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CONVERGENCE OF ASYMPTOTIC COSTS FOR RANDOM

EUCLIDEAN MATCHING PROBLEMS

MICHAEL GOLDMAN AND DARIO TREVISAN

Abstract. We investigate the average minimum cost of a bipartite matching between
two samples of n independent random points uniformly distributed on a unit cube in
d ≥ 3 dimensions, where the matching cost between two points is given by any power
p ≥ 1 of their Euclidean distance. As n grows, we prove convergence, after a suitable
renormalization, towards a finite and positive constant. We also consider the analogous
problem of optimal transport between n points and the uniform measure. The proofs
combine sub-additivity inequalities with a PDE ansatz similar to the one proposed in the
context of the matching problem in two dimensions and later extended to obtain upper
bounds in higher dimensions.

1. Introduction

The aim of this paper is to extend the results of [12, 9, 4, 11] on the existence of
the thermodynamic limit for some random optimal matching problems. Because of their
relations to computer science, statistical physics and quantization of measures, optimal
matching problems have been the subject of intense research both from the mathematical
and physical communities. We refer for instance to [29, 27, 10] for more details in particular
regarding the vast literature.

Probably the simplest and most studied variant of these problems is the bipartite (or
Euclidean bipartite) matching on the unit cube in d dimensions. Given p ≥ 1 and two
independent families of i.i.d. random variables (Xi)i≥1 and (Yi)i≥1 with common law the
uniform (Lebesgue) measure on [0, 1]d, the problem is to understand the behavior for large
n of

E

[
1

n
min
π

n∑
i=1

|Xi − Yπ(i)|p
]
,

where the minimum is taken over all permutations π of {1, . . . , n}. It is by now well-known,
see [1, 4, 6, 21] that for1 n� 1 (see [13] for some non-asymptotic bounds)

E

[
1

n
min
π

n∑
i=1

|Xi − Yπ(i)|p
]
∼


n−

p
2 for d = 1(

logn
n

) p
2

for d = 2

n−
p
d for d ≥ 3.

(1.1)

Let us point out that while the case d ≥ 3, p ≥ d/2 is not explicitly covered in the
literature, the proof of [21] clearly extends to any p 6= 2 (see also [7]). Our main result is
the following:

2010 Mathematics Subject Classification. 60D05, 90C05, 39B62, 60F25, 35J05.
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1The notation A � 1, which we only use in assumptions, means that there exists an ε > 0 only

depending on the dimension d and on p ≥ 1, such that if A ≤ ε then the conclusion holds. Similarly, the
notation A . B, which we use in output statements, means that there exists a global constant C > 0
depending on the dimension d and on p ≥ 1 such that A ≤ CB. We write A ∼ B if both A . B and
B . A.
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2 M. GOLDMAN AND D. TREVISAN

Theorem 1.1. For every d ≥ 3 and p ≥ 1, there exists a constant fbi∞ = fbi∞(p, d) > 0
such that

lim
n→∞

n
p
dE

[
1

n
min
π

n∑
i=1

|Xi − Yπ(i)|p
]

= fbi∞. (1.2)

This extends earlier results of [12, 9, 4, 11] where the same conclusion was obtained
under the more restrictive condition p < d/2. See also [26] for bounds on fbi

∞(1, d) as d
becomes large. As in the previously quoted papers, our proof is based on a sub-additivity
argument and makes use of the classical observation that, thanks to the Birkhoff-Von
Neumann Theorem, the bi-partite matching problem is actually an optimal transport
problem. Indeed, if µ =

∑n
i=1 δXi and λ =

∑n
i=1 δYi are the associated empirical measures,

then

min
π

n∑
i=1

|Xi − Yπ(i)|p = W p
p (µ, λ) ,

where Wp denotes the Wasserstein distance of order p (see [28, 25]). However, the papers
[9, 4, 11] rely then upon combinatorial arguments, and in fact their results apply to a larger
class of random optimization problems, while [12] strongly uses the dual formulation of
optimal transport, which in the case p = 1 is quite specific, since it becomes a maximization
over the set of 1-Lipschitz functions.

The optimal transport point of view allows us to treat the defect in sub-additivity as a
defect in local distribution of mass rather than a defect in local distribution of points. More
precisely, even if µ([0, 1]d) = λ([0, 1]d) it is in general not true that for a given partition
of [0, 1]d in sub-cubes Qi, µ(Qi) = λ(Qi). Therefore, in order to use sub-additivity, one
needs to relax the definition of the matching problem to take into account this disparity.
In [9, 4, 11] this is done by requiring that as many points as possible are matched. Here we
allow instead for varying weights. That is, for µ and λ containing potentially a different
number of points, we consider the problem

E
[
W p
p

(
µ

µ([0, 1]d)
,

λ

λ([0, 1]d)

)]
.

The main sub-additivity argument for this quantity is contained in Lemma 3.1. In order
to estimate the error in sub-additivity, we then use in Lemma 3.4 a PDE ansatz similar
to the one proposed in the context of the matching problem in [10] and then used in [3]
(see also [21, 17, 5]) to show that when d = 2

lim
n→∞

n

log n
E
[

1

n
W 2

2 (µ, λ)

]
=

1

2π
.

Notice however that our use of this linearization ansatz is quite different from [10, 3].
Indeed, for us the main contribution to the transportation cost is given by the transporta-
tion at the smaller scales and linearization is only used to estimate the higher order error
term. On the other hand, in [10, 3] (see also [2]), the main contribution to the cost is
given by the linearized i.e. H−1, cost. This is somewhat in line with the prediction by
[10] that for d ≥ 3, the first order contribution to the Wasserstein cost is not given by the
linearized problem while higher order corrections are. In any case, we give in Proposition
5.3 an alternative argument to estimate the error term without relying on the PDE ansatz.
There we use instead an elementary comparison argument with one-dimensional transport
plans. We included both proofs since we believe that they could prove useful in other
contexts.

Let us make a few more comments on the proof of Theorem 1.1. As in [12, 9, 4], the
proof of (1.2) is actually first done on a variant of the problem where the number of points
follows a Poisson distribution instead of being deterministic. This is due to the fact that
the restriction of a Poisson point process is again a Poisson point process. For this variant
of the problem, rather than working on a fixed cube [0, 1]d with an increasing density of
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points, we prefer to make a blow-up at a scale L = n1/d and consider in Theorem 5.1, a
fixed Poisson point process of intensity 1 on Rd but restricted to cubes QL = [0, L]d with
L� 1 (hence the terminology thermodynamic limit). We believe that the sub-additivity
argument is slightly clearer in these variables (a similar rescaling is actually implicitly used
in [9, 4]). This setting is somewhat reminiscent of [18], where super-additivity is used to
construct an optimal coupling between the Poisson point process and the Lebesgue measure
on Rd. In order to pass from the Poisson version of the problem to the deterministic one,
we prove a general de-Poissonization result in Proposition 6.1 which can hopefully be
useful in other contexts.

