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Screening Rules and its Complexity for Active

Set Identification

Eugene Ndiaye∗ Olivier Fercoq† Joseph Salmon‡

Abstract

Screening rules were recently introduced as a technique for explicitly
identifying active structures such as sparsity, in optimization problem
arising in machine learning. This has led to new methods of acceleration
based on a substantial dimension reduction. We show that screening
rules stem from a combination of natural properties of subdifferential sets
and optimality conditions, and can hence be understood in a unified way.
Under mild assumptions, we analyze the number of iterations needed to
identify the optimal active set for any converging algorithm. We show that
it only depends on its convergence rate.

1 Introduction

In learning problems involving a large number of variables, sparse models such as
Lasso and Support Vector Machines (SVM) allow to select the most important
variables. For instance, the Lasso estimator depends only on a subset of features
that have a maximal absolute correlation with the residual; whereas the SVM
classifier depends only on a subset of sample (the support vectors) that charac-
terize the margin. The remaining features/variables have no contribution to the
optimal solution. Thus, early detection of those non influential variables may
lead to significant simplifications of the problem, memory and computational
resources saving. Some noticeable examples are the facial reduction preprocess-
ing steps used for accelerating the linear programming solvers [4, 22] and conic
programming [3], we refer to [6, 25] for recent reviews. Another applications can
also be found in [26] for projecting onto the simplex and `1 ball in [5] or data
preprocessing before application of statistical methods [10] in high dimensional
settings. In an optimization problem, screening rules eliminate the variables that
have no influence on the set of optimal coefficients. Recently, [9] have introduced
the safe screening rules, which ignore non-active variables in Lasso or non-support
vectors for SVM, without false exclusions. It is a versatile optimization technique
useful for many machine learning tasks, see [11, 14, 32, 34, 40, 45, 46] to name a
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few. However, in the existing safe screening studies, a case by case safe screening
rule is developed for each problem, and there is no unified understanding for
which class of optimization problems safe screening are possible and how efficient
the screening can be. We summarize our contributions as follow:

• We provide a simple setting for explicitly identifying optimal active sets
in convex composite optimization problems with separable regularization.
Our approach combines a natural property of the subdifferential set with
optimality conditions. It allows us to subsume the previously introduced
screening rules in a unified framework.

• Relying on a recent work on the convergence of the duality gap [7], we can
easily provide (for safe screening of features using smooth losses or for safe
screening of observations with a strongly-convex penalty) an algorithm-
independent complexity analysis of the (finite) active set identification.
Then, the latter holds for any converging optimization scheme as soon as
it is endowed with screening rules.

• We discuss some acceleration strategies based on a combination of safe
and relaxed safe rules. Several popular strategies such as strong rules [44]
and some recent working sets methods [14, 15, 24] can then be generalized
to a larger set of optimization problems.

Notation. Given a proper, closed and convex function f : Rn → R ∪ {+∞},
we denote domf = {x ∈ Rn : f(x) < +∞}. The Fenchel-Legendre conjugate of
f is the function f∗ : Rn → R ∪ {+∞} defined by

f∗(x∗) = sup
x∈domf

〈x∗, x〉 − f(x) .

The subdifferential of a proper function f at x is the set

∂f(x) = {v ∈ Rn : f(z) ≥ f(x) + 〈v, z − x〉,∀z ∈ Rn} . (1)

The support function of a nonempty set C is defined as SC(x) = supc∈C〈c, x〉.
If C is closed, convex and contains 0, we define its polar function as S◦C(x∗) =
supSC(x)≤1〈x∗, x〉. The interior (resp. boundary) of a set C is denoted intC
(resp. bdC). We denote by [T ] the set {1, . . . , T} for any non zero integer T .
The vector of observations is y ∈ Rn and the design matrix X = [x1, . . . , xn]> =
[X1, . . . , Xp] ∈ Rn×p has n observations row-wise, and p features (column-wise).
A group of features is a subset g ⊂ [p] and |g| is its cardinality. The set of groups
is denoted by G. We denote by βg the vector in R|g| which is the restriction
of β to the indices in g. We also use the notation Xg ∈ Rn×|g| to refer to the
sub-matrix of X assembled from the columns with indices j ∈ g.

2 General framework

We consider composite optimization problems involving a sum of a data fitting
function plus a separable group regularization function Ω(β) =

∑
g∈G Ωg(βg)
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that enforces specific structure such as sparsity in the optimal solutions:

β̂ ∈ arg min
β∈Rp

f(Xβ) + Ω(β) = P (β) . (2)

We will assume that the functions f and Ω are proper, lower-semicontinuous
and convex. We also assume that Im(X) ∩ dom(f) is non empty, the primal
problem admits a solution and there exists a vector β in dom(Ω) such that f is
continuous at Xβ. Such a formulation often arises in statistical learning in a
context of regularized empirical risk minimization [39].

The main purpose of screening rules is to identify and eliminate the irrel-
evant features/samples during (or before) an optimization process for solving
Problem (2), to reduce the memory and computational footprint. For instance,
many features Xj for some j in [p] are expected to be irrelevant in the Lasso

estimator [43], defined as β̂ ∈ arg minβ∈Rp
1
2 ‖y −Xβ‖

2
+ λ ‖β‖1 (for some

observation vector y ∈ Rn and regularization parameter λ > 0). They cor-

respond to coordinates where β̂j = 0. Exploiting the known sparsity of the
solution, safe screening rules [9] discard features prior to starting a sparse
solver. Computational gains are obtained from the reduction of the dimension.
A similar example is the SVM classifier relying on the hinge loss, defined as
β̂ ∈ arg minβ∈Rp

∑
i∈[n] max(0, 1 − yix>i β) + λ

2 ‖β‖
2

in which some sample xi

are expected to be irrelevant: θ̂i = 0 for some i in [n] where θ̂ is the associated
dual solution. Identifying irrelevant variables in optimization is not restricted to
sparse problems. We show how it is intimately related to the non smoothness of
the objective function and present a simple and self contained framework for
developing screening rules.

