
HAL Id: hal-02933023
https://hal.science/hal-02933023v2

Submitted on 30 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lazy Controller Synthesis for Monotone Transition
Systems and Directed Safety Specifications

Elena A. Ivanova, Adnane Saoud, Antoine Girard

To cite this version:
Elena A. Ivanova, Adnane Saoud, Antoine Girard. Lazy Controller Synthesis for Mono-
tone Transition Systems and Directed Safety Specifications. Automatica, 2022, 135,
�10.1016/j.automatica.2021.109993�. �hal-02933023v2�

https://hal.science/hal-02933023v2
https://hal.archives-ouvertes.fr


LazyController Synthesis forMonotoneTransitionSystems

andDirectedSafety Specifications ⋆

Elena Ivanovaa,⋆⋆, Adnane Saoudb,⋆⋆, and Antoine Girarda
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Abstract

In this paper, we provide a lazy control synthesis algorithm for monotone transition systems and directed safety specifications.
Two classes of monotone transition systems are presented: state monotone transition systems and input-state monotone
transition systems. For the first class of systems, a partial order is defined only on the state space. For the second, the input
space is ordered as well. The introduced lazy synthesis approach is based on the efficient computation of predecessors. It
benefits not only from a monotone property of transition systems but also from the ordered structure of the state (input) space
and the fact that directed safety specifications are considered. To enrich the class of the considered specifications, we also
present an incremental controller synthesis framework, which allows us to deal with intersections of upper and lower-closed
safety requirements. We then compare the proposed approach with the classical safety synthesis algorithm and illustrate the
advantages, in terms of run-time and memory efficiency, on an adaptive cruise control problem.

Key words: Monotone transition systems; monotone dynamical systems; directed safety specifications; lazy controller
synthesis; symbolic control.

1 Introduction

Abstraction-based synthesis techniques have been an on-
going research area in the last decade (see e.g., [1,2] and
the references therein). They consist in creating a finite-
state abstraction (or a symbolic model) for a continuous
or a hybrid system and refining the controller synthe-
sized for the abstraction to a controller for the original
system. The replacement of a dynamical system by its
abstraction principally enables the use of various tech-
niques developed in the area of supervisory control of
discrete event systems [3].

Symbolic models are often obtained through discretiza-
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tion of the state and input spaces. Consequently, most of
the abstraction-based approaches do not scale well (see
e.g. [4,5] and the references therein).

To tackle the scalability problem different ideas have
been proposed. In [6,7] optimal abstraction parameters
are derived to minimize the size of symbolic models.
In [8–10], compositional approaches are used to improve
the scalability of symbolic control techniques. In [11–14],
the authors proposed multi-scale abstractions, where
sampling parameters can be refined during the synthesis
process. The general idea for these papers is to start with
a coarse abstraction and then iteratively refine it. While
results in [11,12] are restricted for linear and incremen-
tally stable systems, respectively, the approaches pro-
vided in [13,14] are applicable for general classes of non-
linear systems. The authors in [12–17] synthesize con-
trollers lazily 1 . In [12–14] the authors proposed to re-

1 In classical approaches [1], one first constructs the whole
abstraction for the original system and then use the pre-
computed abstraction to synthesize the controller. In lazy
approaches, the system is abstracted in parallel to the con-
troller synthesis procedure. Moreover, we only compute the
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fine the abstraction locally. Moreover, in [12,14] the ab-
straction is computed for states that are reachable from
the initial set. Proposed for uniform abstractions the ap-
proaches from [15–17] can be combined with multi-scale
ideas as well. In [15], the authors present a lazy synthesis
algorithm for safety and reachability using three-valued
abstractions. In [16], a lazy safety controller for event-
based symbolic models of incrementally stable switched
systems is provided. In [17], adaptive time sampling
approach allow the authors to iteratively explore only
boundary of the controllable domain.

In this paper, we present a (lazy) synthesis algorithm for
monotone transition systems and directed safety spec-
ifications. The class of monotone transition systems is
of practical interest since it arises from monotone dy-
namical systems, which frequently appear in engineering
applications such as traffic networks [18], biological net-
works [19] and power systems [20]. We consider two dif-
ferent classes of systems: state monotone transition sys-
tems and input-state monotone transition systems. For
the former only the state space is equipped with a par-
tial order. For the latter, both state and input spaces are
equipped with a partial order. First, we focus on directed
safety specifications and provide an approach based on
the concept of a basis to compute the set of predecessors
lazily. Then we present an incremental synthesis proce-
dure allowing us to deal with the intersection of upper
and lower-closed safety specifications. Finally, we con-
sider an adaptive cruise control problem. We show that,
while ensuring completeness with respect to the classi-
cal safety synthesis algorithm, the lazy approach allows
us to speed up the computations and reduce memory
consumption.

In spirit, the closest works in the literature are [21,22].
In [21], sparse abstractions were proposed for mono-
tone dynamical systems and directed specifications. We
go one step further by providing a lazy synthesis algo-
rithm benefiting from a particular structure of the con-
sidered problem. In [22], the authors introduce a notion
of s-sequence to characterize a controlled invariant of
the system. This notion is relatively close to the notion
of basis, which we use to describe a predecessor opera-
tor in our work. However, the results presented in [22]
are restricted by the class of cooperative system, while
we address a more general class of monotone systems.
Moreover, looking at the computation of controlled in-
variants, as an optimization problem, [22] do not guaran-
tee the maximality of the obtained control invariant set.
They also propose to use a simple open-loop control pol-
icy to keep a trajectory within a safe set. Although such
an approach is memory efficient, it hardly possible to use
their controller as a start point for more general tasks
(for example, obstacle-avoided reachability specification
or optimal control problems with hard constraints). In

fragment of the abstraction that is essential for the controller
synthesis.

our paper, we first use a fixed-point approach to compute
the maximal controlled invariant and then construct the
maximal safety controller, which brings us to a more
general solution.

A preliminary version of this work has been presented in
the conference paper [23]. The current paper extends the
approach in different directions: First, while in [23], we
have only provided the results for input-state monotone
transition systems, in this paper, we also deal with the
more general class of state monotone transition systems.
Second, in [23], we have considered only directed speci-
fications. However, in this paper, we also explain how to
deal with safety specifications given by an intersection
of upper and lower-closed sets. Third, the proofs of dif-
ferent results are simplified, since now they are based on
the predecessor operator notion. Finally, the numerical
example is improved, and we are evaluating the perfor-
mance of our approach not only using a runtime com-
parison but also in terms of memory efficiency, which
has not been done in the conference version.

The paper is organized as follows. In Section 2, some re-
quired preliminaries are provided. In Section 3, we intro-
duce different classes of monotone transition systems. In
Section 4, we present a lazy algorithm to compute the set
of predecessors. In Section 5, we present a lazy synthesis
algorithm for monotone transition systems and lower-
closed safety specifications. In Section 6, we present an
incremental approach to synthesize controllers for inter-
sections of upper and lower-closed safety specifications.
In Section 7, we show how the monotonicity property is
preserved when going from dynamical systems to their
symbolic abstractions. Finally, in Section 8, an illustra-
tive example is proposed in order to show the efficiency
of the proposed approach.

2 Preliminaries

2.1 Partial orders

A binary relation≤L⊆ L×L is a partial order if and only
if for all l1, l2, l3 ∈ L we have: (i) l1 ≤L l1, (ii) if l1 ≤L l2
and l2 ≤L l1 then l1 =L l2 and, (iii) if l1 ≤L l2 and
l2 ≤L l3 then l1 ≤L l3. If neither l1 ≤L l2 nor l2 ≤L l1
holds, we say that l1 and l2 are incomparable. The set
of all incomparable couples in L is denoted by IncL. We
say that l1 <L l2 iff l1 ≤L l2 and l1 6=L l2. We define ≥L

so that l1 ≥L l2 if and only if l2 ≤L l1.

For a partially ordered set L, closed intervals are
[x, y]L = {z | x ≤L z ≤L y}. Given a partially ordered
set L, for a ∈ L let ↓ a = {x ∈ L | x ≤L a} and
↑ a = {x ∈ L | a ≤L x}. When A ⊆ L then its lower
closure (respectively upper closure) is ↓ A =

⋃

a∈A ↓ a
(respectively ↑ A =

⋃

a∈A ↑ a). A subset A ⊆ L is
said to be lower-closed (respectively upper-closed) if
↓ A = A (respectively ↑ A = A).
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Fig. 1. Illustration of Definition 2. A lower-closed set B
and its basis Bas(B) = {s1, s2, s3, s4}. The state-space is
equipped with the component-wise partial order ≤ defined
on R

2 and we have: B =↓ B =↓ Bas(B).