Besides the bipartite matching we also treat in Theorem 4.1 and Theorem 6.2 the case
of the matching to the reference measure. We actually treat this problem first since the
proof is a bit simpler. Indeed, while the general scheme of the proof is identical to the
bipartite case, the PDE ansatz used in Lemma 3.4 works well for “regular” measures and
a more delicate argument is required for the bipartite matching. Notice that by Jensen
and triangle inequalities, (1.1) also holds for the matching to the reference measure.

We point out that in [12, 4, 11], it is more generally proven that if the points Xi and Yi
have a common law µ supported in [0, 1]d instead of the Lebesgue measure (for measures
with unbounded support a condition on the moments is required), then for 1 ≤ p < d/2
and d ≥ 3,

lim sup
n→∞

n
p
dE

[
1

n
min
π

n∑
i=1

|Xi − Yπ(i)|p
]
≤ fbi
∞

∫
[0,1]d

(
dµ

dx

)1− p
d

.

However, when p > d/2 and without additional assumptions on µ, the asymptotic rate
may be different and thus this inequality may fail, see e.g. [13]. Positive results for
specific densities can be obtained nonetheless. For instance, it is proven in [22] that for
the standard Gaussian measure µ on Rd, d ≥ 3, the asymptotic bound

n
p
dE

[
1

n
min
π

n∑
i=1

|Xi − Yπ(i)|p
]
∼ 1

holds true also for d/2 ≤ p < d.
Finally, we notice that usual results on concentration of measure allow us to improve

from convergence of the expectations to strong convergence. However, we are able to cover
only the case 1 ≤ p < d, see Remark 6.5.

The plan of the paper is the following. In Section 2, we fix some notation and recall basic
moment and concentration bounds for Poisson random variables. In Section 3, we state
and prove our two main lemmas namely the sub-additivity estimate Lemma 3.1 and the
error estimate Lemma 3.4. In Section 4, we then prove the existence of the thermodynamic
limit for the matching problem of a Poisson point process to the reference measure. The
analog result for the bipartite matching between two Poisson point processes is obtained in
Section 5. Finally, in Section 6 we pass from the Poissonized problem to the deterministic
one and discuss stronger convergence results.

2. Notation and preliminary results

We use the notation |A| for the Lebesgue measure of a Borel set A ⊆ Rd, and
∫
A f for

the Lebesgue integral of a function f on A. For L > 0, we let QL = [0, L]d. We denote by
|p| the Euclidean norm of a vector p ∈ RN . For a function φ, we use the notation ∇φ for
the gradient, ∇ · φ for the divergence, ∆φ for the Laplacian and ∇2φ for the Hessian.

2.1. Optimal transport. In this section we introduce some notation for the Wasserstein
distance and recall few simple properties that will be used throughout. Proofs can be found
in any of the monographs [28, 25, 24] with expositions of theory of optimal transport, from
different perspectives.
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Given p ≥ 1, a Borel subset Ω ⊆ Rd and two positive Borel measures µ, λ with
µ(Ω) = λ(Ω) ∈ (0,∞) and finite p-th moments, the Wasserstein distance of order p ≥ 1
between µ and λ is defined as the quantity

Wp(µ, λ) =

(
min

π∈C(µ,λ)

∫
Rd×Rd

|x− y|pdπ(x, y)

) 1
p

,

where C(µ, λ) is the set of couplings between µ and λ. Moreover, if µ(Ω) = λ(Ω) = 0, we
define Wp(µ, λ) = 0, while if µ(Ω) 6= λ(Ω), we let Wp(µ, λ) =∞.
Let us recall that since Wp is a distance, we have the triangle inequality

Wp(µ, ν) ≤Wp(µ, λ) +Wp(ν, λ). (2.1)

We will also use the classical sub-additivity inequality

W p
p

(∑
i

µi,
∑
i

λi

)
≤
∑
i

W p
p (µi, λi), (2.2)

for a finite set of positive measures µi, λi. This follows from the observation that if
πi ∈ C(µi, λi), then

∑
i πi ∈ C(

∑
i µi,

∑
i λi).

Remark 2.1. In fact, our results deal with the transportation cost W p
p (µ, λ) rather than

Wp(µ, λ). To keep notation simple, we write

W p
Ω(µ, λ) = W p

p (µ
¬
Ω, λ

¬
Ω).

Moreover, if a measure is absolutely continuous with respect to Lebesgue measure, we only
write its density. For example,

W p
Ω

(
µ,
µ(Ω)

|Ω|

)
,

denotes the transportation cost between µ
¬
Ω to the uniform measure on Ω with total

mass µ(Ω).

Occasionally we may write WΩ(µ, λ) instead of
(
W p

Ω(µ, λ)
)1/p

. This may lead to some
ambiguity, but it should be clear from the context.

2.2. Poisson point processes. As in [12, 9, 4], we exploit invariance properties of Pois-
son point processes on Rd with uniform intensity in order to obtain simpler sub-additivity
estimates. We refer e.g. to [19] for a general introduction to Poisson point processes. Here
we only recall that a Poisson point process on Rd with intensity one can be defined as a
random variable taking values on locally finite atomic measures

µ =
∑
i

δXi

such that, for every k ≥ 1, for any disjoint Borel sets A1, . . . , Ak ⊆ Rd, the random vari-
ables µ(A1), . . . , µ(Ak) are independent and µ(Ai) has a Poisson distribution of parameter
|Ai|, for every i = 1, . . . , k. In particular, if A ⊆ Rd is Lebesgue negligible, then µ(A) = 0
almost surely.

Existence of a Poisson point process of intensity one is obtained via a superposition
argument, noticing that on every bounded subset Ω ⊆ Rd the law of µ

¬
Ω can be easily

described: conditionally on µ(Ω) = n, the measure µ
¬
Ω has the same law as the random

measure
n∑
i=1

δXi ,

where (Xi)
n
i=1 are independent random variables with uniform law on Ω. Uniqueness in

law can be also obtained, so that translation invariance of Lebesgue measure entails that
the process is stationary, i.e., any deterministic translation of the random measure µ leaves
its law unchanged.
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Let us finally recall the classical Cramér-Chernoff concentration bounds for Poisson
random variables.

