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Introduction

The aim of this paper is to extend the results of [START_REF] Dobrić | Asymptotics for transportation cost in high dimensions[END_REF][START_REF] Boutet De Monvel | Almost sure convergence of the minimum bipartite matching functional in Euclidean space[END_REF][START_REF] Barthe | Combinatorial optimization over two random point sets[END_REF][START_REF] Dereich | Constructive quantization: approximation by empirical measures[END_REF] on the existence of the thermodynamic limit for some random optimal matching problems. Because of their relations to computer science, statistical physics and quantization of measures, optimal matching problems have been the subject of intense research both from the mathematical and physical communities. We refer for instance to [START_REF] Yukich | Probability theory of classical Euclidean optimization problems[END_REF][START_REF]Upper and lower bounds for stochastic processes: modern methods and classical problems[END_REF][START_REF] Caracciolo | Scaling hypothesis for the Euclidean bipartite matching problem[END_REF] for more details in particular regarding the vast literature.

Probably the simplest and most studied variant of these problems is the bipartite (or Euclidean bipartite) matching on the unit cube in d dimensions. Given p ≥ 1 and two independent families of i.i.d. random variables (X i ) i≥1 and (Y i ) i≥1 with common law the uniform (Lebesgue) measure on [0, 1] d , the problem is to understand the behavior for large n of

E 1 n min π n i=1 |X i -Y π(i) | p ,
where the minimum is taken over all permutations π of {1, . . . , n}. It is by now well-known, see [START_REF] Ajtai | On optimal matchings[END_REF][START_REF] Barthe | Combinatorial optimization over two random point sets[END_REF][START_REF] Bobkov | One-dimensional empirical measures, order statistics, and Kantorovich transport distances[END_REF][START_REF]On optimal matching of Gaussian samples[END_REF] that for 1 n 1 (see [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF] for some non-asymptotic bounds) Let us point out that while the case d ≥ 3, p ≥ d/2 is not explicitly covered in the literature, the proof of [START_REF]On optimal matching of Gaussian samples[END_REF] clearly extends to any p = 2 (see also [START_REF] Bobkov | A simple Fourier analytic proof of the AKT optimal matching theorem[END_REF]). Our main result is the following:

E 1 n min π n i=1 |X i -Y π(i) | p ∼        n -p 2 for d = 1
Theorem 1.1. For every d ≥ 3 and p ≥ 1, there exists a constant

f bi ∞ = f bi ∞ (p, d) > 0 such that lim n→∞ n p d E 1 n min π n i=1 |X i -Y π(i) | p = f bi ∞ . (1.2)
This extends earlier results of [START_REF] Dobrić | Asymptotics for transportation cost in high dimensions[END_REF][START_REF] Boutet De Monvel | Almost sure convergence of the minimum bipartite matching functional in Euclidean space[END_REF][START_REF] Barthe | Combinatorial optimization over two random point sets[END_REF][START_REF] Dereich | Constructive quantization: approximation by empirical measures[END_REF] where the same conclusion was obtained under the more restrictive condition p < d/2. See also [START_REF] Talagrand | Matching random samples in many dimensions[END_REF] for bounds on f bi ∞ (1, d) as d becomes large. As in the previously quoted papers, our proof is based on a sub-additivity argument and makes use of the classical observation that, thanks to the Birkhoff-Von Neumann Theorem, the bi-partite matching problem is actually an optimal transport problem. Indeed, if µ = n i=1 δ X i and λ = n i=1 δ Y i are the associated empirical measures, then min

π n i=1 |X i -Y π(i) | p = W p p (µ, λ) ,
where W p denotes the Wasserstein distance of order p (see [START_REF] Villani | Topics in optimal transportation[END_REF][START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]). However, the papers [START_REF] Boutet De Monvel | Almost sure convergence of the minimum bipartite matching functional in Euclidean space[END_REF][START_REF] Barthe | Combinatorial optimization over two random point sets[END_REF][START_REF] Dereich | Constructive quantization: approximation by empirical measures[END_REF] rely then upon combinatorial arguments, and in fact their results apply to a larger class of random optimization problems, while [START_REF] Dobrić | Asymptotics for transportation cost in high dimensions[END_REF] strongly uses the dual formulation of optimal transport, which in the case p = 1 is quite specific, since it becomes a maximization over the set of 1-Lipschitz functions.

The optimal transport point of view allows us to treat the defect in sub-additivity as a defect in local distribution of mass rather than a defect in local distribution of points. More precisely, even if µ([0, 1] d ) = λ([0, 1] d ) it is in general not true that for a given partition of [0, 1] d in sub-cubes Q i , µ(Q i ) = λ(Q i ). Therefore, in order to use sub-additivity, one needs to relax the definition of the matching problem to take into account this disparity. In [START_REF] Boutet De Monvel | Almost sure convergence of the minimum bipartite matching functional in Euclidean space[END_REF][START_REF] Barthe | Combinatorial optimization over two random point sets[END_REF][START_REF] Dereich | Constructive quantization: approximation by empirical measures[END_REF] this is done by requiring that as many points as possible are matched. Here we allow instead for varying weights. That is, for µ and λ containing potentially a different number of points, we consider the problem

E W p p µ µ([0, 1] d ) , λ λ([0, 1] d )
.

The main sub-additivity argument for this quantity is contained in Lemma 3.1. In order to estimate the error in sub-additivity, we then use in Lemma 3.4 a PDE ansatz similar to the one proposed in the context of the matching problem in [START_REF] Caracciolo | Scaling hypothesis for the Euclidean bipartite matching problem[END_REF] and then used in [START_REF] Ambrosio | A PDE approach to a 2-dimensional matching problem[END_REF] (see also [START_REF]On optimal matching of Gaussian samples[END_REF][START_REF]Quantitative linearization results for the Monge-Ampère equation[END_REF][START_REF] Benedetto | Euclidean random matching in 2d for non-constant densities[END_REF]) to show that when d = 2

lim n→∞ n log n E 1 n W 2 2 (µ, λ) = 1 2π .
Notice however that our use of this linearization ansatz is quite different from [START_REF] Caracciolo | Scaling hypothesis for the Euclidean bipartite matching problem[END_REF][START_REF] Ambrosio | A PDE approach to a 2-dimensional matching problem[END_REF]. Indeed, for us the main contribution to the transportation cost is given by the transportation at the smaller scales and linearization is only used to estimate the higher order error term. On the other hand, in [START_REF] Caracciolo | Scaling hypothesis for the Euclidean bipartite matching problem[END_REF][START_REF] Ambrosio | A PDE approach to a 2-dimensional matching problem[END_REF] (see also [START_REF] Ambrosio | Finer estimates on the 2-dimensional matching problem[END_REF]), the main contribution to the cost is given by the linearized i.e. H -1 , cost. This is somewhat in line with the prediction by [START_REF] Caracciolo | Scaling hypothesis for the Euclidean bipartite matching problem[END_REF] that for d ≥ 3, the first order contribution to the Wasserstein cost is not given by the linearized problem while higher order corrections are. In any case, we give in Proposition 5.3 an alternative argument to estimate the error term without relying on the PDE ansatz. There we use instead an elementary comparison argument with one-dimensional transport plans. We included both proofs since we believe that they could prove useful in other contexts.

