Kenmogne Edith Belise
email: ebkenmogne@gmail.com

Tayou Djamegni Clementin

Bruce Watson

Eric Badouel

Oumar Niang

An Efficient Algorithm to Discover Intra-Periodic Frequent Sequences

Keywords: Frequent sequence, intra-periodicity, pruning, partitioning MOTS-CLÉS : Séquence fréquente, intra-périodicité, élargage, partitionnement

Sequential pattern mining techniques permit to discover recurring structures or patterns from very large datasets, with a very large field of applications. It aims at extracting a set of attributes, shared across time among a large number of objects in a given database. It is a challenging problem since mining algorithms are well known to be both time and memory consuming for large databases. In this paper, we extend the traditional problem of mining frequent sequences with intraperiodicity constraints. Then, we study issues related to intra-periodicity constraints such as search space pruning and partitioning. This study leads to a new efficient algorithm called Intra-Periodic Frequent Sequence Miner (IPFSM). Experimental results confirm the efficiency of IPFSM.

RÉSUMÉ.

Les techniques de recherche des motifs séquentiels permettent de découvrir des structures ou modèles récurrents à partir de très grandes bases de données, avec un très large champ d'applications. Elles visent à extraire un ensemble d'attributs, partagés dans le temps entre un grand nombre d'objets dans une base de données. C'est un problème difficile, car les algorithmes de recherche des motifs séquentiels sont gourmandes en temps CPU et en mémoire sur des grandes bases de données. Dans ce papier, nous étendons le problème traditionnel de l'extraction des séquences fréquentes avec des contraintes d'intra-périodicité. Ensuite, nous étudions les problèmes liés aux contraintes de périodicité, notament l'élagage et le partitionnement de l'espace de recherche. Cette étude conduit à un nouvel algorithme efficace appelé Intra-Periodic Frequent Sequence Miner (IPFSM). Les résultats expérimentaux confirment l'éfficacité de l'IPFSM.

Introduction

Nowadays, the generalized use of new technologies of information and communication allows us to gather more data automatically. Because of the fast computerization of administrations, enterprises, trade and telecommunications, the rate of stored data increases quickly. However, the analysis and exploitation of these data is sometimes very difficult. In this context, sequential pattern mining [START_REF] Rakesh Agrawal | Proceedings of the Eleventh International Conference on Data Engineering[END_REF][START_REF] Karam Gouda | Prism: An effective approach for frequent sequence mining via prime-block encoding[END_REF][START_REF] Han | Mining Frequent Patterns without Candidate Generation[END_REF][START_REF] Jian | Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach[END_REF][START_REF] Savary | Indexed Bit Map (IBM) for Mining Frequent Sequences[END_REF][START_REF] Yang | LAPIN: Effective Sequential Pattern Mining Algorithms by Last Position Induction for Dense Databases[END_REF][START_REF] Hsieh | An Efficient Sequential Pattern Mining Algorithm Based on the 2-Sequence Matrix[END_REF][START_REF] Mohammed | TSPADE: An Efficient Algorithm for Mining Frequent Sequences[END_REF][START_REF] Nizar R | A taxonomy of sequential pattern mining algorithms[END_REF][START_REF] Fournier-Viger | SPMF: a Java open-source pattern mining library[END_REF][START_REF] Han | Data Mining: Concepts and Techniques[END_REF] is an important data mining problem widely addressed by the data mining community. It aims at extracting a set of attributes, shared across time among a large number of objects in a given data base. It is a challenging problem since mining algorithms are well known to be both time and memory consuming for large databases, and improvements are motivated by the need to process more data at a faster speed with lower cost. This trend and the integration of intra-periodicity constraints in the mining process are the main motivations for this paper. Previous work in frequent sequence mining and periodicty only consider extra periodicity [START_REF] Fournier-Viger | EFFICIENT ALGORITHMS TO IDENTIFY PERIODIC PATTERNS IN MULTIPLE SEQUENCES[END_REF][START_REF] Dinh | An efficient algorithm for mining periodic high-utility sequential patterns[END_REF][START_REF] Venkatesh | Discovering Periodic-Correlated Patterns in Temporal Databases[END_REF].

In this paper, we extend the traditional problem of mining frequent sequences with intra-periodicity constraints. Then, we study issues related to intra-periodicity constraints such as search space pruning and partitioning. This study leads to a new efficient algorithm called Intra-Periodic Frequent Sequence Miner (IPFSM). Experimental results confirm the efficiency of IPFSM.