2.1 Identification rules

We introduce the main lemma that captures a natural property of the subdiffer-
ential (1), that allows us to obtain a simple and unified presentation of many
screening rules recently introduced in the literature.

Lemma 1 (Separation of subdifferentials). Let P be a proper function and z
such that int∂P (z) 6= ∅. Then we have int(∂P (z)) ∩ ∂P (z′) = ∅ for all z 6= z′.

Proof. Let z′ such that there exists g in int∂P (z)∩∂P (z′). Now g in the open set
int∂P (z) implies that there exists α > 0 such that gα := g + α(z′ − z) ∈ ∂P (z).
Then

P (z) ≥ P (z′) + 〈g, z − z′〉
≥ P (z) + 〈gα, z′ − z〉+ 〈g, z − z′〉
= P (z) + α ‖z′ − z‖22 ,

where the first (resp. the second) inequality comes from g ∈ ∂P (z′) (resp.
gα ∈ ∂P (z)). Thus z′ = z.
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Remark 1. Without precautions, the interior cannot be replaced by the relative
interior in Lemma 1. For example, the function P (z) = |z1 − z2| defined on R2

does not satisfy the assumption of the Lemma. Indeed, any z = (z1, z2) ∈ R2 for
z1 = z2, the subdifferential ∂P (z) = {(a,−a) : a ∈ [−1, 1]} is a one dimensional
line segment in R2 with empty interior. Also for non-convex function, note that
the Lemma is applicable only when the subdifferential set defined in Equation (1)
is non-empty.

The contrapositive of Lemma 1 leads to a simple identification rule:

int∂P (z) ∩ ∂P (z′) 6= ∅ =⇒ z = z′ . (3)

Fermat’s rule provides the optimality condition:

0 ∈ ∂P (β̂) = X>∂f(Xβ̂) + ∂Ω(β̂) ,

which is equivalent to

X>θ̂ ∈ ∂Ω(β̂) for any θ̂ ∈ −∂f(Xβ̂) . (4)

Suppose now that there exists β?g such that int∂Ωg(β
?
g ) is non empty. In the

case Ωg(βg) = ‖βg‖ for instance, we can take β?g = 0. For any group of features

g in G such that X>g θ̂ ∈ ∂Ωg(β̂g), and any vector β?g such that int∂Ωg(β
?
g ) is

non empty, we have

X>g θ̂ ∈ int∂Ωg(β
?
g ) =⇒ int∂Ωg(β

?
g ) ∩ ∂Ωg(β̂g) 6= ∅

(3)
=⇒ β?g = β̂g .

This relation means that the group of feature Xg is irrelevant and can be

discarded in the Problem (2) i.e., β̂g is identified to be equal to β?g , whenever

X>g θ̂ belongs to int∂Ωg(β
?
g ). However, since θ̂ depends on the unknown solution

β̂, this rule is of limited use. Fortunately, it is often possible to construct a set
R ⊂ Rn, called a safe region, that contains such a θ̂. This observation leads to
the following result.

Proposition 1 (Feature-wise screening rule). Let β?g such that int∂Ωg(β
?
g ) 6= ∅

and let R be a set containing θ̂. Then

X>g R ⊂ int∂Ωg(β
?
g ) =⇒ β?g = β̂g .

Proposition 1 provides a general recipe for applying (safe) screening rule in
optimization Problem (2) without assumption on the algebraic expression of
functions f and Ω.

Choice of the safe region R. When f is L-Lipschitz, for any v ∈ −∂f(Xβ̂)
as in eq. (4), we have ‖v‖ ≤ L ‖X‖ (see [38, Lemma 2.6]). The set R can be
taken as a ball of radius L ‖X‖. When f is differentiable with Lipschitz gradient,

we will see that θ̂ belongs to a ball centered around any dual estimate θ and
whose radius quantifies the approximation quality. Thus, the better the estimate
θ, the smaller the safe region R, i.e., the more efficient the screening rule is.
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Dual formulation. Similar results naturally hold in the dual space. Under
the classical Fenchel-Rockafellar duality [36, Chapter 31], the dual formulation
of Problem (2) reads:

θ̂ ∈ arg max
θ∈Rn

−f∗(−θ)− Ω∗(X>θ) = D(θ) . (5)

The solutions β̂ in the primal and θ̂ in the dual are linked by the optimality
condition in Equation (4). In Equation (5), the role of f and Ω are flipped and
we have the next result.

Proposition 2 (Sample-wise screening rule). Suppose that f(x) =
∑n
i=1 fi(xi).

Let θ? ∈ Rn be a vector such that for some i ∈ [n], int∂f∗i (θ?i ) 6= ∅ and let

R ⊂ Rp be a set containing a solution β̂ of Problem (2). Then

x>i R ⊂ int∂f∗i (θ?i ) =⇒ −θ̂i = θ?i .

For simplicity, we will mostly restrict the discussion on the primal formulation
since the same properties can be recovered by duality.

2.2 Examples

To apply the screening rule within the introduced setting, we only have to
identify the subdifferential of Ω and points where it has a non empty interior.
We present a few examples popular in machine learning and statistics, as well as
other ones commonly met in convex optimization [13].

Sparsity inducing regularization. The Lasso and Elastic net are examples
where each group reduces to a single feature g = {j} for j ∈ [p]. In both
cases the feature-wise penalties can be written respectively Ωg(βg) = |βj |,
and Ωg(βg) = |βj | + αβ2

j /2 for α ≥ 0. For j ∈ [p] and β?j = 0, we have
∂Ωj(β

?
j ) = [−1, 1] which has a non empty interior equal to (−1, 1). We also

have cases where, Ωg = ‖·‖ is a norm. It includes examples such as Group Lasso
[47] and Sparse-Group Lasso [41] for instance. In that case, β?g = 0 ∈ R|g| and
∂Ωg(β

?
g ) is equal to the unit ball w.r.t. to the dual norm of Ωg, which also have

a non empty interior. These examples also easily extend to gauges and support
functions (see [13] for definitions). For instance, Let Q ∈ R|g|×|g| be a symmetric
positive semi-definite matrix and define Ωg(βg) =

√
〈Qβg, βg〉. Then β?g can be

any element of Ker(Q) and ∂Ωg(β
?
g ) = Q1/2B(0, 1), where B(0, 1) is the unit ball

for ‖·‖ in R|q|.