Let us make a few more comments on the proof of Theorem 1.1. As in [START_REF] Dobrić | Asymptotics for transportation cost in high dimensions[END_REF][START_REF] Boutet De Monvel | Almost sure convergence of the minimum bipartite matching functional in Euclidean space[END_REF][START_REF] Barthe | Combinatorial optimization over two random point sets[END_REF], the proof of (1.2) is actually first done on a variant of the problem where the number of points follows a Poisson distribution instead of being deterministic. This is due to the fact that the restriction of a Poisson point process is again a Poisson point process. For this variant of the problem, rather than working on a fixed cube [0, 1] d with an increasing density of points, we prefer to make a blow-up at a scale L = n 1/d and consider in Theorem 5.1, a fixed Poisson point process of intensity 1 on R d but restricted to cubes Q L = [0, L] d with L 1 (hence the terminology thermodynamic limit). We believe that the sub-additivity argument is slightly clearer in these variables (a similar rescaling is actually implicitly used in [START_REF] Boutet De Monvel | Almost sure convergence of the minimum bipartite matching functional in Euclidean space[END_REF][START_REF] Barthe | Combinatorial optimization over two random point sets[END_REF]). This setting is somewhat reminiscent of [START_REF] Huesmann | Optimal transport from Lebesgue to Poisson[END_REF], where super-additivity is used to construct an optimal coupling between the Poisson point process and the Lebesgue measure on R d . In order to pass from the Poisson version of the problem to the deterministic one, we prove a general de-Poissonization result in Proposition 6.1 which can hopefully be useful in other contexts.

Besides the bipartite matching we also treat in Theorem 4.1 and Theorem 6.2 the case of the matching to the reference measure. We actually treat this problem first since the proof is a bit simpler. Indeed, while the general scheme of the proof is identical to the bipartite case, the PDE ansatz used in Lemma 3.4 works well for "regular" measures and a more delicate argument is required for the bipartite matching. Notice that by Jensen and triangle inequalities, (1.1) also holds for the matching to the reference measure.

We point out that in [START_REF] Dobrić | Asymptotics for transportation cost in high dimensions[END_REF][START_REF] Barthe | Combinatorial optimization over two random point sets[END_REF][START_REF] Dereich | Constructive quantization: approximation by empirical measures[END_REF], it is more generally proven that if the points X i and Y i have a common law µ supported in [0, 1] d instead of the Lebesgue measure (for measures with unbounded support a condition on the moments is required), then for 1 ≤ p < d/2 and d ≥ 3, lim sup

n→∞ n p d E 1 n min π n i=1 |X i -Y π(i) | p ≤ f bi ∞ [0,1] d dµ dx 1-p d .
However, when p > d/2 and without additional assumptions on µ, the asymptotic rate may be different and thus this inequality may fail, see e.g. [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF]. Positive results for specific densities can be obtained nonetheless. For instance, it is proven in [START_REF] Ledoux | On optimal matching of Gaussian samples III[END_REF] that for the standard Gaussian measure µ on R d , d ≥ 3, the asymptotic bound

n p d E 1 n min π n i=1 |X i -Y π(i) | p ∼ 1
holds true also for d/2 ≤ p < d.

Finally, we notice that usual results on concentration of measure allow us to improve from convergence of the expectations to strong convergence. However, we are able to cover only the case 1 ≤ p < d, see Remark 6.5.

The plan of the paper is the following. In Section 2, we fix some notation and recall basic moment and concentration bounds for Poisson random variables. In Section 3, we state and prove our two main lemmas namely the sub-additivity estimate Lemma 3.1 and the error estimate Lemma 3.4. In Section 4, we then prove the existence of the thermodynamic limit for the matching problem of a Poisson point process to the reference measure. The analog result for the bipartite matching between two Poisson point processes is obtained in Section 5. Finally, in Section 6 we pass from the Poissonized problem to the deterministic one and discuss stronger convergence results.

Notation and preliminary results

We use the notation |A| for the Lebesgue measure of a Borel set A ⊆ R d , and A f for the Lebesgue integral of a function f on A. For L > 0, we let Q L = [0, L] d . We denote by |p| the Euclidean norm of a vector p ∈ R N . For a function φ, we use the notation ∇φ for the gradient, ∇ • φ for the divergence, ∆φ for the Laplacian and ∇ 2 φ for the Hessian.

2.1. Optimal transport. In this section we introduce some notation for the Wasserstein distance and recall few simple properties that will be used throughout. Proofs can be found in any of the monographs [START_REF] Villani | Topics in optimal transportation[END_REF][START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF][START_REF] Peyré | Computational optimal transport: With applications to data science[END_REF] with expositions of theory of optimal transport, from different perspectives.

Given p ≥ 1, a Borel subset Ω ⊆ R d and two positive Borel measures µ, λ with µ(Ω) = λ(Ω) ∈ (0, ∞) and finite p-th moments, the Wasserstein distance of order p ≥ 1 between µ and λ is defined as the quantity

W p (µ, λ) = min π∈C(µ,λ) R d ×R d |x -y| p dπ(x, y) 1 p
, where C(µ, λ) is the set of couplings between µ and λ. Moreover, if µ(Ω) = λ(Ω) = 0, we define W p (µ, λ) = 0, while if µ(Ω) = λ(Ω), we let W p (µ, λ) = ∞.

Let us recall that since W p is a distance, we have the triangle inequality

W p (µ, ν) ≤ W p (µ, λ) + W p (ν, λ). (2.1)
We will also use the classical sub-additivity inequality

W p p i µ i , i λ i ≤ i W p p (µ i , λ i ), (2.2) 
for a finite set of positive measures µ i , λ i . This follows from the observation that if

π i ∈ C(µ i , λ i ), then i π i ∈ C( i µ i , i λ i ).
Remark 2.1. In fact, our results deal with the transportation cost W p p (µ, λ) rather than W p (µ, λ). To keep notation simple, we write

W p Ω (µ, λ) = W p p (µ ¬ Ω, λ ¬ Ω).
Moreover, if a measure is absolutely continuous with respect to Lebesgue measure, we only write its density. For example,

W p Ω µ, µ(Ω) |Ω| ,
denotes the transportation cost between µ ¬ Ω to the uniform measure on Ω with total mass µ(Ω).

