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ABSTRACT. Sequential pattern mining techniques permit to discover recurring structures or pat-
terns from very large datasets, with a very large field of applications. It aims at extracting a set of
attributes, shared across time among a large number of objects in a given database. It is a challeng-
ing problem since mining algorithms are well known to be both time and memory consuming for large
databases. In this paper, we extend the traditional problem of mining frequent sequences with intra-
periodicity constraints. Then, we study issues related to intra-periodicity constraints such as search
space pruning and partitioning. This study leads to a new efficient algorithm called Intra-Periodic
Frequent Sequence Miner (IPFSM). Experimental results confirm the efficiency of IPFSM.

RÉSUMÉ. Les techniques de recherche des motifs séquentiels permettent de découvrir des struc-
tures ou modèles récurrents à partir de très grandes bases de données, avec un très large champ
d’applications. Elles visent à extraire un ensemble d’attributs, partagés dans le temps entre un grand
nombre d’objets dans une base de données. C’est un problème difficile, car les algorithmes de
recherche des motifs séquentiels sont gourmandes en temps CPU et en mémoire sur des grandes
bases de données. Dans ce papier, nous étendons le problème traditionnel de l’extraction des
séquences fréquentes avec des contraintes d’intra-périodicité. Ensuite, nous étudions les problèmes
liés aux contraintes de périodicité, notament l’élagage et le partitionnement de l’espace de recherche.
Cette étude conduit à un nouvel algorithme efficace appelé Intra-Periodic Frequent Sequence Miner
(IPFSM). Les résultats expérimentaux confirment l’éfficacité de l’IPFSM.
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1. Introduction
Nowadays, the generalized use of new technologies of information and communica-

tion allows us to gather more data automatically. Because of the fast computerization
of administrations, enterprises, trade and telecommunications, the rate of stored data in-
creases quickly. However, the analysis and exploitation of these data is sometimes very
difficult. In this context, sequential pattern mining [13, 5, 4, 2, 8, 17, 1, 9, 11, 12, 3] is an
important data mining problem widely addressed by the data mining community. It aims
at extracting a set of attributes, shared across time among a large number of objects in a
given data base. It is a challenging problem since mining algorithms are well known to be
both time and memory consuming for large databases, and improvements are motivated
by the need to process more data at a faster speed with lower cost. This trend and the
integration of intra-periodicity constraints in the mining process are the main motivations
for this paper. Previous work in frequent sequence mining and periodicty only consider
extra periodicity [18, 19, 20].

In this paper, we extend the traditional problem of mining frequent sequences with
intra-periodicity constraints. Then, we study issues related to intra-periodicity constraints
such as search space pruning and partitioning. This study leads to a new efficient al-
gorithm called Intra-Periodic Frequent Sequence Miner (IPFSM). Experimental results
confirm the efficiency of IPFSM.

The sequel of this paper is organized as follows. Section 2 states the problem. Section
3 studies search space pruning and partitioning under intra-periodicity constraints. Sec-
tion 4 presents algorithm IPFSM. Section 5 presents experimental results. Concluding
remarks are stated in section 6.

2. Statement of the problem

2.1. The traditional problem of mining frequent sequences
The traditional problem of mining sequential patterns [13, 5, 4, 2, 8, 17, 1, 9, 11, 12, 3]

and its associated notation, can be given as follows:
Let I = {i1, i2, ..., in} be a set of literals, termed items, which comprise the alpha-

bet. An itemset is a subset of items. For sake of simplicity [13, 5, 12, 3], we assume that
all the items of an itemset are alphabetically sorted.