Non negativity constraint: Ωj(βj) = ιR+
(βj) with g = {j}. In this case,

β?j = 0 and ∂Ω(β?j ) = R−. This formulation appears in non-negative Least-
square, non-negative Lasso and simplex constrained problems.

Box constraint: Ωj(βj) = ι[a,b](βj) with g = {j}. In this case β?j belongs to
{a, b} and ∂Ωj(β

?
j ) = R− (resp. R+) if β?j is equal to a (resp. b).
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Hinge: Ωj(βj) = max(0, 1− βj) with g = {j}, we have β?j = 1 and ∂Ω(β?j ) =
[−1, 0] which have a non empty interior (−1, 0). This is used in ε-insensitive loss
which flattened the `1 norm around zero i.e., Ωj(βj) = max(0, |βj | − ε) for some
ε ≥ 0.

Distance functions: Let C be a closed convex subset of R|g| and Ωg(βg) =
min{‖z − βg‖ : z ∈ C}. In that case, ∂Ωg(β

?
g ) = NC(β?g ) ∩ B(0, 1) where NC(w)

is the normal cone of C at w ∈ R|g|. Hence, β?g can be any vector in bdC such
that NC(β?g ) has a non empty interior.

Piecewise affine functions: Let us consider a set of real values {r1, · · · , rm}
and vectors {s1, · · · , sm} in R|g| for an integer m ≥ 2. One can define Ωg(βg) =
max{rj + 〈sj , βg〉 : j ∈ [m]}, then ∂Ωg(β

?
g ) is the convex hull of the set {sj : j ∈

J(β?g )} where J(w) = {j ∈ [m] : Ωg(w) = rj + 〈sj , w〉} and β?g can be chosen as
any vector such that the matrix (sj)j∈J(β?g ) has full rank. This generalize the

previous examples of `1 regularization and hinge loss. We refer to [13, Chapter
D] for a further generalization to supremum over a collection of convex function,
more sophisticated examples and detailed subdifferential calculus rules.

3 Explicit active set identification

The main interest of using screening rules in optimization algorithms is to focus
the computational efforts on the most important variables (or samples in the
dual). To do so, one needs to explicitly and safely identify parts of the solution

vector i.e., detect some group g such that we can guarantee that β̂g = β?g where
the latter is such that int∂Ω(β?g ) is not empty (which is a necessary condition
for identifiability in our framework). This is particularly well suited for proximal
(block) coordinate descent method as this type of method can easily ignore non
influential (block) coordinates.

Any time a safe region R is considered for a safe screening test (following
Proposition 1), one can associate to it a safe active set consisting of the features
that cannot yet be removed.

Definition 1 (Feature-wise (safe) active sets). Let β?g be a vector such that
int∂Ωg(β

?
g ) is non empty. The set of (group) active features at β?g is defined as:

A := A(θ̂) =
{
g ∈ G : X>g θ̂ /∈ int∂Ωg(β

?
g )
}

,

where θ̂ is a dual optimal solution in Equation (5). Moreover, if R is a safe
region, its corresponding set of (group) safe active features at β?g is defined as

AR :=
{
g ∈ G : X>g R 6⊂ int∂Ωg(β

?
g )
}
.

The complements (i.e., the set of non active groups) of A and AR are denoted
by Z and ZR.
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3.1 Computation of screening tests

The set inclusion tests presented in Propositions 1 and 2 have a simple numerical
implementation. Since the subdifferential ∂Ωg(β

?
g ) is a closed convex set, for any

region R, the screening test X>g R ⊂ int∂Ωg(β
?
g ) can be evaluated computation-

ally thanks to the following classical lemma that allows to check whether a point
belongs to the interior of a closed convex set by means of support function. We
recall that for a nonempty set C, it is defined as SC(x) = supc∈C〈c, x〉.

Lemma 2 ([13, Theorem C-2.2.3]). Let C1 and C2 be nonempty closed convex
subset of Rn. Then, we have for any direction d ∈ bdB(0, 1),

SC1
(d) < SC2

(d)⇐⇒ C1 ⊂ intC2 .

By applying Lemma 2 to the closed convex sets C1 = X>g R and C2 = ∂Ωg(β
?
g ),

we obtain a computational tool for evaluating the screening tests.

Proposition 3. Let R be a closed convex set that contains the dual optimal
solution θ̂ in Equation (5). For all group g in G and for any vector β?g such that

int∂Ωg(β
?
g ) is non empty, β̂g = β?g whenever for any direction d ∈ bdB(0, 1)

Screening: S{X>g θ̂}(d) < S∂Ωg(β?g )(d) .

Safe screening: SX>g R(d) < S∂Ωg(β?g )(d) .

The safe screening rule consists in removing the g-th group from the optimiza-
tion process whenever the previous test is satisfied, since then β̂g is guaranteed
to be equal to β?g . Should R be small enough to screen many groups, one
can observe considerable speed-ups in practice as long as the testing can be
performed efficiently. Thus a natural goal is to find safe regions as narrow as
possible and only cheap computations are needed to check if X>g R ⊂ int∂Ωg(β

?
g ).

Relying on optimality conditions, one can easily find a set containing the dual
optimal solution θ̂. For a pair of vector (β, θ) ∈ domP × domD, the duality gap
is defined as the difference between the primal and dual objectives:

Gap(β, θ) = P (β)−D(θ) .