Lemma 2.2. Let N be a Poisson random variable with parameter n� 1. Then, for every
t > 0

P[|N − n| ≥ t] ≤ 2 exp

(
− t2

2(t+ n)

)
. (2.3)

As a consequence, for every q ≥ 1,

E [|N − n|q] .q n
q
2 . (2.4)

Proof. For the concentration bound (2.3), see for instance [8]. By the layer-cake represen-
tation,

E [|N − n|q] .
∫ ∞

0
tq−1 exp

(
− t2

2(t+ n)

)
dt

.
∫ √n

0
tq−1dt+

∫ n

√
n
tq−1 exp

(
−ct

2

n

)
dt+

∫ ∞
n

tq−1 exp(−ct)dt

.q n
q
2 + n

q
2 + nq−1 exp(−cn) .q n

q
2 .

�

3. The main lemmas

Our sub-additivity argument rests on a general but relatively simple lemma (which we
only apply here for rectangles).

Lemma 3.1. For every p ≥ 1, there exists a constant C > 0 depending only on p such
that the following holds. For every Borel set Ω ⊂ Rd, every Borel partition (Ωi)i∈N of Ω,
every measures µ, λ on Ω, and every ε ∈ (0, 1),

W p
Ω

(
µ,
µ(Ω)

λ(Ω)
λ

)
≤ (1 + ε)

∑
i

W p
Ωi

(
µ,
µ(Ωi)

λ(Ωi)
λ

)
+

C

εp−1
W p

Ω

(∑
i

µ(Ωi)

λ(Ωi)
χΩiλ,

µ(Ω)

λ(Ω)
λ

)
.

(3.1)

Proof. We first use the triangle inequality (2.1) to get

W p
Ω

(
µ,
µ(Ω)

λ(Ω)
λ

)
≤

(
WΩ

(
µ,
∑
i

µ(Ωi)

λ(Ωi)
χΩiλ

)
+WΩ

(∑
i

µ(Ωi)

λ(Ωi)
χΩiλ,

µ(Ω)

λ(Ω)
λ

))p
.

The proof is then concluded by combining the elementary inequality

(a+ b)p ≤ (1 + ε)ap +
C

εp−1
bp ∀a, b > 0 and ε ∈ (0, 1), (3.2)

with the sub-additivity of W p
Ω (2.2) in the form

W p
Ω

(
µ,
∑
i

µ(Ωi)

λ(Ωi)
χΩiλ

)
≤
∑
i

W p
Ωi

(
µ,
µ(Ωi)

λ(Ωi)
λ

)
.

�

Remark 3.2. Alternatively, we could have also stated (3.1) in the slightly more symmetric
form:

W p
Ω

(
µ

µ(Ω)
,

λ

λ(Ω)

)
≤ (1 + ε)

∑
i

µ(Ωi)

µ(Ω)
W p

Ωi

(
µ

µ(Ωi)
,

λ

λ(Ωi)

)

+
C

εp−1
W p

Ω

(
1

µ(Ω)

∑
i

µ(Ωi)

λ(Ωi)
χΩiλ,

λ

λ(Ω)

)
.
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However, the sub-additivity argument turns out to be a little bit simpler using (3.1)
instead.

Lemma 3.1 shows that in order to estimate the defect in sub-additivity, it is enough
to bound the local defect of mass distribution. This will be done here through a PDE
argument.

Definition 3.3. We say that a rectangle R = x+
∏d
i=1[0, Li] is of moderate aspect ratio if

for every i, j, Li/Lj ≤ 2. A partition R = {Ri} of R is called admissible if for every i, Ri
is a rectangle of moderate aspect ratio and 3−d|R| ≤ |Ri| ≤ |R|. Notice that in particular
#R . 1 for every admissible partition.

Lemma 3.4. Let R be a rectangle of moderate aspect ratio, µ and λ be measures on R with
equal mass, both absolutely continuous with respect to Lebesgue and such that infR λ > 0.
Then, for every p ≥ 1

W p
R(µ, λ) .

diamp(R)

(infR λ)p−1

∫
R
|µ− λ|p. (3.3)

Proof. Let φ be a solution of the Poisson equation with Neumann boundary conditions

∆φ = µ− λ in R and ν · ∇φ = 0 on ∂R. (3.4)

We first argue that

W p
R(µ, λ) .

1

(infR λ)p−1

∫
R
|∇φ|p. (3.5)

Let us point out that this estimate is well-known and has already been used in the context
of the matching problem, see [3, 17] in the case p = 2 and [21, Th. 2] for general p ≥ 1.
Still, we give a proof for the reader’s convenience.
We first argue as in [17, Lem. 2.7], and use triangle inequality (2.1) and the monotonicity
of WR (2.2) to get

WR(µ, λ) ≤WR

(
µ,

1

2
(µ+ λ)

)
+WR

(
1

2
(µ+ λ), λ

)
≤WR

(
1

2
µ,

1

2
λ

)
+WR

(
1

2
(µ+ λ), λ

)
= 2

− 1
p (WR(µ, λ) +WR(µ+ λ, 2λ))

and thus
WR(µ, λ) .WR(µ+ λ, 2λ).

We now recall that by the Benamou-Brenier formula (see [25, Th. 5.28])

W p
R(µ+ λ, 2λ) = min

ρ,j

{∫ 1

0

∫
R

1

ρp−1
|j|p : ∂tρ+∇ · j = 0, ρ0 = µ+ λ, ρ1 = 2λ

}
.

Estimate (3.5) follows using

ρt = (1− t)µ+ tλ+ λ and j = ∇φ
as competitor and noticing that for t ∈ [0, 1], ρt ≥ infR λ.
We now claim that ∫

R
|∇φ|p . diamp(R)

∫
R
|µ− λ|p, (3.6)

which together with (3.5) would conclude the proof of (3.3). Estimate (3.6) is a direct
consequence of Poincaré inequality and Calderón-Zygmund estimates for the Laplacian.
However, since we did not find a precise reference for (global) Calderón-Zygmund estimates
on rectangles with Neumann boundary conditions, we give here a short proof.
By scaling, we may assume that diam(R) = 1. Furthermore, using even reflections along
∂R we may replace Neumann boundary conditions by periodic ones in (3.4). By Poincaré
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inequality [23, Prop. 12.29] (notice that thanks to the periodic boundary conditions we
now have

∫
R∇φ = 0), ∫

R
|∇φ|p .

∫
R
|∇2φ|p.

By interior Calderón-Zygmund estimates (see for instance [15, Th. 7.3]), periodicity and
the fact that R has moderate aspect ratio, we get∫

R
|∇2φ|p .

∫
R
|µ− λ|p +

(∫
R
|∇2φ|2

) p
2

.

By Bochner’s formula and Hölder inequality,∫
R
|∇2φ|2 =

∫
R
|µ− λ|2 .