A sequence is an ordered list of itemsets. A sequence s is denoted by≺ s1, s2, ...sn �,
where sj is an itemset. sj is also called an element of the sequence, and denoted as
(x1, x2, ..., xm), where xk is an item. For brevity, the brackets are omitted if an element
has only one item, i.e. element (x) is written as x. An item can occur at most once
in an element of a sequence, but can occur multiple times in different elements of a se-
quence. The number of instances of items (resp. elements) in a sequence α is denoted
|α| (resp. ||α||). The value of |α| is called the length of the sequence. The number of
A sequence with length l is called an l-sequence. A sequence α =≺ a1a2...an � is
called subsequence of another sequence β =≺ b1b2...bm � and β a supersequence of
α, denoted as α ⊆ β, if there exist integers 1 ≤ j1 < j2 < ... < jn ≤ m such that
a1 ⊆ bj1, a2 ⊆ bj2, ... , an ⊆ bjn. Symbol ε denotes the empty sequence.

We are given a database S of input-sequences. A sequence database is a set of tuples
of the form ≺ sid, s � where sid is a sequence_id and s a sequence. A tuple ≺ sid, s �
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is said to contain a sequence α, if α is a subsequence of s. The support of a sequence α 
in a sequence database S is the number of tuples in the database containing α, i.e.

support(S, α) = |{≺ sid, s � | ≺ sid, s �∈ S ∧ α ⊆ s}|.

It can be denoted as support(α) if the sequence database is clear from the context. Given 
a user-specified positive integer denoted min_support, termed the minimum support or 
the support threshold, a sequence α is called a sequential pattern in sequence database 
S if support(S, α) ≥ min_support. A sequential pattern with length l is called an l-
pattern. Given a sequence database and the min_support threshold, sequential pattern 
mining is to find the complete set of sequential patterns in the database.

2.2. Extending the traditional problem with intra-periodicity
Definition 1 ("." and "_" o perators) Let e  and e ′ be two i temsets that do not contain 
the underscore symbol (_). Assume that all the items in e′ are alphabetically sorted after 
those in e. Let l (resp. l′) denotes itemset e (resp. e′) without brackets. Let γ =≺ 
e1 . . . en−1a � and µ =≺ be′2 . . . e′m � be two sequences, where ei and e′i are 
itemsets that do not contain the underscore symbol, a ∈ {(l), (_l), (l_), (_l_)} and b ∈ 
{(l′), (_l′), (l′_), (_l′_)}. The dot operator is defined as follows :  (1) (l).(l′) =  (l)(l′),
(2) (l).(_l′) = (ll′), (3) (l).(l′_) = (l)(l′_), (4) (l).(_l′_) = (ll′_), (5) (l).(l′) = (ll′),
(6) (i).(_l′) = (ll′), (7) (l_).(_l′_) = (ll′_), (8) (l_).(l′_) = (ll′_), (9) (_l).(l′) = 
(_l)(l′), (10) (_l).(l′_) = (_l)(l′_), (11) (_l).(_l′_) = (_ll′_), (12) (_l).(_l′) = (_ll′),
(13) (_l_).(l′) = (_ll′), (14) (_l_).(_l′_) = (_ll′_), (15) (_l_).(l′_) = (_ll′_), (16)
(_l_).(_l′) = (_ll′), (17) γ.µ =≺ e1 . . . en−1a.be′2 . . . e′m �.

For example, denote s =≺a(abc)(ac)(efgh)�, we have s =≺ (a).(a_).(_b_).(_c).(a_) 
.(_c).(e_).(_f_). (_g_). (_h) � and s =≺ (a) � . ≺ (a_) � . ≺ (_b_) � . ≺ (_c) � 
. ≺ (a_) � . ≺ (_c) � . ≺ (e_) � . ≺ (_f_) � . ≺ (_g_) � . ≺ (_h) �.

Definition 2 (Prefix and suffix of a s eq uence) Consider three sequences α, β and γ such 
that α = β.γ. Sequence β (resp. γ) is a prefix (resp. suffix) of α

Definition 3 (Sequence p artition) Given a sequence s =≺ s 1, s 2, ... , s n �, a partition 
of s is any subsequence of s which is made of consecutive itemsets of s, i.e. which is on
the form p =≺ sj1 , sj1+1, sj1+2 ..., , sjk−1 , sjk �, where 1 ≤ j1 < jk ≤ n. Partition 
p is said to be strict if p 6= s, i.e. j1 > 1 or jk < n.