For such (β, θ) pair, weak duality holds: P (β) ≥ D(θ), namely P (β)− P (β̂) ≤
Gap(β, θ). At optimal values and under mild conditions, we have the strong

duality Gap(β̂, θ̂) = 0. This allows us to exploit the duality gap as an optimality
certificate or as an algorithmic stopping criterion for solving problems (2) and

(5). For any dual feasible vector θ, we have D(θ̂) ≥ D(θ). Moreover by weak

duality, for any β ∈ domP (primal feasible), we have P (β) ≥ D(θ̂). Whence,

θ̂ ∈ {ζ ∈ domD : P (β) ≥ D(ζ) ≥ D(θ)} .

Nevertheless, the screening test corresponding to such set may be hard to
compute explicitly. Various shapes have been considered in practice as a safe
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region R. Here we consider sphere regions following the terminology introduced
by [9] i.e., choosing a ball R = B(c, r) as a safe region. In that case, by positive
homogeneity of the support function, we have for any direction d ∈ R|g|,

SX>g B(c,r)(d) = SX>g c(d) + SX>g B(0,r)(d)

≤ SX>g c(d) + r sup
‖u‖=1

SX>g u(d) .

For any group g in G, β̂g = β?g when for any d, the following sphere test holds

SX>g c(d) + r sup
‖u‖=1

SX>g u(d) < S∂Ωg(β?g )(d) . (6)

Note that when Ωg is a norm the sphere test reduces to

Ω◦g(X
>
g c) + rΩ◦g(Xg) < 1 .

where Ω◦g is the norm dual to Ωg.
For the non negativity constraint, the test reduces to

−X>j c+ r|Xj | < 0 .

3.2 Gap safe rules

Under the smoothness assumption on the loss function, it was shown by [11, 29,
34] that one can rely on the duality gap to construct a safe region, whenever a
dual feasible point can be constructed. Here, we recall this construction and
show how to generalize it to construct a dual feasible point for a wider class of
problems (2).

Proposition 4. If the dual objective D is µD-strongly concave w.r.t. a norm
‖·‖, for any primal/dual feasible vectors (β, θ) ∈ domP × domD, we have:

‖θ̂ − θ‖2 ≤ 2

µD
Gap(β, θ) , (7)

where (β̂, θ̂) is any primal/dual optimal solution.

Thus, the ball B
(
θ,
√

2
µD

Gap(β, θ)
)

is a safe region (called gap safe sphere).

We call gap safe rule the sphere test in Equation (6) applied with the gap
safe sphere in Proposition 4.

Construction of a dual feasible vector. To build a center for the safe
sphere, we map a primal vector onto the dual space thanks to the gradient1

mapping ∇f(·). However, the obtained dual vector is not necessarily feasible
for the dual problem. When the projection on the feasible set is hard, a generic

1any subgradient can be used when f is not differentiable
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procedure consists in performing a rescaling step so that it belongs to the dual
set. Precisely, we want to build θ ∈ Rn such that

−θ ∈ domf∗ and X>θ ∈ domΩ∗ . (8)

Given a vector β in Rp, we build a dual point by rescaled gradient mapping i.e.,

θ =
−∇f(Xβ)

α
(9)

with α = max
(
1,S◦domΩ∗

(
−X>∇f(Xβ)

))
. (10)

This choice is motivated by the primal-dual optimality link (4): θ̂ = −∇f(Xβ̂).
Building a dual feasible vector by scaling is often used in the literature (see for
instance [9]) and reduces to residual rescaling, see [21, 23] when f is quadratic.

Proposition 5. If f and Ω are bounded from below, then the dual vector θ in
Equation (9) satisfies the feasibility condition (8).

Proof. Since Ω is bounded from below then Ω∗(0) = − infz Ω(z) < +∞ which
is equivalent to domΩ∗ contains 0. Since it is also closed and convex, we have
S◦domΩ∗ is positively homogeneous. Hence the vector θ in Equation (9) satisfies
S◦domΩ∗(X

>θ) ≤ 1 which is equivalent to X>θ in domΩ∗. Moreover, by denoting
s = 1/α ∈ [0, 1], we have −θ = s∇f(Xβ) = s∇f(Xβ) + (1− s)0. Since domf∗

is convex, it remains to show that it contains the vectors ∇f(Xβ) and 0, thus it
will necessarily contains −θ by convex combination.

Since f is bounded from below, we have f∗(0) = − infz f(z) < +∞ which
is equivalent to 0 ∈ domf∗ . Moreover, the equality case in the Fenchel-Young
inequality shows that f(Xβ) + f∗(∇f(Xβ)) = 〈∇f(Xβ), Xβ〉 < +∞. Hence
f∗(∇f(Xβ)) is also finite.

Remark 2. The scaling constant α in Equation (10) is equal to 1 if domΩ∗ is
unbounded.

4 How long does it take to identify the optimal
active set with a screening rule?

We recall the notion of converging safe regions introduced in [11] that helps to
reach exact active set identification in a finite number of steps.

Definition 2 (Converging Safe Region). Let (Rk)k∈N be a sequence of compact

convex sets containing the dual optimal solution θ̂. It is a converging sequence
of safe regions if the diameters of the sets converge to zero. The associated safe
screening rules are referred to as converging.

The following proposition asserts that after a finite number of steps, the
active set is exactly identified. Such a property is sometimes referred to as finite
identification of the support [20].

9



Proposition 6. Let (Rk)k∈N be a sequence of compact convex set containing

θ̂ for each k in N. If (Rk)k is converging in the sense of Definition 2, then it
exists an integer k0 such that ARk = A for any k ≥ k0.

Proof. We proceed in two steps.
Firstly, we show that for any direction d ∈ R|g|, maxθ∈Rk SX>g θ(d) →k

SX>g θ̂(d). Indeed, for any k ∈ N and θ ∈ Rk we have from the sublinearity and

positive homogeneity of the support function, and since θ̂ in Rk:

SX>g θ̂(d) ≤ max
θ∈Rk

SX>g θ(d) ≤ SX>g θ̂(d) + diam(Rk) sup
‖u‖=1

SX>g u(d) ,

The conclusion follows from the fact that Rk is a converging sequence, since
limk→∞ diam(Rk) = 0.

