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Abstract In a chirped pulse experiment, the strength of the signal level is proportional

to the amplitude of the electric field, which is weaker in the millimeter or submillimeter

region than in the microwave region. Experiments in the millimeter region thus require

an optimization of the coupling between the source and the molecular system and

a method to estimate the amplitude of the electric field as seen by the molecular

system. We have developed an analytical model capable of reproducing the coherent

transient signals obtained with a millimeter wave chirped pulse setup operated in a

monochromatic pulse mode. The fit of the model against the experimental data allowed

access to the amplitude of the electric field and, as a byproduct, to the molecular

relaxation times T1 and T2.

Keywords chirped pulse · coherent transients · polarization · relaxation time · Rabi

frequency · Bloch equations

1 Introduction

Recent developments in electronics allow the realization of new kinds of experiments

which were difficult to perform during the previous millennium [1, 2, 3, 4, 5]. In partic-

ular the existence of arbitrary wave generators in the microwave region associated with

amplified frequency multiplier chains and high speed giga-sampling oscilloscopes make

it possible to shape any type of electromagnetic pulse with a time precision of the order

of a nanosecond. These improvements in microwave and millimeter wave sources allow

the design of Chirped Pulse (CP) experiments routinely used nowadays in high resolu-

tion rotational molecular spectroscopy. They allow the bandwidth and available power

of modern millimeter sources to be exploited. High instrument sensitivity is achieved

by efficient averaging of many cycles made possible by the phase repeatable pulses
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and the coherent nature of the molecular reemission. This gives experiments able to

provide a rotational spectrum over a few tens of GHz in a minute. On the other hand,

the nanosecond temporal accuracy of CP gives access to kinetic or transient experi-

ments [6]. In the millimeter and submillimeter wave range [3, 4, 7], the source power is

often weak, suggesting the use of slow CPs to enhance the signal. The drawback in this

case is the dependence of the line intensity on its temporal position within the pulse.

However, a heuristic correction to this problem has been proposed by our group [8].

A typical CP measurement cycle consists of two steps. In the first step, a gas sample

is polarized by the CP. In the second step, the source is switched off and the emission

of the molecules, corresponding to the Free Induction Decay (FID) signal, is recorded.

The spectrum of the molecular emission is then recovered by the use of a Fourier

transform. The polarization of the sample reached at the end of the CP and thus the

Free Induction Decay signal depend on the Rabi frequency Ω0 = µab E0

~
, where µab is

the transition dipole moment and E0 the electric field amplitude seen by the molecular

system [9, 10, 8].

In most millimeter wave CP experiments, the electromagnetic field felt by the

molecular system is not amplified by a resonant cavity unlike experiments in the 1980s

for which molecular beams were coupled to resonant cavities [11, 12, 13]. At millimeter

wavelengths, the available power is limited by the power handling capacity of the fre-

quency multipliers. A technique to characterise and optimise the electric field observed

by the molecular system at these frequencies is then desirable.

Park et al. [4] proposed to measure the source power coupling by using coher-

ent transients experiments. It consists of exciting a transition with a resonant single-

frequency pulse and recording the amplitude of the FID signal as a function of the

pulse duration. They use a molecular beam expansion under collision-free conditions

which allows them to neglect the relaxation time of the population difference T1. The

resulting characteristic of the FID signal is a damped oscillation driven by the Rabi

frequency (see Eq. (1) of [4]). The first maximum can be considered as a “ π2 pulse”

[14] and would be a direct image of the amplitude of the electromagnetic field seen

by the molecular system. In our experiment [7], we are not dealing with a molecular

beam and our data does not fit the model used by Park et al.. This motivated us to

develop a model which takes into account the two relaxation times T1 and T2 in or-

der to reproduce the coherent transient signals obtained with our millimeter wave CP

instrument operated in a monochromatic pulse mode. We are then able to evaluate

the Rabi frequency Ω0 and the amplitude of the electric field E0 using a least squares

procedure. The data analysis gives access as a byproduct to the molecular relaxation

times T1 and T2. It comes as an alternative to previous experimental methods that

fully characterize the dynamics of molecular systems, i.e. to measure jointly the relax-

ation times of populations (T1) and phases (T2): coupling of pump-probe techniques

and photon echoes in the condensed phase [15], femtosecond time-resolved four-wave

mixing experiments in the diluted phase [16]. Older experiments on optical nutation,

optical precession and photon echoes in the mm-wave domain have also been performed

more than forty years ago by a few groups, e.g. [14, 10, 17].

