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Abstract—In this paper, a possible solution to track a
mobile underwater source in a closed environment with
N Autonomous Underwater Vehicles (AUV) in a swarm
formation is adressed. The source tracking algorithm
is defined as successful when the range between the
source and the swarm is sufficiently low during a given
duration, short enough to perform a specified action
(for example a source localization). A source is defined
as an entity that releases a scalar information affected
by transport and diffusion in the environment. We use
a generic time-varying information f(pi(t)), where pi

at time t is the m-dimensional position of a tracker i
and function f(.) is a function that represents sensor
information. In this paper, we propose an innovative
tracking method inspired by the Particle Swarm Opti-
mization (PSO) algorithm that we call the Local Charged
Particle Swarm Optimization (LCPSO). The proposed
algorithm is adapted to range-dependant communication
that characterizes the underwater context and includes
flocking parameters. Comparison of the LCPSO against
state of the art methods demonstrate the interest of our
approach in an underwater scenario.

Index Terms—PSO, Swarm, Robotics

I. INTRODUCTION

We consider the problem of where a static or
moving target is to be localized by a collection of
agents using arbitrary sensors and interactions with the
environment. More specifically we consider underwa-
ter applications, which is a much more constrained
environment than above the surface. For instance, we
consider the case where the agents are a swarm of Au-
tonomous Underwater Vehicles (AUV). Sensors could
be pressure sensors, including acoustic sensors [1], [3],
[16], [18]; magnetic sensors [5]; detectors of various

chemicals [12]. The applications include securing a
specified area to detect intruders; to prevent illegal
oil spilling by tankers; localizing a pipeline leak [2],
[22], or various other applications yet to be imagined.
The global theory of Odor Source Localization (OSL)
works in atmospheric and underwater environment.
The source diffuses an odor that is affected by trans-
port and diffusion, but the source does not move.
A review of six different OSL algorithms involving
laboratory experiments was made in 2010 [12]. The
subject is divided into three parts:

• Plume finding: the robot searches a first odor
acquisition,

• Plume traversal: the robot is in the plume and has
a strategy not to lose it,

• Source declaration: the robot has enough good
measurements to localize the source or to deter-
mine its nature.

A conclusion of [12] is the efficiency of multi-agent
strategies to track a source. Social aspects of search
as information exchanges and repartition of robots in
space allows to answer more easily to perturbations,
like noise and a dynamic environment.

Typical applications are Chemical Plume Tracing
(CPT) [19], [22], source pollution tracking , as well
in an atmospheric [8], [15] or underwater context [2],
[22], and rescue missions [11]. However communica-
tions are much more constrained underwater than in
the air, thus atmospheric methods can not be applied
directly to the underwater world.

Our problem statement consists of a mobile source



tracking in a closed underwater area by a swarm of
AUVs. The source is represented by the state vector
below:

xs(t) = (ps(t), vs(t), θs(t))
T (1)

where ps(t) = (xs(t), ys(t))
T is the two-dimensional

source position, vs(t) is the source speed norm and
θs(t) is the source heading. There is not inter-
dimensional terms in the algorithms presented in this
paper [23], allowing us an analysis in dimension 2 true
for all dimensions. The source releases an information
that can be measured at position p and time t as
f(p, t) where f is a function with scalar output in R
and p(x, y)T is any position in two dimensions. We
assume that the evolution of the measure obeys to the
following mathematical model:

f(p, t+ ∆t) = g(ps(t),p, t, f(p, t)) (2)

where f and g are two functions with a scalar value
output in R and p = (x, y)T is any position in two
dimensions. Our goal is to optimize the position of the
trackers as a function of their information f measured.
Equation (2) is in fact a domain-specific differential
equation depending on time and space, which allows
to model the interaction of the physical parameter
the agents have to detect with the environment. For
instance, it could be an equation representing diffusion,
such as the Laplace equation for heat diffusion ; it
could also model transport (convection, advection), or
propagation, if the physical parameter is a sound or
electromagnetic wave, or it could be the Navier-Stokes
equation, or a modification thereof.

