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Abstract

In atmospheric physics, reconstructing a pollution source is a challenging and
important question. It provides better input parameters to dispersion models,
and gives useful information to first-responder teams in case of an accidental
toxic release. Various methods already exist, but using them requires an im-
portant amount of computational resources, especially when the accuracy of the
dispersion model increases which is necessary in complex built-up environments.
In this paper, a Bayesian probabilistic approach to estimate the location and
the temporal emission profile of a pointwise source is proposed. More precisely,
an Adaptive Multiple Importance Sampling (AMIS) algorithm is considered and
enhanced by an efficient use of a Lagrangian Particle Dispersion Model (LPDM)
in backward mode. Twin experiments empirically demonstrate the efficiency of
the proposed inference strategy in very complex cases.

Keywords: Bayesian inference, Monte Carlo, STE, inverse dispersion model

1. Introduction

Chemical, radiological, biological, and nuclear (CRBN) releases into the at-
mosphere may result as a consequences of accidents or criminal activities. In
such circumstances, it is essential to have a rapid and efficient identification of
the source location as well as the strength of the emission. Indeed, by using5

these source term parameters as an input of an atmospheric dispersion model,
prediction of the pollutant dispersion will provide invaluable information to
first-responder teams. The problem consists in obtaining, as quickly as possi-
ble, an accurate estimation of the source parameters from noisy observations of
concentration levels measured by a network of sensors.10

Several strategies have been proposed to solve this challenging source term
estimation (STE) problem. The majority of them give a single point estimate of
the parameters by solving an optimization problem where a cost function has to
be minimized using least squares or genetic algorithms, e.g (Efthimiou et al.,
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2018; Kovalets et al., 2018; Winiarek et al., 2012). Unfortunately, such ap-15

proaches do not allow us to quantify the uncertainty relative to the given esti-
mates, which could be really problematic in such a context. To overcome this
limitation, Bayesian algorithms have been designed to solve an inference problem
by aiming at providing the complete probability density function of the parame-
ters of interest given the observed measurements. Owing to the complex nature20

of the STE model, the exact computation of such a distribution is not feasible
in practice, and one has to resort to some approximation techniques based on
Monte Carlo methods (Kopka and Wawrzynczak, 2018; Delle Monache et al.,
2008; Chow et al., 2008; Keats et al., 2007; Yee et al., 2014). In most of them,
the authors propose to use a Markov Chain Monte Carlo (MCMC) kernel to25

obtain samples from the distribution of interest. However, these MCMC algo-
rithms are known to suffer from several issues, such as the necessary burn-in
period required for the convergence of the Markov chain to the correct target
distribution, or the choice of its initialization. In this paper, we propose to
use an other class of stochastic simulation techniques, based on the principle of30

importance sampling (IS). More specifically, we focus on an advanced technique
called Adaptive Multiple Importance Sampling (AMIS) and recently proposed
in (Cornuet et al., 2012). As presented in previous works (Rajaona et al., 2015,
2016), the application of such an adaptive technique on the challenging STE
problem allows us to obtain significant gain compared to state-of-the-art algo-35

rithms in both synthetic and real data experiments.
Nevertheless, the computational complexity of such Monte Carlo techniques

becomes prohibitive when naively applied to STE problem, since the likelihood
of every generated samples with respect to the observed measurements has to
be computed by running for each of them a forward dispersion model. In com-40

plex urban environment, elaborate but time consuming dispersion model which
requires the generation of a large number of Lagrangian particles has to be con-
sidered. It is therefore of prime interest to design a fast Monte Carlo algorithm
in such a challenging context.

In this paper, we present a complete strategy for efficient stochastic simu-45

lation techniques, aiming at optimizing the most time-consuming step in the
algorithm by using the duality relationship with adjoint model for evaluating
concentrations. Moreover, the output of the single initial run of the dispersion
model in backward mode is also efficiently utilized both in the initialization
step of the adaptive proposal distribution to improve the convergence speed.50

The rest of this paper is organized as follows. Section 2 describes the statisti-
cal model used for the STE problem. Section 3 is devoted to the description
of the proposed Bayesian solution based on an adaptive mulitple importance
sampling. Numerical experiments are conducted in Section 4. Conclusions are
given in Section 5.55

2. Problem Formulation

In this section we first present the statistical model of the source term esti-
mation problem, and then develop the Bayesian framework for estimating the
characteristics of the source.
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2.1. Atmospheric dispersion model60

In this study, we consider a point-wise and static source fully characterized
by the parameter θ = [xs, q] where xs = [xs, ys] is the spatial position of the
source and q is the release rate vector resulting from the discretization of the
plausible emission time interval into Ts time steps..