2 Experimental setup

The experimental setup in Fig. 1 has been described in details in a precedent publication

[7]. The excitation source is a Virginia Diodes, Inc. (VDI) active multiplier chain (AMC)
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Fig. 1 Millimetre wave chirped pulse instrument. Emission of a chirped pulse in the range
190 to 210 GHz generated at microwave frequency by the first channel of the arbitrary wave
generator. The pulse is propagated through a measurement cell allowing the interaction with
a gaseous sample. The Free Induction Decay signal after the pulse is measured using an het-
erodyne detection scheme and a high-speed oscilloscope.

that has an overall frequency multiplication factor of 24. An input frequency range of

7,9-8,7 GHz to the AMC linearly addresses the final frequency output range of 190-210

GHz. The output power is 30-50 mW across the 190-210 GHz frequency range. Chirped-

pulse generation uses a high-speed (12 GS/s) arbitrary waveform generator (AWG,

Tektronix 7122C). The AWG uses an external 8-20 GHz VDI frequency synthesizer for

its clock. Waveforms are created on the AWG in the frequency range of 2.0-3.5 GHz

and are frequency upconverted to the required 7,9-8,7 GHz AMC input range using

a mixer with a synthesizer fixed between 9 and 12 GHz. The synthesizer derive their

frequencies through multiplication of an input 10 MHz rubidium frequency standard.

The upper sideband produced in the mixing of the AWG and the synthesizer is selected

by a bandpass filter and amplified to about 20 dBm. Additional attenuation ensures

the RF input power complies with safe operation of the AMC.



4 G. Dhont et al.

3 Theory

3.1 From a 2-level system to optical Bloch equations

The molecular interaction with an electromagnetic wave has been extensively described

in the literature [9, 18, 19, 20]. We discuss for simplicity a two-level isolated molecular

system, given by its energy levels Ea and Eb with Ea − Eb = ~ω0. We consider

the interaction between this 2-level system and an electromagnetic field with angular

frequency ω(t) given by

E(y, t) =
1

2
E0e

−i(ωt−ky) + cc.

The evolution of the system is described by the evolution of its density matrix. Intro-

ducing relaxation mechanisms by γ1 = 1
T1

and γ2 = 1
T2

(respectively, the inverse of the

decay time of the population difference and the inverse of the dipole dephasing time),

Weq the population difference at thermodynamic equilibrium, E(t) a complex-valued

function representing the perturbation of the system, we get the generic form of the

optical Bloch equations [8] (see Appendix A):











dz

dt
= −(γ2 + iω0)z(t)− iE(t)W (t)

dW

dt
= −γ1(W (t)−Weq) +

1

2i
(E∗(t)z(t)− E(t)z∗(t))

, (1)

where W (t) and z(t) = P(t)/(Nµab) correspond to the difference of population and

the pseudopolarization, respectively, with P(t) being the polarization.

