
HAL Id: hal-02932877
https://hal.science/hal-02932877

Submitted on 25 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hole Locations and a Filling Method for Coprime
Planar Arrays for DOA Estimation

Xiao Yang, Yide Wang, Pascal Chargé

To cite this version:
Xiao Yang, Yide Wang, Pascal Chargé. Hole Locations and a Filling Method for Coprime
Planar Arrays for DOA Estimation. IEEE Communications Letters, 2021, 25 (1), pp.157-160.
�10.1109/LCOMM.2020.3022455�. �hal-02932877�

https://hal.science/hal-02932877
https://hal.archives-ouvertes.fr


ACCEPTED MANUSCRIPT

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2020.3022455, IEEE
Communications Letters

IEEE COMMUNICATIONS LETTERS, VOL. XX, NO. X, XXXX 2020 1

Hole Locations and a Filling Method for Coprime
Planar Arrays for DOA Estimation

Xiao Yang, Yide Wang, and Pascal Chargé

Abstract—Coprime linear arrays (CLAs) have drawn lots of
attention. Efforts have been made to reveal the hole locations in
the difference coarrays of CLAs, based on which many methods
have been proposed to fill the holes, lengthening the consecutive
difference coarray part and increasing the effective degrees
of freedom (DOFs). Compared with CLAs, two dimensional
(2D) coprime planar arrays (CPAs) are more relevant to real
applications. However, no closed-form expressions for the hole
locations in the difference coarray of a CPA have been found
in the open literature, and the advantage in terms of DOFs of
CPAs has not been well explored. In this letter, the structure
of the difference coarrays of CPAs is investigated and the exact
expressions of all hole positions are provided. Then, a holes-
filling method is proposed, by which the most critical holes in
the difference coarray can be filled such that a difference coarray
with more consecutive lags as well as higher effective DOFs can
be obtained.

Index Terms—coprime planar arrays, difference coarray, DOA
estimation, DOFs, holes-filling

I. INTRODUCTION

Coprime linear arrays (CLAs) have been found to be at-
tractive in direction of arrival (DOA) estimation thanks to their
high degrees of freedom (DOFs) [1], [2]. Generally, by exploit-
ing the unique lags in the difference coarray obtained from the
covariance matrix of received signals, O(MN) DOFs can be
achieved by a CLA with O(M+N) sensor elements. However,
since there are holes existing in the difference coarray and
only the consecutive segments of the difference coarray can
be directly used by subspace based DOA estimation algorithms
like MUSIC [3] and ESPRIT [4], the effective DOFs are not
as high as expected.

The strategic point in filling the holes in the difference
coarray and increasing the effective DOFs is to find the exact
expressions of the hole locations. Some efforts have been made
to address this issue recently. [5] studies the characteristics of
the difference coarrays of CLAs, and provides the expression
of the hole positions in the negative part of one cross difference
coarray. In [6], the closed-form expressions of the final hole
locations in the difference coarrays of CLAs are derived, and
by adding a complementary subarray, a hole-free difference
coarray can be obtained.

Compared with linear arrays, two dimensional (2D) planar
arrays are more relevant to real applications. There are many
research studies developed for 2D coprime planar arrays
(CPAs). In [7] and [8], a CPA is treated as two uniform
planar subarrays, which simplifies the system model, but leads
to a significant loss of DOFs. In [9], the CPA geometry is
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generalized, resulting in higher DOFs than [7] and [8] with
same number of sensor elements. However, it also deals with
the subarrays and the significant advantage in terms of DOFs
is sacrificed. In order to exploit the high DOFs offered by the
coprime geometry, the difference coarrays should be applied
instead of the physical arrays. However, due to the existence of
holes, the consecutiveness of the difference coarrays of CPAs
is highly limited, which significantly reduces the number of
effective DOFs. Unfortunately, no closed-form expressions for
the hole locations in the difference coarrays of CPAs have been
found in the open literature, which rises the major challenge
in holes-filling and DOFs-increasing for CPAs.

Compared with other existing 2D sparse array configura-
tions [10]–[12], CPAs are more attractive because of their
limited mutual coupling effect property. To offer a better
understanding of CPAs and facilitate the future research in this
field, in this letter, CPAs are investigated from the perspective
of difference coarrays. Closed-form expressions of the exact
hole locations are derived, based on which an efficient method
is proposed to fill the most critical holes, such that a difference
coarray with more consecutive lags can be generated and
higher effective DOFs can be obtained. Simulation results are
provided to support our proposition.