We base our problem resolution on the conclusions
of Lochmatter [12]. In this paper, we propose a local
strategy based on the Particle Swarm Optimization
(PSO) algorithm to track a mobile source. We use
here a metric constraint rp (”p” for ”perception”)
beyond which a robot is not able to communicate.
To the best of our knowledge, there is no existing
strategy in underwater context to track a mobile source
dynamically with a swarm of robots.

This paper is organized as follows. Section II gives
the keys to understand the PSO and gives an analysis
of its different components. In section III, we give
the necessary modifications of PSO to track a mobile
source, we called this strategy LCPSO. In section IV,
we simulate our system. Section V concludes this
paper with an opening to future work.

II. PARTICLE SWARM OPTIMIZATION

A. Original algorithm

This model was first published by Kennedy and
Eberhart [10], and is today a swarm method to solve
several problems, as optimization [10], source search

[14], [26], [27], Search and Rescue (SaR) [11] and
some work was done for OSL application [7], [8].

The original algorithm is based on an optimization
problem: we consider N trackers measuring a value
from the function below that we try to optimize:

f :

{
Rm → R
pi(t) 7→ f(pi(t))

(3)

where pi is the m-dimensional position of tracker i
described by its speed vector vi(t) as follows :

vi(t+ ∆t) =c0vi(t) + c1αi1(t)(pb
i (t)− pi(t))

+ c2αi2(t)(pg(t)− pi(t)) (4)

As described in (4), the speed vector at time
t + ∆t, with ∆t the time step, is a sum of three
elements:
• The previous speed vector of tracker vi(t),

weighted by a constant coefficient c0.
• The difference between best historical position

registered by tracker noted pb
i (t) (”b” for ”best”)

and its current position. The best historical posi-
tion pb

i (t) is the position pi(ti), with ti between
time 0 and t where measure f(pi(ti)) was the
greatest. This component is weighted by a con-
stant coefficient c1.

• The difference between the swarm’s best tracker
position pg(t) (”g” for ”global”) and its current
position. The best tracker of swarm pg(t) is
tracker j measuring the greatest f(pj(t)) among
N trackers. This component is weighted by a
constant coefficient c2.

The second and last components are weighted by a ran-
dom number, respectively αi1(t) and αi2(t), uniformly
distributed in [0;1]. These random numbers provide
diversity to the system, and can avoid the swarm to be
trapped in a local optimum.

Using the Euler integration scheme, the updated
position of tracker i is computed as the sum of its
previous position and the updated speed vector as
follows :

pi(t+ ∆t) = pi(t) + vi(t+ ∆t)∆t (5)

The system is decentralized because no tracker gives
instructions to other ones, but only shares its data
with other elements of the swarm. The system is
also very simple because there is no hierarchy, and
exchanged data are limited (position and scalar values
measurements). But, in robotics, some modifications or
constraints are added to apply this system to problems
like OSL:
• Communication constraints: the global best posi-

tion cannot be efficient because of communication
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between individuals: in large multiagent system,
there will be too much information to transmit
and process at the same time [25]. Limiting the
number of robots is a solution, adopted by some
publications [7] in an atmospheric environment.
Another solution consists of applying a spatial
constraint to communication links leading to ad-
hoc communciations where data are exchanged
only between neighbours and gradually spread
over all robots of the swarm. Another solution
is to make use of a local best position only with
the neighbours seen by tracker [26], [27].

• Speed limitation: this limitation is necessary for
an application in physical world, but also for
convergence [4]. In our model, the norm of vi(t)
is upper-bounded by a constant coefficient vmax.

• Another limitation is the motion of the trackers.
Indeed, the PSO model is holonomic and sup-
poses that, at next step, trackers can turn and
move in any direction. Robots movements have
to be taken into account. In [14], for example,
the trackers have to turn before heading for the
next calculated point. In [8], the trackers have
forbidden areas where they cannot turn, so they
have to recalculate their speed vector.

• With PSO, the trackers cannot avoid collisions
with obstacles or each other. In [14], robots move
slowly, so they do not avoid a collision but change
direction after contact. Some models [6], [8] use
flocking to avoid the collisions between trackers.
It is also complementary with obstacle avoidance
strategies [6]: a school of robots avoids an ob-
stacle dividing the school into several parts and
the school reconstitute itself when the obstacle is
overcome.