Definition 1 Let L be a partially ordered set and A ⊆ L
is a finite subset. The set of minimal elements of A
is defined as min(A) = {x ∈ A | ∀x1 ∈ A, x ≤L

x1 or (x, x1) ∈ IncL}. Similarly, the set of maximal el-
ements of A is defined as max(A) = {x ∈ A | ∀x1 ∈
A, x ≥L x1 or (x, x1) ∈ IncL}.

Most of the paper’s statements are formulated for finite
sets since we do not need the more general theory for
our purposes.

Proposition 1 ([24]) Let L be a partially ordered set,
Ai ⊆ L are finite subsets satisfying Ai =↓ Ai for all
i ∈ {1, . . . , p}, p ∈ N≥1. Then ↓ (∪p

i=1
Ai) = ∪p

i=1
Ai and

↓ (∩p
i=1

Ai) = ∩p
i=1

Ai.

Intuitively, the result of Proposition 1 means that a
union (an intersection) of lower-closed sets is lower-
closed.

For finite lower-closed sets, we use the operator max to
introduce the notion of the basis [25], which serves as a
simpler representation of the lower-closed set.

Definition 2 Let L be a finite partially ordered set. Let
Z ⊆ L be a lower-closed set. A setB = {s1, . . . , sN} ⊆ Z
is said to be the basis of Z, denoted B = Bas(Z), if
B = max(Z) or in other words

• Z =
⋃

i=1,...,N ↓ si;

• for all si, sj ∈ B, if si 6= sj then (si, sj) ∈ IncL.

The existence and uniqueness of a finite basis of a finite
lower-closed set follow from the fact that the relation≤L

is a well-quasi-order [26]. An illustration of the concept
of basis is given in Figure 1.

2.2 Transition systems

Definition 3 A transition system is a tuple T =
(X,U,∆), where X is a set of states, U is a set of inputs
and ∆ ⊆ X × U ×X is a transition relation.

A transition system is said to be finite if X and U are
finite. A transition system is said to be deterministic if
card(∆(x, u)) ≤ 1 for all x ∈ X and u ∈ U .We introduce
notation x′ ∈ ∆(x, u) as an alternative representation
for a transition (x, u, x′) ∈ ∆ and we call the state x′ u-
successor of the state x, while x is u-predecessor of state
x′ correspondingly. For A ⊆ X and V ⊆ U , we denote
by ∆(A, V ) =

⋃

a∈A

⋃

v∈V ∆(a, v). For the transition
system S, we assume that for all x ∈ X and for all u ∈ U ,
∆(x, u) 6= ∅. This means that for any state all the inputs
are enabled.

3 Monotone transition systems

In this section, we introduce the class of monotone tran-
sition systems that preserve order on input and state
spaces. We then provide necessary and sufficient condi-
tions for a transition system to be monotone. We first
start with the class of transition systems, where only the
set of states is partially ordered.

Definition 4 Consider a transition system T =
(X,U,∆) where the set of states X is equipped with a
partial order ≤X . The transition system T is said to be:

• Lower state monotone (LSM) if for all x1, x2 ∈ X, for
all u ∈ U, with x1 ≤X x2, it follows, that for any x

′
1
∈

∆(x1, u), there is x′
2
∈ ∆(x2, u), such that x′

1
≤X x′

2
;

• Upper state monotone (USM) if for all x1, x2 ∈ X, for
all u ∈ U, with x1 ≤X x2, it follows, that for any x

′
2
∈

∆(x2, u), there is x′
1
∈ ∆(x1, u), such that x′

1
≤X x′

2
.

The transition system T is said to be state monotone
(SM) if it is both LSM and USM.

One can readily see that the concepts of USM and LSM
coincide when the transition system T is deterministic.

We then consider the class of transition systems where
both state and input spaces are partially ordered.

Definition 5 Consider a transition system T =
(X,U,∆) where the set of states X and the set of inputs
U are equipped with partial orders ≤X , ≤U , respectively.
The transition system T is said to be:

• Lower input-state monotone (LISM) if for all x1, x2 ∈
X, for all u1, u2 ∈ U, with x1 ≤X x2 and u1 ≤U u2,
it follows that for all x′

1
∈ ∆(x1, u1), there is x′

2
∈

∆(x2, u2) such that x′
1
≤X x′

2
;

• Upper input-state monotone (UISM) if for all x1, x2 ∈
X, for all u1, u2 ∈ U, with x1 ≤X x2 and u1 ≤U u2,
it follows that for all x′

2
∈ ∆(x2, u2), there is x′

1
∈

∆(x1, u1) such that x′
1
≤X x′

2
.

The transition system T is said to be input-state mono-
tone (ISM) if it is both LISM and UISM.

3



Fig. 2. Illustration of Theorem 1. Given two states x1 ≤X x2

and two inputs u1 ≤U u2, if the transition system is LISM
then we have that ∆(x1, u1) ⊆↓ ∆(x2, u2).

Similarly to the case of SM transition systems, the con-
cepts of UISM and LISM coincide when the transition
system T is deterministic.

It follows straightforward from the definitions above that
any ISM transition system is a SM transition system.
Moreover, any SM system can be seen as ISM, with a
partial order defined as u ≤U u′ ⇔ u = u′.However, this
trivial order does not have any practical interest, and
while speaking about ISM transition systems, we assume
that there are at least two elements in u, u′ ∈ U, such
that u <U u′. Let us provide an example, illustrating
the difference between SM and ISM systems.

Example 1 Let us consider the transition system T =
(X,U,∆) where:

• the sets of states X = R
2;

• the set of inputs U = {1, 2};
• the transition relation: for x ∈ X and u ∈ U

∆(x, u) =

{

A1x if u = 1

A2x if u = 2

where A1 =

(

0.1 0.9

3 0.7

)

and A2 =

(

0.2 2

0.1 0.7

)

We can remark that the transition system presented above
is SM, while it is not ISM for any non-trivial partial order
on U .

Until Section 7, we work only with lower-closed sets and
lower (input-)state monotone transition systems while
keeping inmind that analogous results can be formulated
for upper-closed sets and upper (input-)state monotone
transition systems as well.

Now, let us give some characterizations of LISM transi-
tion systems. We start with an auxiliary lemma.

Lemma 1 LetL be a partially ordered set andA,B ⊆ L.
The set A is included in the lower closure of the set B

(i.e. A ⊆↓ B) if and only if for any a ∈ A, there exists
b ∈ B such that a ≤X b.

The proof follows immediately from the fact that for any
set B ⊆ L we have ↓ B = {x ∈ L | ∃ b ∈ B s.t. x ≤X b}.

Theorem 1 For a transition system T = (X,U,∆) the
following statements are equivalent:

(i) T is a LISM transition system;
(ii) for all x1, x2 ∈ X, for all u1, u2 ∈ U , if x1 ≤X x2 and

u1 ≤U u2 then ∆(x1, u1) ⊆↓ ∆(x2, u2);
(iii) for all x ∈ X, for all u ∈ U we have: ∆(↓ x, ↓ u) ⊆↓

∆(x, u).

PROOF. (i) ⇔ (ii): Let x1, x2 ∈ X and u1, u2 ∈ U
with x1 ≤X x2 and u1 ≤U u2. From Lemma 1, we have
that ∆(x1, u1) ⊆↓ ∆(x2, u2) if and only if for any x′

1
∈

∆(x1, u1), there exists x′
2
∈ ∆(x2, u2) with x′

1
≤X x′

2
.

Hence, (i) ⇔ (ii).

(ii) ⇒ (iii): Let x ∈ X, u ∈ U , x1 ∈ (↓ x) and u1 ∈ (↓
u). We have x1 ≤X x and u1 ≤U u. Hence, from (ii) we
have that ∆(x1, u1) ⊆↓ ∆(x, u), for any x1 ∈ (↓ x) and
any u1 ∈ (↓ u). Then, ∆(↓ x, ↓ u) ⊆↓ ∆(x, u).

(iii) ⇒ (ii): Let x1, x2 ∈ X and u1, u2 ∈ U with x1 ≤X

x2 and u1 ≤U u2. We have that x1 ∈ (↓ x2) and u1 ∈
(↓ u2). Hence, from (iii), we have that ∆(x1, u1) ⊆ ∆(↓
x2, ↓ u2) ⊆↓ ∆(x2, u2). ✷

A graphical representation of the conditions in Theo-
rem 1 is provided in Figure 2. We then have the following
corollary for LSM transition systems.

Corollary 1 For a system T = (X,U,∆) the following
statements are equivalent:

(i) T is a LSM transition system;
(ii) for all x1, x2 ∈ X, for all u ∈ U , if x1 ≤X x2 then

∆(x1, u) ⊆↓ ∆(x2, u);
(iii) for all x ∈ X, for all u ∈ U we have: ∆(↓ x, u) ⊆↓

∆(x, u).

4 Predecessors for lower-closed sets

In this section, we present a lazy approach to compute
the predecessor operator for lower monotone transition
systems.