The sequel of this paper is organized as follows. Section 2 states the problem. Section 3 studies search space pruning and partitioning under intra-periodicity constraints. Section 4 presents algorithm IPFSM. Section 5 presents experimental results. Concluding remarks are stated in section 6.

Statement of the problem

The traditional problem of mining frequent sequences

The traditional problem of mining sequential patterns [START_REF] Rakesh Agrawal | Proceedings of the Eleventh International Conference on Data Engineering[END_REF][START_REF] Karam Gouda | Prism: An effective approach for frequent sequence mining via prime-block encoding[END_REF][START_REF] Han | Mining Frequent Patterns without Candidate Generation[END_REF][START_REF] Jian | Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach[END_REF][START_REF] Savary | Indexed Bit Map (IBM) for Mining Frequent Sequences[END_REF][START_REF] Yang | LAPIN: Effective Sequential Pattern Mining Algorithms by Last Position Induction for Dense Databases[END_REF][START_REF] Hsieh | An Efficient Sequential Pattern Mining Algorithm Based on the 2-Sequence Matrix[END_REF][START_REF] Mohammed | TSPADE: An Efficient Algorithm for Mining Frequent Sequences[END_REF][START_REF] Nizar R | A taxonomy of sequential pattern mining algorithms[END_REF][START_REF] Fournier-Viger | SPMF: a Java open-source pattern mining library[END_REF][START_REF] Han | Data Mining: Concepts and Techniques[END_REF] and its associated notation, can be given as follows:

Let I = {i 1 , i 2 , ..., i n } be a set of literals, termed items, which comprise the alphabet. An itemset is a subset of items. For sake of simplicity [START_REF] Rakesh Agrawal | Proceedings of the Eleventh International Conference on Data Engineering[END_REF][START_REF] Karam Gouda | Prism: An effective approach for frequent sequence mining via prime-block encoding[END_REF][START_REF] Fournier-Viger | SPMF: a Java open-source pattern mining library[END_REF][START_REF] Han | Data Mining: Concepts and Techniques[END_REF], we assume that all the items of an itemset are alphabetically sorted.

A sequence is an ordered list of itemsets. A sequence s is denoted by ≺ s 1 , s 2 , ...s n , where s j is an itemset. s j is also called an element of the sequence, and denoted as (x 1 , x 2 , ..., x m), where x k is an item. For brevity, the brackets are omitted if an element has only one item, i.e. element (x) is written as x. An item can occur at most once in an element of a sequence, but can occur multiple times in different elements of a sequence. The number of instances of items (resp. elements) in a sequence α is denoted |α| (resp. ||α||). The value of |α| is called the length of the sequence. The number of A sequence with length l is called an l-sequence. A sequence α =≺ a 1 a 2 ...a n is called subsequence of another sequence β =≺ b 1 b 2 ...b m and β a supersequence of α, denoted as α ⊆ β, if there exist integers 1 ≤ j 1 < j 2 < ... < j n ≤ m such that a 1 ⊆ b j1 , a 2 ⊆ b j2 , ... , a n ⊆ b jn . Symbol denotes the empty sequence.

We are given a database S of input-sequences. A sequence database is a set of tuples of the form ≺ sid, s where sid is a sequence_id and s a sequence. A tuple ≺ sid, s is said to contain a sequence α, if α is a subsequence of s. The support of a sequence α in a sequence database S is the number of tuples in the database containing α, i.e.

support(S, α) = |{≺ sid, s | ≺ sid, s ∈ S ∧ α ⊆ s}|.
It can be denoted as support(α) if the sequence database is clear from the context. Given a user-specified positive integer denoted min_support, termed the minimum support or the support threshold, a sequence α is called a sequential pattern in sequence database S if support(S, α) ≥ min_support. A sequential pattern with length l is called an lpattern. Given a sequence database and the min_support threshold, sequential pattern mining is to find the complete set of sequential patterns in the database.

Extending the traditional problem with intra-periodicity

Definition 1 ("." and "_" o perators) L et e a nd e b e t wo i temsets t hat d o n ot contain the underscore symbol (_). Assume that all the items in e are alphabetically sorted after those in e. Let l (resp. l) denotes itemset e (resp. e) without brackets. Let γ =≺ e 1 . . . e n-1 a and µ =≺ be 2 . . . e m be two sequences, where e i and e i are itemsets that do not contain the underscore symbol, a ∈ {(l), (_l), (l_), (_l_)} and b ∈ {(l), (_l), (l _), (_l _)}. The dot operator is defined as follows : (1) (l). For example, denote s =≺a(abc)(ac)(efgh) , we have s =≺ (a).