The concentration is considered to be observed by Nc sensors deployed over
a 2-dimensional monitoring region. The measured concentration acquired by
the i-th sensor at time tj is defined as

yi,j =

Ts∑

n=1

qnCi,j(xs,∆tn) + ǫi,j , (1)

where j = 1, . . . , Tc with Tc the number of time samples collected by each sen-
sor. Each measurement results from the superposition of the Ts releases at
the different time steps {∆tn}

Ts

n=1 weighted by their associated emission rates

{qn}
Ts

n=1 of the source plus an error term, ǫi,j . Ci,j(xs,∆tn) corresponds there-
fore to the mean concentration observed by the i-th sensor at time tj if a unitary
release is made during the time step ∆tn from a source that is located at xs.
The random variable term ǫi,j encompasses the three classical types of error:
the dispersion modeling error, the observation error and the representativeness
error due to the interpolation in both time and space of the dispersion model
(Koohkan and Bocquet, 2012). As mentioned in (Yee, 2008), the choice of a
Gaussian noise is justified by bringing forward the argument of the maximum
entropy principle (Jaynes, 2003), which stipulates that such an assumption rep-
resents a maximally uninformative state of knowledge. All the measurements
obtained at the different time samples of all sensors can be written in the fol-
lowing matrix form:

y = C(xs)q + ǫ, (2)

where y =
[
y1,1 · · · y1,Tc

· · · yNc,1 · · · yNc,Tc

]T
is the vector of ob-

served concentration values and C(xs), generally called source-receptor matrix
(Seibert and Frank, 2004), takes the following matrix form

C(xs) =




C1,1(xs,∆t1) · · · C1,1(xs,∆tTs
)

...
. . .

...
C1,Tc

(xs,∆t1) · · · C1,Tc
(xs,∆tTs

)
...

. . .
...

CNc,1(xs,∆t1) · · · CNc,1(xs,∆tTs
)

...
. . .

...
CNc,Tc

(xs,∆t1) · · · CNc,Tc
(xs,∆tTs

)




. (3)

As in (Yee, 2009), the likelihood distribution is given using a spatially and
temporally independent zero-mean Gaussian multivariate random variable by

p(y|θ) = N
(
y;C(xs)q, σ

2
ǫ INcTc

)
, (4)

whereN (y;µ,Σ) corresponds to the multivariate normal distribution evaluated65

in y with mean vector µ and covariance matrix Σ and INcTc
represents the

identity matrix of size (NcTc ×NcTc).
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The computation of the source-receptor matrix in Eq. (3) is an important
part in an STE procedure as it links the source’s characteristics with the mea-
surements and quantifies the predicted concentration value at some location and70

time from a dispersion model for a given source. As a consequence, in stochastic
simulation based inference techniques, this matrix has to be computed for each
generated sample (at least several thousands, generally). The computation of
this matrix with a Lagrangian particle dispersion model (LPDM) in a forward
mode constitutes the most time-consuming step of the algorithm proposed in75

Rajaona et al. (2015).
In this study, we propose to use an alternative strategy which consists in

using instead the backward mode of a LPDM. Using this backward mode is
computationally advantageous if the number of receptors is less than the number
of sources considered, which is generally the case in practice. Keats et al. (2007)80

and Yee et al. (2008) used also a receptor-oriented atmospheric transport model
for the prediction of the source-receptor relationship in their Bayesian inference
procedure for the rapid computation of C(·).

2.2. A priori knowledge about model parameters

Our belief regarding the characteristics of the unknown state of interest, θ, is
encapsulated within the prior probability distributions of the proposed Bayesian
model. In this paper, we consider that the release could appear anywhere uni-
formly in the region of surveillance denoted here by Ω ⊆ R

2. As a consequence,
the following uniform prior distribution is chosen for the position of the source:

p(xs) = UΩ(xs). (5)

Of course, in some scenarios of interest, it could be more appropriate to incor-85

parate a more informative distribution to represent our initial guess about this
source location (nuclear plants, industrial sites, etc).

Regarding now the emission rate vector, xs, as in Winiarek et al. (2011), a
multivariate normal distribution is considered as a prior information:

p(q) = N (q;µq,Σq) . (6)

As pointed out in Bocquet (2008), this choice is a quite crude approximation
since the emission rate cannot take negative values. However, this Gaussian
assumption is often used in practice and generally leads to satisfactory perfor-90

mances (Issartel and Baverel, 2003).

2.3. Source term estimation in a Bayesian framework

In this work, a Bayesian solution is considered in order to solve efficiently
this challenging problem. Instead of just a point-wise estimation of the source
characteristics, θ, we are therefore interested in obtaining the full posterior
distribution of the unknown parameters, p(θ|y), which completely characterizes
the available information on θ given the measurements y obtained from all the
sensors deployed in the field. With such a quantity, one can obtain all possible
quantities of interest about the parameters such as, for example, point estimates
or confidence intervals. In this problem, the posterior distribution of interest
can be expanded as follows:

p(θ|y) = p(xs, q|y) = p(q|y,xs)p(xs|y). (7)
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Owing to the Gaussian assumption of both the likelihood in Equation (4) and
the prior distribution of q in Equation (6), the rule of conjugate priors states
that the conditional posterior of the source emission rate p(q|y,xs) is therefore
Gaussian and can thus be evaluated analytically as

p(q|xs,y) = N (q; µ̃q, Σ̃q), (8)

where parameters are obtained by:

µ̃q = µq +K [y −C(xs)µq]

Σ̃q = Σq −KC(xs)Σq,
(9)

with:

K = ΣqC(xs)
T
[
C(xs)ΣqC(xs)

T + σ2
ǫ ITc×Nc

]−1
. (10)

Unfortunately, the second term p(xs|y) in the complete posteriori distri-
bution of interest in (7) is analytically intractable. Indeed, the dependence of
the position of the source in the measurements is highly nonlinear due to the95

complex structure of the source-receptor matrix C(xs). By using such a de-
composition, instead of having to approximate the full posterior distribution
p(xs, q|y), only the posterior marginal distribution p(xs|y) needs finally to be
approximated since an analytical expression for p(q|y,xs) can be obtained. In
this work, we consider efficient stochastic simulation based algorithms to ap-100

proximate this complex marginal posterior distribution p(xs|y).

3. Proposed Bayesian Algorithm to STE

In this section we first introduce the general principle of the Adaptive multi-
ple importance sampling algorithm (AMIS), then describe the complete Bayesian
solution based on AMIS for STE which was originally proposed in Rajaona et al.105

(2015) and finally we present the proposed strategy to enhance both the con-
vergence speed and the robustness.

3.1. General Principle of AMIS

3.1.1. Importance Sampling

The basic idea of Importance Sampling (IS) is to estimate statistical quan-
tities with respect to a specific target distribution π, while only having sam-
ples drawn from a different distribution φ(·), called the proposal distribution

(Robert and Casella, 2004). More specifically, Np samples (x1, . . . ,xNp), also
called particles, are generated from φ(·) and then, in order to compensate for
the fact that we have sampled from a distribution which is not the target one,
an importance weight is assigned to each particle, as follows for i = 1, . . . , Np:

wi =
π(xi)

φ(xi)
, (11)

As a consequence, the target distribution can be approximated by this principle
of IS with the following empirical measure:

π(x) ≈

Np∑

i=1

w̃iδxi(dx), (12)
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and any expectation of some function h(·) with respect to the target distribution
is estimated by

Eπ [h(x)] =

∫
h(x)π(x)dx ≈

Np∑

i=1

w̃ih(xi), (13)

where the w̃i are the normalized importance weights (i.e. w̃i = wi[
∑Np

j=1 w
j ]−1)

and δ(·) is the Dirac function. In this paper, we propose to approximate the
complex marginal posterior distribution of the source location, p(xs|y), by an
IS procedure:

p(xs|y) ≈

Np∑

i=1

w̃iδxi
s
(dxs), (14)

with
{
xi
s, w̃

i
}Np

i=1
being the random weighted samples from an IS-based algo-

rithm. By plugging this apprxiamtion into Eq. (7), the complete posterior
distribution of interest will therefore be estimated as:

p(xs, q|y) ≈

Np∑

i=1

w̃ip(q|y,xi
s)δxi

s
(dxs). (15)

IS requires to choose a proposal distribution that we can easily sample from.110

This choice is of course crucial as poor performances can be easily obtained when
the proposal distribution is not appropriately chosen. To obtain a good empirical
approximation of the target distribution, the proposal distribution should be
close to the target distribution. Indeed, a high discrepancy between the target
density and the importance density will result to an increasing variability of the115

importance weights which may strongly affect the accuracy of the final estimate.
A careful design of this proposal distribution is therefore necessary but generally
difficult to do.

3.1.2. The AMIS algorithm: an adaptive method

To overcome the difficulty of designing an appropriate proposal distribution,120

some adaptive procedures have been proposed in the context of IS. Originally re-
ferred to as Population Monte Carlo algorithms (PMC) in (Cappé et al., 2004),
the objective consists in iteratively adapting the proposal distribution by learn-
ing some information from the samples that have been generated. More specifi-
cally, PMC methods are iterative IS-based sampling techniques: 1) at each step,125

samples from a proposal distribution are generated and a weight is assigned to
each of them according to the IS identity, and 2) the proposal distribution is
thus adapted using these random weighted samples in order to make it closer
to the target distribution. Since the seminal paper (Cappé et al., 2004), several
variants have been proposed, see (Bugallo et al., 2017) for a detailed overview.130

Recently, a sophisticated adaptive importance sampler, named Adaptive Multi-

ple Importance Sampling (AMIS), has been proposed in (Cornuet et al., 2012).
The main novelty of the AMIS is in the use of a recycling mechanism that allow
us to use all the samples that have been generated until now to improve both
the adaptivity of the proposal distribution and the variance of the resulting es-135

timator. In the classical PMC algorithm, only the particles drawn during the
last iteration are used for the adaptation procedure. By using such a recycling
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strategy, a significant improvement could be obtained by the AMIS as shown in
(Cornuet et al., 2012).