4.1 Predecessor operator

Consider a transition system T = (X,U,∆), let A,B ⊆
X and V ⊆ U , we define the Pre operator as

Pre(A, V,B) = {x ∈ A | ∃u ∈ V, ∆(x, u) ⊆ B} (1)
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Intuitively, Pre(A, V,B) contains all the states that are
initially in x ∈ A and for which all the successors can
be steered in B by selecting inputs from V . The Pre
operator is a fundamental tool for reachability analysis,
which is commonly used for controller synthesis of tran-
sition systems [1]. Let us give some characterizations for
the Pre operator for LSM transition systems and lower-
closed sets.

Lemma 2 Let T = (X,U,∆) be a LSM transition sys-
tem, consider the lower-closed sets Z1, Z2 ⊆ X and let
V ⊆ U . We have that Pre(Z1, V, Z2) is a lower-closed set.

PROOF. Let x ∈ Pre(Z1, V, Z2), then x ∈ Z1 and
there exists u ∈ V such that ∆(x, u) ⊆ Z2. Let x

′ ≤X x.
Since Z1 is a lower-closed set, then x′ ∈ Z1. More-
over, we have from (iii) in Corollary 1 that ∆(x′, u) ⊆↓
∆(x, u) ⊆↓ Z2 = Z2. The end of the proof follows
straightforward from the definitions. ✷

Since the Pre operator has a lower-closed structure when
dealing with lower-closed sets, we can use the notion of
basis (see Definition 2) to describe the Pre operator for
LSM transition systems.

Theorem 2 Let T = (X,U,∆) be a LSM transition
system. Consider the lower-closed sets A,Z1, Z2 ⊆ X
such that A ⊆ Z1 and the set V ⊆ U . We have A ⊆
Pre(Z1, V, Z2) if and only if the following condition is
satisfied:

∀x ∈ Bas(A), ∃u ∈ V s.t ∆(x, u) ⊆ Z2. (2)

PROOF. Let A ⊆ Z1, we first assume that A ⊆
Pre(Z1, V, Z2). Since Bas(A) ⊆ A, (2) is directly sat-
isfied. Now let us prove the second implication. As-
suming that (2) is satisfied, let us prove that A ⊆
Pre(Z1, V, Z2) = {x ∈ Z1 | ∃u ∈ U = V, ∆(x, u) ⊆ Z2}.
First, we have that A ⊆ Z1. For x ∈ A, there ex-
ists x′ ∈ Bas(A) such that x ≤X x′. Hence, we
have from (2) the existence of u ∈ V such that
∆(x′, u) ⊆ Z2. Since x ≤X x′, we have from (iii) in
Corollary 1 that ∆(x, u) ⊆↓ ∆(x′, u) ⊆↓ Z2 = Z2.
Hence, A ⊆ Pre(Z1, V, Z2). ✷

Intuitively, the set Pre(Z1, V, Z2) can be seen as themax-
imal lower-closed subset of Z1 for which condition (2) is
satisfied.

Remark 1 The result of Theorem 2 provides guidelines
towards a lazy computation of the Pre operator. Indeed,
while in the classical approach the condition∆(x, v) ⊆ B
is checked for all elements x ∈ A (see equation (1)), it can
be checked only for the elements x ∈ Bas(A) when dealing
with a lower-closed set of predecessors (see equation (2)).

Algorithm 1 Pre(Z1, V, Z2)

Input:ALSM transition system T = (X,U,∆), a lower-
closed initial set Z1 ⊆ X, a lower-closed final set Z2 ⊆ X
and a subset of control inputs V ⊆ U .
Output: Pre(Z1, V, Z2).
1 begin
2 | Sunc := ∅; Bc := ∅;
3 | Bex = Bas(Z1);
4 | while Bex 6= ∅ do
5 | | Br := {q ∈ Bex | ∃u ∈ V : ∆(q, u) ∈ Z2};
6 | | Bc := Bc ∪Br;
7 | | Sunc := Sunc ∪ (Bex \Br);
8 | ⌊ Bex := Bas(Z1 \ S

unc) \Bc;
9 ⌊return ↓ Bc;

4.2 Lazy computation of predecessors

In this part, we propose a lazy fixed-point algorithm for
the computation of a predecessor set. The algorithm is
based on condition (2) and deals only with the elements
of the basis in each iteration.

The inputs to Algorithm 1 are a LSM transition sys-
tem T = (X,U,∆), an initial lower-closed set Z1 ⊆
X, a final lower-closed set Z2 ⊆ X and a subset of
control inputs V , and the objective is to compute the
basis of Pre(Z1, V, Z2), as a simple representation of
Pre(Z1, V, Z2). Algorithm 1 works as follows: first we ini-
tialize the set Bex with the basis of the set Z1. Then at
every iteration of the while loop 4-8, we explore all ele-
ments in Bex. The controllable states, which satisfy (2),
are accumulated in Bc. So, Br ⊆ Pre(Z1, V, Z2) and, as
a consequence, the set Bc ⊆ Pre(Z1, V, Z2) (see line 6).
The uncontrollable states in Z1, which do not belong to
Pre(Z1, V, Z2), are stored in Sunc (line 7). The set Bc

coincides with the basis of Pre(Z1, V, Z2), since at ev-
ery iteration of the loop 4-8 we reinitialize the set Bex

(line 8) with a basis of elements in Z1, which have not
been marked as uncontrollable. However among these
elements there are those, which have been already ex-
plored (they belongs to Bc), and we remove them to
avoid the additional computations (see line 8). Let us
also point out that in line 5 as soon as we find an accept-
able input we do not explore the other inputs.

In the classical approach, to find Pre(Z1, V, Z2) we
should check for every x ∈ Z1 if there is u ∈ V
such that ∆(x, u)⊆Z2. However, in Algorithm 1, we
leave all elements, which are smaller than the basis of
Pre(Z1, V, Z2), unexplored. Indeed, we go through all
states in Z1 only if Pre(Z1, V, Z2) is empty. This lazi-
ness gives us an efficiency gain. An illustration of the
execution of Algorithm 1 is provided in Figure 3.

5



x3

∆(x3, u1)

∆(x3, u2)

∆(x2, u1)

∆(x2, u2) x2
∆(x2, u1)

∆(x2, u2)

x4

∆(x4, u2)

∆(x4, u1)

x2

x4

x2

∆(x1, u1)

∆(x1, u2)

x1

Pre(X,U,X)

X

Fig. 3. Illustration of Algorithm 1. A monotone transition system T = (X,U,∆) with X =↓ X =↓ x1 and U = {u1, u2}, where
the objective is to compute Pre(X,U,X). We start the exploration from the state x1 ∈ X. Since x1 does not satisfy condition
(2), the state x1 is then marked as uncontrollable (see line 7 in Algorithm 1) and represented in black in the figure. Then, we
move to the next basis, which is made of the state x2 and x3. In the second iteration we explore the elements x2 and x3. After
exploration, we mark the state x2 as controllable and x3 as uncontrollable. We then construct a new basis, made of two states
x2 and x4. In the third iteration we only explore x4 (x2 has been explored in the second iteration). Since both x2 and x4 are
controllable, Algorithm 1 terminates and provides an output given by Pre(X,U,X) =↓ x2∪ ↓ x4 presented in the right figure
with a blue color.

5 Controller synthesis for lower-closed safety
specifications

Considering a transition system T and a safety specifi-
cation XS ⊆ X, we solve, in this section, a synthesis
problem that consists in determining a controller, which
keeps the trajectories of the system inside a safe set XS .

Given a transition system T = (X,U,∆), a controller
for T is a set-valued map C : X ⇒ U and its domain is
defined as dom(C) = {x ∈ X | C(x) 6= ∅}. Particularly,
a safety controller can be defined as follows:

Definition 6 A safety controller C for the transition
system T = (X,U,∆) and the safe set XS satisfies:

• dom(C) ⊆ XS;
• ∀x ∈ dom(C) and ∀u ∈ C(x), ∆(x, u) ⊆ dom(C).

There are, in general, several controllers that solve the
safety problem. The maximal safety controller C∗ is a
safety controller such that for any other safety controller
C and for all x ∈ X, we have C(x) ⊆ C∗(x). The maxi-
mal safety controller is the best possible safety controller
in the sense that any other controller solving the same
safety problem would be more restrictive.

To find the maximal safety controller one can use the
classical safety game [1], which consists of two steps.
First, the domain of the maximal safety controller
dom(C∗) is computed based on a fixed-point algorithm
(see Algorithm 2). Then for every x ∈ dom(C∗) the
maximal safety controller C∗ is defined as follows:

C∗(x) = {u ∈ U | ∆(x, u) ⊆ dom(C∗)}. (3)

In the next section we show how to speed up these two
steps by benefiting from the monotone structure of the
considered transition system.