(a_).(_b_).(_c).(a_) .(_c).(e_).(_f_). (_g_). (_h) and s =≺ (a) . ≺ (a_) . ≺ (_b_) . ≺ (_c)

. ≺ (a_) . ≺ (_c) . ≺ (e_) . ≺ (_f_) . ≺ (_g_) . ≺ (_h) .

Definition 2 (Prefix and suffix of a s eq uence) Consider three sequences α, β and γ such that α = β.γ. Sequence β (resp. γ) is a prefix (resp. suffix) of α Definition 3 (Sequence p artition) Given a sequence s =≺ s 1 , s 2 , ... , s n , a partition of s is any subsequence of s which is made of consecutive itemsets of s, i.e. which is on the form p =≺ s j1 , s j1+1 , s j1+2 ..., , s j k -1 , s j k , where

1 ≤ j 1 < j k ≤ n. Partition p is said to be strict if p = s, i.e. j 1 > 1 or j k < n.
Definition 4 (inclusion-carried m apping) An inclusion-carried mapping i m α,s : index(α) → index(s) from the set of indexes of the elements sequence α =≺ α 1 , α 2 , ... , α m to the set of indexes of the elements of a supersequence s =≺ s 1 , s 2 , ... , s n is an injective index-mapping which is (1) is monotonous, i.e. im α,s (i) < im α,s (i + 1), 1 ≤ i < m, (2) and such that element α i of α is mapped to a distinct element s imα,s(i) of s which contains α i , i.e. α i ⊆ s imα,s(i) .

For example, let α =≺ (ab)(gh) and s =≺a(abc)(ac)(efgh) . Denote α 1 = (ab), α 2 = (gh), s 1 = (a), s 2 = (abc), s 3 = (ac) and s 4 = (ef gh). We have α =≺ α 1 α 2 and s =≺ s 1 s 2 s 3 s 4 . Thus index(α) = {1, 2} and index(s) = {1, 2, 3, 4}. Denote im α,s : index(α) → index(s), im α,s (1) = 2 and im α,s (2) = 4. Function im α,s is monotonous and α i ⊆ s imα,s(i) for all i ∈ index(α). Thus function im α,s is an inclusioncarried mapping from sequence α to s.

For sake of simplicity, when the sets of indexes are known, im α,s will be referred to as an inclusion-carried mapping from sequence α to sequence s. Lemma 1 (The set inclusion-carried mappings is closed under " • " operator) Consider three sequences α =≺ α 1 , α 2 , ... , α m , β and γ, an inclusion-carried mapping im α,β from index(α) to index(β), and another one from index(β) to index(γ), denoted im β,γ . The composition of im α,β and im β,γ defined as

(im α,β •im β,γ)(i) = im β,γ (im α,β (i)), 1 ≤ i ≤ m, is an inclusion-carried mapping from index(α) to index(γ).
PROOF Function im α,β • im β,γ is injective and monotonous as im α,β and im β,γ are injective and monotonous. From definition 4, we have

α i ⊆ β im α,β (i) ⊆ γ im β,γ (im α,β (i)) = γ (im α,β •im β,γ)(i) , 1 ≤ i ≤ m.
Definition 5 (The restriction of an inclusion-carried mapping) Consider three sequences α, β and s such that α ⊆ β and β ⊆ s, and an inclusion-carried mapping im β,s from index(β) to index(s). A restriction of im β,s to index(α), denoted im α,β,s , is the composition of an inclusion-carried mapping from index(α) to index(β), denoted im β,s , and

im β,s , i.e. im α,β,s = im α,β • im β,s : index(α) → index(β) → index(s).
A restriction of im β,s to index(α) is unique if β contains only one occurrence of α.

Definition 6 (Sequence intra-periodicity) Let s and α =≺ α 1 , α 2 , ... , α m , m > 1, be two sequences such that α ⊆ s. Consider an inclusion-carried mapping im α,s from index(α) to index(s). The set of intra-periods of α in s following mapping im α,s , also called periods of appearance of the elements of α in s with respect to im α,s , is defined as ips(α, s, im α,s) = {im α,s (i + 1) -im α,s (i) | i ∈ {1, 2, ... , m -1}}.