As in (Rajaona et al., 2015), the AMIS algorithm will be used to approxi-
mate the marginal posterior distribution of the source location

π(xs) = p(xs|y) ∝ p(y|xs)p(xs), (16)

which therefore corresponds to the target distribution. The prior distribution is
defined in Equation (5) and the marginal likelihood is obtained using Equations
(4) and (6) as follows:

p(y|xs) =

∫
p(y|xs, q)p(q)dq

= N
(
y;C(xs)µq,C(xs)ΣqC(xs)

T + σ2
ǫ
ITc×Nc

)
.

(17)

In the AMIS algorithm, A parametric proposal distribution has to be chosen.
This distribution has to be flexible enough and easy to sample from in order to
obtain satisfactory performances. In (Rajaona et al., 2015) following the idea
presented in (Cappé et al., 2008), a mixture of D distributions, with param-
eters adapted at each iteration, was considered. In this work, we introduce
an additional “defensive” component which will remain unchanged through the
iteration of the algorithm

φ(xs|α,µ,Σ) = α(0)φ(0)(xs) + (1− α(0))

D∑

d=1

α(d)φ(d)(xs|µ
(d),Σ(d)). (18)

The aim of the static component, α(0)φ(0)(xs), is to guarantee that the im-140

portance function remains bounded by π(xs)/(α
(0)φ(0)(xs)) whatever happens

during the adaptation, thus guaranteeing a finite variance. It is preferable to
keep α(0) as low as possible (e.g. α(0) = 0.1) to not limit the performances
achievable by the adaptation procedure.

In this paper, each component of the mixture is considered to be a bivariate145

Gaussian distribution. The adaptation of the proposal distribution will thus
consists in updating the following parameters:

- the vector of mixture weights α = {α(1), . . . , α(D)} such as
D∑

d=1

α(d) = 1,

- the parameters of each D bivariate Gaussian distribution, i.e. their mean
vector and covariance matrix: (µ,Σ) =

{
(µ(1),Σ(1)), . . . , (µ(D),Σ(D))

}
.150

An initial tunning of these parameters is required before running the AMIS
algorithm. Unfortunately, this starting distribution generally has a major im-
pact on the performances of such an adaptive algorithm. In our previous work
(Rajaona et al., 2015), the parameters of the proposal was set up so that the
generated samples cover roughly all the surveillance area since the source was155

considered to be located a priori uniformly in the area. In this work, we propose
to use a novel efficient strategy in order to initialize this proposal distribution,
so that the algorithm converges more rapidly to the region of interest. This
method of initializing the parameters as well as the choice of φ(0)(·) will be
described in Section 3.2.160

In summary, the following steps are performed during the k-th iteration of
the AMIS:
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1. Np particles, xi
s,k, are sampled from the current proposal φk,

2. An importance weight wi
k is computed for each of these samples,

3. A recycling mechanism is performed on the previous importance weights,165

w0:k−1, by using a correction that take into account the current form of
the proposal,

4. The adaptation of the proposal distribution is done by updating its pa-
rameters (αk,µk,Σk) into (αk+1,µk+1,Σk+1) using all the collection of

weighted samples
{
w̃i

n,x
i
s,n

}i=1,...,Np

n=0,...,k
.170

In order to perform the adaption of the proposal distribution between two
successive iterations, the most popular choice of measure to quantify some dis-
tance between two probability density functions is the Kullback-Leibler (KL)
divergence Cappé et al. (2008), defined as:

DKL(π ‖ φ) =

∫
log

(
π(xs)

φ(xs)

)
π(xs)dxs. (19)

By minimizing this divergence through the iterations of the algorithm, the pa-
rameters of the proposal distribution will be set, so that this distribution will
become closer and closer to the target distribution. In adaptive IS algorithms,
the integral in Eq. (19) is approximated using the population of samples ob-
tained until now. As a consequence, when the proposal distribution used is the
one defined in Eq. (18) with Gaussian distributions, the updating mechanism
is given at the end of the k-iteration and for d = 1, . . . , D, by:

α
(d)
k+1 =

α̃
(d)
k+1∑D

l=1 α̃
(l)
k+1

with α̃
(d)
k+1 =

k∑

n=1

Np∑

i=1

w̃i
nρ

(d)
n,i

µ
(d)
k+1 =

∑k
n=1

∑Np

i=1 w̃
i
nρ

(d)
n,ix

i
s,n

α̃
(d)
k+1

Σ
(d)
k+1 =

∑k
n=1

∑Np

i=1 w̃
i
nρ

(d)
n,i(x

i
s,n − µ

(d)
k+1)(x

i
s,n − µ

(d)
k+1)

T

α̃
(d)
k+1

,

(20)

where ρ
(d)
n,i is an intermediary value corresponding to the probability of a given

particle belonging to the d-th component of the mixture and is given by:

ρ
(d)
n,i =

(1− α(0))α
(d)
k φ

(d)
k (xi

s,n|µ
(d)
k ,Σ

(d)
k )

α(0)φ(0)(xs) + (1− α(0))
∑D

m=1 α
(m)
k φ

(m)
k (xi

s,n|µ
(m)
k ,Σ

(m)
k )

. (21)

Since the collection of samples obtained after K iterations of the proposed
AMIS approximates the posterior marginal distribution of the source location
as

p(xs|y) ≈
K∑

n=1

Np∑

i=1

w̃i
nδxi

s,n
(dxs), (22)

the complete posterior distribution of interest including both the position and
the release-rate parameters, is thus approximated by:

p(xs, q|y) ≈
K∑

n=1

Np∑

i=1

w̃i
np(q|x

i
s,n,y)δxi

s,n
(dxs), (23)
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with p(q|xi
s,n,y) is the distribution defined in Eq. (8). The AMIS algorithm is

summarized in Algo 1.