Secondly, we proceed by double inclusion. First, remark that A = AR∞
where R∞ := {θ̂}. So for all k ∈ N, we have A ⊆ ARk since (ARk)k are nested
sequence of sets. Reciprocally, suppose that there exists a non active group g ∈ G
i.e., SX>g θ̂(d) < 1 that remains in the active set ARk for all iterations i.e., ∀k ∈
N, maxθ∈Rk SX>g θ(d) ≥ 1. Since limk→∞maxθ∈Rk SX>g θ(d) = SX>g θ̂(d), we

obtain SX>g θ̂(d) ≥ 1 by passing to the limit. Hence, by contradiction, there exits

an integer k0 ∈ N such that [p]\A ⊆ AcRk for all k ≥ k0.

One can note that the rate of identification of the active set is strongly related
to the rate at which the sequence of diameters diam(Rk) goes to zero during
the optimization process. We quantify this in the next section.

4.1 Complexity of safe active set identification

Dynamic safe screening rules have practical benefits since they increase the
number of screened out variables as the algorithm proceeds. The next proposition
states that if one relies on a primal converging algorithm, then the dual sequence
we propose is also converging. It only requires uniqueness of Xβ̂ (not that

of β̂). In the following, βk is the current estimate of a primal solution β̂ and
θk = −∇f(Xβk)/αk, with αk = max(1,S◦domΩ∗(X

>∇f(Xβk))), be the current

estimate of the dual solution θ̂.

Lemma 3. It holds limk→∞Xβk = Xβ̂ implies limk→∞ θk = θ̂.

Proof. Let αk = max(1,S◦domΩ∗(X
>∇f(Xβk))), we have:

‖θk − θ̂‖2 =

∥∥∥∥∇f(Xβ̂)− ∇f(Xβk)

αk

∥∥∥∥
2

≤
∣∣∣∣1− 1

αk

∣∣∣∣ ‖∇f(Xβk)‖2 +
∥∥∥∇f(Xβ̂)−∇f(Xβk)

∥∥∥
2
.
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If Xβk → Xβ̂ holds, then αk → max(1,S◦domΩ∗(X
>∇f(Xβ̂))) =

max(1,S◦domΩ∗(X
>θ̂)) = 1, since ∇f(Xβ̂) = −θ̂ thanks to the optimality condi-

tion and the feasibility of θ̂: S◦domΩ∗(X
>θ̂) ≤ 1. Hence the right hand side of

the previous inequality converges to zero, and the conclusion holds.

From Lemma 3 and by strong duality, the sequence of radius rk =
(2 Gap(βk, θk)/µD)1/2 converges to 0 as k goes to ∞. Hence, the sequence of

safe balls B(θk, rk) converges to {θ̂}. Whence, we deduce the following property.

Proposition 7. The Gap Safe rules produce converging safe regions.

The results in Proposition 6 and Proposition 7 ensure that screening rules,
applied iteratively with the duality gap based safe region, will identify the active
set after a finite number of iterations.

For any safe ball B(ck, rk), we have the inequalities

SX>g θ̂(d) ≤ max
θ∈B(ck,rk)

SX>g θ(d) ≤ SX>g θ̂(d) + 2rk sup
‖u‖=1

SX>g u(d) ,

and the identification of the active set occurs when for all group g in Z and any
direction d, we have SX>g θ̂(d) < S∂Ωg(β?g )(d). The latter holds as soon as2

rk <
1

2
min
g∈Z

d∈bdB(0,1)

S∂Ωg(β?g )(d)− SX>g θ̂(d)

sup‖u‖=1 SX>g u(d)
=: δZ .

Whence, the identification of the active set using a safe ball of radius rk occurs
after k0 iterations where

k0 := inf{k ∈ N : rk < δZ} . (11)

Remark 3 (Non-degeneracy condition). By definition, the set Z is empty if δZ
is equal to zero. Thus all the complexity bounds are equal to infinity and then
δZ > 0 is a necessary non-degeneracy condition to ensure finite identifications
of the active set.

4.2 Duality gap certificates

Recently, a complexity analysis of the convergence of the duality gap, used as
an optimality certificate as been proposed [7]. This analysis is important for
deriving the complexity of active set identification that depends only on the rate
of convergence of the algorithm. The next lemma adapts the proposed analysis
to that take dual rescaling into account.

2where we implicitly avoid the trivial case where there exists some group g such that
sup‖u‖=1 SX>g u(d) = 0.
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Lemma 4. Let f be νf -smooth and Ω be µΩ-strongly convex (µΩ = 0 is allowed
when Ω∗ is subdifferentiable on its domain 3). Since the dual vector θ in (9) is
feasible, we can choose u ∈ ∂Ω∗(X>θ) 6= ∅. For all s in [0, 1], it holds

P (β)− P (β̂) ≥s(Gap(β, θ) + ∆(α)) + s2

[
(1− s)µΩ

s
‖β − u‖2 − νf

2
‖X(u− β)‖2

]
(12)

with ∆(α) = f∗(∇f(Xβ))− f∗(−θ) + (α− 1)〈θ,Xu〉 and the scaling α is defined
in Equation (10).

Proof. By optimality of β̂, for any β and u in domP , we have:

P (β)− P (β̂) ≥ P (β)− P (β + s(u− β))

= [Ω(β)− Ω(β + s(u− β))] + [f(Xβ)− f(X(β + s(u− β)))] .
(13)

By strong convexity of Ω, we have:

Ω(β)− Ω(β + s(u− β)) ≥ s(Ω(β)− Ω(u)) +
s(1− s)µΩ

2
‖u− β‖2 . (14)

From the smoothness of f , we have:

f(Xβ)− f(Xβ + sX(u− β)) ≥ s〈∇f(Xβ), X(u− β)〉 − s2νf
2
‖X(u− β)‖2 .