Algorithm 2 : dom(C∗)

Input: A transition system T = (X,U,∆) and a safe
set XS ⊆ X.
Output: dom(C∗).
1 begin
2 | Z := Pre(XS , U,XS);
3 | Zpr = XS ;
4 | while Zpr 6= Z do
5 | | Zpr := Z;
6 | ⌊ Z := Pre(Z,U,Z);
7 ⌊return Z;

5.1 State monotone transition systems

5.1.1 Domain of the controller

First, let us characterize the domain of the maximal
safety controller for LSM transition systems and lower-
closed safety specifications XS ⊆ X.

Proposition 2 Let C∗ be the maximal safety controller
for a LSM transition system T = (X,U,∆) and lower-
closed safety specification XS ⊆ X. Then the following
properties hold:

(i) dom(C∗) is lower-closed w.r.t to the partial order ≤X ;
(ii) for all x1, x2 ∈ X, if x1 ≤X x2 then C∗(x2) ⊆ C∗(x1).

PROOF. (i) The proof follows immediately from Al-
gorithm 2 and Lemma 2.

(ii) Let x1, x2 ∈ X with x1 ≤X x2. Let u ∈ C∗(x2).
Then, ∆(x2, u) ⊆ dom(C∗). Hence, we have that
∆(x1, u) ⊆↓ ∆(x2, u) ⊆↓ dom(C∗) = dom(C∗), where
the first inclusion comes from the fact that T is a LSM
transition system and the last equality comes from (i).
Hence, by maximality of C∗, we have that u ∈ C∗(x1).
Then, C∗(x2) ⊆ C∗(x1). ✷
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One can use the classical Algorithm 2 to find dom(C∗).
However, in our case, Algorithm 2 is based on lazy com-
putation of Pre operator, given by Algorithm 1. Let us
remark that we can check if Zpr 6= Z by simply compar-
ing the basis of the considered sets since they are lower-
closed.

5.1.2 Maximal safety controller

Once the domain of the maximal safety controller is ob-
tained, we rely on the following result to compute the
maximal safety controller C∗:

Theorem 3 Let C∗ be the maximal safety controller for
a LSM transition system T = (X,U,∆) and lower-closed
safety specification XS ⊆ X. Let U = {u1, . . . , uN} be
the set of inputs. Let the set Zi ⊆ X be defined as Zi =
Pre(dom(C∗), ui, dom(C∗)). Then the following holds:

ui ∈ C∗(x) ⇔ x ∈ Zi for i ∈ {1, . . . , N}

PROOF. Indeed ui ∈ C∗(x) is equivalent to x ∈
dom(C∗) and ∆(x, ui) ∈ dom(C∗), which is equivalent
to x ∈ Pre(dom(C∗), ui, dom(C∗)) = Zi. ✷

It can be seen that the computation of the maximal
safety controller C∗ is different and more efficient than
the one used in the classical synthesis (see equation
(3)). Indeed, in the classical case, one explores all the
states in dom(C∗) and all the inputs ui ∈ U . While
in our approach, all inputs are explored, but not nec-
essarily all the states. The main idea is that for each
input ui ∈ U , we only have to compute the set Zi =
Pre(dom(C∗), ui, dom(C∗)), and that can be done effi-
ciently by using Algorithm 1.

5.2 Input-state monotone transition systems

In this part, we propose a lazy safety synthesis algorithm
that exploits ordering not only on the state but also on
the input space. The synthesis of the maximal safety
controller is done in two steps. First, we use only in-
puts with lower priorities to compute the maximal safety
controller’s domain dom(C∗). Then we synthesize the
maximal controller by exploiting the inputs priorities,
which makes it possible to compute the maximal safety
controller without exploring all the inputs. We start by
providing some characterizations of the maximal safety
controller for LISM transition systems:

Proposition 3 Consider a LISM transition system T =
(X,U,∆). Let C∗ be the maximal safety controller en-
forcing the lower-closed safety specification XS ⊆ X.
The following properties hold:

(i) dom(C∗) is lower-closed w.r.t the partial order ≤X ;

(ii) for all x1, x2 ∈ X, if x1 ≤X x2 then C∗(x2) ⊆ C∗(x1);
(iii) for all x ∈ X, C∗(x) is a lower-closed set w.r.t the

partial order ≤U ;

PROOF. (i), (ii) The result follows immediately from
Proposition 2 and the fact that any LISM transition
system is a LSM transition system.

(iii) Let x ∈ X, u ∈ C∗(x) and u′ ∈↓ u. We have that
∆(x, u′) ⊆↓ ∆(x, u) ⊆↓ dom(C∗) = dom(C∗), where
the first inclusion comes from the fact that T is a LISM
transition system, the second inclusion comes from the
fact that C∗ is a safety controller and the last equality
comes from the lower-closedness of dom(C∗). Hence, we
have ∆(x, u′) ⊆ dom(C∗). Then, by maximality of C∗,
u′ ∈ C∗(x). ✷

5.2.1 Domain of the controller

Let us define the set Umin = min(U) with respect to
partial order ≤U on the input set U . Then the following
is true.

Theorem 4 Let C∗ be the maximal safety controller for
an LISM transition system T = (X,U,∆) and lower-
closed safety specification XS ⊆ X. Let C∗

r be the max-
imal safety controller for the transition system Tr =
(X,Umin,∆) and safety specification XS. Then we have
dom(C∗) = dom(C∗

r ).

PROOF. Let us define the controller Cr of the reduced
transition system Tr and the safe set XS as follows:
for x ∈ X, Cr(x) = C∗(x) ∩ Umin. First let us prove
that dom(Cr) = dom(C∗). The inclusion dom(Cr) ⊆
dom(C∗) follows immediately from the construction of
the controller Cr. Now let x ∈ dom(C∗) and let u ∈
C∗(x). From (iii) in Proposition 2 we have that ↓ u ⊆
C∗(x), then there exists u′ ∈ Umin such that u′ ∈ C∗(x).
Then, u′ ∈ Cr(x). Hence, x ∈ dom(Cr) and dom(Cr) =
dom(C∗) and Cr is a safety controller for Tr with a
specification Xs. Now let us prove that for all x ∈ X,
Cr(x) = C∗

r (x). The first inclusion Cr(x) ⊆ C∗
r (x) fol-

lows from maximality of the controller C∗
r . For the sec-

ond inclusion, we have from maximality of C∗ and since
Umin ⊆ U that C∗

r (x) ⊆ C∗(x) for all x ∈ X. More-
over, by construction of C∗

r , we have that C
∗
r (x) ⊆ Umin

for all x ∈ X. Then, Cr(x) = C∗
r (x) for all x ∈ X.

Since dom(Cr) = dom(C∗), we have that dom(C∗
r ) =

dom(C∗). ✷

The previous result states that for computation of the
domain of the maximal safety controller dom(C∗), it is
sufficient to use inputs with lower priorities.
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(1, 1)

(2, 1)

(3, 1) (3, 2) (3, 3)

(2, 2) (2, 3)

(1, 2) (1, 3)

u1

u2

u3

u4

u5

u6

u7

u8

u9

Fig. 4. Illustration of the reordering U = {u1, . . . , u9} of the
input set U = {1, 2, 3}2 with respect to the component-wise
partial order ≤ defined on R

2.

Algorithm 3 Maximal Safety Controller

Input: LISM transition system T = (X,U,∆), the do-
main of maximal safety controller dom(C∗).
Output: Controller C.
1 begin
2 | for s ∈ X
3 | ⌊ C(s) := ∅;
4 | for i = 1 : N
5 | | if ui ∈ Umin then
6 | | | Si = dom(C∗);
7 | | ⌊ Ki = Pre(Si, ui, dom(C∗));
8 | | else
9 | | | Si = ∩uj<Uui

Kj ;
10 | | ⌊ Ki = Pre(Si, ui, dom(C∗);
11 | | for s ∈ Ki

12 | ⌊ ⌊ C(s) := C(s) ∪ {ui};
13 ⌊return C

5.2.2 Maximal safety controller

It is always possible to reorder the elements of the input
set U = {u1, . . . , uN} as follows: for all 1 ≤ j ≤ i ≤ N
we suppose that either uj ≤U ui or (ui, uj) ∈ IncU (see
Fig. 4 for the illustration). In this section, we exploit such
an order to make synthesis for LISM transition systems
more efficient. Algorithm 3 is based on the fact, that
if a state is uncontrollable with an input u ∈ U , it is
also uncontrollable with all the inputs u′ ∈ U such that
u′ >U u, so if we failed to control a state with u, we do
not need to explore u′ >U u for it.

Let us now formally prove the result.

Lemma 3 At every iteration of the loop 4-11 of the Al-
gorithm 3 the set Ki = Pre(Si, ui, dom(C∗)) coincides
with the set Zi = Pre(dom(C∗), ui, dom(C∗)).

