log p(vfn|v̂fn). (66)

bICA was run with increasing values of K and the fit ceased increasing for K = 8 which is the
value used in the results (note that in this case V̂ is the posterior mean estimate and not the
ML estimate, so the likelihood is not meant to increase monotonically). logPCA was run with
the same value K = 8. The data approximations V̂ and dictionaries obtained with the different
methods are displayed in Figs. 6 and 7, respectively.

In terms of data approximation, Beta-Dir VB achieves the best fit among the mean-
parameterized models in terms of negative log-likelihood (4,729) followed by Beta-Dir GS
(4,863). The dictionaries returned by these two algorithms are very similar, with only nine
active components. bICA-8 comes next in terms of fit (4,957). We also applied bICA with K > 8
components but this did not substantially improve the likelihood. Dir-Dir GS returns the worst
fit (8,930), with only two active components. Overall logPCA-8 returns the smallest negative
log-likelihood (1,783). This due to its larger flexibility as compared to the mean-parameterized
models (real-valued factors W and H, with product WH mapped to [0, 1]). However, this is
at the cost of meaningfulness of the decomposition, as shown in Fig. 7 and explained next.

In dictionary learning, we want to learn a meaningful decomposition of the data. The
columns of the dictionary W are expected to contain patterns or prototypes characteristic of
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the data. In particular, NMF is known to produce so-called part-based representations (each
sample, a column of V, is approximated as a constructive linear combination of building units)
(Lee and Seung, 1999). When the rows of the dictionary are given Dirichlet priors, wf can
also be interpreted as the probability distribution of feature f over the K components. In
Fig. 7, the rows of the dictionaries displayed correspond to members of the parliament (MP).
For each MP we show its Twitter username and its political party. The dictionaries returned
by the mean-parameterized factorization methods are easily interpretable. In particular, the
dictionaries returned by Beta-Dir GS, Beta-Dir VB and to some extent bICA-8 closely reflect
the party memberships of the MPs. Dir-Dir GS, which is based on a less flexible model, only
captures two sets of MPs, one with the members of Cs (the main opposition party) and the other
with members of the remaining parties, regardless of political alignment (left-wing, right-wing,
independentist and anti-independentist). In contrast, the dictionary returned by logPCA-8 is
much more difficult to interpret.

6.3.2 Experiments with the unvotes dataset

In this section, we consider a subset of unvotes, reduced to the 1946-1990 range which corre-
sponds to the Cold War period. Furthermore, the abstentions are here treated as missing values.
Fig. 8 shows the dictionaries learned by the five considered methods. As before, bICA was ap-
plied with various values of K and we selected the value that leads to the smallest negative
log-likelihood (K = 7). Accordingly, logPCA was also applied with K = 7.

Fig. 8 shows that Beta-Dir GS returns the finest dictionary, detecting political blocks that
tended to vote similarly in the UN assembly and capturing some nuances that the other al-
gorithms do not find. European countries (and members or allies of NATO such as the USA,
Japan, or Australia) are concentrated in one component, denoting similar voting strategies. The
former members of the Soviet Union and the Warsaw Pact also form a block of their own, with
some allies such as Cuba or the former Yugoslavia. Members of the Non-Aligned Movement
(even countries that became members after 1991, such as Guatemala, Thailand, or Haiti), from
Egypt to Cuba and from Honduras to Haiti, are split into two blocks: the Latin American
group and the Asian-African group. Another detected alliance is between the United States and
Israel, which are distributed between the European component and a component of their own.
Beta-Dir VB detects the split between the Warsaw and NATO blocks, and the alliance between
the USA and Israel, but it fails to detect the two subgroups of the Non-Aligned Movement,
which is considered a single block. bICA-7 returns similar results to Beta-Dir GS but fails to
detect the alliance between the USA and Israel. Note that the results of bICA are obtained
with a well-chosen value of K while Beta-Dir GS automatically detects a suitable value. The
underlying assumption of Dir-Dir (one topic per country and one topic per vote) seems too
simplistic for this dataset, and the algorithm puts every country in the same component. Again
and as somewhat expected, the dictionary learned by logPCA is more difficult to interpret.