3.2 Bloch equations in the “rotating frame”

Without losing generality, we can take a function E(t) as a pseudo “periodic function”

with an amplitude depending on time. We rewrite E(t) = e−iα(t)Ω0(t) where Ω0(t) =
µab E0(t)

~
is the Rabi frequency and α(t) a generic function of time. We can introduce

a new variable ξ(t) = eiα(t)z(t) to simplify the equations of motion, corresponding to

the rotating frame. Then δ(t) = ω0 − dα
dt is the detuning from the resonant frequency

and Eq. (1) becomes:











dξ

dt
= − [γ2 + iδ(t)] ξ(t)− iΩ0(t)W (t)

dW

dt
= −γ1(W (t)−Weq) +

Ω0(t)

2i
(ξ(t)− ξ∗(t))

. (2)

Let ξ(t) = Û(t)− iV̂ (t) to get the optical Bloch equations in the “rotating frame”



























dÛ

dt
= −γ2Û(t)− δ(t)V̂ (t)

dV̂

dt
= −γ2V̂ (t) + δ(t)Û(t) +Ω0(t)W (t)

dW

dt
= −γ1(W (t)−Weq)−Ω0(t)V̂ (t)

. (3)
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3.3 Monochromatic source - Coherent transients

The molecular polarization in the case of the linear CP has been studied in a recent

publication [8]. Here, we are dealing with the source at a fixed frequency and a constant

amplitude E0 to highlight the coherent transients and to measure the Rabi frequency.

We consider the case α(t) = (ω0 − δ)t (δ, the “detuning”, is a constant), the initial

conditions U(0) = V (0) = 0 (non polarized molecules) and W (0) = Weq (thermalized

sample). The system of differential equations (3) is then linear with constant coefficients

and has the form
dX(t)

dt
= AX(t) + b, (4)

where X(t) = (U(t), V (t),W (t))T is the Bloch vector, b(t) = (0,0,Weqγ1)
T , and

A =





−γ2 −δ 0
δ −γ2 Ω0

0 −Ω0 −γ1



 . (5)

The solution of the system is given by

X(t) = exp(tA)(X(0) + A
−1

b)− A
−1

b. (6)

The components of X(t) are linear combinations of eλit plus a constant term, with λi,

i = 1, 2,3, eigenvalues of A. In particular, taking into account our initial conditions,

we have:

Xi(t) = a1e
λ1t + a2e

λ2t + a3e
λ3t − (a1 + a2 + a3) +Xi(0). (7)

The general solution, involving the eigenvalues and eigenstates of a 3 × 3 matrix is

complicated. We can however compute the equilibrium state X∞ defined by

AX∞ + b = 0, (8)

that is


































U∞ = −
T 2
2 δΩ0Weq

1 + T 2
2 δ

2 + T1T2Ω2
0

V∞ =
T2Ω0Weq

1 + T 2
2 δ

2 + T1T2Ω2
0

W∞ =
(1 + T 2

2 δ
2)Weq

1 + T 2
2 δ

2 + T1T2Ω2
0

(9)

3.3.1 Resonant case

For the resonant case, δ = 0, i. e. when the exciting field has the same frequency as

the transition of the 2-level system, U(t) is decoupled from the other variables. Taking

the same initial conditions, U(t) = 0 and the two eigenvalues that drive the dynamics

of V and W are λ± = −γ+ ± i∆ where











γ± =
γ1 ± γ2

2

∆ =
√

Ω2
0 − γ2

−

(10)
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so that
{

V (t) = e−γ+t(ρc cos(∆ t) + ρs sin(∆ t))− ρc

W (t) = e−γ+t(σc cos(∆ t) + σs sin(∆ t))− σc +Weq

(11)

This is an expression appropriate for ∆ real, i.e. Ω0 ≥ γ−. Otherwise ∆ should be

chosen as ∆ =
√

γ2
−
−Ω2

0 and the trigonometric functions in the expressions for V (t)

and W (t) should be replaced by their corresponding hyperbolic functions. Through

diagonalization of A it is possible to find explicit expressions for ρc,s and σc,s param-

eters,

ρc = −
γ+ + γ−
∆2 + γ2

+

WeqΩ0

ρs =
∆2 − γ+γ−

∆
(

∆2 + γ2
+

)WeqΩ0

σc =
∆2 + γ2

−

∆2 + γ2
+

Weq

σs =
∆2 + γ2

−

∆(∆2 + γ2
+)

Weqγ+

. (12)

4 Comparison with experimental data

Our experiments are performed in the resonant case. We measure the FID signal S(t)
which is proportional to V (Tp) given by Eq. (11) where Tp is the pulse duration.