Algorithm 1: The AMIS algorithm

Initialization:

Generate Np particles
{
xi
s,0

}
from initial proposal φ0(·|α0,µ0,Σ0)

for i = 1 : Np do
δi0 = Npφ0(x

i
s,0|α0,µ0,Σ0)

wi
0 =

p(y|xi
s,0)p(x

i
s,0)

φ0(xi
s,0|α0,µ0,Σ0)

end

Normalize the importance weights: w̃i
0 = wi

0[
∑Np

j=1 w
j
0]

−1

Update the proposal’s parameters using Equation (20) to obtain
(α1,µ1,Σ1)

Iterations:
for k = 1 : K do

Generate Np particles
{
xi
s,k

}
from the proposal φk(·|αk,µk,Σk)

for i = 1 : Np do

δik = Npφ0(x
i
s,k|α0,µ0,Σ0) +

∑k
l=1 Npφl(x

i
s,k|αl,µl,Σl)

wi
k = (k + 1)Np

p(y|xi
s,k)p(x

i
s,k)

δik
end
for l = 0, . . . , k − 1 and i = 1, . . . , Np do

Update the importance weights that were previously generated:
δil = δil +Nφk(x

i
s,l|αk,µk,Σk)

wi
l = (k + 1)Np

p(y|xi
s,l)p(x

i
s,l)

δil
end
Normalize the importance weights, ∀ l = 0, . . . , k and i = 1, . . . , Np:

w̃i
l = wi

l [
∑k

m=1

∑Np

j=1 w
j
k]

−1

Update the proposal’s parameters using Equation (20) to obtain
(αk+1,µk+1,Σk+1)

end

Output: The entire collection of weighted particles
{
w̃i

n,x
i
s,n

}i=1,...,Np

n=0,...,K

to approximate the posterior marginal distribution of the source
location as described in Equation (22)

3.2. Efficient initialization

In this section, we propose an efficient procedure to automatically set the
initial parameters of the adaptive proposal distribution of the AMIS in Eq. (18).175

As already mentioned by Cornuet et al. (2012), the starting distribution has
clearly a major impact on the resulting performances of such adaptive sampling
algorithms. Indeed, it is quite difficult to recover from a poor starting sample
since the adaptivity is only based on the visited regions of the simulation space.
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The initialization consists in setting the parameters of the D bivariate Gaus-180

sian distributions (α0,µ0,Σ0) as well as choosing the “defensive” distribution
φ(0)(·). In this work, we propose to use the results of pollutant concentration
levels obtained from the run in backward mode of the dispersion model. Indeed,
the runs of receptor-oriented atmospheric transport model allows us to obtain
Nc × Tc × Ts maps of concentration levels on the domain of interest which is185

discretized spatially on a 2-D mesh, denoted by X . An histogram is obtained by
normalizing an aggregated map that is the the average of all these intermediate
concentration maps. The complete procedure is detailed in Algo 2.

Algorithm 2: Construction of the backward two-dimensional concen-
tration map B(·)

Inputs: ρdetec > 0, ρmin > 0, γ ∈ [0, 1]

∀xc ∈ X , n = 1, . . . , Ts:
for j = 1, . . . , Tc do

for i = 1, . . . , Nc do
if yi,j > ρdetec then

Bi,j(xc,∆tn) =

{
1 if Cxc,∆tn(xi,∆tj) > ρmin

0 otherwise

else

Bi,j(xc,∆tn) = −α
ρdetec−yi,j

ρdetec

end

end

end

Output: B(xc) =
∑Nc

i=1

∑Tc
j=1

∑Ts
n=1

Bi,j(xc,∆tn)
∑

xc∈X

∑Nc
i=1

∑Tc
j=1

∑Ts
n=1

Bi,j(xc,∆tn)

Now, in order to initialize the parameters of the D bivariate Gaussian distri-
bution, we propose to find the ones that define the mixture with the minimum
of Kullback-Leibler distance with the histogram B(·) obtained with Algo 2. By
defining,

φAdapt(xs;α,µ,Σ) =

D∑

d=1

α(d)φ(d)(xs|µ
(d),Σ(d)), (24)

the parameters are obtained by:

(α0,µ0,Σ0) = argmin
α,µ,Σ

DKL (B(xs)||φAdapt(xs;α,µ,Σ))

= argmin
α,µ,Σ

∫

Ω

log

(
B(xs)

φAdapt(xs;α,µ,Σ)

)
B(xs)dxs

= argmax
α,µ,Σ

∫

Ω

log (φAdapt(xs;α,µ,Σ))B(xs)dxs

= argmax
α,µ,Σ

∫

Ω

log

(
D∑

d=1

α(d)φ(d)(xs|µ
(d),Σ(d))

)
B(xs)dxs.