6.3.3 Experiments with the paleo dataset

We finally look into the dictionaries returned by the five considered method on the paleo dataset,
see Fig. 9. The same strategy was applied to find a suitable value of K for bICA and logPCA,
leading to K = 7. The results can be read as the probability of a genus to be found in a set of
prototypical locations. Interestingly, Dir-Dir GS is the method that returns the most detailed
dictionary for this dataset. The other methods tend to produce larger clusters of genera. This
highlights the importance of choosing the right model for each dataset since they imply different
underlying assumptions. Dir-Dir GS assumes one topic per genus and one topic per location.
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Beta−Dir GS Beta−Dir VB Dir−Dir GS bICA logPCA

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Ciddavid − CEC
Elisendalamany − CEC

jessicaalbiach − CEC
martaribasfrias − CEC

NUET − CEC
susannasegovia − CEC

XavierDomenechs − CEC
YolandaPodem − CEC

aespice − Cs
asancfisac − Cs
blanca_vic − Cs

CaminoFernndez − Cs
CarlosSM_Cs − Cs

CarmendeRivera − Cs
carrizosacarlos − Cs
davidmejiayra − Cs

dbertranroman − Cs
dimasciudadano − Cs

evalmim − Cs
ferdeparamo − Cs
fjdominguez8 − Cs

GironaJean − Cs
Hector_Amello − Cs
InesArrimadas − Cs
jmespejosaav − Cs
joansabadell − Cs

JoseMaria_Cs − Cs
jrivasescamilla − Cs

jsolerCs − Cs
LauraVilchezS − Cs
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mfornells − ERC
monicapalacin29 − ERC
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geli_anna − JxC
GemmaGeis − JxC
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QuimTorraiPla − JxC
solsona_marc − JxC

toni_comin − JxC
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Albiol_XG − PP
alejandroTGN − PP
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santirodriguez − PP

aescarp − PSC
aliciarll − PSC

BeaSilva9 − PSC
CarlesTgna − PSC

eniubo − PSC
Eva_Granados − PSC

FerranPedret − PSC
jterrades − PSC

MartaMoreta − PSC
miqueliceta − PSC
oscarordeig − PSC

polgibert − PSC
rafelbruguera − PSC

Ramon_Espadaler − PSC
raulmorenom − PSC

ROSA_M_IBARRA − PSC

component

Figure 7 Estimated dictionaries from the parliament dataset. Members are sorted by party
and then alphabetically. Columns are sorted by their norm. Only the first eight columns
are displayed for the nonparametric methods Beta-Dir GS, Beta-Dir VB and Dir-Dir GS. The
results displayed for bICA and logPCA are with K = 8. The values of W estimated by logPCA-8
belong to the [−207.17, 217.92] range and have been linearly mapped to the [0, 1] range for visual
display.
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Figure 8 Estimated dictionaries from the unvotes dataset. Columns are sorted by their
norm. Only the first seven columns are displayed for the nonparametric methods Beta-Dir
GS, Beta-Dir VB and Dir-Dir GS. The results displayed for bICA and logPCA are with K = 4
and K = 7, respectively. The values of W estimated by logPCA-7 belong to the [−629.7, 335.1]
range and have been linearly mapped to the [0, 1] range for visual display.

23



We will see in the following section that Dir-Dir GS also gives the best predictions for this
dataset. Again, the dictionary obtained with logPCA is harder to interpret.

6.4 Prediction
6.4.1 Experimental setting

We now evaluate the capability of the five previously considered methods together with c-bICA
to predict missing data. For each of the five considered datasets, we applied the algorithms to
a 75% random subset of the original data. We here use the full unvotes in which abstentions
are treated as negative votes (vfn = 0). bICA and c-bICA where applied with K = 2, . . . , 8.
logPCA was applied with K = 2, . . . , 4. Then we computed the perplexity of the test set (the
25% held-out entries) given the estimate V̂ = E[WH|Vtrain] (for all methods except logPCA-K)
or V̂ = σ(ŴĤ) (for logPCA). The perplexity is here simply taken as the negative log-likelihood
of the test set (Hofmann, 1999):

perplexity = − 1

T

∑
(f,n)∈test

log p(vfn|V̂) (67)

where T is the number of elements in the test set (in our case, T = 0.25FN).

6.4.2 Prediction performance

Fig. 10 displays the perplexities obtained by all methods from 10 repetitions of the experiment
with randomly selected training and test sets, and random initializations (the same starting point
is used for bICA and c-bICA). The proposed Beta-Dir VB performs similarly or better (lastfm,
parliament) than bICA, while automatically adjusting the number of relevant components. As
hinted from the dictionary learning experiments, Dir-Dir GS performs considerably better than
the other mean-parameterized methods on the paleo dataset. c-bICA does not specifically
improve over bICA (remember they are based on the same model, only inference changes) and
performs worse in some cases (lastfm, parliament). However, its performance is more stable,
with less variation between different runs, a likely consequence of the collapsed inference.