Occasionally we may write W Ω (µ, λ) instead of W p Ω (µ, λ) 1/p . This may lead to some ambiguity, but it should be clear from the context.

Poisson point processes.

As in [START_REF] Dobrić | Asymptotics for transportation cost in high dimensions[END_REF][START_REF] Boutet De Monvel | Almost sure convergence of the minimum bipartite matching functional in Euclidean space[END_REF][START_REF] Barthe | Combinatorial optimization over two random point sets[END_REF], we exploit invariance properties of Poisson point processes on R d with uniform intensity in order to obtain simpler sub-additivity estimates. We refer e.g. to [START_REF] Last | Lectures on the Poisson process[END_REF] for a general introduction to Poisson point processes. Here we only recall that a Poisson point process on R d with intensity one can be defined as a random variable taking values on locally finite atomic measures

µ = i δ X i such that, for every k ≥ 1, for any disjoint Borel sets A 1 , . . . , A k ⊆ R d , the random vari- ables µ(A 1 ), . . . , µ(A k ) are independent and µ(A i ) has a Poisson distribution of parameter |A i |, for every i = 1, . . . , k. In particular, if A ⊆ R d is Lebesgue negligible, then µ(A) = 0 almost surely.
Existence of a Poisson point process of intensity one is obtained via a superposition argument, noticing that on every bounded subset Ω ⊆ R d the law of µ ¬ Ω can be easily described: conditionally on µ(Ω) = n, the measure µ ¬ Ω has the same law as the random measure

n i=1 δ X i ,
where (X i ) n i=1 are independent random variables with uniform law on Ω. Uniqueness in law can be also obtained, so that translation invariance of Lebesgue measure entails that the process is stationary, i.e., any deterministic translation of the random measure µ leaves its law unchanged.

Let us finally recall the classical Cramér-Chernoff concentration bounds for Poisson random variables. Lemma 2.2. Let N be a Poisson random variable with parameter n 1. Then, for every t > 0

P[|N -n| ≥ t] ≤ 2 exp - t 2 2(t + n) . (2.3)
As a consequence, for every q ≥ 1,

E [|N -n| q ] q n q 2 .
(2.4)

Proof. For the concentration bound (2.3), see for instance [START_REF] Boucheron | Concentration inequalities[END_REF]. By the layer-cake representation,

E [|N -n| q ] ∞ 0 t q-1 exp - t 2 2(t + n) dt √ n 0 t q-1 dt + n √ n t q-1 exp -c t 2 n dt + ∞ n t q-1 exp(-ct)dt q n q 2 + n q 2 + n q-1 exp(-cn) q n q 2 .

The main lemmas

Our sub-additivity argument rests on a general but relatively simple lemma (which we only apply here for rectangles). Lemma 3.1. For every p ≥ 1, there exists a constant C > 0 depending only on p such that the following holds. For every Borel set Ω ⊂ R d , every Borel partition (Ω i ) i∈N of Ω, every measures µ, λ on Ω, and every ε ∈ (0, 1),

W p Ω µ, µ(Ω) λ(Ω) λ ≤ (1 + ε) i W p Ω i µ, µ(Ω i ) λ(Ω i ) λ + C ε p-1 W p Ω i µ(Ω i ) λ(Ω i ) χ Ω i λ, µ(Ω) λ(Ω) λ . (3.1)
Proof. We first use the triangle inequality (2.1) to get

W p Ω µ, µ(Ω) λ(Ω) λ ≤ W Ω µ, i µ(Ω i ) λ(Ω i ) χ Ω i λ + W Ω i µ(Ω i ) λ(Ω i ) χ Ω i λ, µ(Ω) λ(Ω) λ p .
The proof is then concluded by combining the elementary inequality

(a + b) p ≤ (1 + ε)a p + C ε p-1 b p ∀a, b > 0 and ε ∈ (0, 1), (3.2) 
with the sub-additivity of W p Ω (2.2) in the form

W p Ω µ, i µ(Ω i ) λ(Ω i ) χ Ω i λ ≤ i W p Ω i µ, µ(Ω i ) λ(Ω i ) λ .
Remark 3.2. Alternatively, we could have also stated (3.1) in the slightly more symmetric form:

W p Ω µ µ(Ω) , λ λ(Ω) ≤ (1 + ε) i µ(Ω i ) µ(Ω) W p Ω i µ µ(Ω i ) , λ λ(Ω i ) + C ε p-1 W p Ω 1 µ(Ω) i µ(Ω i ) λ(Ω i ) χ Ω i λ, λ λ(Ω)
.

However, the sub-additivity argument turns out to be a little bit simpler using (3.1) instead.

Lemma 3.1 shows that in order to estimate the defect in sub-additivity, it is enough to bound the local defect of mass distribution. This will be done here through a PDE argument.

Definition 3.3. We say that a rectangle R = x + d i=1 [0, L i ] is of moderate aspect ratio if for every i, j, L i /L j ≤ 2. A partition R = {R i } of R is called admissible if for every i, R i is a rectangle of moderate aspect ratio and 3 -d |R| ≤ |R i | ≤ |R|.
Notice that in particular #R 1 for every admissible partition. Lemma 3.4. Let R be a rectangle of moderate aspect ratio, µ and λ be measures on R with equal mass, both absolutely continuous with respect to Lebesgue and such that inf R λ > 0. Then, for every p ≥ 1 We first argue that

W p R (µ, λ) diam p (R) (inf R λ) p-1 R |µ -λ| p . ( 3 
W p R (µ, λ) 1 (inf R λ) p-1 R |∇φ| p . (3.5)
Let us point out that this estimate is well-known and has already been used in the context of the matching problem, see [START_REF] Ambrosio | A PDE approach to a 2-dimensional matching problem[END_REF][START_REF]Quantitative linearization results for the Monge-Ampère equation[END_REF] 

W R (µ, λ) ≤ W R µ, 1 2 (µ + λ) + W R 1 2 (µ + λ), λ ≤ W R 1 2 µ, 1 2 λ + W R 1 2 (µ + λ), λ = 2 -1 p (W R (µ, λ) + W R (µ + λ, 2λ))
and thus W R (µ, λ) W R (µ + λ, 2λ). We now recall that by the Benamou-Brenier formula (see [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]Th. 5.28])

W p R (µ + λ, 2λ) = min ρ,j 1 0 R 1 ρ p-1 |j| p : ∂ t ρ + ∇ • j = 0, ρ 0 = µ + λ, ρ 1 = 2λ .
Estimate (3.5) follows using

ρ t = (1 -t)µ + tλ + λ and j = ∇φ
as competitor and noticing that for t

∈ [0, 1], ρ t ≥ inf R λ. We now claim that R |∇φ| p diam p (R) R |µ -λ| p , (3.6) 
which together with (3.5) would conclude the proof of (3.3). Estimate (3.6) is a direct consequence of Poincaré inequality and Calderón-Zygmund estimates for the Laplacian. However, since we did not find a precise reference for (global) Calderón-Zygmund estimates on rectangles with Neumann boundary conditions, we give here a short proof. By scaling, we may assume that diam(R) = 1. Furthermore, using even reflections along ∂R we may replace Neumann boundary conditions by periodic ones in (3.4) . By Bochner's formula and Hölder inequality,

R |∇ 2 φ| 2 = R |µ -λ| 2 R |µ -λ| p 2 p
, which concludes the proof of (3.6).