B. Charged Particle Swarm Optimization (CPSO)

In the OSL domain, W. Jitmanko et al. [8] made
some progress to track one static source diffusing a
scalar value in a windy environment. Their algorithm
is named CPSO. CPSO includes repulsion vectors in
equation (II) to avoid a too concentrated clustering.
Flocking between two robots i and j is made by vector
aij(t) below:

aij(t) =
Qij

pi(t)−pj(t)
‖pi(t)−pj(t)‖r2

c
if ‖pi(t)− pj(t)‖ < rc

0 if ‖pi(t)− pj(t)‖ > rp
Qij

pi(t)−pj(t)
‖pi(t)−pj(t)‖3

otherwise
(6)

We can summarize the flocking equation as follows:

• If the distance between trackers i and j
‖pi(t)− pj(t)‖ is smaller than rc (”c” for

”core”), then robots are too close from each other,
and they repel strongly each other.

• If the distance between trackers i and j
‖pi(t)− pj(t)‖ is greater than rp (”p” for
”perception”), then trackers do not see each
other.

• Otherwise, trackers i and j repel smoothly each
other.

Constant Qij is set before the beginning of simula-
tions.

So the speed vector of CPSO can be formulated as
:

vi(t+ ∆t) =c0vi(t)

+ c1αi1(t)(pb
i (t)− pi(t)) (7)

+ c2αi2(t)(pg(t)− pi(t))

+

N∑
j=1,j 6=i

aij(t)

In the speed vector, CPSO adds all the repulsive el-
ement

∑n
j=1,j 6=i aij(t). The Euler integration scheme

is the same as in equation (5).
This algorithm is adapted to OSL because exper-

imental results [8] show good results for the swarm
to head for one static odor source. The number of
trackers and algorithm iterations determine algorithm
performance. Jatmiko et al. [8] also added a motion
constraint: if the angle to turn the tracker is in a for-
bidden area, calculated with wind, the robot changes
its angle to avoid this area.

III. LOCAL CHARGED PARTICLE SWARM
OPTIMIZATION

CPSO was designed to track a static odor source
in OSL domain. To track a mobile source in a con-
strained environment like underwater, some character-
istics need to be modified.

First, the main missing point is local communication
constraint. Indeed, the best tracker position of the
swarm pg(t) in equation (7) is global, shared with
each element of the swarm. We use a local-best vector
position pl

i(t) (l for local), which is the position of
tracker j within communication radius rp of tracker i
with the greatest measure f(pj(t)). This decentraliza-
tion was already proposed by [26], [27] but never to
track a mobile source, to the best of our knowledge.

Second, keeping in memory the best historical posi-
tion pb

i (t) is worthless. Indeed, the source is moving,
and values dispersed in the environment are dependent
on time and space. So, this information is removed in
the proposed approach.

Finally, the repulsion vector aij(t) defined in equa-
tion (6) is uselessly cut in pieces as a function of
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distances rc and rp. We believe that the fact that
aij(t) → +∞ when distance ‖pi(t)− pj(t)‖ → 0 is
a sufficient condition to avoid collisions. We consider
the simplified model of repulsion vectors aij(t) in the
rest of this paper :

aij(t) ={
0 if ‖pi(t)− pj(t)‖ > rp

Qij
pi(t)−pj(t)
‖pi(t)−pj(t)‖3

otherwise (8)

Those considerations lead to the following model
that we name LCPSO:

vi(t+ ∆t) =c0vi(t)

+ c2α2(pl
i(t)− pi(t)) (9)

+

N∑
j=1,j 6=i

aij(t)

The Euler integration scheme is the same as in
equation (5). The interest of this model is to give
more liberties to the robots, a decentralised agent
coordination, and a capacity to track a mobile source
in a complex environment.

IV. SIMULATIONS

A. Source information releasement model

The source is assumed to release a scalar informa-
tion in whole environment that is function of distance
and time. This function is named f(p, t) and is defined
as the two-dimensional equation below:

f(p, t+ ∆t) =
Imax

1 + ‖p− ps(t))‖d
(10)

+(1− e−∆t
τ )f(p, t) + β(p, t)

The equation (10) is a sum of three elements:
• The first element is a decay parameter which

decreases with distance between source position
ps and any position p in the workspace. d (for
”distance decay”) depends on the nature of dis-
tance decay: if d = 2, degradation is characteristic
of sound, if d = 3 it is characteristic of a magnetic
field. Imax is the maximal intensity released by
the source.