Despite its flexibility (unconstrained W and H), logPCA provides marginally better perplex-
ity (except on the animal dataset where it performs worse than almost all other methods), and
only given a suitable value of K. Its predictive performance can drastically decay with ill-chosen
values of K. In contrast, our proposed methods do not require tuning K to a proper value. Fur-
thermore, they provide competitive prediction performance together with the interpretability of
the decomposition. We have also compared against a standard LDA using the same range of K
than logPCA, but the perplexity was much worse (around six) for all datasets; we did not plot
it due to the high difference in the scale.

6.4.3 Convergence of the variational inference algorithms

Fig. 11 displays the average perplexity values returned by the variational algorithms Beta-Dir
VB, c-bICA-5 and bICA-5 along iterations. As expected, c-bICA tends to converge faster than
bICA though not consistently so. Being initialized with a full tensor of dimension K = 100 (as
described in Section 6.2), Beta-Dir VB starts with a relatively higher perplexity but catches up
with the two other methods in a reasonable number of iterations.
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Figure 9 Estimated dictionaries from the paleo dataset. Columns are sorted by their
norm. Only the first seven columns are displayed for the nonparametric methods Beta-Dir
GS, Beta-Dir VB and Dir-Dir GS. The results displayed for bICA and logPCA are with K = 4
and K = 7, respectively. The values of W estimated by logPCA-7 belong to the [−102.3, 118.7]
range and have been linearly mapped to the [0, 1] range for visual display.
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Figure 10 Prediction performance measured by perplexity (lower values are better). The
methods introduced in this paper are marked with an asterisk.

7 Conclusions
We have presented a unified view for Bayesian mean-parameterized NBMF. The interest of
mean-parameterized models in NMF is that they keep factors interpretable since they belong
to the same space than the observed data. We have addressed three models that correspond
to three possible sets of constraints that each respect mean-parameterization. One model,
Dir-Beta, is a Bayesian extension of the Aspect Bernoulli model of Bingham et al. (2009).
Another model, Beta-Dir, corresponds to the binary ICA model of Kabán and Bingham (2008).
We have proposed a new collapsed Gibbs sampler and a new collapsed variational inference
method for estimation in these models. We have proposed a novel, third model, Dir-Dir, and
we have designed a collapsed Gibbs sampler for inference with this model. Lastly, we have
proposed a nonparametric extension for these three models. Experiments have shown that
our nonparametric methods can achieve similar performance than the state-of-the-art methods
applied with a suitable value of K. As expected, the more flexible logPCA can achieve better
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Figure 11 Average perplexity (over 10 repetitions) returned by the variational inference algo-
rithms along iterations.

data approximation and in some cases prediction, but at the cost of interpretation which of
utter importance in some applications.
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A Probability distributions functions

A.1 Bernoulli distribution
Distribution over a binary variable x ∈ {0, 1}, with mean parameter µ ∈ [0, 1]:

Bernoulli(x|µ) = µx(1− µ)1−x. (68)

A.2 Beta distribution
Distribution over a continuous variable x ∈ [0, 1], with shape parameters a > 0, b > 0:

Beta(x|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1. (69)

A.3 Gamma distribution
Distribution for a continuous variable x > 0, with shape parameter a > 0 and rate parameter
b > 0:

Gamma(x|a, b) =
ba

Γ(a)
xa−1e−bx. (70)

A.4 Dirichlet distribution
Distribution for K continuous variables xk ∈ [0, 1] such that

∑
k xk = 1. Governed by K shape

parameters α1, ...αK such that αk > 0:

Dirichlet(x|α) =
Γ(
∑
k αk)∏

k Γ(αk)

∏
k

xαk−1. (71)

A.5 Discrete distribution
Distribution for the discrete variable x ∈ {e1, . . . , eK}, where ei is the ith canonical vector.
Governed by the discrete probabilities µ1, ..., µK such that µk ∈ [0, 1] and

∑
k µk = 1:

p(x = ek) = µk (72)
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The probability mass function can be written as:

Discrete(x|µ) =
∏
k

µxk

k . (73)

We may write Discrete(x|µ) = Multinomial(x|1,µ).