(∫
R
|µ− λ|p

) 2
p

,

which concludes the proof of (3.6). �

Remark 3.5. For p = 2, combining the energy identity∫
R
|∇φ|2 =

∫
R
φ(λ− µ)

with Poincaré inequality, we see that (3.6) (and thus (3.3)) holds for any convex set R.
Although the situation for p ≥ 2 is more subtle, see [14, Prop. 2], we believe that (3.6)
holds for any rectangle, not necessarily of moderate aspect ratio.

4. Matching to the reference measure

In this section, we consider the optimal matching problem between µ a Poisson point
process on Rd with intensity one and the Lebesgue measure. More precisely, for every
L ≥ 1 we let

f ref(L) = E
[

1

|QL|
W p
QL

(µ, κ)

]
,

where QL = [0, L]d and

κ =
µ(QL)

|QL|
is the generic constant for which this is well defined.

Theorem 4.1. For every d ≥ 3 and p ≥ 1, the limit

f ref
∞ = lim

L→∞
f ref(L)

exists and is strictly positive. Moreover, there exists C > 0 depending on p and d such
that for L ≥ 1,

f ref
∞ ≤ f ref(L) +

C

L
d−2
2

. (4.1)

The proof follows the argument of [9] (see also [4]) and is mostly based on the following
sub-additivity estimate.

Proposition 4.2. For every d ≥ 3 and p ≥ 1, there exists a constant C > 0 such that for
every L ≥ 1 and m ∈ N,

f ref(mL) ≤ f ref(L) +
C

L
d−2
2

. (4.2)
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Proof. We start by pointing out that since f ref(L) . Lp, it is not restrictive to assume
that L� 1 in the proof of (4.2).

Step 1. [The dyadic case] For the sake of clarity, we start with the simpler case m = 2k

for some k ≥ 1. We claim that

f ref(2L) ≤ f ref(L) +
C

L
d−2
2

. (4.3)

The desired estimate (4.2) would then follow iterating (4.3) and using that
∑

k≥0
1

2k(d−2) <

∞ for d ≥ 3. In order to prove (4.3), we divide the cube Q2L in 2d sub-cubes Qi = xi+QL
and let κi = µ(Qi)

|QL| (and κ = µ(Q2L)
|Q2L| ). Notice that we are considering a partition up to a

Lebesgue negligible remainder, which gives no contribution almost surely. By (3.1), for
every ε ∈ (0, 1),

W p
Q2L

(µ, κ) ≤ (1 + ε)
∑
i

W p
Qi

(µ, κi) +
C

εp−1
W p
Q2L

(∑
i

κiχQi , κ

)
.

Dividing by |Q2L|, taking expectations and using the fact that by translation invariance
E[ 1
|QL|W

p
Qi

(µ, κi)] = f ref(L), we get

f ref(2L) ≤ (1 + ε)
∑
i

|QL|
|Q2L|

f ref(L) +
C

εp−1
E

[
1

|Q2L|
W p
Q2L

(∑
i

κiχQi , κ

)]

= (1 + ε)f ref(L) +
C

εp−1
E

[
1

|Q2L|
W p
Q2L

(∑
i

κiχQi , κ

)]
.

We now estimate E[ 1
|Q2L|W

p
Q2L

(
∑

i κiχQi , κ)]. Using 1
|Q2L|W

p
Q2L

(
∑

i κiχQi , κ) . Lpκ to-

gether with

P
[
κ ≤ 1

2

]
≤ exp(−cLd),

which follows from the Cramér-Chernoff bounds (2.3), we may reduce ourselves to the
event {κ ≥ 1

2}. Under this condition, by (3.3), we have

1

|Q2L|
W p
Q2L

(∑
i

κiχQi , κ

)
.
Lp

Ld

∫
Q2L

∑
i

|κi − κ|pχQi

. Lp
(
|κ− 1|p +

∑
i

|κi − 1|p
)
.

Recalling that µ(Qi) are Poisson random variables of parameter |Qi| and that κi = µ(Qi)
|Qi| ,

we get from (2.4)

E [|κ− 1|p] ∼ E [|κi − 1|p] . 1

L
pd
2

.

Thus

E

[
1

|Q2L|
W p
Q2L

(∑
i

κiχQi , κ

)]
.

1

L
p
2

(d−2)
(4.4)

and we conclude that for ε ∈ (0, 1),

f ref(2L) ≤ (1 + ε)f ref(L) +
C

εp−1

1

L
p
2

(d−2)
. (4.5)

Optimizing in ε by choosing ε = L−(d−2)/2, and using that f ref(L) is bounded (by (1.1)
and (2.3), see for instance [16, Prop. 2.7] for details) we conclude the proof of (4.3). Let
us point out that we used here boundedness of f ref(L) for simplicity but that as shown
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below it can also be obtained as a consequence of our proof.

Step 2.[The general case] We now consider the case when m ∈ N is not necessarily
dyadic. We will partition QmL into rectangles of almost dyadic size and thus need to
deal with slightly more general configurations than dyadic cubes. Let us introduce some
notation. Let R be a rectangle with moderate aspect ratio and R = {Ri} be an admissible
partition of R (recall Definition 3.3). Slightly abusing notation, we define

f ref(R) = E
[

1

|R|
W p
R(µ, κ)

]
. (4.6)

Step 2.1. We claim that the following variant of (4.5) holds: for every rectangle R of
moderate aspect ratio with |R| � 1, every admissible partitionR of R and every ε ∈ (0, 1),
we have

f ref(R) ≤ (1 + ε)
∑
i

|Ri|
|R|

f ref(Ri) +
C

εp−1

1

|R|
p(d−2)

2d

. (4.7)

Defining κi = µ(Ri)
|Ri| and using (3.1) as above, we get

f ref(R) ≤ (1 + ε)
∑
i

|Ri|
|R|

f ref(Ri) +
C

εp−1
E

[
1

|R|
W p
R

(∑
i

κiχRi , κ

)]
.

The estimate

E

[
1

|R|
W p
R

(∑
i

κiχRi , κ

)]
.

1

|R|
p(d−2)

2d

(4.8)

is then obtained arguing exactly as for (4.4), using first the Crámer-Chernoff bound (2.3)

to reduce to the event {κ ≥ 1
2} and then (3.3) (recalling that diam(R) ∼ |R|

1
d since R has

moderate aspect ratio) in combination with (2.4) and the fact that #R . 1 since R is an
admissible partition.