(25)

This optimization cannot be solved analytically but an iterative procedure
(in the same spirit as the Expectation-Maximization) can be used to find a
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solution of this problem. By considering that the mesh is relatively fine, the
parameters of the d-th component can be updated at the n-th iteration as
follows:

α(d)
n =

∑

xc∈X

B(xc)γ
(d)
xc,n

µ(d)
n =

∑
xc∈X

B(xc)γ
(d)
xc,nxc

α
(d)
n

Σ(d)
n =

∑
xc∈X

B(xc)γ
(d)
xc,n

(
xc − µ

(d)
n

)(
xc − µ

(d)
n

)T

α
(d)
n

,

(26)

with

γ(d)
xc,n

=
α
(d)
n−1N

(
xc;µ

(d)
n−1,Σ

(d)
n−1

)

∑D
l=1 α

(l)
n−1N

(
xc;µ

(l)
n−1,Σ

(l)
n−1

) , (27)

These updates are repeated until convergence. Finally, we propose to simply
define the “defensive” component of the proposal distribution by:

φ(0)(xs) = UXNB
(xs), (28)

which thus consists in considering an uniform distribution over all plausible cells
from the mesh of the area under study (XNB ⊂ X ).190

4. Numerical Experiments

As shown in Rajaona et al. (2015), the performances of the core AMIS al-
gorithm have been validated using synthetic and real concentration data in the
framework of the Fusion Field Trials 2007 (FFT-07) experiment. In this paper,
the proposed enhancements of the inference algorithm are tested using twin195

experiments. More precisely, as shown in Figure 1a, an urban area of 1.1km
× 0.9km × 1.6km meshed at an horizontal and vertical resolution of 2 meters
which corresponds to the Opéra quarter in Paris is considered. In this example
of Fig. 1, the fictitious source and sensors are represented by a green asterisk
and red crosses, respectively. For simplicity, both are assumed to be located at200

the same level from the ground. Even if the source term localization is consid-
ered in these experiments to be a two-dimensional problem, all the computations
from the LPDM are performed in three-dimensional space. Unit releases emit-
ted each minute from the 20 sensors over a 45-minute period were simulated
in a backward mode, during which weather conditions varied gradually from205

a west-northwest wind to a north-northeast wind. These backward computa-
tions allow us to obtain the source-receptor matrix in Eq. (3) for every source
term position. The different measures of concentration as a function of time are
depicted in Fig. 1b with a different color for each sensor.
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Figure 1: Scenario under study – Left: 20 sensors (red) & 1 source (green). Right: Measure-
ments obtained every minute by the 20 sensors from 09:00 to 09:45.

The dispersion simulations were carried out using Parallel-Micro-SWIFT-210

SPRAY (PMSS). Originally, Micro-SWIFT-SPRAY (MSS) (Tinarelli et al., 2013)
was developed in order to provide a simplified, but rigorous CFD solution of
the flow and dispersion in built-up environments in a limited amount of time.
MSS is constituted by the local scale, high resolution, versions of the SWIFT
and SPRAY models. SWIFT is a 3D terrain-following mass-consistent diagnos-215

tic model taking account of the buildings and providing the 3D fields of wind,
turbulence, and temperature. SPRAY is a 3D Lagrangian Particle Dispersion
Model able to account for the presence of buildings. Both SWIFT and SPRAY
can deal with complex terrains and evolving meteorological conditions as spe-
cific features of the release like heavy or light gases. More recently, SWIFT220

and SPRAY have been efficiently parallelized in time, in space, and in numeri-
cal particles leading to the PMSS system (Oldrini et al., 2017). PMSS has been
systematically validated against numerous wind tunnel and in-field experimental
campaigns for short and prolonged releases (Trini Castelli et al., 2018). In all
configurations, PMSS results comply with statistical acceptance criteria defined225

by Hanna and Chang (2012) commonly accepted to validate dispersion models
in built-up environments. Furthermore, the SPRAY dispersion model can be
run in both direct mode (from the source to a number of sensors) and retrograde
mode (from sensors where detections are possibly made to areas indicating the
possible locations of sources) providing respectively concentration and conjugate230

concentration data (Armand et al., 2013). The use of the backward mode has
the advantage of reducing quite drastically the number of computations required
to obtain the required source-receptor matrix C(·). Indeed, only Nc × Tc (Nc:
number of sensors, Tc: the number of time samples collected by each sensor)
computations are needed whereas using the forward mode Np × K × Ts (Np:235

number of algorithmic particles, K: number of AMIS iterations, Ts: number of
intervals considered for the release) computations are necessary. Since in most
cases Np × K >> Nc, the use of the backward mode is clearly preferable in
order to reduce the overall computational time.