• The second element is a decrease of the previous
source releasement, inspired by a first-order filter
model parametered by τ .

• The last element is an additive white Gaussian
noise β(p, t) ∼ N (0, σ) in the whole environ-
ment.

The Imax maximal condition is necessary because
the equation (10) cannot release an information greater
than its maximum.

Table I: Parameters initialization of diffusion equation
(10)

Variable Definition Value
d Distance decay 2

Imax Maximal Intensity 1000 W
σ Noise variance 250
τ Time constant 1 s

B. Source and trackers models

In our simulations, the source follows a cart model
described by [9]:

ẋs(t)
ẏs(t)

θ̇s(t)
v̇s(t)

 =


vs(t) cos(θs(t))
vs(t) sin(θs(t))

u1(t)
u2(t)

 (11)

We assume that the source’s trajectory is an ellipse.
Controllers u1(t) and u2(t) are calculated thanks to a
linearizing loop [9]. The source heads for the ellipse
and follows the trajectory drawn by the ellipse. An
example of a cart model is drawn Figure 1.

Figure 1: The source (the cart) with the released
information, the ellipse and the trackers (the points)

The trackers are holonomic robots, so we apply
directly LCPSO as state equation. Tracker i measures
f(pi, t) and adjusts its local-best position pl

i(t) as
a function of maximum measurement of the neigh-
bourhood. Since the communication range is small,
we make the hypothesis that information exchange
is instantaneous between the trackers and is limited
to their position in absolute coordinates and their
measurements, without noise. Trackers are represented
by points in Figure 1.

C. Simulation conditions

The robots move in a 60 m wide square on each side.
The simulation lasts tmax = 100 s with ∆t = 0.5 s.
One thousand samples are present for each simulation.
In diffusion equation (10), we use arbitrarily the pa-
rameters described in Table I.
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Table II: Parameters initialization of CPSO and
LCPSO

Variable Definition Value
N Number of trackers 10

vmax Maximal speed 5m.s−1

c0 Speed constant weight 0.8
c2 Swarm constant weight 2
Qij Flocking constant weight 100
rp Communication distance 10m
rc Core distance 5m

The source trajectory is an ellipse centered in
(10, 10)T . The semi-major axis of the ellipse source
trajectory is equal to 15 m and its semi-minor axis is
equal to 7 m.

At the initial state, N trackers are packed around
the point (0, 0)T . They have the same communication
distance rp and are spaced by rp/2 from each other.
This repartition allows to avoid having lost robots
at the initial state. In this paper, the ”lost robots”
expression means robots without neighbours in their
communication radius rp.

To compare our results, we use the mean distance
between 25% of those trackers nearest to the source at
every iterations. If we use the mean distance between
whole swarm and source or with the tracker nearest
source, it would not be representative of a swarm
following a source. If N ≤ 4, we evaluate only the
distance with the nearest tracker, else we use b0.25Nc.
In this paper, we call this distance D25. When D25

is smaller than 15% of the workspace (here 9 m) in
average during the simulation time, we consider robots
have succeded to track the source and are assumed not
to lose it.

We also use the number of collisions during the
whole simulation to compare our algorithms. We in-
crement the number of collisions when two trackers
have a distance between them lower than rc/4. rc is
defined in Table II.

D. LCPSO parameters tuning

In the following figures, we will tune the LCPSO
parameters defined in Table II. We only represent
the LCPSO evolution with critical values, as c2 and
N , because these are dimensioning variables of our
system. Qij , c0 and vmax are set as in Table II. vmax

is set to be greater than the maximal speed of source.
Indeed, our solution is not efficient if the source speed
norm is greater than tracker speed norm.

Figure 2 shows the evolution of D25 distance as a
function of c2. This distance decreases fastly and starts
to stabilize from c2 = 2. We can also note that if c2 is
too much important, we have a greater dispersion of
samples without improvement of their mean. So c2 = 2
is a good trade-off of samples dispersion and mean.