II. PRELIMINARY

A conventional CPA consists of two uniform square subar-
rays. The first subarray has N×N antenna elements with inter-
element spacing Md, and the second subarray has M ×M
antenna elements with inter-element spacing Nd, where d = λ

2
with λ the wavelength of incoming signals, and M , N two
coprime integers. The locations of the antenna elements of the
coprime planar array can be expressed as:

L = L1 ∪ L2 (1)

with

L1 = {(p1Md, p2Md) | 0 ≤ p1, p2 ≤ N − 1} (2)
L2 = {(q1Nd, q2Nd) | 0 ≤ q1, q2 ≤M − 1} (3)

denoting the antenna element locations of the two subarrays
respectively. Without loss of generality, we assume that M <
N . Fig. 1 shows the case where N = 5 and M = 3.

The difference coarray of a CPA is defined as

D = {n1 − n2 | n1,n2 ∈ L} (4)

of which the elements, generated by all pairs of sensors, are
known as lags. The difference coarray of the CPA in Fig. 1
is shown in Fig .2. Assume a far-field and narrowband signal
s(t) impinging on a CPA from direction (θ, ϕ), where θ and
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Fig. 1. Conventional coprime planar array with N = 5 and M = 3.

Fig. 2. Difference coarray D of a CPA with N = 5 and M = 3.

ϕ denote the elevation and azimuth angles respectively, then
the signal received at the sensor located at n1 is given by

x1 (t) = s (t) ej
2π
λ n1(sin θ cosϕ,sin θ sinϕ)

T

(5)

Let σ2
s denote the power of s(t), and the correlation between

the signals received by the sensors at n1 and n2 is given by

E {x1 (t)x∗2 (t)} = σ2
se
j 2π
λ (n1−n2)(sin θ cosϕ,sin θ sinϕ)

T

(6)

The difference coarray elements n1 − n2 appear in the
exponents of the correlation terms, which behave like signals
received by virtual sensors (lags) in the difference coarray.
Containing much more distinct lags than the number of phys-
ical sensors, the difference coarray is usually applied instead of
the physical array to exploit its higher number of DOFs [2].
However, the difference coarray is not consecutive, and the
effective DOFs are highly limited by the existence of holes.

III. HOLES LOCATIONS

According to the definition of the difference coarray (4), it
comes that

D = D1−2
c ∪ D2−1

c ∪ D1
s ∪ D2

s (7)

where D1−2
c and D2−1

c denote the cross difference coarrays of
the two subarrays with

D1−2
c = {n1 − n2 | n1 ∈ L1,n2 ∈ L2} (8)

D2−1
c = {n2 − n1 | n1 ∈ L1,n2 ∈ L2} (9)

Fig. 3. Cross difference coarray D1−2
c of a CPA with N = 5 and M = 3.

and D1
s and D2

s denote the self difference coarrays of the two
subarrays with

D1
s = {n1 − n2 | n1,n2 ∈ L1} (10)

D2
s = {n1 − n2 | n1,n2 ∈ L2} (11)

Being different from CLAs, the self difference coarrays of
CPAs do not form a subset of the cross difference coarrays.
Therefore the self difference coarrays and cross difference
coarrays of CPAs should be both analyzed. We first discuss
the characteristics of D1−2

c (8). Taking d as unit, D1−2
c can be

expressed as

D1−2
c ={(p1M − q1N, p2M − q2N) |

0 ≤ p1, p2 ≤ N − 1, 0 ≤ q1, q2 ≤M − 1}
(12)

According to the values of p1, p2, q1 and q2, it is easy to
see that D1−2

c is located in {(x, y) | −(M − 1)N ≤ x, y ≤
(N − 1)M}. The set D1−2

c associated to the example CPA in
Fig. 1 is shown in Fig. 3.

In the following, the locations of the holes in D1−2
c will

be provided with detailed proof. Four general rules can be
summarized as:
1) In {(x, y) | 0 ≤ x ≤ (N − 1)M,−(M − 1)N ≤ y ≤ (N −

1)M}, the position (x, y) would be a hole if x = aM+bN ,
with a ≥ 0, b ≥ 1;

2) In {(x, y) | −(M−1)N ≤ x ≤ 0,−(M−1)N ≤ y ≤ (N−
1)M}, the position (x, y) would be a hole if x = aM+bN ,
with a ≤ −1, b ≤ 0;

3) In {(x, y) | −(M − 1)N ≤ x ≤ (N − 1)M, 0 ≤ y ≤ (N −
1)M}, the position (x, y) would be a hole if y = aM+bN ,
with a ≥ 0, b ≥ 1;

4) In {(x, y) | −(M−1)N ≤ x ≤ (N−1)M,−(M−1)N ≤
y ≤ 0}, the position (x, y) would be a hole if y = aM +
bN , with a ≤ −1, b ≤ 0.

To prove rule 1), it is sufficient and necessary to prove that
for position (x, y), if x = aM + bN with a ≥ 0, b ≥ 1, it is
a hole, and if x 6= aM + bN with a ≥ 0, b ≥ 1, it is not a
hole. The proof is given in the following.