Remark 3.5. For p = 2, combining the energy identity

R |∇φ| 2 = R φ(λ -µ)
with Poincaré inequality, we see that (3.6) (and thus (3.3)) holds for any convex set R.

Although the situation for p ≥ 2 is more subtle, see [14, Prop. 2], we believe that (3.6) holds for any rectangle, not necessarily of moderate aspect ratio.

Matching to the reference measure

In this section, we consider the optimal matching problem between µ a Poisson point process on R d with intensity one and the Lebesgue measure. More precisely, for every L ≥ 1 we let

f ref (L) = E 1 |Q L | W p Q L (µ, κ) ,
where

Q L = [0, L] d and κ = µ(Q L ) |Q L |
is the generic constant for which this is well defined.

Theorem 4.1. For every d ≥ 3 and p ≥ 1, the limit

f ref ∞ = lim L→∞ f ref (L)
exists and is strictly positive. Moreover, there exists C > 0 depending on p and d such that for L ≥ 1,

f ref ∞ ≤ f ref (L) + C L d-2 2 . (4.1)
The proof follows the argument of [START_REF] Boutet De Monvel | Almost sure convergence of the minimum bipartite matching functional in Euclidean space[END_REF] (see also [START_REF] Barthe | Combinatorial optimization over two random point sets[END_REF]) and is mostly based on the following sub-additivity estimate. Proposition 4.2. For every d ≥ 3 and p ≥ 1, there exists a constant C > 0 such that for every L ≥ 1 and m ∈ N,

f ref (mL) ≤ f ref (L) + C L d-2 2 . (4.2)
Proof. We start by pointing out that since f ref (L) L p , it is not restrictive to assume that L 1 in the proof of (4.2).

Step 1. [The dyadic case] For the sake of clarity, we start with the simpler case m = 2 k for some k ≥ 1. We claim that

f ref (2L) ≤ f ref (L) + C L d-2 2 . (4.
3)

The desired estimate (4.2) would then follow iterating (4.3) and using that k≥0

1 2 k(d-2) < ∞ for d ≥ 3. In order to prove (4.3), we divide the cube Q 2L in 2 d sub-cubes Q i = x i + Q L and let κ i = µ(Q i ) |Q L | (and κ = µ(Q 2L ) |Q 2L |
). Notice that we are considering a partition up to a Lebesgue negligible remainder, which gives no contribution almost surely. By (3.1), for every ε ∈ (0, 1),

W p Q 2L (µ, κ) ≤ (1 + ε) i W p Q i (µ, κ i ) + C ε p-1 W p Q 2L i κ i χ Q i , κ .
Dividing by |Q 2L |, taking expectations and using the fact that by translation invariance

E[ 1 |Q L | W p Q i (µ, κ i )] = f ref (L), we get f ref (2L) ≤ (1 + ε) i |Q L | |Q 2L | f ref (L) + C ε p-1 E 1 |Q 2L | W p Q 2L i κ i χ Q i , κ = (1 + ε)f ref (L) + C ε p-1 E 1 |Q 2L | W p Q 2L i κ i χ Q i , κ . We now estimate E[ 1 |Q 2L | W p Q 2L ( i κ i χ Q i , κ)]. Using 1 |Q 2L | W p Q 2L ( i κ i χ Q i , κ) L p κ to- gether with P κ ≤ 1 2 ≤ exp(-cL d ),
which follows from the Cramér-Chernoff bounds (2.3), we may reduce ourselves to the event {κ ≥ 1 2 }. Under this condition, by (3.3), we have 1

|Q 2L | W p Q 2L i κ i χ Q i , κ L p L d Q 2L i |κ i -κ| p χ Q i L p |κ -1| p + i |κ i -1| p .
Recalling that µ(Q i ) are Poisson random variables of parameter |Q i | and that

κ i = µ(Q i ) |Q i | , we get from (2.4) E [|κ -1| p ] ∼ E [|κ i -1| p ] 1 L pd 2 . Thus E 1 |Q 2L | W p Q 2L i κ i χ Q i , κ 1 
L p 2 (d-2) (4.4)
and we conclude that for ε ∈ (0, 1),

f ref (2L) ≤ (1 + ε)f ref (L) + C ε p-1 1 L p 2 (d-2) . (4.5)
Optimizing in ε by choosing ε = L -(d-2)/2 , and using that f ref (L) is bounded (by (1.1) and (2.3), see for instance [START_REF] Goldman | A large-scale regularity theory for the Monge-Ampere equation with rough data and application to the optimal matching problem[END_REF]Prop. 2.7] for details) we conclude the proof of (4.3). Let us point out that we used here boundedness of f ref (L) for simplicity but that as shown below it can also be obtained as a consequence of our proof.

Step 2.[The general case] We now consider the case when m ∈ N is not necessarily dyadic. We will partition Q mL into rectangles of almost dyadic size and thus need to deal with slightly more general configurations than dyadic cubes. Let us introduce some notation. Let R be a rectangle with moderate aspect ratio and R = {R i } be an admissible partition of R (recall Definition 3.3). Slightly abusing notation, we define

f ref (R) = E 1 |R| W p R (µ, κ) . (4.6) 
Step 2.1. We claim that the following variant of (4.5) holds: for every rectangle R of moderate aspect ratio with |R| 1, every admissible partition R of R and every ε ∈ (0, 1), we have

f ref (R) ≤ (1 + ε) i |R i | |R| f ref (R i ) + C ε p-1 1 |R| p(d-2) 2d . (4.7) 
Defining κ i = µ(R i ) |R i | and using (3.1) as above, we get

f ref (R) ≤ (1 + ε) i |R i | |R| f ref (R i ) + C ε p-1 E 1 |R| W p R i κ i χ R i , κ .
The estimate

E 1 |R| W p R i κ i χ R i , κ 1 |R| p(d-2) 2d (4.8)
is then obtained arguing exactly as for (4.4), using first the Crámer-Chernoff bound (2.3) to reduce to the event {κ ≥ 1 2 } and then (3.3) (recalling that diam(R) ∼ |R| 1 d since R has moderate aspect ratio) in combination with (2.4) and the fact that #R 1 since R is an admissible partition.