(15)

Then, plugging Equation (14) and Equation (15) to Equation (13), yields:

P (β)− P (β̂) ≥ sΓ +
s2

2

[
(1− s)µΩ

s
‖u− β‖2 − νf ‖X(u− β)‖2

]
,

where Γ = Ω(β)− Ω(u)− 〈∇f(Xβ), X(u− β)〉.
The choice of the scaling α in eq. (10), we have X>θ ∈ domΩ∗ which implies

that ∂Ω∗(X>θ) is non empty. Thus we can choose u ∈ ∂Ω∗(X>θ) which ensure
that u ∈ domΩ. Also, f is smooth if and only if f∗ is strongly convex which
implies that domf is the whole space. Thus Xu ∈ domf . Whence u ∈ domΩ
and Xu ∈ domf implies u ∈ domP . Let β ∈ domP , the for any s ∈ [0, 1] on can
check that β + s(u− β) ∈ domP .

For u ∈ ∂Ω∗(X>θ), the equality case in the Fenchel-Young inequality reads:

Ω(u) = 〈u,X>θ〉 − Ω∗(X>θ) .

Whence,

Γ = Ω(β) + Ω∗(X>θ)− 〈u,X>θ〉 − 〈∇f(Xβ), X(u− β)〉
= Gap(β, θ)− f(Xβ)− f∗(−θ)− 〈u,X>θ〉 − 〈∇f(Xβ), X(u− β)〉 .

3Note that in particular, the rescaled gradient mapping allows µΩ = 0 without restricting
Ω to have a bounded support.
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From the equality case in the Fenchel-Young inequality, we have f(Xβ) =
〈∇f(Xβ), Xβ〉 − f∗(∇f(Xβ)). Thanks to the last display and to the definition
of θ, we have −f(Xβ) − f∗(−θ) − 〈u,X>θ〉 − 〈∇f(Xβ), X(u − β)〉 = ∆(α),
hence the result.

Let us denote the sub-optimality gap

Ek = P (βk)− P (β̂), for k ∈ N . (16)

Cases where µΩ > 0. In such a case, domΩ∗ is the whole dual space and we
can choose α = 1 (see Remark 2) whence ∆(α) = 0. Now choosing s = µΩ

σXνf+µΩ

where σX is the spectral norm of the design matrix X (see also [7]), then the
last term in Equation (12) vanishes. Thus,

µΩ

σXνf + µΩ
Gap(βk, θk) ≤ Ek ≤ Gap(βk, θk) .

This guarantees that the duality gap converges at the same rates as the sub-
optimality gap. Along with Equation (11), we obtain the following proposition.

Proposition 8. For µΩ > 0 and any linearly converging primal algorithm
i.e., with Rate(k) = exp(−κk), the active set will be identified after at most k0

iterations where

k0 ≤
1

κ
log

(
Cf,Ω,X
δ2
Z

2

µD
E0
)

,

for some κ in (0, 1] and the constant Cf,Ω,X :=
σXνf+µΩ

µΩ
depends only on the

conditioning of the design matrix X and on the regularity of f and Ω.

Case where µΩ = 0. One possibility, here, is to modify Ω by adding a small
strongly convex term (e.g., smoothing). Then, the previous result still holds
for the modified problem. However, this will slightly modify the iterates of the
algorithm. Otherwise, one can assume that Ω has a bounded support i.e., domΩ
is included in a ball of radius L. In such a case, Ω∗ is finite everywhere and we
can still choose α = 1 whence ∆(α) = 0 while having

‖X(uk − βk)‖ ≤ 2σXL . (17)

Plugging it into Lemma 4, we obtain

Gap(βk, θk) ≤ 1

s
Ek + 2νfσ

2
XL

2s .

Minimizing the upper bound in s onto (0, 1], we have

Gap(βk, θk) ≤
√

8νfσ2
XL

2Ek .

When the optimization algorithm converges linearly, the complexity in Prop. 8 is
preserved up to some constants because the logarithmic term is not affected by
the square-root. But, it leads to a suboptimal bound in the sub-linear regime,
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Proposition 9. For µΩ = 0 and any sub-linearly primal convergent algorithm
i.e., with Rate(k) = C/kγ where γ > 0, the active set will be identified after at
most k0 iterations where

k0 ≤
(

8νfσ
2
XL

2C

(µDδ2
Z)2

) 1
γ

.

To exactly match the rate of the algorithm (i.e., to remove the squared term
Proposition 9) we propose to additionally assume Lipschitz continuity of the
sub-differential ∂Ω∗ and a quadratic error bound on the objective function P .
More precisely, we suppose that there exists some constants L∗ and γP > 0 such
that for a selection of u in ∂Ω∗(ζ) and û in ∂Ω∗(ζ̂), we have4:

‖u− û‖ ≤ L∗‖ζ − ζ̂‖ (18)
γP
2
‖β − β̂‖2 ≤ P (β)− P (β̂) . (19)

The reason is that uk is expected to converge to β̂ and so the bound in
Equation (17) may be too crude. In a sub-linear regime, the following lemma
shows that assumptions (18) and (19) are sufficient conditions to improve the
previous analysis in [7].

Remark 4. The quadratic error bound condition in Equation (19) was proven
to be satisfied for a large class of optimization problem. One can refer to [1]
where it was used to analyze the complexity of first order optimization methods.
Similar Lipschitz continuity assumptions on the subdifferential in Equation (18)
were made in [16], see also [37, Chapter 9.E]. However, it is not straightforward
to explicitly compute these constants for practical applications.

Lemma 5. Under assumptions (18) and (19), for any integer k, it holds

Gap(βk, θk) ≤
√

2νfC ′f,Ω,X Ek ,

where C ′f,Ω,X =
4σ2
X(L2

∗σ
2
Xν

2
f+1)

γP
is non negative and finite.

Proof. First note that

‖X(uk − βk)‖2 ≤ 2σ2
X(‖uk − β̂‖2 + ‖βk − β̂‖2) .