Step 2.2. Starting from the cube QmL, let us construct a sequence of finer and finer
partitions of QmL by rectangles of moderate aspect ratios and side-length given by integer
multiples of L. We let R0 = {QmL} and define Rk inductively as follows. Let R ∈ Rk.
Up to translation we may assume that R =

∏d
i=1(0,miL) for some mi ∈ N. We then

split each interval (0,miL) into (0, bmi2 cL) ∪ (bmi2 cL,miL). It is readily seen that this
induces an admissible partition of R. Let us point out that when mi = 1 for some i, the
corresponding interval (0, bmi2 cL) is empty. This procedure stops after a finite number of

steps K once RK = {QL+zi, zi ∈ [0,m−1]d}. It is also readily seen that 2K−1 < m ≤ 2K

and that for every k ∈ [0,K] and every R ∈ Rk we have |R| ∼ (2K−kL)d.
Let us prove by a downward induction that there exists Λ > 0 such that for every k ∈ [0,K]
and every R ∈ Rk,

f ref(R) ≤ f ref(QL) + Λ(1 + f ref(QL))L−
d−2
2

K∑
j=K−k

2−j
d−2
2 . (4.9)
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This is clearly true for k = K. Assume that it holds true for k+ 1. Let R ∈ Rk. Applying
(4.7) with ε = (2K−kL)−(d−2)/2 � 1, we get

f ref(R) ≤ (1 + ε)
∑

Ri∈Rk+1,Ri⊂R

|Ri|
|R|

f ref(Ri) +
C

ε

1

|R|
p(d−2)

2d

(4.9)

≤ (1 + ε)

f ref(QL) + Λ(1 + f ref(QL))L−
d−2
2

K∑
j=K−k+1

2−j
d−2
2

+ C(2K−kL)−
d−2
2

≤ f ref(QL) + Λ(1 + f ref(QL))L−
d−2
2

×

 K∑
j=K−k+1

2−j
d−2
2 + 2−(K−k) d−2

2

C
Λ

+ L−
d−2
2

K∑
j=K−k+1

2−j
d−2
2

 .
If L is large enough, then (

∑K
j=K−k+1 2−j

d−2
2 )L−(d−2)/2 ≤ 1

2 . Finally, choosing Λ ≥ 2C

yields (4.9).

Applying (4.9) to R = QmL and using that
∑

j≥0 2−j
d−2
2 <∞, we get

f ref(mL) ≤ f ref(L) + C(1 + f ref(L))
1

L
d−2
2

.

Since f ref(L) . Lp, writing that every L� 1 may be written as L = mL′ for some m ∈ N
and L′ ∈ [1, 2], we conclude that f ref(L) is bounded and thus (4.2) follows. �

Remark 4.3. We point out that as a consequence of the proof of Proposition 4.2 we have
for every rectangle R of moderate aspect ratio (recall definition (4.6))

f ref(R) . 1. (4.10)

We can now prove Theorem 4.1

Proof of Theorem 4.1. The existence of a limit f ref
∞ is obtained from (4.2) arguing exactly

as in [9] using the continuity of L 7→ f ref(L) (which can be obtained for instance by
dominated convergence). The fact that f ref(L) & 1 and thus f ref

∞ > 0 follows from (1.1)
and (2.3). Finally, (4.1) follows from (4.2) by sending m→∞ for fixed L.

�

Remark 4.4. It may be conjectured from [10] that

|f ref(L)− f ref
∞ | .

1

Ld−2
.

Let us notice that if we could replace the term ε−(p−1) in (4.5) by a constant then letting
ε→ 0 we would get the lower bound

f ref(L)− f ref
∞ & −

1

L
p(d−2)

2

,

which, at least for p = 2, is in line with the conjectured rate. See also Remark 6.4 for
rates in the case of a deterministic number of points.

5. Bi-partite matching

We now turn to the bi-partite matching. For µ and λ two independent Poisson point
processes of intensity one, we want to study the asymptotic behavior as L→∞ of

fbi(L) = E
[

1

|QL|
W p
QL

(µ, κλ)

]
,

with κ = µ(QL)
λ(QL) . Analogously to Theorem 4.1, we have:
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Theorem 5.1. For every d ≥ 3 and p ≥ 1, the limit

fbi∞ = lim
L→∞

fbi(L)

exists and is strictly positive. Moreover, there exists C > 0 depending on p and d such
that for L ≥ 1,

fbi∞ ≤ fbi(L) +
C

L
d−2
2p

.

The proof of Theorem 5.1 follows the same line of arguments as for Theorem 4.1. We
only detail the estimate of the sub-additivity defect i.e. the counterpart of (4.8), since it
is more delicate in the bipartite case.

Proposition 5.2. Let R be a rectangle of moderate aspect ratio with |R| � 1 and R =

{Ri} be an admissible partition of R (recall Definition 3.3). Defining κi = µ(Ri)
λ(Ri)

and

κ = µ(R)
λ(R) , we have for every d ≥ 3 and p ≥ 1,

E

[
1

|R|
W p
R

(∑
i

κiχRiλ, κλ

)]
.

1

|R|
d−2
2d

. (5.1)

Proof. As opposed to (4.8), since λ is atomic, we cannot directly use (3.3). The idea is to
use as intermediate step the matching between λ and the reference measure. Let us point

out that since f ref(Ri) = E
[

1
|Ri|W

p
Ri

(
λ, λ(Ri)
|Ri|

)]
is of order one, we cannot apply naively

the triangle inequality. The main observation is that since |κi−κ| � 1 with overwhelming
probability, the amount of mass which actually needs to be transported is very small.

Let 1� θ > 0 to be optimized later on. For every i let

θi := (κ− κi) + θ

and assume that

θ ≥ 2 max
i
|κ− κi| (5.2)

so that 3
2θ ≥ θi ≥ 1

2θ > 0. Notice that thanks to the Crámer-Chernoff bounds (2.3),

(5.2) is satisfied with overwhelming probability as long as θ � |R|−1/2. Using the triangle
inequality (2.1) we have

W p
R

(∑
i

κiχRiλ, κλ

)

.W p
R

(∑
i

κiχRiλ,
∑
i

χRi

[
(κi − θ)λ+ θ

λ(Ri)

|Ri|
dx

])

+W p
R

(∑
i

χRi

[
(κi − θ)λ+ θ

λ(Ri)

|Ri|
dx

]
,
∑
i

χRi

[
(κi − θ)λ+ θi

λ(Ri)

|Ri|
dx

])

+W p
R

(∑
i

χRi

[
(κi − θ)λ+ θi

λ(Ri)

|Ri|
dx

]
, κλ

)
.

Notice that
∑

i θλ(Ri) =
∑

i θiλ(Ri) by definition of θi and the fact that κλ(R) = µ(R) =∑
i κiλ(R) so that the second term is well defined.