Step 2.2. Starting from the cube Q mL , let us construct a sequence of finer and finer partitions of Q mL by rectangles of moderate aspect ratios and side-length given by integer multiples of L. We let R 0 = {Q mL } and define R k inductively as follows. Let R ∈ R k . Up to translation we may assume that R = d i=1 (0, m i L) for some m i ∈ N. We then split each interval (0,

m i L) into (0, m i 2 L) ∪ ( m i 2 L, m i L).
It is readily seen that this induces an admissible partition of R. Let us point out that when m i = 1 for some i, the corresponding interval (0, m i 2 L) is empty. This procedure stops after a finite number of steps

K once R K = {Q L + z i , z i ∈ [0, m -1] d }. It is also readily seen that 2 K-1 < m ≤ 2 K and that for every k ∈ [0, K] and every R ∈ R k we have |R| ∼ (2 K-k L) d .
Let us prove by a downward induction that there exists Λ > 0 such that for every k ∈ [0, K] and every R ∈ R k ,

f ref (R) ≤ f ref (Q L ) + Λ(1 + f ref (Q L ))L -d-2 2 K j=K-k 2 -j d-2 2 . (4.9)
This is clearly true for k = K. Assume that it holds true for k

+ 1. Let R ∈ R k . Applying (4.7) with ε = (2 K-k L) -(d-2)/2 1, we get f ref (R) ≤ (1 + ε) R i ∈R k+1 ,R i ⊂R |R i | |R| f ref (R i ) + C ε 1 |R| p(d-2) 2d (4.9) ≤ (1 + ε)   f ref (Q L ) + Λ(1 + f ref (Q L ))L -d-2 2 K j=K-k+1 2 -j d-2 2   + C(2 K-k L) -d-2 2 ≤ f ref (Q L ) + Λ(1 + f ref (Q L ))L -d-2 2 ×   K j=K-k+1 2 -j d-2 2 + 2 -(K-k) d-2 2   C Λ + L -d-2 2 K j=K-k+1 2 -j d-2 2     . If L is large enough, then ( K j=K-k+1 2 -j d-2 2 )L -(d-2)/2 ≤ 1 2 .
Finally, choosing Λ ≥ 2C yields (4.9). Applying (4.9) to R = Q mL and using that j≥0 2 -j d-2 2 < ∞, we get

f ref (mL) ≤ f ref (L) + C(1 + f ref (L)) 1 L d-2 2 
.

Since f ref (L) L p , writing that every L 1 may be written as L = mL for some m ∈ N and L ∈ [1, 2], we conclude that f ref (L) is bounded and thus (4.2) follows.

Remark 4.3. We point out that as a consequence of the proof of Proposition 4.2 we have for every rectangle R of moderate aspect ratio (recall definition (4.6))

f ref (R) 1. (4.10) 
We can now prove Theorem 4.1

Proof of Theorem 4.1. The existence of a limit f ref ∞ is obtained from (4.2) arguing exactly as in [START_REF] Boutet De Monvel | Almost sure convergence of the minimum bipartite matching functional in Euclidean space[END_REF] using the continuity of L → f ref (L) (which can be obtained for instance by dominated convergence). The fact that f ref (L) 1 and thus f ref ∞ > 0 follows from (1.1) and (2.3). Finally, (4.1) follows from (4.2) by sending m → ∞ for fixed L.

Remark 4.4. It may be conjectured from [START_REF] Caracciolo | Scaling hypothesis for the Euclidean bipartite matching problem[END_REF] that

|f ref (L) -f ref ∞ | 1 L d-2 .
Let us notice that if we could replace the term ε -(p-1) in (4.5) by a constant then letting ε → 0 we would get the lower bound

f ref (L) -f ref ∞ - 1 L p(d-2) 2
, which, at least for p = 2, is in line with the conjectured rate. See also Remark 6.4 for rates in the case of a deterministic number of points.

Bi-partite matching

We now turn to the bi-partite matching. For µ and λ two independent Poisson point processes of intensity one, we want to study the asymptotic behavior as L → ∞ of

f bi (L) = E 1 |Q L | W p Q L (µ, κλ) , with κ = µ(Q L ) λ(Q L )
. Analogously to Theorem 4.1, we have:

Theorem 5.1. For every d ≥ 3 and p ≥ 1, the limit

f bi ∞ = lim L→∞ f bi (L)
exists and is strictly positive. Moreover, there exists C > 0 depending on p and d such that for L ≥ 1,

f bi ∞ ≤ f bi (L) + C L d-2 2p
.

The proof of Theorem 5.1 follows the same line of arguments as for Theorem 4.1. We only detail the estimate of the sub-additivity defect i.e. the counterpart of (4.8), since it is more delicate in the bipartite case. Proposition 5.2. Let R be a rectangle of moderate aspect ratio with |R| 1 and R = {R i } be an admissible partition of R (recall Definition 3.3). Defining

κ i = µ(R i ) λ(R i ) and κ = µ(R)
λ(R) , we have for every d ≥ 3 and p ≥ 1,

E 1 |R| W p R i κ i χ R i λ, κλ 1 
|R| d-2 2d 
.

(5.1)

Proof. As opposed to (4.8), since λ is atomic, we cannot directly use (3.3). The idea is to use as intermediate step the matching between λ and the reference measure. Let us point out that since

f ref (R i ) = E 1 |R i | W p R i λ, λ(R i ) |R i |
is of order one, we cannot apply naively the triangle inequality. The main observation is that since |κ i -κ| 1 with overwhelming probability, the amount of mass which actually needs to be transported is very small.