When α = 1, we have uk ∈ ∂Ω∗(−X>∇f(βk)). Moreover, β̂ ∈ ∂Ω∗(−X>∇f(β̂))
and we have:

‖uk − β̂‖ ≤ L∗‖X>∇f(Xβk)−X>∇f(Xβ̂)‖
≤ L∗σXνf‖βk − β̂‖

≤ L∗σXνf
√

2

γP
Ek ,

4This condition is required only for ζ̂ = −X>∇f(Xβ̂) and when ζ = ζ̂, the choice restricts

to u = û = β̂, which can be ensured by selecting u as the projection of β onto ∂Ω(X>θ).
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where the first inequality results from the assumption (18), the second from the
smoothness of f (f is νf smooth so the gradient is νf Lipschitz), and the third
from the quadratic error bound Equation (19).

Thus, for C ′f,Ω,X =
4σ2
X(L2

∗σ
2
Xν

2
f+1)

γP
, we have

‖X(uk − βk)‖2 ≤ C ′f,Ω,XEk .

Plugging it into Lemma 4, we obtain

Ek ≥ P (βk)− P (β̂) ≥sGap(β, θ)− s2
νfC

′
f,Ω,X

2
Ek .

Whence

Gap(βk, θk) ≤
(

1

s
+ s

νfC
′
f,Ω,X

2

)
Ek .

Minimizing the upper bound in s onto (0, 1], we obtain the result.

Then, in a sub-linear regime, we recover the exact rate.

Proposition 10. For µΩ = 0, under assumptions (18) (19) and any sub-linearly
primal convergent algorithm i.e., with Rate(k) = C/Rγ where γ > 0, the active
set will be identified after at most k0 iterations where

k0 ≤


√

8νfC ′f,Ω,XC

µDδ2
Z


1
γ

.

Finally, when the domain of Ω is not bounded, the algorithm can be equipped
with a modified duality gap which enforces the bounded domain assumption
(this is known as the Lipschitzing Trick [7] in the litterature). Then, the previous
result still holds without modifying the iterates of the algorithm.

Related works. To our knowledge, this paper is the first one to discuss
the complexity of active set identification with screening rules. Our results
match the existing results on active set identification in [20, 31, 42] for proximal
algorithms. Interestingly, our result uniformly holds for any converging algorithm
not only proximal methods and illustrates the benefits obtained as screening
rules explicitly and definitely eliminate non-active variables along the algorithmic
progress.

5 Acceleration Strategies

We discuss some practical methods for efficiently using screening rules to speed
up optimization processes for solving Equation (2) and show how some popular
previous acceleration heuristics such as strong rules [44] or recent working sets
[14, 23] can be extended in our framework.
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Static (Pre-processing). A natural strategy is to set, once for all, a gap safe
radius using some initial fixed vectors θ = θ0 and β = β0. The resulting static

safe region B
(
θ0,
√

2
µD

Gap(β0, θ0)
)

is used in Equation (6). Such a strategy is

only efficient when (β0, θ0) are good enough estimate of the optimal solutions,
and have limited scope in practice.

Dynamic. One could rather use the information gained during an optimization
process to obtain a smaller safe region therefore a greater elimination of inactive

variables. Whence, we consider B
(
θk,
√

2
µD

Gap(βk, θk

)
. Dynamic safe region

was initially suggested in [2] and further used in the duality gap based region in
[11, 18, 29, 40].

Sequential (Homotopy Continuation). Sequential screening is motivated
by the intuition that, often, the duality gap grows continuously w.r.t. to the
regularization parameter [12, 30]. It basically states that when λ close to λt,
the duality gap Gapλ(β(λt), θ(λt)) tends to Gapλt(β

(λt), θ(λt)). As a by product,
given a sufficiently fine grid of parameter (λt)t∈[T ], the sequential screenings

based on balls B
(
θ(λt),

√
2
µD

Gapλt−1
(β(λt), θ(λt))

)
, will be small enough to

efficiently remove non active variables.

Active Warm Start (aka strong rules). This method was introduced in
[44] as a heuristic relaxation of the safe rules to discard features more aggressively
in `1 regularized optimization problem. We generalize it into our framework.
Let F (β) = f(Xβ). We havefor any d ∈ R|g|

SX>g θ̂(λ)(d) = SX>g θ̂(λ′)(d) + S{X>g θ̂(λ)−X>g θ̂(λ′)}(d)

= SX>g θ̂(λ′)(d) + S{∇gF (β̂(λ′))−∇gF (β̂(λ))}(d) .

If ∇F is group-wise non-expansive along the regularization path
i.e., ‖∇gF (β̂(λ′)) − ∇gF (β̂(λ))‖ ≤ |λ′ − λ|, the screening holds whenever
the (generalized) strong rule holds:

SX>g θ̂(λ′)(d) + |λ′ − λ| < S∂Ωg(β?g )(d) .

The strong rules are un-safe because the non-expansiveness condition on ∇F
is usually not satisfied without stronger assumptions on the design matrix X
(e.g., X has full column rank and (X>X)−1 is diagonally dominant). Moreover,

the exact solution θ̂(λ′) is usually not available.
As a simpler rule, specially when the previous regularity condition cannot be
verified, we rather suggest to use the previous active set

SX>g θ̂(λ′)(d) < S∂Ωg(β?g )(d) .

The rational behind these heuristics is that, often, the active set is stable along
the regularization path, a crucial argument used to build the Lars algorithm [8]
and variants [33].
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Aggressive Active Warm Start. The gap safe screening rule relies on an
upper estimates the suboptimal gap by the duality gap Gap(βk, θk). This can
be conservative for the screening rules since no false elimination is allowed. Here
we suggest a new heuristic in order to remove more variables at an early stage
of an optimization process. At any iteration k, use E≈k = |P (βk−s)− P (βk)| as
an unsafe estimate of the suboptimal gap. This will eliminate more variables
depending on the choice of the delaying parameter s. In practice, we delay βk
and βk−s with 10 epochs for instance for the Lasso case, when using coordinate
descent as a solver. To avoid a severe underestimation, one can instead use
(1− η)E≈k + ηGap(βk, θk). We set a default value η = 10−3.
See the numerical illustrations in Figure 1 and appendix.