Regarding the parameters of the statistical model describing the prior knowl-
edge of the release rate vector q in Eq. (6), the following covariance matrix is

12



considered to ensure a certain smoothness:

Σq = σ2
q



κ(1, 1) κ(1, 2) · · · κ(1, Ts)

...
. . .

...
κ(Ts, 1) · · · κ(Ts, Ts − 1) κ(Ts, Ts)


 , (29)

with κ(·, ·) a squared exponential kernel (Rasmussen and Williams, 2006):

κ(i, j) = exp(−
|i− j|2

l
). (30)

The proposed AMIS algorithm detailed in Algo 1 was tested with Np = 100240

particles and K = 20 iterations. The adaptive part of the proposal distribution
is a mixture of D = 9 bivariate Gaussian distributions which are equally spaced
in the surveillance area as shown in Figure 2c and in Figure 3c. Figures 2
and 3 show the results obtained for the proposed initialization procedure of
the adaptive part of the proposal distribution for two different fictitious source245

positions. With such a procedure, the mixture of Gaussian distributions is
efficiently fitted to the backward map B(·) obtained using Algo 2. Figure 4
highlights the large benefit of using this initialization strategy for the AMIS.
The use of such a procedure based on the output of the backward LPDM allows
us to sample particles in region of high interest directly in the first iterations of250

the algorithm, thus leading to a more rapid convergence to the correct solution.
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Figure 2: Initialization of the importance distribution using our proposed strategy in the
presence of a prompt source - (a) Position of the source in green and sensors in red - (b)
2D map B(·) obtained using Algo 2 - (c) Initial mixture of Gaussian distributions - (d) Final
mixture of Gaussian distributions that minimizes the KL distance with the backward map
B(·) in (b)
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Figure 3: Initialization of the importance distribution using our proposed strategy in the
presence of a prompt source - (a) Position of the source in green and sensors in red - (b)
2D map B(·) obtained using Algo 2 - (c) Initial mixture of Gaussian distributions - (d) Final
mixture of Gaussian distributions that minimizes the KL distance with the backward map
B(·) in (b)
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Figure 4: Comparison of the mean squared error between the true source position and the
approximated posterior mean at the different iterations of the AMIS with and without the
proposed initialization strategy.

Figures 5 to 8 give the output obtained by a single run of the proposed
AMIS algorithm in the case of different release rate vector and with a source
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located at (300;320) as in Fig. 1a. In each of these four figures, along with
the ground truth values, the estimation of the marginal posterior distribution255

of the source position, p(xs|y) and p(ys|y), as well as the two first moments
of the conditional posterior distribution p(q|y, x̂s) are depicted. Whatever the
fictive release considered - a prompt, a continuous or a more complex time-
varying - the AMIS is able to make a correct estimation of both the source
position and the release rate with a good accuracy in all cases. Moreover,260

the representation of the estimation using a probability distribution function
provides an explicit representation of the uncertainty around the estimation,
emphasizing how useful the Bayesian inference framework is when compared
to results provided by other methods such as optimization-based ones in which
only a point-estimate is available.265
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Figure 5: Results of the AMIS for STE with a continuous release [variance of the observation
uncertainty σ

2
ǫ

= 10−6 in Eq. (4)]. Estimation in red of (a) p(xs|y) and (b) p(ys|y) and

the true value in dashed black. (c): Mean of p(q|y, x̂s) (black) and ±2diag(Σ̃q) confidence

interval (grey) compared to the ground truth (red), where Σ̃q is covariance matrix of the
conditional posterior distribution of q obtained in Eq. (9).
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Figure 6: Results of the AMIS for STE with a prompt release [σ2
ǫ
= 10−6]. Estimation in red

of (a) p(xs|y) and (b) p(ys|y) and the true value in dashed black. (c): Mean of p(q|y, x̂s)

(black) and ±2diag(Σ̃q) confidence interval (grey) compared to the ground truth (red).
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Figure 7: Results of the AMIS for STE with a time-varying release rate [σ2
ǫ
= 10−6]. Esti-

mation in red of (a) p(xs|y) and (b) p(ys|y) and the true value in dashed black. (c): Mean of

p(q|y, x̂s) (black) and ±2diag(Σ̃q) confidence interval (grey) compared to the ground truth
(red).
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Figure 8: Results of the AMIS for STE with a time-varying release rate [σ2
ǫ
= 10−6]. Esti-

mation in red of (a) p(xs|y) and (b) p(ys|y) and the true value in dashed black. (c): Mean of

p(q|y, x̂s) (black) and ±2diag(Σ̃q) confidence interval (grey) compared to the ground truth
(red).