Let 1

θ > 0 to be optimized later on. For every i let

θ i := (κ -κ i ) + θ and assume that θ ≥ 2 max i |κ -κ i | (5.2) so that 3 2 θ ≥ θ i ≥ 1 2 θ > 0.
Notice that thanks to the Crámer-Chernoff bounds (2.3), (5.2) is satisfied with overwhelming probability as long as θ |R| -1/2 . Using the triangle inequality (2.1) we have

W p R i κ i χ R i λ, κλ W p R i κ i χ R i λ, i χ R i (κ i -θ)λ + θ λ(R i ) |R i | dx + W p R i χ R i (κ i -θ)λ + θ λ(R i ) |R i | dx , i χ R i (κ i -θ)λ + θ i λ(R i ) |R i | dx + W p R i χ R i (κ i -θ)λ + θ i λ(R i ) |R i | dx , κλ .
Notice that i θλ(R i ) = i θ i λ(R i ) by definition of θ i and the fact that κλ(R) = µ(R) = i κ i λ(R) so that the second term is well defined. We now estimate the three terms separately. The first and third are estimated in a similar way and we thus focus only on the first one. By sub-additivity (2.2) of W p R , we have

W p R i κ i χ R i λ, i χ R i (κ i -θ)λ + θ λ(R i ) |R i | dx ≤ θ i W p R i λ, λ(R i ) |R i | .
We turn to the middle term. Again by sub-additivity of W p R ,

W p R i χ R i (κ i -θ)λ + θ λ(R i ) |R i | dx , i χ R i (κ i -θ)λ + θ i λ(R i ) |R i | dx ≤ W p R i χ R i θ λ(R i ) |R i | , i χ R i θ i λ(R i ) |R i | .
Using (3.3) in the event {λ(R i )/|R i | ∼ 1} (which has overwhelming probability) and recalling that we assumed 3 2 θ ≥ θ i ≥ 1 2 θ, we have

W p R i χ R i θ λ(R i ) |R i | , i χ R i θ i λ(R i ) |R i | diam p (R) θ p-1 i |κ -κ i | p |R i |.
Putting these two estimates together, dividing by |R| and taking expectations we find

E 1 |R| W p R i κ i χ R i λ, κλ θ i f ref (R i ) + diam p (R) θ p-1 i E [|κ -κ i | p ] (4.10)&(2.4) θ + 1 θ p-1 1 |R| p (d-2) 2d . Optimizing in θ by choosing θ = |R| -d-2 2d
|R| -1/2 (so that (5.2) is satisfied) this yields (5.1).

Comparing (4.4) and (5.1), one may wonder if (5.1) is suboptimal and could be improved. Let us prove that it is not the case, at least if we consider the slightly more regular situation of the matching to a deterministic grid. 

Q 2L = ∪ 2 d i=1 Q i where Q i are disjoint cubes of sidelength L and defining κ i = µ i λ(Q i ) , κ = i µ i λ(Q 2L ) , we have for d ≥ 3 and p ≥ 1, E 1 |Q 2L | W p Q 2L i κ i χ Q i λ, κλ ∼ 1 L d-2 2 
.

Proof.

Step 1.[The lower bound] We start by proving that

E 1 |Q 2L | W p Q 2L i κ i χ Q i λ, κλ 1 
L d-2 2 
.

(

For this we notice that if π is any admissible coupling, then |x -y| ≥ 1 for every (x, y) in the support of π with x = y and thus 2

W p Q 2L i κ i χ Q i λ, κλ ≥ W 1 Q 2L i κ i χ Q i λ, κλ . Let Σ = ∪ i ∂Q i ∩ Q 2L and ε i = sign(κ i -κ). Using ξ(x) = d(x, Σ) i ε i χ Q i (x) as test function in the dual formulation of W 1 Q 2L , we obtain W 1 Q 2L i κ i χ Q i λ, κλ ≥ i X∈Z d ∩Q i d(X, Σ)|κ i -κ| L d+1 i |κ i -κ|. 2 recall that W 1 Q 2L denotes the 1-Wasserstein distance.
Taking expectations we find (5.3).

Step 2.[The upper bound] We turn to the corresponding upper bound,

E 1 |Q 2L | W p Q 2L i κ i χ Q i λ, κλ 1 L d-2 2 
.

(5.4)

One could argue exactly as for (5.1) but we provide an alternative proof which uses a one-dimensional argument instead of (3.3). Notice that this argument could have also been used to give a different proof of (4.4).

Step 2.1.[The one-dimensional estimate] Let λ = X∈Z δ X and for κ 1 , κ 2 > 0 and L 1, define κ = κ 1 λ(0,L/2)+κ 2 λ(L/2,L) λ(0,L)

. We claim that if

|κ 1 -κ 2 | L -1 min(κ 1 , κ 2 ), then W p (0,L) κ 1 χ (0,L/2) λ + κ 2 χ (L/2,L) λ, κλ L 2 |κ 1 -κ 2 |. (5.5) 
Let us assume without loss of generality that κ 1 ≥ κ 2 . The optimal transport map is essentially symmetric around L/2 and is given in (0, L/2) by sending a mass (k + 1) λ(L/2,L) λ(0,L) (κ 1 -κ 2 ) from position k to k + 1 (which is admissible since by hypothesis

k|κ 1 -κ 2 | min(κ 1 , κ 2 )) so that W p (0,L) (µ, λ) L/2 k=0 k|κ 1 -κ 2 | ∼ L 2 |κ 1 -κ 2 |.
This proves (5.5).

Step 2.2.[Proof of (5.4)] The proof is made recursively by layers. In the first step, we pass from 2 d cubes to 2 d-1 rectangles of the form x + (0, L) × (0, L/2) d-1 . For this we remark that for every cube Q i there is exactly one cube Q j such that Q j = Q i ± L 2 e 1 (where e i is the canonical basis of R d ). Let us focus on

Q 1 = (0, L/2) d and Q 2 = L 2 e 1 + Q 1 . Let R = Q 1 ∪ Q 2 = (0, L) × (0, L/2) d-1 . Define κ = κ 1 λ(Q 1 )+κ 2 λ(Q 2 ) λ(R) = µ 1 +µ 2 λ(R) . We claim that E 1 |R| W 2 R (κ 1 χ Q 1 λ + κ 2 χ Q 2 λ, κλ) 1 L d-2 2 
.

For this we notice that in R, the measures κ 1 χ Q 1 λ + κ 2 χ Q 2 λ and κλ are constant in the directions orthogonal to e 1 and thus

1 |R| W p R (κ 1 χ Q 1 λ + κ 2 χ Q 2 λ, κλ) 1 L W p (0,L) κ 1 χ (0,L/2) λ + κ 2 χ (L/2,L) λ, κλ . Since κ i = µ i λ(Q i )
, by the Cramér-Chernoff bounds (2.3), we have

|κ i -1| = O(L -d/2
) with overwhelming probability. Hence, if d ≥ 3 we may apply (5.5) to get

E 1 |R| W p R (κ 1 χ Q 1 λ + κ 2 χ Q 2 λ, κλ) LE[|κ 1 -κ 2 |] 1 L d-2 2 
which proves the claim. We finally iterate this this argument 2 d times. At every step k we have 2 d-k rectangles of the form x + (0, L) k × (0, L/2) d-k and each iteration has a cost of the same order (namely L -(d-2)/2 ). Using triangle inequality this concludes the proof of (5.4).