Neglecting the Doppler effect, the FID signal can be written as [8]:

S(t) =
[

e−γ+Tp(ρ̂c cos(∆ Tp) + ρ̂s sin(∆ Tp))− ρ̂c

]

e−γ2t cos (ωIF t+ ϕ) , (13)

where ωIF is the intermediate frequency corresponding to the resonant molecular fre-

quency and (ρ̂c, ρ̂s) = C (ρc, ρs) are experimental quantities for some C > 0. By

applying a Fast Fourier Transform on the FID signal, we are able to recover the am-

plitude V (Tp). We recorded this amplitude versus the pulse duration to get the curve

V (Tp) see Fig. 2. We then applied a least squares procedure against the model of Eq.

(11) to fit the parameters ∆, ρ̂c, ρ̂s and γ+. The other parameters can be written as:

γ− =
ρ̂c∆+ ρ̂sγ+
ρ̂cγ+ − ρ̂s∆

∆

C =
∆ρ̂s − γ+ρ̂c

WeqΩ0

. (14)

The absolute value of Ω0 can be obtained from the relationship Ω2
0 = ∆2 + γ2

−. Using

the value of µab, it is then immediate to recover the values of E0, T1 = 1/γ1 and

T2 = 1/γ2.
We studied the rotational transition J = 17 → 16 of the OCS molecule at the

frequency ν0 = 206.745GHz, for which the Doppler line broadening is 160 kHz at

300 K. We recorded the FID signals obtained after an excitation pulse at the resonant

frequency ν0 for different pulse durations Tp and different gas pressures. Figure 2 shows

the comparison between the amplitude of the experimental FID signals and the fit of

Eq. (11) for 10 µbar, 50 µbar and 200 µbar. The validity of the model is checked
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Fig. 2 Coherent transients for the J = 17 → 16 rotational transition of the OCS molecule at
the frequency ν0 = 206.745GHz. Amplitude of the FID signal versus the duration of the pulse
Tp for (a) 10 µbar, (b) 50 µbar and (c) 200 µbar. Dots are experimental data, curves are the
fits using the model of Eq. (13) and squares are the residuals.
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OCS: J = 17 → 16, ν0 = 206.745GHz

Parameters Type
P [µbar]

10 50 200

∆νcoll [MHz]
Calculated

0.047 0.235 0.94
T2 [µs] 2.9 0.6 0.15

T2exp [µs]
Fitted

1.2 ±0.3 0.638 ±0.007 0.173 ±0.004
T1exp [µs] 0.40 ±0.03 0.2670±0.0008 0.1360±0.0001

Ω0exp [MHz] 2.8 ±0.1 3.33 ±0.05 3.4 ±0.2

Table 1 Calculated (see text) and fitted parameters of OCS for the J = 17 → 16 rotational
transition at ν0 = 206.745 GHz.

by comparing the fitted T2 relaxation times with previous data [21]. We find that

the model fits well the experimental data as soon as the gas pressure is higher than 50

µbar. For 10 µbar, the Doppler line broadening is larger than the collisional broadening

(50 kHz) suggesting that our model which neglects the Doppler effect is insufficient.

We attempted to develop a model to take into account the Doppler effect but the fit

procedures did not converge correctly and therefore could not bring any improvement

on the fitted parameters. We have therefore decided to retain the model presented here

keeping in mind that the Doppler broadening must be negligible against the collisional

one. This limitation is experimentally easy to respect. Table (1) summarizes the fit

results where the first line gives the Half Width at Half Maximum of the collisional

broadening and the second line, the theoretical value of T2, both using the self collisional

broadening of the OCS line taken from ref. [21].