Definition 7 (Minimal and maximal intra-periodicities) Consider two sequences α and s such that α ⊆ s. The minimal (resp. maximal) intra-periodicity of α in s following an iclusion-carried mapping im α,s is the minimal (resp. maximal) value of ips(α, s, im α,s). Definition 8 (Sequence inclusion) Denote i1 (resp. i2) the minimal (resp. maximal) intra-periodicity threshold. A sequence α is contained in another sequence s following (i1, i2), denoted as α ⊆ (i1,i2) s, if there exists an inclusion-carried mapping im α,s from index(α) to index(s) such that i1 ≤ min(ips(α, s, im α,s)) and max(ips(α, s, im α,s)) ≤ i2. Sequence α is called (i1, i2)-subsequence of s, and s is called (i1, i2)-supersequence of α.

Lemma 2 (Distributivity of ⊆ (i1,i2) operator) Consider a couple of intra-periodicity thresholds (i1, i2) and three sequences α, β and s that do not contain the underscore operator (_). If α.β ⊆ (i1,i2) s then there exist three sequences α , µ and β such that s = α .µ.β , α ⊆ (i1,i2) α and β ⊆ (i1,i2) β PROOF Assume that α.β ⊆ (i1,i2) γ. From definition 8, this means that there exists an inclusion-carried mapping im α.β,s from α.β to s such that i1 ≤ min(ips(α.β, s, im α.β,s)) and max(ips(α.β, s, im α.β,s)) ≤ i2. Denote α =≺ s 1 , ... s im α.β,s (1) , ... , s m α.β,s (||α||) , µ = if im α.β,s (||α|| + 1) = (m α.β,s (||α||) + 1) and µ =≺ s im α.β,s (||α||)+1) , ... , s im α.β,s (||α||+1)-1)

otherwise, and β =≺ s im α.β,s (||α||+1) , ... , s im α.β,s (||s||) . We have s = α .µ.β , α ⊆ (i1,i2) α and β ⊆ (i1,i2) β . Hence the result. Definition 9 (irreducible supersequence) A supersequence s of another sequence α is said to be irreducible following α and a couple of intra-periodicity thresholds (i1, i2) if no strict partition of s is a (i1, i2)-supersequence of α.

Given two sequences s and α, and a couple (i1, i2) of intra-periodicity thresholds, lmip(s, α, i1, i2) denotes the leftmost partition of s which is irreducible following α and (i1, i2). Such a partition may not exist, and in this case, we assume that lmip(s, α, i1, i2) =

. If such a partition exists, it induces a decomposition of sequence s into three parts, (1) the left part, denoted lp(s, α, i1, i2), (2) the middle part, denoted lmip(s, α, i1, i2), (3) and the right part, denoted rp(s, α, i1, i2). We have s = lp(s, α, i1, i2) . lmip(s, α, i1, i2) . rp(s, α, i1, i2). Denote q(s, α, i1; i2) = lmip(s, α, i1, i2) .rp(s, α, i1, i2) the concatenation of the middle and right parts. If lmip(s, α, i1, i2) = , we set lp(s, α, i1, i2) = , rp(s, α, i1, i2) = and q(s, α, i1, i2) = .

The projection of dataset S following sequence α and the couple of intra-periodicity thresholds (i1, i2), denoted S(α, i1, i2), is the set obtained by removing the left part of any sequence for which the middle part exists : S(α, i1, i2) = {≺ sid, lmip(s, α, i1, i2) .rp(s, α, i1, i2)

| ≺ sid, s ∈ S and lmip(s, α, i1, i2) = }. If the couple (i1, i2) is known, they could be removed from the notation of projected databases, i.e. S(α, i1, i2) = S(α), Note that, this definition is slightly different from the one introduced in [START_REF] Jian | Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach[END_REF].

Lemma 8 (Search-space partitioning based on prefix) We have the following: 1) Let {x 1 , x 2 , . . . , x n } be the complete set of length-1 intra-periodic frequent sequences in a sequence database S. The complete set of sequential patterns in S can be divided into n disjoint subsets based on prefix-items. The i-th (1 ≤ i ≤ n) subset of the search-space partitioning is the set of intra-periodic frequent sequences with prefix x i .

2) Let α be a length-l intra-periodic frequent sequence and {β 1 , β 2 , . . . , β p } be the complete of length-(l+1) intra-periodic frequent sequences with prefix α. The complete set of intra-periodic frequent sequences with prefix α, except for α itself, can be divided into p disjoint subsets. The i-th subset (1 ≤ i ≤ p) is the set of intra-periodic frequent sequences prefixed with β i .