We now estimate the three terms separately. The first and third are estimated in a similar
way and we thus focus only on the first one. By sub-additivity (2.2) of W p

R, we have

W p
R

(∑
i

κiχRiλ,
∑
i

χRi

[
(κi − θ)λ+ θ

λ(Ri)

|Ri|
dx

])
≤ θ

∑
i

W p
Ri

(
λ,
λ(Ri)

|Ri|

)
.
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We turn to the middle term. Again by sub-additivity of W p
R,

W p
R

(∑
i

χRi

[
(κi − θ)λ+ θ

λ(Ri)

|Ri|
dx

]
,
∑
i

χRi

[
(κi − θ)λ+ θi

λ(Ri)

|Ri|
dx

])

≤W p
R

(∑
i

χRiθ
λ(Ri)

|Ri|
,
∑
i

χRiθi
λ(Ri)

|Ri|

)
.

Using (3.3) in the event {λ(Ri)/|Ri| ∼ 1} (which has overwhelming probability) and
recalling that we assumed 3

2θ ≥ θi ≥
1
2θ, we have

W p
R

(∑
i

χRiθ
λ(Ri)

|Ri|
,
∑
i

χRiθi
λ(Ri)

|Ri|

)
.

diamp(R)

θp−1

∑
i

|κ− κi|p |Ri|.

Putting these two estimates together, dividing by |R| and taking expectations we find

E

[
1

|R|
W p
R

(∑
i

κiχRiλ, κλ

)]
. θ

∑
i

f ref(Ri) +
diamp(R)

θp−1

∑
i

E [|κ− κi|p]

(4.10)&(2.4)

. θ +
1

θp−1

1

|R|p
(d−2)
2d

.

Optimizing in θ by choosing θ = |R|−
d−2
2d � |R|−1/2 (so that (5.2) is satisfied) this yields

(5.1).
�

Comparing (4.4) and (5.1), one may wonder if (5.1) is suboptimal and could be im-
proved. Let us prove that it is not the case, at least if we consider the slightly more
regular situation of the matching to a deterministic grid.

Proposition 5.3. Let λ =
∑

X∈Zd δX and for every L� 1, (µ1, · · · , µ2d) be 2d indepen-

dent Poisson random variables of parameter Ld. Writing for L� 1, Q2L = ∪2d
i=1Qi where

Qi are disjoint cubes of sidelength L and defining κi = µi
λ(Qi)

, κ =
∑
i µi

λ(Q2L) , we have for

d ≥ 3 and p ≥ 1,

E

[
1

|Q2L|
W p
Q2L

(∑
i

κiχQiλ, κλ

)]
∼ 1

L
d−2
2

.

Proof. Step 1.[The lower bound] We start by proving that

E

[
1

|Q2L|
W p
Q2L

(∑
i

κiχQiλ, κλ

)]
&

1

L
d−2
2

. (5.3)

For this we notice that if π is any admissible coupling, then |x− y| ≥ 1 for every (x, y) in
the support of π with x 6= y and thus2

W p
Q2L

(∑
i

κiχQiλ, κλ

)
≥W 1

Q2L

(∑
i

κiχQiλ, κλ

)
.

Let Σ = ∪i∂Qi ∩ Q2L and εi = sign(κi − κ). Using ξ(x) = d(x,Σ)
∑

i εiχQi(x) as test
function in the dual formulation of W 1

Q2L
, we obtain

W 1
Q2L

(∑
i

κiχQiλ, κλ

)
≥
∑
i

∑
X∈Zd∩Qi

d(X,Σ)|κi − κ| & Ld+1
∑
i

|κi − κ|.

2recall that W 1
Q2L

denotes the 1−Wasserstein distance.
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Taking expectations we find (5.3).

Step 2.[The upper bound] We turn to the corresponding upper bound,

E

[
1

|Q2L|
W p
Q2L

(∑
i

κiχQiλ, κλ

)]
.

1

L
d−2
2

. (5.4)

One could argue exactly as for (5.1) but we provide an alternative proof which uses a
one-dimensional argument instead of (3.3). Notice that this argument could have also
been used to give a different proof of (4.4).

Step 2.1.[The one-dimensional estimate] Let λ =
∑

X∈Z δX and for κ1, κ2 > 0 and

L � 1, define κ = κ1λ(0,L/2)+κ2λ(L/2,L)
λ(0,L) . We claim that if |κ1 − κ2| � L−1 min(κ1, κ2),

then

W p
(0,L)

(
κ1χ(0,L/2)λ+ κ2χ(L/2,L)λ, κλ

)
. L2|κ1 − κ2|. (5.5)

Let us assume without loss of generality that κ1 ≥ κ2. The optimal transport map
is essentially symmetric around L/2 and is given in (0, L/2) by sending a mass (k +

1)λ(L/2,L)
λ(0,L) (κ1 − κ2) from position k to k + 1 (which is admissible since by hypothesis

k|κ1 − κ2| � min(κ1, κ2)) so that

W p
(0,L)(µ, λ) .

L/2∑
k=0

k|κ1 − κ2| ∼ L2|κ1 − κ2|.

This proves (5.5).

Step 2.2.[Proof of (5.4)] The proof is made recursively by layers. In the first step, we
pass from 2d cubes to 2d−1 rectangles of the form x + (0, L) × (0, L/2)d−1. For this we
remark that for every cube Qi there is exactly one cube Qj such that Qj = Qi± L

2 e1 (where

ei is the canonical basis of Rd). Let us focus on Q1 = (0, L/2)d and Q2 = L
2 e1 +Q1. Let

R = Q1 ∪Q2 = (0, L)× (0, L/2)d−1. Define κ̂ = κ1λ(Q1)+κ2λ(Q2)
λ(R) = µ1+µ2

λ(R) . We claim that

E
[

1

|R|
W 2
R (κ1χQ1λ+ κ2χQ2λ, κ̂λ)

]
.

1

L
d−2
2

.

For this we notice that in R, the measures κ1χQ1λ + κ2χQ2λ and κ̂λ are constant in the
directions orthogonal to e1 and thus

1

|R|
W p
R (κ1χQ1λ+ κ2χQ2λ, κ̂λ) .

1

L
W p

(0,L)

(
κ1χ(0,L/2)λ+ κ2χ(L/2,L)λ, κ̂λ

)
.

Since κi = µi
λ(Qi)

, by the Cramér-Chernoff bounds (2.3), we have |κi − 1| = O(L−d/2) with

overwhelming probability. Hence, if d ≥ 3 we may apply (5.5) to get

E
[

1

|R|
W p
R (κ1χQ1λ+ κ2χQ2λ, κ̂λ)

]
. LE[|κ1 − κ2|] .

1

L
d−2
2

which proves the claim.
We finally iterate this this argument 2d times. At every step k we have 2d−k rectangles of
the form x+ (0, L)k× (0, L/2)d−k and each iteration has a cost of the same order (namely

L−(d−2)/2). Using triangle inequality this concludes the proof of (5.4).
�

Remark 5.4. Notice that in the proof of (5.5), we locally move a mass of order L−(d−2)/2

which corresponds to the optimal choice of θ in the proof of (5.1).
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6. De-Poissonization

In this section we discuss how to transfer limit results from matching problems with
Poisson point process, i.e., with a random number of points, to those of with a deterministic
number of points.