Based on [6], for any integer I in the range of [0, (N−1)M ],
we can always find two integers a0 and b0, such that

I = a0M + b0N (13)

Let b′ = b0 modM , then b0 = xM + b′, b′ ∈ [0,M − 1].
Then we can get

I = a′M + b′N (14)
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with a′ = a0 + xN , b′ = b0 − xM , and d−b′ NM e ≤ a′ ≤
N − 1− db′ NM e.

Then, according to (12), we need to find out if there exist
p1 and q1, with 0 ≤ p1 ≤ N − 1, 0 ≤ q1 ≤M − 1, satisfying

p1M − q1N = I = a′M + b′N (15)

The problem can be split into three cases:
i) 0 ≤ a′ ≤ N − 1, b′ = 0;

ii) dNM e −N ≤ a
′ < 0, 0 < b′ ≤M − 1;

iii) 0 ≤ a′ ≤ N − 1, 0 < b′ ≤M − 1.
For i), (15) can be written as

(p1 − a′)M = q1N (16)

Since {
0 ≤ a′ ≤ N − 1, b′ = 0

0 ≤ p1 ≤ N − 1, 0 ≤ q1 ≤M − 1
(17)

for any a′ in this case, there exist p1 = a′ and q1 = 0 satisfying
(16). Therefore, the positions corresponding to such a′ and b′

are not holes.
For ii), noticing that q1 + b′ ≥ 1, (15) can be written as

N

M
=
p1 − a′

q1 + b′
(18)

Since {
dNM e −N ≤ a

′ < 0, 0 < b′ ≤M − 1

0 ≤ p1 ≤ N − 1, 0 ≤ q1 ≤M − 1
(19)

for any a′, b′ in this case, there exist p1, q1 with p1− a′ = N
and q1 + b′ = M , satisfying (18). Therefore, the positions
corresponding to such a′ and b′ are not holes.

For iii), similar with ii), (15) can be written as (18).
Considering that M , N are two coprime integers, (p1 − a′)
and (q1 + b′) should exactly equal to N and M respectively.
Since {

0 ≤ a′ ≤ N − 1

0 ≤ p1 ≤ N − 1
(20)

for any a′ in this case, we cannot find p1 such that p1−a′ = N .
Therefore, the positions corresponding to such a′ and b′ are
holes.

The proof of rule 1) ends, and the proof of the other three
is similar and omitted here.

Then, we focus on the characteristics of D2−1
c (9), which

can be expressed as

D2−1
c ={(q1N − p1M, q2N − p2M) |

0 ≤ p1, p2 ≤ N − 1, 0 ≤ q1, q2 ≤M − 1}
(21)

and it is easy to see that D2−1
c is located in {(x, y) | −(N −

1)M ≤ x, y ≤ (M − 1)N}. By the same method, we can get
four similar general rules of the holes in D2−1

c :
5) In {(x, y) | 0 ≤ x ≤ (M −1)N,−(N −1)M ≤ y ≤ (M −

1)N}, the position (x, y) would be a hole if x = aM+bN ,
with a ≥ 1, b ≥ 0;

6) In {(x, y) | −(N − 1)M ≤ x ≤ 0,−(N − 1)M ≤ y ≤
(M − 1)N}, the position (x, y) would be a hole if x =
aM + bN , with a ≤ 0, b ≤ −1;

7) In {(x, y) | −(N −1)M ≤ x ≤ (M −1)N, 0 ≤ y ≤ (M −
1)N}, the position (x, y) would be a hole if y = aM+bN ,
with a ≥ 1, b ≥ 0;

8) In {(x, y) | −(N−1)M ≤ x ≤ (M−1)N,−(N−1)M ≤
y ≤ 0}, the position (x, y) would be a hole if y = aM +
bN , with a ≤ 0, b ≤ −1.

Considering that the two self difference coarrays D1
s (10)

and D2
s (11), expressed as

D1
s = {(aM, bM) | −(N − 1) ≤ a, b ≤ (N − 1)} (22)

D2
s = {(aN, bN) | −(M − 1) ≤ a, b ≤ (M − 1)} (23)

can fill some holes in D1−2
c and D2−1

c (7); and with rules 1)
– 8), we can get the precise expressions of the hole locations
in D in the 1st quadrant H1 and 2nd quadrant H2:

H1 = H11 ∪H12 ∪H13 ∪H14 (24)
H2 = H21 ∪H22 (25)

with

H11 = {(x, y) |x = aM + bN, a ≥ 1, b ≥ 1,

0 ≤ x, y ≤ (N − 1)M}
(26)

H12 = {(x, y) |x = aN, y = bM, a ≥ 1, b ≥ 1,

0 ≤ x, y ≤ (N − 1)M}
(27)

H13 = {(x, y) |x = aM, y = bN, a ≥ 1, b ≥ 1,

0 ≤ x, y ≤ (N − 1)M}
(28)