The electric field polarizing the molecular system can be determined using Ω0 =
µab E0

~
where the value of µab = 0.3D is calculated as described in Appendix B. Taking

Ω0 = 3.3MHz from an averaging of fitted values for 50 µbar and 200 µbar, we find

E0 = 3.75V cm−1. We use a 30 mW source. Considering ref. [22], the conversion value

between the electric field and the power is
[

E0

V cm−1

]

= 27.45
√

[

P
Wcm−2

]

. We calculate

the theoretical value of the electric field, assuming a perfect coupling of the source and

a 1 cm beam diameter, to get E0th = 5.36Vcm−1. We can then estimate a coupling

ratio E0/E0th of 70% in our experiment which is equivalent to a 50% power coupling

efficiency.

5 Conclusion

We show that the model established for the polarization in the case of a monochromatic

source is able to reproduce the data obtained if the gas pressure is sufficiently high to be

able to neglect Doppler broadening. The model takes into account the two relaxation

times T1 and T2 which can then be determined by the fit procedure. It is also well

suited to determine the electric field seen by the molecular system by fitting the Rabi

frequency. Using only those measurements for which Doppler broadening is negligible

compared to collisional broadening, we were able to establish that 70% of the source

electric field amplitude was coupled to the molecular system.
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A Optical Bloch Equations

To establish the optical Bloch equations, we consider a two isolated level system (|a〉, |b〉) given
by their energy level Ea and Eb with Ea − Eb = ~ω0. The system is subjected to a pulsed
electromagnetic field, polarized parallel to Oz, propagating following Oy, with an angular
frequency ω(t) which can be a function of time as in the chirped pulse experiment. |a〉 and |b〉
are eigenstates for H0 and E(t) is a complex-valued function representing the perturbation of
the system.

Description of the system

〈a|H0|a〉 =
Ea + Eb

2
+

~ω0

2
,

〈b|H0|b〉 =
Ea + Eb

2
−

~ω0

2
,

〈a|V (t)|b〉 = −
~

2
E(t),

〈a|V (t)|a〉 = 〈b|V (t)|b〉 = 0.

(15)

The hamiltonian of the system is then given by:

H = H0 + V (t) =

[

Ea+Eb

2
+ ~ω0

2
− ~

2
E(t)

− ~

2
E∗(t) Ea+Eb

2
− ~ω0

2

]

(16)

The system can be described by the density matrix ρ(t). From its diagonal and off-diagonal
elements, the time dependent functions W (t) and z(t) corresponding to the difference of pop-

ulation and the pseudo polarization (z(t) = P(t)
N µab

) are defined as:

W (t) = 〈a|ρ(t)|a〉 − 〈b|ρ(t)|b〉,

z(t) = 2〈a|ρ(t)|b〉.
(17)

Taking into account that its trace is unity, we get:

{

〈a|ρ(t)|a〉 − 〈b|ρ(t)|b〉 = W (t)

〈a|ρ(t)|a〉 + 〈b|ρ(t)|b〉 = 1
⇒

{

2〈a|ρ(t)|a〉 = 1 +W (t)

2〈b|ρ(t)|b〉 = 1−W (t)
. (18)

Finally, taking into account that the density matrix is hermitian, we can write it as:

ρ(t) =
1

2

(

1 +W (t) z(t)
z∗(t) 1−W (t)

)

, (19)

where the asterisk denotes the complex conjugate.

Evolution of the system

The evolution of the system is driven by the Von Neumann equation:

dρ

dt
=

−i

~
[H(t), ρ(t)]. (20)

Developing the commutator of the hamiltonian and the density matrix, we get:

1

2

(

W̊ (t) z̊(t)

z̊∗(t) −W̊ (t)

)

=

(

−1/4 i (ε∗ (t) z (t) − ε (t) z∗ (t)) −1/2 i (ε (t)W (t) + z (t)ω0)
1/2 i (ε∗ (t)W (t) + z∗ (t)ω0) 1/4 i (ε∗ (t) z (t)− ε (t) z∗ (t))