Definition 4 (inclusion-carried m apping) An inclusion-carried mapping imα,s : index(α)
→ index(s) from the set of indexes of the elements sequence α =≺ α1, α2, ... , αm � to
the set of indexes of the elements of a supersequence s =≺ s1, s2, ... , sn � is an injective
index-mapping which is (1) is monotonous, i.e. imα,s(i) < imα,s(i + 1), 1 ≤ i < m,
(2) and such that element αi of α is mapped to a distinct element simα,s(i) of s which
contains αi, i.e. αi ⊆ simα,s(i).

For example, let α =≺ (ab)(gh)� and s =≺a(abc)(ac)(efgh)�. Denote α1 = (ab),
α2 = (gh), s1 = (a), s2 = (abc), s3 = (ac) and s4 = (efgh). We have α =≺ α1α2 �
and s =≺ s1s2s3s4 �. Thus index(α) = {1, 2} and index(s) = {1, 2, 3, 4}. Denote
imα,s : index(α) → index(s), imα,s(1) = 2 and imα,s(2) = 4. Function imα,s is
monotonous and αi ⊆ simα,s(i) for all i ∈ index(α). Thus function imα,s is an inclusion-
carried mapping from sequence α to s.

For sake of simplicity, when the sets of indexes are known, imα,s will be referred to
as an inclusion-carried mapping from sequence α to sequence s.
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Lemma 1 (The set inclusion-carried mappings is closed under ” ◦ ” operator) Consider
three sequences α =≺ α1, α2, ... , αm �, β and γ, an inclusion-carried mapping imα,β

from index(α) to index(β), and another one from index(β) to index(γ), denoted imβ,γ .
The composition of imα,β and imβ,γ defined as (imα,β◦imβ,γ)(i) = imβ,γ(imα,β(i)), 1 ≤
i ≤ m, is an inclusion-carried mapping from index(α) to index(γ).

PROOF Function imα,β ◦ imβ,γ is injective and monotonous as imα,β and imβ,γ are in-
jective and monotonous. From definition 4, we have αi ⊆ βimα,β(i) ⊆ γimβ,γ(imα,β(i)) =
γ(imα,β◦imβ,γ)(i), 1 ≤ i ≤ m.

Definition 5 (The restriction of an inclusion-carried mapping) Consider three sequences
α, β and s such that α ⊆ β and β ⊆ s, and an inclusion-carried mapping imβ,s from
index(β) to index(s). A restriction of imβ,s to index(α), denoted imα,β,s, is the com-
position of an inclusion-carried mapping from index(α) to index(β), denoted imβ,s, and
imβ,s, i.e. imα,β,s = imα,β ◦ imβ,s : index(α)→ index(β)→ index(s).

A restriction of imβ,s to index(α) is unique if β contains only one occurrence of α.

Definition 6 (Sequence intra-periodicity) Let s and α =≺ α1, α2, ... , αm �, m > 1,
be two sequences such that α ⊆ s. Consider an inclusion-carried mapping imα,s from
index(α) to index(s). The set of intra-periods of α in s following mapping imα,s, also
called periods of appearance of the elements of α in s with respect to imα,s, is defined as
ips(α, s, imα,s) = {imα,s(i+ 1)− imα,s(i) | i ∈ {1, 2, ... ,m− 1}}.

Definition 7 (Minimal and maximal intra-periodicities) Consider two sequencesα and
s such that α ⊆ s. The minimal (resp. maximal) intra-periodicity of α in s following an
iclusion-carried mapping imα,s is the minimal (resp. maximal) value of ips(α, s, imα,s).