PROOF. To prove the result, we proceed by induction.
For all i such that ui ∈ Umin the statement is obvious
and we have the base. Let i be such that ui /∈ Umin.
Suppose that for all j < i, Zj = Kj , and let us prove that
Zi = Ki. Indeed, since for all j < i, Kj = Zj we have

K1 \K2

K2 \K3

K3

u1

u1, u2

u1, u2, u3

Fig. 5. Illustration of the maximal safety controller C∗ for
the case of a total order on the input set. U = {u1, u2, u3}
with u1 ≤U u2 ≤U u3.

that Kj ⊆ dom(C∗) for all j < i, and as a consequence
Si ⊆ dom(C∗) (see line 8). From where Ki ⊆ Zi is
immediately satisfied. At the same time, for all x ∈ Zi

we have that x ∈ dom(C∗) and ∆(x, ui) ⊆ dom(C∗).
Then from Proposition 3 we have that x ∈ dom(C∗) and
for all uj <U ui, ∆(x, uj) ⊆ dom(C∗). Consequently
x ∈ Pre(dom(C∗), uj , dom(C∗)) = Zj = Kj for all j
such that uj <U ui. Then from the line 9 of Algorithm 3,
we have that x ∈ Si and, as a consequence, from line 10,
x ∈ Ki. ✷

Theorem 5 Let T = (X,U,∆) be a LISM transition
system and let dom(C∗) be a domain of the maximal
safety controller C∗ for a lower-closed safety specifica-
tion Xs ⊆ X. Algorithm 3 returns the maximal safety
controller C∗.

PROOF. The statement follows immediately from
Lemma 3, Theorem 3 and the fact that ui ∈ C(s) if and
only if s ∈ Ki (see lines 11-12 of the Algorithm 3).

Remark 1 In the case of a total order 2 on the input set
U , the set Ki ⊆ Kj for all N ≥ j ≥ i ≥ 1 (see Fig. 5).

5.2.3 On memory requirements to implement C∗:

In symbolic control techniques, the symbolic controller
is commonly represented as a look-up table ([27–30]),
i.e, for every state controller stores the set of all possible
control inputs that can be applied. Consequently, sym-
bolic controllers are quite memory-consuming, which is
a problem since they need to run on embedded devices
with limited memory.

Some approaches have been proposed in the literature
to simplify the symbolic controller representation such
as Binary Decision Diagrams [31], Algebraic Decision
Diagrams [32] and Decision Trees [33].

2 A binary relation ≤L⊆ L × L is a total order if it is a
partial order and for all l1, l2 ∈ L we have either l1 ≤L l2 or
l2 ≤L l1.
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For LISM transition systems and directed safety speci-
fications, one can use the monotonicity property to rep-
resent the maximal safety controller C∗ efficiently. In-
deed, we have from Proposition 2 that for a controllable
state x ∈ dom(C∗), C∗(x) is a lower-closed set. Hence,
for the state x, instead of storing all the admissible con-
trol inputs u ∈ C∗(x), one can only store the elements of
the basis of C∗(x), which allows a high reduction of the
memory required to store the controller without losing
its maximality. (cf. numerical examples).

6 Controller synthesis for intersections of upper
and lower-closed safety specifications

In the previous sections, we have presented lazy syn-
thesis algorithms to deal with lower (input-)state mono-
tone transitions systems and lower-closed safety specifi-
cations. Following the duality between upper and lower-
closed sets, the results for upper-closed safety specifica-
tions can be obtained using the same approaches.

This part aims to deal with more complex specifications
described as intersections of upper and lower-closed sets.
Let us mention that from Proposition 1, the intersec-
tion of lower (respectively upper) closed sets is again a
lower (respectively upper) closed set. Hence, one can use
the same approaches presented in the previous sections
to deal with unions of lower (respectively upper) closed
specifications.

In this section, we will mainly focus on the synthe-
sis of controllers for the intersection of an upper and
lower-closed set, which is a natural specification that
frequently appears in control systems such as vehicle
platoons [34], microgrids [20], trafic networks [35] and
temperature regulation systems [14]. The considered
setup is the following. Given a (input-)state mono-
tone transition system T = (X,U,∆), a lower-closed
set XL ⊆ X and an upper-closed set XU ⊆ X with
XL ∩ XU 6= ∅, let us consider the problem of synthe-
sizing the maximal safety controller for the transition
system T and safety specification XLU = XL ∩XU . We
first have the following preliminary result

Lemma 4 Consider the (input-)state monotone transi-
tion T = (X,U,∆), the lower-closed XL ⊆ X and the
upper-closed set XU ⊆ X with XL ∩ XU 6= ∅. Let us
define the following safety controllers:

• C∗
LU is the maximal safety controller for the transition

system T and the safety specificationXLU = XL∩XU ;
• C∗

L is the maximal safety controller for the transition
system T and the lower-closed safety specificationXL;

• C∗
U is the maximal safety controller for the transition

system T and the upper-closed safety specificationXU .

Then, for all x ∈ X, C∗
LU (x) ⊆ C∗

L(x) ∩ C∗
U (x).

PROOF. Since XLU ⊆ XL, we have that C∗
LU (x) ⊆

C∗
L(x) for all x ∈ X. Similarly, using the fact thatXLU ⊆

XU we have that C∗
LU (x) ⊆ C∗

U (x) for all x ∈ X. Hence,
we have that C∗

LU (x) ⊆ C∗
L(x)∩C

∗
U (x) for all x ∈ X. ✷

In the classical computation of the maximal safety con-
troller C∗

LU defined above, we use the fixed-point-based
approach defined in Algorithm 2, starting from the set
XLU = XL ∩XU while exploring all the inputs u ∈ U .
The idea here is to exploit the monotonicity property to
incrementally synthesize the controller C∗

LU by proceed-
ing in two steps:

(1) We synthesize the controllers C∗
U and C∗

L,
(2) We synthesize the maximal safety controller for

the transition system T and safety specification
dom(C∗

L) ∩ dom(C∗
U ), where for each state x ∈

dom(C∗
L) ∩ dom(C∗

U ), we explore only the inputs
u ∈ C∗

L(x) ∩ C∗
U (x).

The completeness of the proposed incremental synthe-
sis with respect to the direct synthesis is shown in the
following result.

Proposition 4 Under the preliminaries of Lemma 4, let
us define the set Z = dom(C∗

L)∩dom(C∗
U ). Let C

∗
Z be the

maximal safety controller for the transition system T and
safety specifications Z. Then, for all x ∈ X, C∗

LU (x) =
C∗

Z(x).

PROOF. Using the fact that Z = dom(C∗
L) ∩

dom(C∗
U ) ⊆ XLU = XL ∩XU , it follows that C∗

Z(x) ⊆
C∗

LU (x) for all x ∈ X. On the other hand, we have from
Lemma 4 that dom(C∗

LU ) ⊆ dom(C∗
L) ∩ dom(C∗

U ) = Z.
Hence, C∗

LU (x) = C∗
Z(x) for all x ∈ X, which ends the

proof. ✷

In some particular cases, one can obtain the maximal
safety controller C∗

LU directly from the controllers C∗
L

and C∗
U , without using the incremental synthesis, which

is shown in the following result. (cf. numerical examples).

Proposition 5 Under the preliminaries of Lemma 4, if
for all x ∈ dom(C∗

L) ∩ dom(C∗
U ), C

∗
L(x) ∩ C∗

U (x) 6= ∅,
then for all x ∈ X, C∗

LU (x) = C∗
L(x) ∩ C∗

U (x).

PROOF. The first inclusion follows from Lemma 4.
To deal with the second inclusion, let us show that the
controller CLU = C∗

L ∩ C∗
U is a safety controller for

the transition system T and safety specification XLU .
First, we have that dom(CLU ) ⊆ dom(C∗

L)∩dom(C∗
U ) ⊆

XL ∩ XU = XLU . Hence, the first condition of Defi-
nition 6 is satisfied. Now let x ∈ dom(CLU ) and u ∈
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CLU (x) = C∗
L(x)∩C

∗
U (x), the existence of such u is guar-

anteed by the fact that C∗
L(x) ∩ C∗

U (x) 6= ∅. Since C∗
L

and C∗
U are safety controllers, we have that ∆(x, u) ⊆

dom(C∗
L) ∩ dom(C∗

U ) = dom(CLU ). Hence, the second
condition of Definition 6 is satisfied. Then, CLU is a
safety controller for the transition system T and safety
specification XLU . Hence, from maximality of the con-
troller C∗

LU , we have that CLU (x) = C∗
L(x) ∩ C∗

U (x) ⊆
C∗

LU (x), for all x ∈ X, which ends the proof. ✷

7 Abstractions for monotone dynamical sys-
tems

In this section, we first define the class of monotone dy-
namical systems. We then present different types of ab-
stractions, namely box, and sparse abstractions. Finally,
we show how to construct these abstractions to preserve
monotonicity.

7.1 Discrete-time control systems

Let us start with a definition.