Remark 5. Since these rules are unsafe i.e., they can wrongly remove some
variables, they must be accompanied with a post-precessing step. For instance by
adding back the variables that violates the KKT conditions. We rather suggest to
use the solution obtained in these steps as a warm start for the dynamic safe rules
with a converging algorithm. In this way, a low computational complexity can be
maintained when passing over the entire problem with a better initialization of
gap safe screening rules.

Working Sets. Following the suggestions made in [14, 24], one can consider,
for any group g in G

dg(θ) =
S∂Ωg(β?g )(d)− SX>g θ(d)

sup‖u‖=1 SX>g u(d)
, (20)

as a measure of the importance of feature Xg. Thus, one can design a working set
i.e., a set of group g in which to restrict the optimization problem, by selecting
the groups that have a higher value dg(θ). These methods fit naturally in our
framework.

6 Numerical Experiments

We consider simple examples to illustrate the performance of different acceleration
strategies with screening rules on Lasso problem with real datasets. We use a
cyclic coordinate descent solver 5 as a shared standard algorithm for all methods.
All methods are stopped when the duality gap reaches a prescribed tolerance
ε ‖y‖2 where ε is set to 10−4, 10−6 or 10−8. For readability, the execution times
of the algorithms are normalized with respect to the running time of coordinate
descent with the gap safe screening rule baseline as done in [29]. Evaluations
of the performance of safes rules for other problems such as logistic regression,
Sparse-Group Lasso, SVM etc are available in the literature e.g., [27, 28, 40].

Although safe rules can save a significant amount of computational time, they
should be conservative so as not to wrong eliminate relevant variables. In our

5The implementation is available at https://github.com/EugeneNdiaye/Gap_Safe_Rules
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Figure 1: Illustrations on Lasso using (cyclic) coordinate descent on Leukemia
dataset (n = 72 observations and p = 7129 features. Here λmax = ‖X>y‖∞ is

the smallest λ such that β̂ = 0 is a primal optimal solution.

numerical experiments, we observe that this constraint can limit their efficiency.
By reducing this safety constraint, one can greatly improve their efficiency by
combining them with a simple heuristic like the one introduced in Section 5.
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Figure 2: Lasso on the Leukemia (dense data with n = 72 observations and
p = 7129 features). Computation times needed to solve the Lasso regression
path to desired accuracy for a grid of λ from λmax =

∥∥X>y∥∥∞ to λmax/100.
The size of the dense grid (resp. sparse grid) is 100 (resp. 10).
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Figure 3: Lasso on the climate NCEP/NCAR Reanalysis 1 (dense data with
n = 814 observations and p = 73570 features) see [17]. Computation times
needed to solve the Lasso regression path to desired accuracy for a grid of λ
from λmax =

∥∥X>y∥∥∞ to λmax/100. The size of the dense grid (resp. sparse
grid) is 100 (resp. 10).
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Figure 4: Lasso on the rcv1 train (sparse data with n = 20242 observations and
p = 19960 features) available in libsvm. Computation times needed to solve the
Lasso regression path to desired accuracy for a grid of λ from λmax =

∥∥X>y∥∥∞
to λmax/100. The size of the dense grid (resp. sparse grid) is 100 (resp. 10).
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Figure 5: Lasso on the news20 (sparse data with n = 19996 observations and
p = 632983 features) available in libsvm. Computation times needed to solve the
Lasso regression path to desired accuracy for a grid of λ from λmax =

∥∥X>y∥∥∞
to λmax/100. The size of the dense grid (resp. sparse grid) is 100 (resp. 10).

7 Conclusion

We have presented a simple way to unify various contributions that explicitly
identify active variables, especially in sparse regression problems. For this, we
have relied on optimality conditions and the fact that the subdifferentials of a
function evaluated at two distinct points can not be overlapped. It should be
noted that this remarkable property is not limited to convex functions (e.g., it
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holds for non-convex setting as soon as the set (1) is non empty).
Extending the identification rules to subdifferential in the sense of Fréchet or

Clarke would be a natural venue for future works. Promising results have been
shown in [19, 35]. However, it is still open to get a unified framework for non
convex optimization problems and non separable regularization function.

When an optimization algorithms can benefit from screening rules, we have
also shown that the number of iterations to identify the active set can be accu-
rately estimated, and depends only on the rate of convergence of the (converging)
algorithm used. Numerical experiments of some heuristic acceleration rules have
been provided, showing their interest for (block) coordinate descent algorithms.
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[7] C. Dünner, S. Forte, M. Takáč, and M. Jaggi. Primal-dual rates and
certificates. In ICML, volume 48, pages 783–792, 2016.

[8] B. Efron, T. J. Hastie, I. M. Johnstone, and R. Tibshirani. Least angle
regression. Ann. Statist., 32(2):407–499, 2004. With discussion, and a
rejoinder by the authors.

[9] L. El Ghaoui, V. Viallon, and T. Rabbani. Safe feature elimination in sparse
supervised learning. J. Pacific Optim., 8(4):667–698, 2012.

[10] J. Fan and J. Lv. Sure independence screening for ultrahigh dimensional
feature space. J. R. Stat. Soc. Ser. B Stat. Methodol., 70(5):849–911, 2008.

[11] O. Fercoq, A. Gramfort, and J. Salmon. Mind the duality gap: safer rules
for the lasso. In ICML, volume 37, pages 333–342, 2015.

21



[12] J. Giesen, J. K. Müller, S. Laue, and S. Swiercy. Approximating concavely
parameterized optimization problems. In NIPS, pages 2105–2113, 2012.

[13] J-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of convex analysis.
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[20] J. Liang, J. Fadili, and G. Peyré. Activity Identification and Local Lin-
ear Convergence of Forward–Backward-type Methods. SIAM J. Optim.,
27(1):408–437, 2017.

[21] J. Mairal. Sparse coding for machine learning, image processing and com-
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