)

(21)
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where the z̊ and W̊ are the temporal derivatives. We can then write:







z̊(t) = −iω0z(t) − iE(t)W (t)

W̊ (t) =
1

2i
(E∗(t)z(t) − E(t)z∗(t))

. (22)

Introducing relaxation mechanisms by γ1 = 1
T1

and γ2 = 1
T2

(respectively, the inverse of the

decay time of the population difference and the inverse of the dipole dephasing time) and Weq,
the population difference at thermodynamic equilibrium, we get the generic form of the optical
Bloch equations [8]:







z̊(t) = −(γ2 + iω0)z(t) − iE(t)W (t)

W̊ (t) = −γ1(W (t) −Weq) +
1

2i
(E∗(t)z(t) − E(t)z∗(t))

. (23)

B Transition dipole moment µab for a linear molecule

Two orthonormal frames are introduced to discuss the dipole moment of a molecule. The first
frame (ex, ey , ez) is a laboratory-fixed frame. The second frame (eX , eY , eZ) is attached to
the molecule.

The interaction of the molecule with the electric field
−→
E (y, t) = E0(y, t) ez polarized along

ez is then described by the −µ̂ ·E0 ez term.
We can decompose the dipole moment operator µ of the molecule in either the laboratory-

fixed or the body-fixed frame:

µ̂ = µ̂xex + µ̂yey + µ̂yey = µ̂XeX + µ̂Y eY + µ̂ZeZ .

The interaction term is thus proportional to µ̂·ez = µ̂z = −µ̂XeX ·ez+µ̂Y eY ·ez+µ̂ZeZ ·ez .
For a linear molecule, µ̂X = µ̂Y = 0 if the nuclei of the atoms are on the Z-axis and the
interaction term is then proportional to µ̂z = µ̂ · ez = µ̂ZeZ · ez with eZ · ez = cos θ =
√

4π
3
Y1,0 (θ, ϕ) the direction cosine between the z-axis and the Z-axis and Y1,0 (θ, ϕ) is the

spherical harmonic function.

The transition dipole moment is defined as T j2,m2

j1,m1
= 〈j2, m2|µ̂z |j1, m1〉. T

j2,m2

j1,m1
is com-

puted as follows:

T j2,m2

j1,m1
=

√

4π

3
µ̂Z

∫ π

0

∫ 2π

0
Yj2,m2

(θ, ϕ)∗ Y1,0 (θ, ϕ)Yj1,m1
(θ, ϕ) sin θdθdϕ

= (−1)m2

√

4π

3
µ̂Z

∫ π

0

∫ 2π

0
Yj2,−m2

(θ, ϕ)Y1,0 (θ, ϕ)Yj1,m1
(θ, ϕ) sin θdθdϕ

= (−1)m2

√

4π

3

√

3 (2j2 + 1) (2j1 + 1)

4π

(

j2 1 j1
−m2 0 m1

)(

j2 1 j1
0 0 0

)

µ̂Z

= (−1)m2
√

(2j2 + 1) (2j1 + 1)

(

j2 1 j1
−m2 0 m1

)(

j2 1 j1
0 0 0

)

µ̂Z

The transition dipole moment is zero if m1 6= m2 due to the 3jm coefficient

(

j2 1 j1
−m2 0 m1

)

.

We define an averaged transition dipole moment as:

〈T j2 ,m2

j1 ,m1
〉 =

1

2j1 + 1

m=j1
∑

m=−j1

T j2,m
j1,m

=

√

2j2 + 1

2j1 + 1

(

j2 1 j1
0 0 0

)

µ̂Z

m=j1
∑

m=−j1

(−1)m
(

j2 1 j1
−m 0 m

)

.

(24)
For example, the permanent dipole moment of OCS is µZ = 0.70D [21] and the transition

dipole moment for the J = 17 → 16 rotational transition is calculated to µab = 0.28D
according to Eq. (24).