Definition 7 A discrete-time control systemΣ is a tuple
Σ = (X,U,D, f), where X is a set of states, U is a set of
control inputs and D is a set of disturbance inputs. The
function f : X × U × D −→ X is called the transition
function.

Consider the discrete-time control system Σ of the form:

x(k + 1) = f(x(k), u(k), d(k)), x(0) ∈ X (4)

where x(k) ∈ X ⊂ R
n is a state, u(k) ∈ U ⊂ R

m is a
control input and d(k) ∈ D ⊆ R

p is a disturbance input.
In the following we assume that the set of disturbances
D is equipped with a partial order ≤D and described

as a finite union of intervals D =
⋃M

m=1
[dm

1
, dm

2
]D. The

discrete-time control system Σ is said to be state mono-
tone (SM) if the set of states is equipped with a par-
tial order and for all x1, x2 ∈ X, for all u ∈ U and
for all d1, d2 ∈ D, if x1 ≤X x2 and d1 ≤D d2 then
f(x1, u, d1) ≤X f(x2, u, d2). Similarly the discrete-time
control system Σ is said to be input-state monotone
(ISM) if its sets of states and inputs are equipped with
partial orders and for all x1, x2 ∈ X, u1, u2 ∈ U and for
all d1, d2 ∈ D, if x1 ≤X x2, u1 ≤U u2 and d1 ≤D d2
then f(x1, u1, d1) ≤X f(x2, u2, d2).

7.2 Box abstraction

In this part, we construct a symbolic box abstrac-
tion TB

d (Σ) = (Xd, Ud,∆d) for the original system
Σ = (X,X,U,D, f). Then, we show that using such
construction, monotonicity property is preserved when
going from the original system to its symbolic abstrac-
tion.

Fig. 6. The first two partitions satisfy Assumption 1, while
the third partition does not satisfy Assumption 1.The first
and third partitions satisfy Assumption 2, while the second
partition does not satisfy Assumption 2. The state-space is
equipped with the component-wise partial order ≤ defined
on R

2

7.2.1 Discretization

The construction of the symbolic box abstraction TB
d (Σ)

is based on a discretization of the state-space and input
sets. We approximate the set of inputs U with a finite
number of values nu: Ud =

{

uℓ ∈ U | ℓ = 0, . . . , nu − 1
}

.
We discretize the state-space into nx ≥ 1 states using a
finite partition 3 Xd of the set X. Each element q of the
partition can be described as an interval q = [xq

1
, xq

2
]X .

We define the quantizer QXd
: X → Xd associated to

the partition Xd as follows: for x ∈ X and q ∈ Xd,
QXd

(x) = q if and only if x ∈ q. We make the following
assumptions on the discrete states of the set Xd.

Assumption 1 For all q, q′ ∈ Xd if there exists

(x, x′) ∈ q × q′ satisfying x ≤X x′, then xq
2
≤X xq′

2
.

Assumption 2 For all q, q′ ∈ Xd if there exists

(x, x′) ∈ q × q′ satisfying x ≤X x′, then xq
1
≤X xq′

1
.

Intuitively, Assumption 1 (respectively, Assumption 2)
reflects the fact that the quantizer should preserve the
lower (respectively, upper) monotonicity property from
continuous to discrete (symbolic) states. Fig. 6 shows
examples of partitions satisfying Assumptions 1 and 2.

Keeping inmindAssumptions 1 and 2, we define a partial
order ≤Xd

over the set of discrete states Xd as follows:

• If Assumption 1 is satisfied, then for all q1, q2 ∈ Xd,
q1 ≤Xd

q2 if and only if xq1
2

≤X xq2
2
;

• If Assumption 2 is satisfied, then for all q1, q2 ∈ Xd,
q1 ≤Xd

q2 if and only if xq1
1

≤X xq2
1
;

• If Assumptions 1 and 2 are satisfied, then for all
q1, q2 ∈ Xd, q1 ≤Xd

q2 if and only if xq1
1

≤X xq2
1

and
xq1
2

≤X xq2
2
.

7.2.2 Transition relation

Since we work with (input-)state-monotone discrete con-
trol systems [38], we can link the original system Σ and

3 In order to define a partition, the sets of measure zero
where intervals overlap can be ignored for notational conve-
nience, (see e.g. [36,37])
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its symbolic box abstraction TB
d (Σ) with feedback re-

finement relation [39], by defining the transition relation
∆d ⊆ Xd × Ud × Xd, as follows: for q ∈ Xd, u ∈ Ud,
q′ ∈ ∆d(q, u) if and only if there exists m ∈ {1, . . . ,M}

such that [f(xq
1
, u, dm

1
), f(xq

2
, u, dm

2
)]X ∩ [xq′

1
, xq′

2
]X 6= ∅.

We illustrate the construction of the transitions for the
box abstraction in Figure 7. In the following result, we
show that, under Assumptions 1 and 2, monotonicity
of the discrete-time control system Σ is preserved when
constructing its symbolic box abstraction TB

d (Σ).

Proposition 6 Let us consider the discrete-time con-
trol system Σ = (X,X,U,D, f). If Σ is an ISM system
and if its symbolic box abstraction TB

d (Σ) satisfies As-
sumption 1, (respectively, Assumption 2), then TB

d (Σ) is
a LISM (respectively, UISM) transition system. More-
over, when both Assumptions 1 and 2 are satisfied, then
TB
d (Σ) is an ISM transition system

PROOF. We only provide a proof for the case of LISM,
the cases of UISM and ISM can be derived similarly.
We should prove that for all q1, q2 ∈ Xd and for all
u1, u2 ∈ Ud, if q1 ≤Xd

q2 and u1 ≤Ud
u2, the following is

satisfied: for all q′
1
∈ ∆d(q1, u1) there is q

′
2
∈ ∆d(q2, u2),

such that q′
1
≤Xd

q′
2
.

Let q1, q2 ∈ Xd and u1, u2 ∈ Ud, such that q1 ≤Xd

q2 and u1 ≤Ud
u2. Under Assumption 1, the last is

equivalent to xq1
2

≤Xd
xq2
2

and u1 ≤Ud
u2. Let q′

1
∈

∆d(q1, u1), from the monotonicity of Σ and the construc-
tion of TB

d (Σ), we have the existence of m ∈ {1, . . . ,M}
such that f(xq1

2
, u1, d

m
2
) ∈ q′

1
. Let q′

2
∈ Xd is such that

f(xq2
2
, u2, d

m
2
) ∈ q′

2
. Then q′

2
∈ ∆d(q2, u2). Moreover,

there are x = f(xq1
2
, u1, d

m
2
) and x = f(xq2

2
, u2, d

m
2
),

such that x ∈ q′
1
, x ∈ q′

2
and since Σ is an input-state

monotone control system, one has x ≤X x. Hence, from

Assumption 1, x
q′
1

2
≤X x

q′
2

2
. The last is equivalent to

q′
1
≤Xd

q′
2
. ✷

We then have the following corollary for SM systems.

Corollary 2 Let us consider the discrete-time control
system Σ = (X,U,D, f). If Σ is a SM system and if its
symbolic box abstraction TB

d (Σ) satisfies Assumption 1,
(respectively, Assumption 2), then TB

d (Σ) is a LSM (re-
spectively, USM) transition system. Moreover, when both
Assumptions 1 and 2 are satisfied, then TB

d (Σ) is a SM
transition system.

Hence, the monotonicity property is preserved when go-
ing from the original system to its symbolic abstraction.
LetXs ⊆ X be a safe set and let us define a safety speci-
fication for the symbolic abstraction TB

d (Σ). We say that
a state q ∈ Xd belongs to a safe set Xs

d ⊆ Xd if and

q

x
q
2

x
q
1 f (xq2, u, d

m
2 )

f (xq1, u, d
m
1 )

q

Fig. 7. Left: A box abstraction for a fixed disturbance inter-
val [dm1 , dm2 ] m ∈ {1, . . . ,M}. Right: box (grey) and sparse
(blue) abstractions for a monotone system with a lower–
closed safety specification for M = 3.

only if q ⊆ Xs. In this paper we consider directed (up-
per and lower closed) safety specifications. If the set Xs

is lower (respectively, upper) closed with respect to the
partial order ≤X and Assumption 1 (respectively, As-
sumption 2) holds, then the setXs

d is lower (respectively,
upper) closed with respect to the partial order ≤Xd

. So,
we can use Algorithm 1, Algorithm 2 and Algorithm 3 to
find a controller for the abstraction. Then, since we link
the system Σ and its symbolic abstraction TB

d (Σ) with
feedback refinement relation, we can refine a safety con-
troller for the transition system TB

d (Σ) to a controller to
the original system Σ [39]. It is also, noteworthy to re-
mark that the abstraction can be computed on fly, while
executing the synthesis algorithms and only in case of
demand.