We use the following general result.

Proposition 6.1. Let f : (0,∞) × Nk → [0,∞), (L, n) 7→ f(L|n), satisfy the following
assumptions:

(1) (p-homogeneity) f(L|n) = Lpf(1|n), for every n ∈ Nk, L > 0,
(2) (boundedness) f(1|n) . 1, for every n ∈ Nk,
(3) (monotonicity) f(1|n) ≤ f(1|m), for every m,n ∈ Nk such that mi ≤ ni for

i = 1, . . . , k.

Define
f(L) = E [f(L|NL)]

where NL = (NL,i)
k
i=1 are i.i.d. Poisson random variables with parameter Ld. Then,

lim inf
n→∞

n
p
d f(1|(n, . . . , n)) = lim inf

L→∞
f(L), and lim sup

n→∞
n
p
d f(1|(n, . . . , n)) = lim sup

L→∞
f(L).

Proof. Let 0 < δ < Ld and introduce the event

A =
{
|NL,i − Ld| < δ for i = 1, . . . , k

}
.

By independence and Poisson tail bounds (2.3),

P(A) ≥
(

1− 2 exp

(
−1

2

δ2

Ld + δ

))k
. (6.1)

We decompose

f(L) = E [f(L|NL)|A]P(A) + E [f(L|NL)|Ac]P(Ac).

If A holds, we use monotonicity of f(L|n) to argue that

Lpf(1|a) ≤ E [f(L|NL)|A] ≤ Lpf(1|b),
where a = Ld + δ, b = Ld − δ. Otherwise, we use (1) and (2) to obtain

0 ≤ E [f(L|NL)|Ac] ≤ Lp.
Combining these inequalities, we have

Lpf(1|a)P(A) ≤ f(L) ≤ Lp (f(1|b) + (1− P(A))) . (6.2)

For any n ≥ 1, let L = L(n) be such such that Ld + Ld/2
√

2β logL = n, for some fixed

β > p. Then, we have from (6.2) with δ = Ld/2
√

2β logL,

f(1|n) ≤ f(L)

LpP(A)
.

As n→∞, we have

n
p
d

Lp
= (1 + L−

d
2

√
2β logL)

p
d = 1 +O

(√
log n

n

)
.

Moreover, by (6.1),

P(A) ≥
(

1− 2 exp

(
−1

2

δ2

Ld + δ

))k
= 1−O(L−β) = 1−O

(
n−

β
d

)
.

It follows that

lim sup
n→∞

n
p
d f(1|(n, . . . , n)) ≤ lim sup

L→∞
f(L), and lim inf

n→∞
n
p
d f(1|(n, . . . , n)) ≤ lim inf

L→∞
f(L).
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To obtain the converse inequalities, we argue analogously choosing instead L = L(n) such

that Ld − Ld/2
√

2β logL = n. �

We now apply Proposition 6.1 to matching problems. Let us first consider the case of
matching to the reference measure.

Theorem 6.2. Let d ≥ 3, p ≥ 1, and (Xi)i≥1 be i.i.d. uniform random variables on [0, 1]d.
Then,

lim
n→∞

n
p
dE

[
W p

[0,1]d

(
1

n

n∑
i=1

δXi , 1

)]
= f ref
∞ ,

with f ref
∞ as in Theorem 4.1.

Proof. Recalling the notation Q1 = [0, 1]d, we introduce the function

f(L|n) = LpE

[
W p
Q1

(
1

n

n∑
i=1

δXi , 1

)]
, if n ≥ 1,

and f(L|0) = 0. It is clearly bounded and p-homogeneous in the sense of Proposition 6.1.
To show monotonicity, let 1 ≤ m ≤ n and use the identity

1

n

n∑
i=1

δXi =

(
n

m

)−1 ∑
I⊆{1,...,n}
|I|=m

1

m

∑
i∈I

δXi

in combination with the convexity of the transportation cost, to obtain

W p
Q1

(
n∑
i=1

δXi , 1

)
= W p

Q1

(nm
)−1 ∑

I⊆{1,...,n}
|I|=m

1

m

∑
i∈I

δXi ,

(
n

m

)−1 ∑
I⊆{1,...,n}
|I|=m

1


≤
(
n

m

)−1 ∑
I⊆{1,...,n}
|I|=m

W p
Q1

(
1

m

∑
i∈I

δXi , 1

)
.

Taking expectation yields f(1|n) ≤ f(1|m), since for I ⊆ {1, . . . , n} with |I| = m, {Xi}i∈I
have the same law as {Xi}m1=1.

Let µ be a Poisson point process of intensity one on Rd and for L > 1 let NL = µ(QL)
be a Poisson random variable of parameter Ld. For n ≥ 1, we notice that

f(L|n) = E
[
W p
QL

(
µ

µ(QL)
,

1

|QL|

)∣∣∣∣NL = n

]
=
Ld

n
f ref(L|n),

(6.3)

where we write, extending the notation from Section 4,

f ref(L|n) = E
[

1

|QL|
W p
QL

(µ, κ)

∣∣∣∣NL = n

]
,

with κ = µ(QL)/|QL| (and f ref(L|0) = 0). Notice that

f ref(L) = E[f ref(L|NL)].

In order to apply Proposition 6.1 and conclude the proof, we argue that

lim
L→∞

E
[∣∣∣f (L|NL)− f ref (L|NL)

∣∣∣] = 0. (6.4)
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To this aim, we first bound E [f(L|NL)] uniformly from above as L → ∞. For this we
combine the following two simple facts. First, since f(L|n) . Lp, letting AL = {NL ≥
|QL|/2}, we have

E [f(L|NL)|AcL] . Lp.

Second, since by (2.3) P[AL] & 1,

E[f(L|NL)|AL]
(6.3)
= E

[
Ld

NL
f ref(L|NL)

∣∣∣∣AL] . E[f ref(L|NL)] = f ref(L) . 1,

where in the last inequality we used that f ref is bounded as a consequence of Theorem
4.1. Therefore,

E[f(L|NL)] = E[f(L|NL)|AcL]P[AcL] + E[f(L|NL)|AL]P[AL]

. LpP[AcL] + 1

(2.3)

. Lp exp(−cLd) + 1 . 1.