A.6 Multinomial distribution
Distribution for an integer-valued vector x = [x1, ..., xK ]T ∈ NK . Governed by the total number
L =

∑
k xk of events assigned to K bins and the probabilities µk of being assigned to bin k:

Multinomial(x|L,µ) =
L!

x1!...xK !

∏
k

µxk

k . (74)

B Derivations for the Beta-Dir model

B.1 Marginalizing out W and H from the joint likelihood
We seek to compute marginal joint probability introduced in Eq. (22) and given by:

p(V,Z) =
∏
f

p(Zf )︷ ︸︸ ︷∫
p(wf )

∏
n

p(zfn|wf ) dwf

∏
n

p(vn|Zn)︷ ︸︸ ︷∫ ∏
k

p(hkn)
∏
f

p(vfn|hn, zfn) dhn .

Using the expression of the normalization constant of the Dirichlet distribution, the first integral
can be computed as follows:

p(Zf ) =

∫
p(wf )

∏
n

p(zfn|wf ) dwf (75)

=

∫
Γ(
∑
k γk)∏

k Γ(γk)

∏
k

wγk−1
fk

∏
n

w
zfkn

fk dwf (76)

=
Γ(
∑
k γk)∏

k Γ(γk)

∫ ∏
k

w
γk+Lfk−1
fk dwf (77)

=
Γ(
∑
k γk)∏

k Γ(γk)

∏
k Γ(γk + Lfk)

Γ(
∑
k γk + Lfk)

. (78)

The second integral in Eq. (22) is computed as follows. In Eq. (80) we use that p(vfn|hn, zfn) =
Bernoulli(vfn|

∏
k h

zfkn

kn ) =
∏
k Bernoulli(vfn|hkn)zfkn (recall that zfn is an indicator vector).

32



In Eq. (83), we use the expression of the normalization constant of the Beta distribution.

p(vn|Zn) =

∫ ∏
k

p(hkn)
∏
f

p(vfn|hn, zfn) dhn (79)

=

∫ ∏
k

[
Γ(αk + βk)

Γ(αk)Γ(βk)
hαk−1
kn (1− hkn)βk−1

]∏
fk

[
h
vfn

kn (1− hkn)1−vfn
]zfkn

dhn (80)

=
∏
k

∫
Γ(αk + βk)

Γ(αk)Γ(βk)
hαk−1
kn (1− hkn)βk−1

∏
f

[
h
vfn

kn (1− hkn)1−vfn
]zfkn

dhkn (81)

=
∏
k

Γ(αk + βk)

Γ(αk)Γ(βk)

∫
hαk+Akn−1
kn (1− hkn)βk+Bkn−1dhkn (82)

=
∏
k

Γ(αk + βk)

Γ(αk)Γ(βk)

Γ(αk +Akn)Γ(βk +Bkn)

Γ(αk + βk +Mkn)
. (83)

B.2 Conditional prior and posterior distributions of zfn
Applying the Bayes rule, the conditional posterior of zfn is given by:

p(zfn|Z¬fn,V) ∝ p(V|Z)p(zfn|Z¬fn). (84)

The likelihood itself decomposes as p(V|Z) =
∏
n p(vn|Zn) and we may ignore the terms that

do not depend on zfn. Using Eq. (24) and the identity Γ(n + b) = Γ(n)nb where b is a binary
variable, we may write:

p(vn|Zn) =
∏
k

Γ(αk + βk)

Γ(αk)Γ(βk)

Γ(αk +Akn)Γ(βk +Bkn)

Γ(αk + βk +Mkn)
(85)

∝
∏
k

Γ(αk +Akn)Γ(βk +Bkn)

Γ(αk + βk +Mkn)
(86)

=
∏
k

Γ(αk +A¬fnkn + zfknvfn)Γ(βk +B¬fnkn + zfknv̄fn)

Γ(αk + βk +M¬fnkn + zfkn)
(87)

∝
∏
k

Γ(αk +A¬fnkn )(αk +A¬fnkn )zfknvfnΓ(βk +B¬fnkn )(βk +B¬fnkn )zfknv̄fn

Γ(αk + βk +M¬fnkn )(αk + βk +M¬fnkn )zfkn

(88)

∝
∏
k

[
(αk +A¬fnkn )vfn(βk +B¬fnkn )v̄fn

(αk + βk +M¬fnkn )

]zfkn

. (89)

The conditional prior term is given by

p(zfn|Z¬fn) = p(Z)/p(Z¬fn). (90)
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Using p(Z) =
∏
f Zf and Eq. (23) we have

p(zfn|Z¬fn) ∝ p(Zf ) (91)