7.3 Sparse abstraction

For the discrete-time control system Σ = (X,U,D, f)
introduced in Definition 7, an upper-sparse abstraction
is defined as TUS

d (Σ) = (Xd, Ud,∆
US
d ) where Xd, Ud are

inherited from TB
d (Σ) and the transition relation is de-

fined for q ∈ Xd, u ∈ Ud as ∆US
d (q, u) = max(∆d(q, u)).

An illustration of the construction of an upper sparse ab-
straction is shown in Figure 7. Similarly, a lower-sparse
abstraction is defined as TLS

d (Σ) = (Xd, Ud,∆
LS
d ) where

Xd, Ud are inherited from TB
d (Σ) and the transition re-

lation is defined for q ∈ Xd, u ∈ Ud as ∆US
d (q, u) =

min(∆d(q, u)).

Remark 2 Let us remark that the transition relation of
the upper sparse abstraction can be equivalently defined
as follows: for all q ∈ Xd, u ∈ Ud, q

′ ∈ ∆US
d if and only

q′ ∈ max(∪M
m=1

qm), where qm is such that f(xq
2
, u, dm

2
) ∈

qm (see Figure 7 for an illustration).

Although, our definition of upper-sparse abstraction is
slightly different from what have been proposed in [21],
the transition system TUS

d (Σ) is still related to TB
d (Σ)

with an upper alternating simulation relation [21].

We first show how to preserve the monotonicity when
constructing upper or lower-sparse abstractions.

11



Proposition 7 Under Assumption 1, if the box ab-
straction TB

d (Σ) of the discrete-time control system
Σ = (X,U,D, f) is LISM, then its upper-sparse abstrac-
tion TUS

d (Σ) is also LISM. Similarly, under Assump-
tion 2, if the box abstraction TB

d (Σ) of the discrete-time
control system Σ = (X,U,D, f) is UISM, then its lower-
sparse abstraction TUS

d (Σ) is also UISM.

PROOF. We only provide a proof for the case of LISM,
the case of UISM can be derived similarly. Consider
q1, q2 ∈ Xd, u1, u2 ∈ Ud such that q1 ≤Xd

q2, u1 ≤Ud

u2 and let q′
1
∈ ∆US

d (q1, u1) = max(∆d(q1, u1)), then
q′
1
∈ ∆d(q1, u1). From Proposition 6, TB

d (Σ) is input-
state monotone, then there exists q′

2
∈ ∆d(q2, u2) such

that q′
1
≤Xd

q′
2
. Coupling the last with the fact that

there exists q′
2
∈ max(∆d(q2, u2)) such that q′

2
≤Xd

q′
2

(see Definition 1), we finally get that TUS
d (Σ) is ISM. ✷

We then have the following corollary for SM systems.

Corollary 3 Under Assumption 1, if the box ab-
straction TB

d (Σ) of the discrete-time control system
Σ = (X,U,D, f) is LSM, then its upper-sparse abstrac-
tion TUS

d (Σ) is also LSM. Similarly, under Assump-
tion 2, if the box abstraction TB

d (Σ) of the discrete-time
control system Σ = (X,U,D, f) is USM, then its lower-
sparse abstraction TUS

d (Σ) is also USM.

We now show the equivalence between box and upper-
sparse (respectively, lower-sparse) abstractions when
dealing with lower-closed (respectively, upper-closed)
safety specifications.

Proposition 8 Consider the ISM discrete-time control
system Σ = (X,U,D, f) introduced in Definition 7. If
Xs

d is a lower-closed safety specification, then the maxi-
mal safety controller C∗

B for the box abstraction TB
d (Σ)

and the safety specification Xs
d coincides with the maxi-

mal safety controller C∗
US for the upper-sparse abstrac-

tion TUS
d (Σ) and the safety specificationXs

d. Similarly, if
Xs

d is an upper-closed safety specification, then the max-
imal safety controller C∗

B for the box abstraction TB
d (Σ)

and the safety specification Xs
d coincides with the max-

imal safety controller C∗
LS for the lower-sparse abstrac-

tion TLS
d (Σ) and the safety specification Xs

d.

PROOF. We only provide a proof for the case of
lower-closed safety specifications, the case of upper-
closed safety specifications can be derived similarly.
Let us show that C∗

B is a safety controller for TUS
d (Σ).

Indeed, since C∗
B is a safety controller for TB

d it is
obvious that dom(C∗

B) ⊆ Xs
d . Let q ∈ dom(C∗

B),
then for all u ∈ C∗

B(q) the following is satisfied
∆US

d (q, u) ⊆ ∆d(q, u) ⊆ dom(C∗
B). Hence, C∗

B is a

safety controller for TUS
d (Σ) and safe set Xs

d . Then,
from the definition of maximal safety controller one has
C∗

B(q) ⊆ C∗
US(q) for all q ∈ Xd.

Let us show that C∗
US is a safety controller for TB

d (Σ).
Again, it is obvious, that dom(C∗

US) ⊂ Xs
d . Let q ∈

dom(C∗
US), u ∈ C∗

US(q) and let q′ ∈ ∆d(q, u). Then
there exists q′ ∈ ∆US

d (q, u) = max(∆d(q, u)) such that
q′ ≤Xd

q′. Since ∆US
d (q, u) ⊆ dom(C∗

US) we have that
q′ ∈ dom(C∗

US). Moreover, since the safe setXs
d is lower-

closed, we have from Proposition 3 that dom(C∗
US) is

lower-closed and one we get that q′ ∈ dom(C∗
US). Hence,

C∗
US is a safety controller for TB

d (Σ) and from the max-
imality of the controller C∗

B , one has C∗
US(q) ⊆ C∗

B(q)
for all q ∈ Xd. ✷

We then have the following corollary for SM systems.

Corollary 4 Consider the SM discrete-time control sys-
tem Σ = (X,U,D, f) introduced in Definition 7. If Xs

d

is a lower-closed safety specification, then the maximal
safety controller C∗

B for the box abstraction TB
d (Σ) and

the safety specification Xs
d coincides with the maximal

safety controller C∗
US for the upper-sparse abstraction

TUS
d (Σ) and the safety specification Xs

d. Similarly, if Xs
d

is an upper-closed safety specification, then the maximal
safety controller C∗

B for the box abstraction TB
d (Σ) and

the safety specification Xs
d coincides with the maximal

safety controller C∗
LS for the lower-sparse abstraction

TLS
d (Σ) and the safety specification Xs

d.

Intuitively, the result of Proposition 8 shows that we
can use sparse abstractions instead of box abstraction
while working with (input-) state monotone systems and
directed specifications.

Remark 3 Let us mention that for the proposed incre-
mental safety synthesis procedure in Section 6, where the
safe set is given as an intersection of an upper and lower
closed sets, we use the different types of abstractions pre-
sented in this section. Indeed, in the first step we use
an upper sparse abstraction to compute a controller for
the lower-closed set. Similarly, we use a lower sparse ab-
straction to compute the controller for the upper-closed
set. Finally, we use the box abstraction while using the
previously obtained controllers as a warm point, which
allows us to speed-up the computations.

8 Numerical example

8.1 Model description

As an example, we consider two vehicles moving along
a straight road. Each vehicle is modeled as a point mass
m with velocity changing according to the law

mv̇ = α(F, v) = F − (f0 + f1v + f2v
2). (5)
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In the equation above, F represents a net action of brak-
ing and engine torque applied to the wheels, while the
second term f0 + f1v+ f2v

2 describes aerodynamic and
rolling resistance effects. The net force F is viewed as a
control input u for the follower vehicle and a disturbance
for the lead one. It is assumed to be bounded by

Fmin = −0.3mg ≤ F ≤ 0.2mg = Fmax,

where g is a gravitational constant. Such a bound is con-
sistent with non-emergency braking and acceleration.

We slightly adapt equation (5) to prohibit a back motion
for the follower:

mv̇ =

{

α(u, v) if v > 0

max(u− f0, 0) if v = 0
(6)

For the leader we assume that its velocity w remains in
a range [0, wmax]:

mẇ =















α(a,w) if 0 < w < wmax

max(α(a,w), 0) if w = 0

min(α(a,w), 0) if w = wmax

(7)

Combining (6) and (7) with the equation

ḋ = w − v, (8)

which describes the distance between two vehicles, we
obtain the final model of the system.

The values of parameters shown in Table 1 are taken
from [40]. In the following, the implementation has been
done in MATLAB, Processor Intel Core i7-4870HQ, 2,5
GHz, RAM 16 GB.

8.2 Control objective and numerical results

8.2.1 Lower-closed safety specification

We start with the objective to synthesize a controller for
the follower vehicle, to keep its velocity below vmax =
30m/s and to guarantee that the relative distance be-
tween the leader and the follower remains larger than
dmin = 10m, while assuming that the leader car acts as a
disturbance a ∈ [Fmin, Fmax] and wmax = 30m/s. The
following change of coordinates: h = −d, z = −w trans-
form the system (6)-(7)-(8) into a monotone one. More-
over, after this change of coordinates, we get a lower-
closed safety specification.