Definition 8 (Sequence inclusion) Denote i1 (resp. i2) the minimal (resp. maximal)
intra-periodicity threshold. A sequence α is contained in another sequence s following
(i1, i2), denoted as α ⊆(i1,i2) s, if there exists an inclusion-carried mapping imα,s from
index(α) to index(s) such that i1 ≤ min(ips(α, s, imα,s)) andmax(ips(α, s, imα,s)) ≤
i2. Sequence α is called (i1, i2)-subsequence of s, and s is called (i1, i2)-supersequence
of α.

Lemma 2 (Distributivity of ⊆(i1,i2) operator) Consider a couple of intra-periodicity thresh-
olds (i1, i2) and three sequences α, β and s that do not contain the underscore operator
(_). If α.β ⊆(i1,i2) s then there exist three sequences α′, µ and β′ such that s = α′.µ.β′,
α ⊆(i1,i2) α′ and β ⊆(i1,i2) β′

PROOF Assume that α.β ⊆(i1,i2) γ. From definition 8, this means that there exists an
inclusion-carried mapping imα.β,s fromα.β to s such that i1 ≤ min(ips(α.β, s, imα.β,s))
andmax(ips(α.β, s, imα.β,s)) ≤ i2. Denoteα′ =≺ s1, ... simα.β,s(1), ... , smα.β,s(||α||) �,
µ = ε if imα.β,s(||α|| + 1) = (mα.β,s(||α||) + 1) and µ =≺ simα.β,s(||α||)+1), ... ,
simα.β,s(||α||+1)−1) � otherwise, and β′ =≺ simα.β,s(||α||+1), ... , simα.β,s(||s||) �. We
have s = α′.µ.β′, α ⊆(i1,i2) α′ and β ⊆(i1,i2) β′. Hence the result.

Definition 9 (irreducible supersequence) A supersequence s of another sequence α is
said to be irreducible following α and a couple of intra-periodicity thresholds (i1, i2) if
no strict partition of s is a (i1, i2)-supersequence of α.
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Definition 10 (Sequence s upport) The support of a sequence α in a dataset S following 
a couple (i1, i2) of intra-periodicity thresholds, denoted supporti1,i2(S, α), is defined as 
the number of sequences of S which contain α following (i1, i2), i.e. supporti1,i2(S, α) = 
|{≺ sid, s �∈ S | α ⊆(i1,i2) s}|.

Definition 11 (Intra-periodic frequent s equence) Given a  minimum support threshold 
minS, and a couple (i1, i2) of intra-periodicity thresholds, a sequence α is an Intra-
Periodic Frequent Sequence (IPFS) frequent if supporti1,i2(s, α) ≥ minS.

Definition 12 (Problem d efinition) Let there be  a user-specified database D and  three 
thresholds i1 ≥ 0, i2 ≥ 0, minS ≥ 0. The problem of mining intra-periodic frequent 
sequences is to find all IPFS in D.

3. Search space pruning and partitioning
Due to space restriction, the proofs of lemmas are removed.

Lemma 3 (Intra-periodicity-set stability/growth based itemset growth/addition) Letα,
β and s be three sequences such that β ⊆ s. Assume that β = its1_.α._its2 or
β = its1.α._its2 or β = its1_.α.its2 or β = its1.α.its2, where its1 and its2 are
two itemsets, and α, its1 and its2 do not contain the underscore operator(_). Given an
inclusion-carried mapping imβ,s from index(β) to index(s), there exists a restriction of
imβ,s to index(α), denoted imα,β,s, such that ips(α, s, imα,β,s) = ips(β, s, imβ,s) if
β = its1_.α._its2 and ips(α, s, imα,β,s) ⊆ ips(β, s, imβ,s) otherwise.

Lemma 4 (Intra-periodicity-set growth based prefix-suffix growth) Consider three se-
quences α, β and s such that β ⊆ s and β = µ.α.γ where µ and γ denote sequences
that may contain the underscore operator (_). Given an inclusion-carried mapping imβ,s

from index(β) to index(s), there exists a restriction of imβ,s to index(α), denoted imα,β,s,
such that ips(α, s, imα,β,s) ⊆ ips(β, s, imβ,s).