The IPFSM algorithm

Algorithm 1 Intra-Periodic Frequent Sequence Miner. The initial call is IPFSM(S, , minS, minip, maxip) with S as the initial dataset Comment: Item x may contains the underscore operator (_)

4:
for all x i ∈ X do 5:

SAVEINTRAPERIODICFREQUENTSEQUENCE(α.x i) 6:
end for

7:

for all x i ∈ X do 8:

IPFSM(S(α.x i , minip, maxip), α.x i , minS, minip, maxip)

9:
end for 10: end function In this section, we translate the study made in section 2 into a function called Intra Periodic Frequent Sequence Miner (IPFSM). It is presented in algorithm 1. A IPFSM call (1) takes as arguments a database S, the current prefix value, the minimal support threshold, the minimal and maximal intra-periodicity thresholds, (2) searches for the complete list X = {x 1 , x 2 , . . . , x p } of all the length-1 sequential patterns of S which are such that α.x i , i ∈ {1, 2, . . . , p}, are frequent intra-periodic sequences of S, (4) saves α.x i as a new sequential pattern for each pattern x i found, assuming that the current prefix is α, (5) constructs, following lemma 8, a new database S(α.x i , minip, maxip) for each length-1 pattern x i ∈ X found, and (6) makes a recursive call per new constructed database with α.x i as the new current prefix value.

Function IPFSM recursively generates sub-databases from a partitioning of the current database following lemma 8. We consider that initial database, denoted S, is of depth 0. The initial database is used to generate databases of depth-1 dadabases of the form s(y 1), where y 1 is an item. The depth-1 database S(y 1) is used to generate depth-2 dadabases of the form S(y 1)(y 2), where y 2 is an item. A generated database is of depth d if it has been constructed using d length-1 patterns. Such a database is denoted S(y 1 .y 2 ... y d), where y 1 , y 2 , ... , y d are the length-1 patterns used to construct that database step by step in this order. Database S(y 1 .y 2 ... x d), d > 1, is generated from S(y 1 .y 2 ... x d-1) In terms of IPFSM calls, the initial call, i.e. IPFSM(S, , minS, minip, maxip), if of depth 0. The depth of a IPFSM call is the depth of its database argument. This depth is equal to the length of its prefix argument.

Experimental evaluation

We consider four real live data sets collected from the webpage (http://www.philippefournier-viger. com/spmf/index.php) of SPMF software [START_REF] Fournier-Viger | SPMF: a Java open-source pattern mining library[END_REF]. This webpage provides large data sets in SPMF format that are often used in the data mining litterature for evaluating and comparing algorithm performance. All experiments are done on a 4-cores of 2.16GHz Intel(R) Pentium(R) CPU N3530 with 4 gigabytes main memory, running Ubuntu 18.04 LTS. All the algorithms are implemented in Java and grounded on SPMF software [START_REF] Fournier-Viger | SPMF: a Java open-source pattern mining library[END_REF].

For each data set, we consider a number of support thresholds. For each support threshold, we fix the minimal intra-periodicity threshold at zero (0), initialize the maximal intra-periodicity threshold at zero (0) and run algorithm IPFSM while increasing the maximal intra-periodicity threshold until all the frequent sequences are found. The experiments presented in the annex section show that the number of intra-periodic frequent sequences, the runtime and the memory usage increase with the maximal intra-periodicity threshold for a given support threshold.

conclusion

Previous work in frequent sequence mining and periodicty only consider extra periodicity. In this paper, we have formalised the problem of mining intra-periodic frequent sequences and studied its related issues, namely search space pruning and partitioning. This study has enabled us to design a new efficient algorithm called Intra-Periodic Frequent Sequence Miner (IPFSM). Experimental results confirm its efficiency. In future work, we will consider adapting the proposed model for various pattern structures.

Annex

 (l) = (l)(l), (2) (l).(_l) = (ll), (3) (l).(l _) = (l)(l _), (4) (l).(_l _) = (ll _), (5) (l) .(l) = (ll), (6) (i) .(_l) = (ll), (7) (l_).(_l _) = (ll _), (8) (l_).(l _) = (ll _), (9) (_l).(l) = (_l)(l), (10) (_l).(l _) = (_l)(l _), (11) (_l).(_l _) = (_ll _), (12) (_l).(_l) = (_ll), (13) (_l_).(l) = (_ll), (14) (_l_).(_l _) = (_ll _), (15) (_l_).(l _) = (_ll _), (16) (_l_).(_l) = (_ll), (17) γ.µ =≺ e 1 . . . e n-1 a.be 2 . . . e m .