Remark 5.4. Notice that in the proof of (5.5), we locally move a mass of order L -(d-2)/2 which corresponds to the optimal choice of θ in the proof of (5.1).

De-Poissonization

In this section we discuss how to transfer limit results from matching problems with Poisson point process, i.e., with a random number of points, to those of with a deterministic number of points.

We use the following general result. Proof. Let 0 < δ < L d and introduce the event

A = |N L,i -L d | < δ for i = 1, . . . , k .
By independence and Poisson tail bounds (2.3),

P(A) ≥ 1 -2 exp - 1 2 δ 2 L d + δ k . (6.1) 
We decompose

f (L) = E [f (L|N L )|A] P(A) + E [f (L|N L )|A c ] P(A c ).
If A holds, we use monotonicity of f (L|n) to argue that

L p f (1|a) ≤ E [f (L|N L )|A] ≤ L p f (1|b),
where a = L d + δ, b = L d -δ. Otherwise, we use ( 1) and ( 2) to obtain

0 ≤ E [f (L|N L )|A c ] ≤ L p .
Combining these inequalities, we have

L p f (1|a)P(A) ≤ f (L) ≤ L p (f (1|b) + (1 -P(A))) . (6.2) 
For any n ≥ 1, let L = L(n) be such such that L d + L d/2 √ 2β log L = n, for some fixed β > p. Then, we have from (6.2) 

with δ = L d/2 √ 2β log L, f (1|n) ≤ f (L) L p P(A) .
As n → ∞, we have

n p d L p = (1 + L -d 2 2β log L) p d = 1 + O log n n .
Moreover, by (6.1), To obtain the converse inequalities, we argue analogously choosing instead

P(A) ≥ 1 -2 exp - 1 2 δ 2 L d + δ k = 1 -O(L -β ) = 1 -O n -
L = L(n) such that L d -L d/2 √ 2β log L = n.
We now apply Proposition 6.1 to matching problems. Let us first consider the case of matching to the reference measure. Theorem 6.2. Let d ≥ 3, p ≥ 1, and (X i ) i≥1 be i.i.d. uniform random variables on [0, 1] d . Then,

lim n→∞ n p d E W p [0,1] d 1 n n i=1 δ X i , 1 = f ref ∞ , with f ref ∞ as in Theorem 4.1. Proof. Recalling the notation Q 1 = [0, 1] d , we introduce the function f (L|n) = L p E W p Q 1 1 n n i=1 δ X i , 1 , if n ≥ 1,
and f (L|0) = 0. It is clearly bounded and p-homogeneous in the sense of Proposition 6.1.

To show monotonicity, let 1 ≤ m ≤ n and use the identity

1 n n i=1 δ X i = n m -1 I⊆{1,...,n} |I|=m 1 m i∈I δ X i
in combination with the convexity of the transportation cost, to obtain

W p Q 1 n i=1 δ X i , 1 = W p Q 1     n m -1 I⊆{1,...,n} |I|=m 1 m i∈I δ X i , n m -1 I⊆{1,...,n} |I|=m 1     ≤ n m -1 I⊆{1,...,n} |I|=m W p Q 1 1 m i∈I δ X i , 1 .
Taking expectation yields f (1|n) ≤ f (1|m), since for I ⊆ {1, . . . , n} with |I| = m, {X i } i∈I have the same law as {X i } m 1=1 . Let µ be a Poisson point process of intensity one on R d and for L > 1 let N L = µ(Q L ) be a Poisson random variable of parameter L d . For n ≥ 1, we notice that

f (L|n) = E W p Q L µ µ(Q L ) , 1 |Q L | N L = n = L d n f ref (L|n), (6.3) 
where we write, extending the notation from Section 4,

f ref (L|n) = E 1 |Q L | W p Q L (µ, κ) N L = n , with κ = µ(Q L )/|Q L | (and f ref (L|0) = 0). Notice that f ref (L) = E[f ref (L|N L )].
In order to apply Proposition 6.1 and conclude the proof, we argue that lim

L→∞ E f (L|N L ) -f ref (L|N L ) = 0. ( 6.4) 
To this aim, we first bound E [f (L|N L )] uniformly from above as L → ∞. For this we combine the following two simple facts. First, since f (L|n)

L p , letting A L = {N L ≥ |Q L |/2}, we have E [f (L|N L )|A c L ] L p . Second, since by (2.3) P[A L ] 1, E[f (L|N L )|A L ] (6.3) = E L d N L f ref (L|N L ) A L E[f ref (L|N L )] = f ref (L) 1,
where in the last inequality we used that f ref is bounded as a consequence of Theorem 4.1. Therefore,

E[f (L|N L )] = E[f (L|N L )|A c L ]P[A c L ] + E[f (L|N L )|A L ]P[A L ] L p P[A c L ] + 1 (2.3) L p exp(-cL d ) + 1 1.
Using Hölder inequality with 1 q + 1 q = 1, and the fact that

f (L|N L ) L p , E f (L|N L ) -f ref (L|N L ) (6.3) = E N L |Q L | -1 f (L|N L ) ≤ E N L |Q L | -1 q 1 q E [f (L|N L ) q ] 1 q . (2.4) q L -d 2 L p(q-1) q E [f (L|N L )] 1 q q L -d 2 +
p(q-1) q

.

Choosing q close enough to 1, in particular 1 < q < 2p 2p-d if p > d 2 , we get (6.4). Arguing similarly, we obtain the corresponding result for the bi-partite matching on the unit cube, that is Theorem 1.1, which we restate for the reader's convenience. Theorem 6.3. Let d ≥ 3, p ≥ 1, and (X i ) i≥1 , (Y i ) i≥1 , be independent uniform random variables on [0, 1] d . Then,

lim n→∞ n p d E W p [0,1] d 1 n n i=1 δ X i , 1 n n i=1 δ Y i = f bi ∞ ,
with f bi ∞ as in Theorem 5.1. Proof. The proof is very similar to that of Theorem 6.2, but in this case we define the function

f (L|n 1 , n 2 ) = L p E W p [0,1] d 1 n 1 n 1 i=1 δ X i , 1 n 2 n 2 i=1 δ Y i
for n 1 , n 2 ≥ 1, and let f (L|n 1 , n 2 ) = 0 otherwise. It is clearly bounded and p-homogeneous.