H14 = {(x, y) |y = aM + bN, a ≥ 1, b ≥ 1,

0 ≤ x, y ≤ (N − 1)M}
(29)

and

H21 ={(x, y) | x = aM + bN, a ≤ −1, b ≤ −1,
− (N − 1)M ≤ x ≤ 0, 0 ≤ y ≤ (N − 1)M}

(30)

H22 ={(x, y) | y = aM + bN, a ≥ 1, b ≥ 1,

− (N − 1)M ≤ x ≤ 0, 0 ≤ y ≤ (N − 1)M}
(31)

According to the definition of D, the hole locations in the
3rd and 4th quadrants are centrosymmetric to those in the 1st

and 2nd quadrants. Fig. 2 illustrates our proposition.

IV. PROPOSED HOLES-FILLING METHOD

Based on the above analysis, it can be seen that there exist
some critical holes in the 1st and 3rd quadrants, which sparsely
locate inside the range of {(x, y) | −(M+N) < x, y < (M+
N)} and break the consecutiveness of the difference coarray
in such range. For the critical holes in the 1st quadrant, which
belong to H12 and H13, we propose a holes-filling method,
by which such holes can be filled by adding few additional
sensor elements, and because of the centrosymmetry of the
difference coarrays, the critical holes in the 3rd quadrant will
also be filled as long as the critical holes in the 1st quadrant
are filled.

We first focus on the elements of H12 (27). Considering
the assumption M < N , the critical holes belonging to H12,
which can be described as

H
′

12 = {(N, kM) | 1 ≤ k ≤ K,K = bN
M
c+ 1} (32)

can be filled by adding an additional antenna element at
position (N,KM). The proof is given in the following by
two steps:
a) the position (N,KM) is not occupied by the original

antenna elements, which can be proved by contradiction:
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Fig. 4. Holes filled difference coarray of a CPA with N = 5 and M = 3.

If there exists an original antenna element located at the
position of (N,KM), the lag (N,KM) generated by the
pair of antenna elements located at (N,KM) and (0, 0)
would be found in the difference coarray, which contradicts
our above analysis of the holes locations (27) and the step
a) has been proved.

b) the critical holes of H′

12 can be filled by the lags generated
by the additional antenna element located at (N,KM) and
the original antenna elements located at (0, tM), with 0 ≤
t ≤ K − 1.
According to (2), because

t ≤ K − 1 = bN
M
c < N

M
< N − 1 (33)

the antenna elements located at (0, tM) exist in the orig-
inal coprime planar array. The lags generated by such
antenna elements and the added antenna element located
at (N,KM) can be expressed as

C = {(N, gM) | g = K − t} (34)

It is clear that
C = H

′

12 (35)

and the step b) has been proved.
From the above two steps, it has been proved that the critical

holes of H′

12 can be filled by adding an additional antenna
element at (N,KM). Then, for the critical holes belonging to
H13, which can be described as

H
′

13 = {(kM,N) | 1 ≤ k ≤ K,K = bN
M
c+ 1} (36)

they can be filled by adding another additional antenna element
at position (KM,N). The proof is similar as above and
omitted here.

For the example CPA in Fig. 1 with the corresponding
difference coarray shown in Fig. 2, the critical holes inside
the range of {(x, y) | −8 < x, y < 8} can be filled by adding
two additional sensor elements at positions (5, 6) and (6, 5).
The difference coarray of the CPA with the added sensors is
shown in Fig. 4. Compared with the difference coarray of the
original CPA in Fig. 2, it can be seen that the holes filled
difference coarray has a larger consecutive part with much
more consecutive lags.

In general, for the a CPA with the proposed holes-filling
method, by judiciously adding two additional sensor elements,

we can obtain a difference coarray with a consecutive part
located at {(x, y) | −M −N +1 ≤ x, y ≤M +N − 1}, with
the total number of consecutive lags being (2M + 2N − 1)2.
Compared with the difference coarrays of the conventional
CPAs, the critical holes which break the consecutiveness
of the difference coarray are filled by the proposed holes-
filling method, enlarging the consecutive part of the difference
coarrays and increasing the effective DOFs of the CPAs.

V. CONCLUSION

In this letter, CPAs are investigated from the perspective
of difference coarrays. Closed-form expressions of the hole
locations in the difference coarrays of CPAs are deduced,
providing a basis for the future research. Then based on
the knowledge of the hole locations, a holes-filling method
is proposed. By judiciously adding two additional sensor
elements, the most critical holes in the difference coarray
can be filled, such that the consecutive part of the difference
coarray can be enlarged, which increases the effective DOFs.
The filling of the remaining holes in the difference coarray
and the compressive sensing based DOA estimation [13] for
CPAs would be the future research orientations.
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