Lemma 5 (Search space pruning using intra-periodicity thresholds) Denote minip (
resp. maxip ) the minimal (resp. maximal) intra-periodicity threshold. Consider three
sequences α, β and s such that β ⊆ s and β = µ.α.γ where µ and γ denote sequences
that may contain the underscore operator (_). We have :

1) If min(ips(α, s, imα,s)) < minip for any inclusion-carried mapping imα,s

from index(α) to index(s) thenmin(ips(β, s, imβ,s)) < minip for any inclusion-carried
mapping imβ,s from index(β) to index(s).

2) If max(ips(α, s, imα,s)) > maxip for any inclusion-carried mapping imα,s

from index(α) to index(s) then max(ips(β, s, imβ,s)) > maxip for any inclusion-
carried mapping imβ,s from index(β) to index(s).

Lemma 6 (Search space pruning using ⊆(i1,i2) operator) Consider three sequencesα,
β and s such that β = µ.α.γ, where µ and γ are two sequences, and two inta-periodicity
thresholds i1 and i2, we have: (1) if β ⊆(i1,i2) s then α ⊆(i1,i2) s, (2) if α 6⊆(i1,i2) s then
β 6⊆(i1,i2) s.

Lemma 7 (Anti-monotonicity of the support following prefix-suffix growth) Given a
couple (i1, i2) of intra-periodicity thresholds and two sequences α and s such that s =
µ.α.γ, we have: supporti1,i2(S, α) ≥ supporti1,i2(S, s).
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Given two sequences s and α, and a couple (i1, i2) of intra-periodicity thresholds,
lmip(s, α, i1, i2) denotes the leftmost partition of s which is irreducible following α and
(i1, i2). Such a partition may not exist, and in this case, we assume that lmip(s, α, i1, i2) =
ε. If such a partition exists, it induces a decomposition of sequence s into three parts, (1)
the left part, denoted lp(s, α, i1, i2), (2) the middle part, denoted lmip(s, α, i1, i2), (3)
and the right part, denoted rp(s, α, i1, i2). We have s = lp(s, α, i1, i2) . lmip(s, α, i1, i2)
. rp(s, α, i1, i2). Denote q(s, α, i1; i2) = lmip(s, α, i1, i2) .rp(s, α, i1, i2) the concate-
nation of the middle and right parts. If lmip(s, α, i1, i2) = ε, we set lp(s, α, i1, i2) = ε,
rp(s, α, i1, i2) = ε and q(s, α, i1, i2) = ε.

The projection of dataset S following sequence α and the couple of intra-periodicity
thresholds (i1, i2), denoted S(α, i1, i2), is the set obtained by removing the left part of
any sequence for which the middle part exists : S(α, i1, i2) = {≺ sid, lmip(s, α, i1, i2)
.rp(s, α, i1, i2) � | ≺ sid, s � ∈ S and lmip(s, α, i1, i2) 6= ε}. If the couple
(i1, i2) is known, they could be removed from the notation of projected databases, i.e.
S(α, i1, i2) = S(α), Note that, this definition is slightly different from the one intro-
duced in [2].

Lemma 8 (Search-space partitioning based on prefix) We have the following:

1) Let {x1, x2, . . . , xn} be the complete set of length-1 intra-periodic frequent
sequences in a sequence database S. The complete set of sequential patterns in S can be
divided into n disjoint subsets based on prefix-items. The i-th (1 ≤ i ≤ n) subset of the
search-space partitioning is the set of intra-periodic frequent sequences with prefix xi.

2) Let α be a length-l intra-periodic frequent sequence and {β1, β2, . . . , βp} be
the complete of length-(l+1) intra-periodic frequent sequences with prefix α. The com-
plete set of intra-periodic frequent sequences with prefix α, except for α itself, can be
divided into p disjoint subsets. The i-th subset (1 ≤ i ≤ p) is the set of intra-periodic
frequent sequences prefixed with βi.