In Figure 9, the same results in the case of a fictitious explosive release
located at two different positions show the ability of the proposed inference
algorithm to provide accurate answer in both situations.
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Figure 9: Results of the AMIS for STE with an explosive release [σ2

ǫ
= 10−6] with two

positions of the source at (127;77) (a) and (300;320) (b). Left and middle: estimation of
p(xs|y) and p(ys|y) (red) and the true value (dashed black). Right: Mean of p(q|y, x̂s)(black)

and ±2diag(Σ̃q) confidence interval (grey) compared to the ground truth (red).

20



In Figure 10, the sensitivity of the approach with respect to the value σ2
q in

the covariance matrix in Eq. (29) is studied in a time-varying setting as the one270

presented in Figure 7. The overall accuracy of the posterior mean provided by
the AMIS could be impacted by a poor value of σ2

q but it is reasonable to assume
that in practice this value could be set with a prior knowledge on plausible
release ranges for the problem of interest and the area under surveillance.
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Figure 10: Mean squared error on the position (left) and release vector (right) obtained using
different values of the variance in the prior

Finally in Figure 11, the impact of the noise variance level, σ2
ǫ in the obser-275

vation equation, Eq. (4), on the estimation results provided by the proposed
AMIS is studied in the case of a time-varying release rate as the one presented
in Figure 7. As discussed in Section 2.1, this increase of variance could result
for example from a larger error on the dispersion model, or on the sensor level
due to poorer electronic components. As expected, the uncertainty is increasing280

with the noise variance level. More importantly, even in an extremely noisy
environment, the proposed AMIS is able to provide an accurate estimation of
the source position which is quite remarkable as the true detections in the mea-
surements are clearly indistinguishable from the noise, e.g. Figure 11e.
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Figure 11: Impact of the noise variance level in the observation equation on the AMIS perfor-
mances [(a-d): σ2

ǫ
= 5.10−6, (e-h): σ2

ǫ
= 10−5] in the presence of source with a varying release

rate. In (a or e), measurements obtained every minute by the 20 sensors from 9:00 to 9:45.
Estimation of p(xs|y) (c or g) and p(ys|y) (d or h) in red and the true value (dashed black).

In (b or f) Mean of p(q|y, x̂s)(black) and ±2diag(Σ̃q) confidence interval (grey) compared to
the ground truth (red).
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5. Conclusion285

In this paper, a Bayesian solution is proposed to solve the source term esti-
mation problem. More precisely, an enhanced version of the adaptive algorithm
based on probabilistic Bayesian inference originally proposed in Rajaona et al.
(2015) that estimates the parameters of the source term in case of an atmo-
spheric release is described. In particular, we firstly propose to use the back-290

ward mode of the dispersion model in order to avoid multiple forward runs, a
time-consuming task within the iterations of such a simulation-based algorithm.
Using the dispersion model in backward mode, Nc×Tc computations are needed
where Nc is the number of sensors and Tc the number of time samples collected
by each sensor. In the test-case presented in the paper, Nc and Tc are equal295

respectively to 20 and 45. One can notice that in a practical situation, these
figures would be lower. Each computation has a maximum computational time
of 30 minutes as the urban simulation domain is of a limited extent. While the
run of the adaptive algorithm is very quick, the simulations with the dispersion
model are the major part of the computational burden associated to the source300

term estimate. As the dispersion runs may be carried out independently and, for
instance, distributed to the cores of a large cluster, it is important to point out
that the computational needs of our method are thus fully tractable regarding
the present computational capabilities.

Then, we propose to also use the output of this backward run in order to305

efficiently design the initial parameters of the adaptive proposal distribution,
which is crucial for the first exploration of the algorithm. Numerous twin ex-
periments allow us to empirically demonstrate the efficiency of the proposed
enhancements in complex built-up environments, both in terms of estimation
accuracy and computation time since the algorithm is faster to converge owing310

to a better initialization of the proposal distribution and accuracy as shown by
the promising results obtained by the proposed scheme.

The numerical experiments illustrate that the proposed inference solution
could be sensitive to the parameters value chosen for the distributions used in
the statistical model. As a consequence, it could be interesting to consider, as a315

potential extension of this work, the estimation of such hyperparameters jointly
with the characteristics of the source. Finally, a future research direction of
interest would be to design a statistical procedure to optimize the location of
each sensor to increase the efficiency of inference algorithms to rapidly detect
and identify the source characteristics.320

References

Armand P, Olry C, Albergel A, Duchenne C, Moussafir J. Development and
application of retro-spray, a backward atmospheric transport and dispersion
model at the regional and urban scale. In: 15th International conference
on Harmonisation within Atmospheric dispersion Modelling for Regulatory325

Purposes, Harmo’15. 2013. p. 789–93.

Bocquet M. Inverse modelling of atmospheric tracers: non-Gaussian methods
and second-order sensitivity analysis. Nonlin Processes Geophys 2008;15:127–
43.

23



Bugallo MF, Elvira V, Martino L, Luengo D, Miguez J, Djuric PM. Adaptive330

Importance Sampling: The past, the present, and the future. IEEE Signal
Processing Magazine 2017;34(4):60–79.
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