∝
∏
k

Γ(γk + L¬fnkn + zfkn) (92)

=
∏
k

Γ(γk + L¬fnkn )(γk + L¬fnkn )zfkn (93)

∝
∏
k

(γk + L¬fnkn )zfkn . (94)

Using
∑
k p(zfn = ek|Z¬fn) = 1, a simple closed-form expression of p(zfn|Z¬fn) is obtained as

follows:

p(zfn = ek|Z¬fn) =
γk + L¬fnkn∑
k(γk + L¬fnkn )

(95)

=
γk + L¬fnkn∑
k γk +N − 1

. (96)

Combining Eqs. (84), (89) and (94), we obtain

p(zfn|Z¬fn,V) ∝
∏
k

[
(γk + L¬fnfk )

(αk +A¬fnkn )vfn(βk +B¬fnkn )v̄fn

αk + βk +M¬fnkn

]zfkn

. (97)

C Alternative Gibbs sampler for the Dir-Dir model
In this appendix, we show how to derive an alternative Gibbs sampler based on a single aug-
mentation, like in the Beta-Dir model. This is a conceptually interesting result, though it does
not lead to an efficient implementation.

Likewise the Beta-Dirmodel, the Dir-Dirmodel can be augmented using the single indicator
variables zfn, as follows:

hn ∼ Dirichlet(η) (98)
wf ∼ Dirichlet(γ) (99)

zfn|wf ∼ Discrete(wf ) (100)

vfn|hn, zfn ∼ Bernoulli

(∏
k

h
zfkn

kn

)
(101)

Note that compared to Eqs. (15)-(18) only the prior on hn is changed.
Like in Beta-Dir, we seek in this appendix to derive a Gibbs sampler from the conditional

probabilities p(zfn|Z¬fn,V) given by

p(zfn|Z¬fn,V) ∝ p(V|Z)p(zfn|Z¬fn). (102)

The conditional prior term is identical to that of Beta-Dir and given by

p(zfn|Z¬fn) ∝
∏
k

(γk + L¬fnkn )zfkn . (103)
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Like in Beta-Dir, the likelihood term factorizes as p(V|Z) =
∏
n p(vn|Zn), and we now derive

the expression of p(vn|Zn). As compared to Beta-Dir, a major source of difficulty lies in the
fact that p(hn) does not fully factorize anymore because of the Dirichlet assumption (and in
particular

∑
k hkn = 1). In the following, we use the multinomial theorem to obtain Eq. (107)4

and we use the expression of the normalization constant of the Dirichlet distribution to obtain
Eq. (110):

p(vn|Zn) =

∫
p(hn)

∏
f

p(vfn|hn, zfn) dhn (104)

=

∫
Γ(
∑
k ηk)∏

k Γ(ηk)

∏
k

hηk−1
kn

∏
f

∏
k

[
h
vfn

kn (1− hkn)1−vfn
]zfkn

dhn (105)

=
Γ(
∑
k ηk)∏

k Γ(ηk)

∫ ∏
k

hηn+Akn−1
kn (1− hkn)Bkn dhn (106)

=
Γ(
∑
k ηk)∏

k Γ(ηk)

∫ ∏
k

hηn+Akn−1
kn

Bkn∑
jk=0

(
Bkn
jk

)
(−hkn)jk dhn (107)

=
Γ(
∑
k ηk)∏

k Γ(ηk)

∫ B1n∑
j1=0

...

BKn∑
jK=0

∏
k

hηk+Akn−1
kn

(
Bkn
jk

)
(−hkn)jk dhn (108)

=
Γ(
∑
k ηk)∏

k Γ(ηk)

B1n∑
j1=0

...

BKn∑
jK=0

∏
k

(−1)jk
(
Bkn
jk

)∫ ∏
k

hηk+Akn+jk−1
kn dhn (109)

=
Γ(
∑
k ηk)∏

k Γ(ηk)

B1n∑
j1=0

...

BKn∑
jK=0

∏
k

(−1)jk
(
Bkn
jk

)
Γ(ηk +Akn + jk)

Γ(
∑
k ηk +Akn + jk)

. (110)

We conclude that, though available in closed form, the expression of p(vn|Zn) (and thus
p(zfn|Z¬fn)) involves the computation of K

∏K
k=1Bkn terms involving binomial coefficients,

which is impractical in typical problem dimensions.

4Many thanks to Xi’an (Christian Robert) for giving us the trick via StackExchange.
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