Setting a time step τ = 0.8 s,we generate a discrete-time
model corresponding to the continuous-time system (6)-
(7)-(8). We also introduce a Cartesian partition on the

Table 1
Vehicle parameters

Parameter Value Unit

m 1370 Kg

f0 51.0709 N

f1 0.3494 Ns/m

f2 0.4161 Ns2/m2

Fig. 8. Maximal safety controller C∗

state space X and input space U with nx = (31, 31, 31)
and nu = 50 as state and input discretization parame-
ters correspondingly. We then construct a sparse sym-
bolic model and use Algorithm 3 to synthesize the max-
imal safety controller C∗ for the abstraction. Let us re-
mind that if for a state x ∈ X an input u ∈ C∗(x), then
all inputs satisfying u′ ≤U u are enabled by C∗ for this
state. Moreover, in our example, we have total order on
the input space U . Hence, for each state x = (w, d, v),
it is enough to store only the maximal safe input to re-
construct the whole maximal safety controller. Conse-
quently, the amount of memory required for the con-
troller implementation is significantly reduced.

We represent the obtained maximal safety controller C∗

in Figure 8. The blue color of the color bar corresponds
to the minimal input Fmin = −4031.9 mKg/s2 and the
yellow color corresponds to the maximal input Fmax =
2687.9 mKg/s2. For a given state x = (w, d, v), Figure 8
shows the maximal allowed control input.

To evaluate the performance of our approach, we com-
pare it with the classical safety synthesis algorithm while
exploring different scenarios: we compare the proposed
approach in this paper with the box abstractions [1] and
the sparse abstractions [21]. We also provide a compari-
son with lazy synthesis procedure, based on three valued
abstractions [15]. In [15], once a safe input is found for a
state, the other controls are not explored for this state.
The authors start with an empty transition relation and
iteratively add new transitions essential for the synthe-
sis purpose. At every iteration, the precomputed part
of the symbolic model is explored. Then, one randomly
chooses N3v ∈ N>0 states from uncontrollable states,
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where N3v is a parameter given by user. For each of cho-
sen states, one randomly picks an unexplored input and
adds the corresponding tradition to the abstraction. The
algorithm returns only the domain of the maximal safety
controller and not the whole maximal safety controller.
Indeed, for every state, only one safe input is returned.
Moreover, since the usage of sparse abstractions speed-
up synthesis process we also use them when implement-
ing the approach from [15].

The evaluation is based on two criteria, the computation
time and the memory required to implement the maxi-
mal safety controller. We explore two different scenarios.
In the first case, we vary the state-space discretization
parameter nx while keeping the input discretization pa-
rameter as a constant nu = 10. The results of run time
and memory comparison are represented in Table 2 and
Table 3. In the second case, we set nx = (31, 31, 31) and
vary the input discretization parameter nu. The compu-
tational results are given in Table 4 and Table 5.

In Tables 2, 4, time T s
lm is a running time of Algorithm 3.

Time Tcl is a running time of the classical fixed point
algorithm when box abstractions are used [1]. Time T s

cl

is a running time of the classical fixed point algorithm
when sparse symbolic models are used [21]. Time T s

3v is
a running time of the lazy algorithm from [15] imple-
mented for sparse abstractions. For the parameter N3v

the value round(0.6 ∗ nx(1) ∗ nx(2) ∗ nx(3)) have been
chosen. We also store the amount of memory needed for
controllers implementation in variables Ms

lm,Mcl,Mcl

and Ms
3v correspondingly. Let us remind that for ISM

with directed specifications the controllers synthesised
for sparse abstractions and box abstractions coincide,
hence Mcl = Ms

cl (column 3 in Tables 3,5). However,
it is obvious from columns 3 and 4 of Tables 2,4 that
sparse abstractions-based synthesis is much faster, so we
repeated the result from [21]. Since our controller and 3-
valued abstractions-based controller store just one safe
input for every state, their memory requirements also
coincide (column 2 in Tables 3,5). However, we store the
maximal safe input for every state. We can easily recon-
struct the maximal safety controller without any compu-
tations. In contrast, the three-valued abstractions-based
controller store just a random safe input, and to get the
maximal safety controller, one should check for all the
other inputs if they allow to remain in the controllable
domain. The latter is not efficient when the set of dis-
crete inputs is large.

The numerical results highlight the practical speedups
and memory efficiency that can be attained using the
lazy approach while ensuring completeness w.r.t the
classical safety algorithm.

Table 2
Runtime comparison when varying the number of states.
T s

lm, Tcl, T
s

cl and T s

3v are the running time of Algorithm 3, the
classical fixed point algorithm with box abstractions [1], the
classical fixed point algorithm with sparse abstractions [21]
and the lazy algorithm from [15], respectively.

nx T s

lm Tcl/T
s

lm T s

cl/T
s

lm T s

3v/T
s

lm

(15,15,15) 2.96 s 31.22 15.52 11.18

(31,31,31) 18.16 s 53.35 23.19 14.92

(63,63,63) 118.67 s 85.21 30.85 16.25

Table 3
Memory comparison when varying the number of states.
Ms

lm, Mcl, M
s

cl and Ms

3v are the required memory to imple-
ment the controller resulting from Algorithm 3, the classical
fixed point algorithm with box abstractions [1], the classical
fixed point algorithm with sparse abstractions [21] and the
lazy algorithm from [15], respectively.

nx Ms

lm = Ms

3v Mcl = Ms

cl Mcl/Mlm

(15,15,15) 26.4KB 499.9KB 18.93

(31,31,31) 232.7KB 4729KB 20.32

(63,63,63) 1953.5KB 41469.3KB 21.22

8.2.2 Intersection of lower and upper-closed safety
specifications

Let us consider another control objective to illustrate
the results of Section 6. We want to synthesise a con-
troller for the follower vehicle, which takes its values
from [Fmin, Fmax], to keep the velocity of the follower
below vmax and guarantees that the relative distance be-
tween the leader and the follower remains larger than
dmin = 10m and smaller than dmax = 150m, while
assuming that the leader vehicle acts as a disturbance
d ∈ [0.65∗Fmin, 0.65∗Fmax] and wmax = 25m/s. In this
case, we can use the approach proposed in Proposition 4
to speed up the computation by a factor of 3.7 in com-
parison to the classical approach. Time gain is a result
of using a sparse abstraction, instead of a more common
box abstraction, to find C∗

L and C∗
U and then use them

as a warm point for the following computations. Since
our abstraction is input-state monotone and we have the
total order on set of inputs, it is sufficient for every state
x to store only safe actions us

min(x), u
s
max(x) with min-

imal and maximal value, because all inputs in a range
[us

min(x), u
s
max(x)] are admissible. See the maximal con-

troller in the Figure 9.

If we set up the parameter dmax as 200m the assump-
tion of Proposition 5 is satisfied and C∗

LU (x) = C∗
L(x)∩

C∗
U (x). In this case we can fully used the benefits of the

Algorithm 3, and we are 45.7 times faster than the clas-
sical approach.
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Table 4
Runtime comparison when varying the number of states.
T s

lm, Tcl, T
s

cl and T s

3v are the running time of Algorithm 3, the
classical fixed point algorithm with box abstractions [1], the
classical fixed point algorithm with sparse abstractions [21]
and the lazy algorithm from [15], respectively.

nu T s

lm Tcl/T
s

lm T s

cl/T
s

lm T s

3v/T
s

lm

10 18.19 s 54.01 23.42 15.06

20 20.56 s 95.08 41.08 25.96

40 25.26 s 154.03 66.67 43.25

Table 5
Memory comparison when varying the number of states.
Ms

lm, Mcl, M
s

cl and Ms

3v are the required memory to imple-
ment the controller resulting from Algorithm 3, the classical
fixed point algorithm with box abstractions [1], the classical
fixed point algorithm with sparse abstractions [21] and the
lazy algorithm from [15], respectively.

nu Ms

lm = Ms

3v Mcl = Ms

cl Mcl/Mlm

10 232.7KB 4729KB 20.32

20 232.7KB 6200.1KB 26.64

40 232.7KB 9141.8KB 39.29

9 Conclusion

In this paper, we have presented an efficient approach to
controller synthesis for monotone transition systems and
directed safety specifications. First, we presented a lazy
algorithm for the computation of predecessors, based on
which lazy synthesis algorithms are proposed allowing us
to explore ordering on the states (and inputs). Then an
incremental controller synthesis approach is presented,
allowing to deal with intersections of directed specifica-
tions. Numerical results highlight the practical speedups
and memory efficiency that can be attained using the
proposed approach while ensuring completeness w.r.t
the classical safety algorithm.

In future work, we will develop more general algorithms
allowing to extend the approach to other types of di-
rected specifications, such as reachability, stability, or
more general properties described by a temporal logic
formula.
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