1 : 2 :X

 12 function IPFSM(Dataset S, Prefix α, float minS, int minip, int maxip) ← {Item x | minS ≤ |{s ∈ S | lmip(s, α.x, minip, maxip) = }|} 3:

4 " 4 " 4 "

 444 Performance analysis of IPFSM on the real-life data set BIBLE Performance analysis of IPFSM on the real-life data set FIFA An Efficient Algorithm to Discover intra-Periodic Frequent Sequences Performance analysis of IPFSM on the real-life data set LEVIATHAN

Proceedings of CARI 2020

Definition 10 (Sequence s upport) The support of a sequence α in a dataset S following a couple (i1, i2) of intra-periodicity thresholds, denoted support i1,i2 (S, α), is defined as the number of sequences of S which contain α following (i1, i2), i.e. support i1,i2 (S, α) = |{≺ sid, s ∈ S | α ⊆ (i1,i2) s}|.

Definition 11 (Intra-periodic frequent s equence) Given a minimum support threshold minS, and a couple (i1, i2) of intra-periodicity thresholds, a sequence α is an Intra-Periodic Frequent Sequence (IPFS) frequent if support i1,i2 (s, α) ≥ minS.

Definition 12 (Problem d efinition)

Let there be a user-specified database D and three thresholds i1 ≥ 0, i2 ≥ 0, minS ≥ 0. The problem of mining intra-periodic frequent sequences is to find all IPFS in D.

Search space pruning and partitioning

Due to space restriction, the proofs of lemmas are removed.

Lemma 3 (Intra-periodicity-set stability/growth based itemset growth/addition) Let α, β and s be three sequences such that β ⊆ s. Assume that β = its1_.α._its2 or β = its1.α._its2 or β = its1_.α.its2 or β = its1.α.its2, where its1 and its2 are two itemsets, and α, its1 and its2 do not contain the underscore operator(_). Given an inclusion-carried mapping im β,s from index(β) to index(s), there exists a restriction of im β,s to index(α), denoted im α,β,s , such that ips(α, s, im α,β,s) = ips(β, s, im β,s) if β = its1_.α._its2 and ips(α, s, im α,β,s) ⊆ ips(β, s, im β,s) otherwise.

Lemma 4 (Intra-periodicity-set growth based prefix-suffix growth) Consider three sequences α, β and s such that β ⊆ s and β = µ.α.γ where µ and γ denote sequences that may contain the underscore operator (_). Given an inclusion-carried mapping im β,s from index(β) to index(s), there exists a restriction of im β,s to index(α), denoted im α,β,s , such that ips(α, s, im α,β,s) ⊆ ips(β, s, im β,s).

Lemma 5 (Search space pruning using intra-periodicity thresholds) Denote minip (resp. maxip) the minimal (resp. maximal) intra-periodicity threshold. Consider three sequences α, β and s such that β ⊆ s and β = µ.α.γ where µ and γ denote sequences that may contain the underscore operator (_). We have :

1) If min(ips(α, s, im α,s)) < minip for any inclusion-carried mapping im α,s from index(α) to index(s) then min(ips(β, s, im β,s)) < minip for any inclusion-carried mapping im β,s from index(β) to index(s).

2) If max(ips(α, s, im α,s)) > maxip for any inclusion-carried mapping im α,s from index(α) to index(s) then max(ips(β, s, im β,s)) > maxip for any inclusioncarried mapping im β,s from index(β) to index(s).

Lemma 6 (Search space pruning using ⊆ (i1,i2) operator) Consider three sequences α, β and s such that β = µ.α.γ, where µ and γ are two sequences, and two inta-periodicity thresholds i1 and i2, we have: (1) if β ⊆ (i1,i2) s then α ⊆ (i1,i2) s, (2) if α ⊆ (i1,i2) s then β ⊆ (i1,i2) s.

Lemma 7 (Anti-monotonicity of the support following prefix-suffix growth) Given a couple (i1, i2) of intra-periodicity thresholds and two sequences α and s such that s = µ.α.γ, we have: support i1,i2 (S, α) ≥ support i1,i2 (S, s).