Using the identities

1 n 1 n 1 i=1 δ X i = n 1 m 1 -1 n 2 m 2 -1 I 1 ⊆{1,...,n 1 } |I|=m 1 I 2 ⊆{1,...,n 2 } |I|=m 2 1 m 1 i∈I 1 δ X i 1 n 2 n 2 i=1 δ Y i = n 1 m 1 -1 n 2 m 2 -1 I 1 ⊆{1,...,n 1 } |I|=m 1 I 2 ⊆{1,...,n 2 } |I|=m 2 1 m 2 i∈I 2 δ Y i
we obtain monotonicity arguing analogously as in Theorem 6.2. The proof is then concluded as in Theorem 6.2 and we omit the details.

Remark 6.4 (Convergence rates). An inspection of the proof of Proposition 6.1 shows that one can transfer rates of convergence (even only one-sided) from the Poisson case to that of a fixed number of points. In the case of matching to the reference measure this leads to the inequality

f ref ∞ ≤ n p d E W p Q 1 1 n n i=1 δ X i , 1 + Cn 2-d 2d ,
while for the bi-partite matching we obtain

f bi ∞ ≤ n p d E W p Q 1 1 n n i=1 δ X i , 1 n n i=1 δ Y i + Cn 2-d 2dp ,
for some constant C ≥ 0. Besides being one-sided bounds, these are still far from the conjectured rates in [START_REF] Caracciolo | Scaling hypothesis for the Euclidean bipartite matching problem[END_REF], which for p = 2 read

n 2 d E W 2 Q 1 1 n n i=1 δ X i , 1 n n i=1 δ Y i = f bi ∞ + Cn 2-d d + o(n 2-d d ),
with an explicit constant C. Remark 6.5 (Strong convergence). If p < d, standard concentration of measure arguments allow to obtain strong convergence from convergence of the expected values (see also [START_REF] Ambrosio | A PDE approach to a 2-dimensional matching problem[END_REF] for a similar argument in the case p = d = 2). Let us consider for example the case of bi-partite matching, and show that, both P-a.s. and in L 1 (P),

lim n→∞ n p d W p Q 1 1 n n i=1 δ X i , 1 n n i=1 δ Y i = f bi ∞ , (6.5) 
with (X i ) i≥1 , (Y i ) i≥1 independent uniform random variables on Q 1 = [0, 1] d . For any n ≥ 1, the function This relies on the triangle inequality (2.1) and the fact that

(x i ) n i=1 → µ (x i ) n i=1 is n -min 1 2 , 1
p -Lipschitz if we endow the set of probability measures on [0, 1] d with the Wasserstein distance of order p. Indeed, for (x i ) n i=1 , (y i ) n i=1 ∈ [0, 1] d×n , then

W p µ (x i ) n i=1 , µ (y i ) n i=1 ≤ 1 n n i=1 |x i -y i | p 1 p ≤ n -min 1 2 , 1 p n i=1 |x i -y i | 2 1 2
.

Gaussian concentration for the uniform measure on the unit cube [20, Prop. 2.8] yields that if

Z n = n 1 d W p µ (X i ) n i=1 , µ (Y i ) n i=1
, then, for r > 0,

P (|Z n -E [Z n ]| ≥ r) ≤ 2 exp -cn 2 min 1 2 , 1 p -1 d r 2 ,
where c > 0 is an absolute constant. A standard application of Borel-Cantelli Lemma gives that, if 1 ≤ p < d and d ≥ 3, then lim n→∞ (Z n -E [Z n ]) = 0, P-a.s. (6.6)

Moreover, using the layer-cake formula, we obtain the inequality

E [|Z n -E [Z n ]| p ] n p d -min{ p 2 ,1} , (6.7) 
which is infinitesimal as n → ∞. To conclude, it is sufficient to argue that lim n→∞ E [Z n ] = (f bi ∞ ) 1/p , since it yields by (6.7) and (6.6) that lim n→∞ Z n = (f bi ∞ ) 1/p in L p (P) and P-a.s. and hence (6.5). By Theorem 6.2, lim n→∞ E [Z p n ] = f bi ∞ . By Jensen's inequality, lim sup n→∞

E [Z n ] p ≤ lim n→∞ E [Z p n ] = f bi ∞ .
By the elementary inequality (3.2), we have, for any ε > 0,

Z p n ≤ (E [Z n ] + |Z n -E [Z n ] |) p ≤ (1 + ε) E [Z n ] p + C ε p-1 |Z n -E [Z n ] | p .
Taking expectation and letting n → ∞, using (6.7), we obtain

f bi ∞ = lim n→∞ E [Z p n ] ≤ (1 + ε) lim inf n→∞ E [Z n ] p .
Letting ε → 0 we conclude.

. 3 )

 3 Proof. Let φ be a solution of the Poisson equation with Neumann boundary conditions ∆φ = µ -λ in R and ν • ∇φ = 0 on ∂R.(3.4)

Proposition 5 . 3 .

 53 Let λ = X∈Z d δ X and for every L 1, (µ 1 , • • • , µ 2 d ) be 2 d independent Poisson random variables of parameter L d . Writing for L 1,

Proposition 6 . 1 .

 61 Let f : (0, ∞) × N k → [0, ∞), (L, n) → f (L|n), satisfy the following assumptions:(1) (p-homogeneity)f (L|n) = L p f (1|n), for every n ∈ N k , L > 0, (2) (boundedness) f (1|n) 1, for every n ∈ N k , (3) (monotonicity) f (1|n) ≤ f (1|m), for every m, n ∈ N k such that m i ≤ n i for i = 1, . . . , k. Define f (L) = E [f (L|N L )] where N L = (N L,i ) k i=1 are i.i.d.Poisson random variables with parameter L d . Then, lim inf n→∞ n p d f (1|(n, . . . , n)) = lim inf L→∞ f (L), and lim sup n→∞ n p d f (1|(n, . . . , n)) = lim sup L→∞ f (L).

  f (1|(n, . . . , n)) ≤ lim sup L→∞ f (L), and lim inf n→∞ n p d f (1|(n, . . . , n)) ≤ lim inf L→∞ f (L).

[0, 1 ] 1 d 1 pδ

 111 d×2n (x 1 , . . . , x n , y 1 , . . . , y n ) → n W p µ (x i ) n i=1 , µ (y i ) -Lipschitz with respect to the Euclidean distance, where we writeµ (x i ) x i , for x i ∈ [0, 1] d .

  . By Poincaré inequality[START_REF] Leoni | A first course in Sobolev spaces[END_REF] Prop. 12.29] (notice that thanks to the periodic boundary conditions we now have R ∇φ = 0), By interior Calderón-Zygmund estimates (see for instance[START_REF] Giaquinta | An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs[END_REF] Th. 7.3]), periodicity and the fact that R has moderate aspect ratio, we get

	|∇φ| p	|∇ 2 φ| p .
	R	R

R |∇ 2 φ| p R |µ -λ| p + R |∇ 2 φ| 2 p 2
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