4. The IPFSM algorithm

Algorithm 1 Intra-Periodic Frequent Sequence Miner. The initial call is IPFSM(S, ε,
minS, minip, maxip) with S as the initial dataset

1: function IPFSM(Dataset S, Prefix α, float minS, int minip, int maxip)
2: X ← {Item x |minS ≤ |{s ∈ S | lmip(s, α.x,minip,maxip) 6= ε}|}
3: Comment: Item x may contains the underscore operator (_)
4: for all xi ∈ X do
5: SAVEINTRAPERIODICFREQUENTSEQUENCE(α.xi)
6: end for
7: for all xi ∈ X do
8: IPFSM(S(α.xi,minip,maxip), α.xi, minS, minip, maxip)
9: end for

10: end function

In this section, we translate the study made in section 2 into a function called Intra
Periodic Frequent Sequence Miner (IPFSM). It is presented in algorithm 1. A IPFSM call
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(1) takes as arguments a database S, the current prefix value, the minimal support thresh-
old, the minimal and maximal intra-periodicity thresholds, (2) searches for the complete 
list X = {x1, x2, . . . , xp} of all the length-1 sequential patterns of S which are such that 
α.xi, i ∈ {1, 2, . . . , p}, are frequent intra-periodic sequences of S, (4) saves α.xi as a 
new sequential pattern for each pattern xi found, assuming that the current prefix is α, (5) 
constructs, following lemma 8, a new database S(α.xi, minip, maxip) for each length-1 
pattern xi ∈ X found, and (6) makes a recursive call per new constructed database with 
α.xi as the new current prefix value.

Function IPFSM recursively generates sub-databases from a partitioning of the current 
database following lemma 8. We consider that initial database, denoted S, is of depth 0. 
The initial database is used to generate databases of depth-1 dadabases of the form s(y1), 
where y1 is an item. The depth-1 database S(y1) is used to generate depth-2 dadabases of 
the form S(y1)(y2), where y2 is an item. A generated database is of depth d if it has been 
constructed using d length-1 patterns. Such a database is denoted S(y1.y2 ... yd), where 
y1, y2, ... , yd are the length-1 patterns used to construct that database step by step in this 
order. Database S(y1.y2 ... xd), d > 1, is generated from S(y1.y2 ... xd−1) In terms of 
IPFSM calls, the initial call, i.e. IPFSM(S, ε, minS, minip, maxip), if of depth 0. The 
depth of a IPFSM call is the depth of its database argument. This depth is equal to the 
length of its prefix argument.

5. Experimental evaluation
We consider four real live data sets collected from the webpage (http://www.philippe-

fournier-viger. com/spmf/index.php) of SPMF software [12]. This webpage provides
large data sets in SPMF format that are often used in the data mining litterature for eval-
uating and comparing algorithm performance. All experiments are done on a 4-cores
of 2.16GHz Intel(R) Pentium(R) CPU N3530 with 4 gigabytes main memory, running
Ubuntu 18.04 LTS. All the algorithms are implemented in Java and grounded on SPMF
software [12].

For each data set, we consider a number of support thresholds. For each support
threshold, we fix the minimal intra-periodicity threshold at zero (0), initialize the maxi-
mal intra-periodicity threshold at zero (0) and run algorithm IPFSM while increasing the
maximal intra-periodicity threshold until all the frequent sequences are found. The ex-
periments presented in the annex section show that the number of intra-periodic frequent
sequences, the runtime and the memory usage increase with the maximal intra-periodicity
threshold for a given support threshold.

6. conclusion
Previous work in frequent sequence mining and periodicty only consider extra peri-

odicity. In this paper, we have formalised the problem of mining intra-periodic frequent
sequences and studied its related issues, namely search space pruning and partitioning.
This study has enabled us to design a new efficient algorithm called Intra-Periodic Fre-
quent Sequence Miner (IPFSM). Experimental results confirm its efficiency. In future
work, we will consider adapting the proposed model for various pattern structures.
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