Using Hölder inequality with 1
q + 1

q′ = 1, and the fact that f(L|NL) . Lp,

E
[∣∣∣f(L|NL)− f ref(L|NL)

∣∣∣] (6.3)
= E

[∣∣∣∣ NL

|QL|
− 1

∣∣∣∣ f(L|NL)

]

≤ E

[∣∣∣∣ NL

|QL|
− 1

∣∣∣∣q′
] 1
q′

E [f (L|NL)q]
1
q .

(2.4)

.q L
− d

2L
p(q−1)
q E [f (L|NL)]

1
q .q L

− d
2

+
p(q−1)
q .

Choosing q close enough to 1, in particular 1 < q < 2p
2p−d if p > d

2 , we get (6.4). �

Arguing similarly, we obtain the corresponding result for the bi-partite matching on the
unit cube, that is Theorem 1.1, which we restate for the reader’s convenience.

Theorem 6.3. Let d ≥ 3, p ≥ 1, and (Xi)i≥1, (Yi)i≥1, be independent uniform random
variables on [0, 1]d. Then,

lim
n→∞

n
p
dE

[
W p

[0,1]d

(
1

n

n∑
i=1

δXi ,
1

n

n∑
i=1

δYi

)]
= fbi∞,

with fbi∞ as in Theorem 5.1.

Proof. The proof is very similar to that of Theorem 6.2, but in this case we define the
function

f(L|n1, n2) = LpE

[
W p

[0,1]d

(
1

n1

n1∑
i=1

δXi ,
1

n2

n2∑
i=1

δYi

)]
for n1, n2 ≥ 1, and let f(L|n1, n2) = 0 otherwise. It is clearly bounded and p-homogeneous.
Using the identities

1

n1

n1∑
i=1

δXi =

(
n1

m1

)−1(n2

m2

)−1 ∑
I1⊆{1,...,n1}
|I|=m1

∑
I2⊆{1,...,n2}
|I|=m2

1

m1

∑
i∈I1

δXi

1

n2

n2∑
i=1

δYi =

(
n1

m1

)−1(n2

m2

)−1 ∑
I1⊆{1,...,n1}
|I|=m1

∑
I2⊆{1,...,n2}
|I|=m2

1

m2

∑
i∈I2

δYi

we obtain monotonicity arguing analogously as in Theorem 6.2. The proof is then con-
cluded as in Theorem 6.2 and we omit the details. �
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Remark 6.4 (Convergence rates). An inspection of the proof of Proposition 6.1 shows
that one can transfer rates of convergence (even only one-sided) from the Poisson case to
that of a fixed number of points. In the case of matching to the reference measure this
leads to the inequality

f ref
∞ ≤ n

p
dE

[
W p
Q1

(
1

n

n∑
i=1

δXi , 1

)]
+ Cn

2−d
2d ,

while for the bi-partite matching we obtain

fbi
∞ ≤ n

p
dE

[
W p
Q1

(
1

n

n∑
i=1

δXi ,
1

n

n∑
i=1

δYi

)]
+ Cn

2−d
2dp ,

for some constant C ≥ 0. Besides being one-sided bounds, these are still far from the
conjectured rates in [10], which for p = 2 read

n
2
dE

[
W 2
Q1

(
1

n

n∑
i=1

δXi ,
1

n

n∑
i=1

δYi

)]
= fbi
∞ + Cn

2−d
d + o(n

2−d
d ),

with an explicit constant C.

Remark 6.5 (Strong convergence). If p < d, standard concentration of measure argu-
ments allow to obtain strong convergence from convergence of the expected values (see
also [3] for a similar argument in the case p = d = 2). Let us consider for example the
case of bi-partite matching, and show that, both P-a.s. and in L1(P),

lim
n→∞

n
p
dW p

Q1

(
1

n

n∑
i=1

δXi ,
1

n

n∑
i=1

δYi

)
= fbi
∞, (6.5)

with (Xi)i≥1, (Yi)i≥1 independent uniform random variables on Q1 = [0, 1]d.
For any n ≥ 1, the function

[0, 1]d×2n 3 (x1, . . . , xn, y1, . . . , yn) 7→ n
1
dWp

(
µ(xi)

n
i=1
, µ(yi)

n
i=1

)
,

is 2n
1
d
−min

{
1
2
, 1
p

}
-Lipschitz with respect to the Euclidean distance, where we write

µ(xi)
n
i=1

=
1

n

n∑
i=1

δxi , for xi ∈ [0, 1]d.

This relies on the triangle inequality (2.1) and the fact that

(xi)
n
i=1 7→ µ(xi)

n
i=1

is n
−min

{
1
2
, 1
p

}
-Lipschitz

if we endow the set of probability measures on [0, 1]d with the Wasserstein distance of
order p. Indeed, for (xi)

n
i=1, (yi)

n
i=1 ∈ [0, 1]d×n, then

Wp

(
µ(xi)

n
i=1
, µ(yi)

n
i=1

)
≤

(
1

n

n∑
i=1

|xi − yi|p
) 1

p

≤ n−min
{

1
2
, 1
p

}( n∑
i=1

|xi − yi|2
) 1

2

.

Gaussian concentration for the uniform measure on the unit cube [20, Prop. 2.8] yields
that if

Zn = n
1
dWp

(
µ(Xi)

n
i=1
, µ(Yi)

n
i=1

)
,

then, for r > 0,

P (|Zn − E [Zn]| ≥ r) ≤ 2 exp

(
−cn2

(
min

{
1
2
, 1
p

}
− 1
d

)
r2

)
,
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where c > 0 is an absolute constant. A standard application of Borel-Cantelli Lemma
gives that, if 1 ≤ p < d and d ≥ 3, then

lim
n→∞

(Zn − E [Zn]) = 0, P-a.s. (6.6)

Moreover, using the layer-cake formula, we obtain the inequality

E [|Zn − E [Zn]|p] . n
p
d
−min{ p2 ,1}, (6.7)

which is infinitesimal as n→∞. To conclude, it is sufficient to argue that limn→∞ E [Zn] =

(fbi
∞)1/p, since it yields by (6.7) and (6.6) that limn→∞ Zn = (fbi

∞)1/p in Lp(P) and P-a.s.
and hence (6.5). By Theorem 6.2, limn→∞ E [Zpn] = fbi

∞. By Jensen’s inequality,

lim sup
n→∞

E [Zn]p ≤ lim
n→∞

E [Zpn] = fbi
∞.

By the elementary inequality (3.2), we have, for any ε > 0,

Zpn ≤ (E [Zn] + |Zn − E [Zn] |)p ≤ (1 + ε)E [Zn]p +
C

εp−1
|Zn − E [Zn] |p.

Taking expectation and letting n→∞, using (6.7), we obtain

fbi
∞ = lim

n→∞
E [Zpn] ≤ (1 + ε) lim inf

n→∞
E [Zn]p .

Letting ε→ 0 we conclude.
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