Figure 2: LCPSO evolution as a function of c2. Box
plot with 1000 samples.

Figure 3: LCPSO evolution as a function of N . Box
plot with 1000 samples.

Figure 3 shows the evolution of D25 distance as
a function of the number of robots N . This distance
decreases exponentially and starts to stabilize from
N = 8, and is totally stabilized when N = 12.

E. Comparison with PSO and CPSO

We compare the performances of different algo-
rithms to follow a mobile source. To keep a good
comparison between algorithms, the parameters are
the same as in Table II. We compare only N and c2
between different algorithms Figure 4a and 4b. Indeed,
we cannot compare communication distance rp, which
is a LCPSO parameter, while c0 and vmax are not key
parameters and did not need to be compared.

PSO is not efficient. It is due to the fact that trackers
converge at the same point fastly, so there is no
possibility to compare data registered by each robot
spatially. This solution cannot be applied to track a
mobile source.

When we compare LCPSO and CPSO with the D25

distance criterion Figure 4a and Figure 4b, there is
few differences, although LCPSO has better results. It
is logical because algorithms are very close. However,
when we observe the number of collisions Figure 4d
and Figure 4c, the number of collisions of CPSO
increases much more strongly than for LCPSO. It is
due to the global communication with only one leader
: every robot are attracted to it, and there is a crowd
effect, whereas the limitation communication avoids
too many robots to be attracted to the same robot,
avoiding more easily collisions.

F. Influence of diffusion

Function f(p, t) parameters were chosen in Table
I to be a good compomise between noise β(p, t) ∼
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(a) D25 distance as a function
of N

(b) D25 distance as a function
of c2

(c) Mean number of collisions
as a function of N

(d) Mean number of collisions
as a function of c2

Figure 4: Algorithms evolution as a function of N and
c2.

N (0, σ), spatial diffusion d and temporal degradation
τ . In this section, we will compare our algorithms
with those parameters. Figure 5 illustrates the influence
of temporal degradation τ . We illustrate the f(p, t)
values read in the whole space by two level curves.
The blue one is f(p, t) = Imax/20, and the red one
is f(p, t) = Imax/2. We can see a ”plateau” of local
maxima in Figure 5a, where four trackers using the
LCPSO algorithm think the source is where they are.

(a) τ = 0.05 (b) τ = 0.1

(c) τ = 0.2 (d) τ = 1

Figure 5: Scalar values in the space generated by the
source when t = 100s

Figure 6 shows the response of the algorithms as a
function of τ . We can see that LCPSO is able to track
a source with few temporal degradation τ , contrary to

CPSO which is lost. Indeed, the temporal dissipation is
so negligible that the previous releasement has almost
disappeared. However, results are more in favor of
CPSO when τ ≥ 0.2, even if LCPSO keeps good D25

distances.
When we make a similar comparison with d and the

noise variance σ Figure 7, we can see that CPSO and
LCPSO results are quite similar when those values are
weak. However, when d = 3 and σ ≥ 600, CPSO has
much more difficulties to track the source. Its variance
is very large, so it means a lot of samples are trapped
by a local minimum.

Figure 6: Algorithms evolution as a function of τ . Box
plot with 1000 samples.

Figure 7: Algorithms evolution as a function of d. Box
plot with 1000 samples.

Figure 8: Algorithms evolution as a function of σ. Box
plot with 1000 samples.

So LCPSO is a more flexible algorithm than CPSO,
because it is able to react in presence of several
maxima and to ”catch” more easily the source. CPSO
is limited by its best particle swarm vector pg(t),
which allows the tracking of only one maximum.

V. CONCLUSIONS

This paper shows the efficiency of LCPSO to track
a mobile source with only one type of measured in-
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formation. The local communication distance rp adds
complexity to our system, allowing our algorithm to
track several local maxima, avoid more easily colli-
sions and to be less sensitive to noise than CPSO
and PSO. This degree of freedom makes the algorithm
usable in ocean.

In a future work, we will try to prove our results the-
oretically. Few papers trying to demonstrate the PSO
convergence exist [4]. There are even less dedicated to
derivatives of this algorithm. We will concentrate our
convergence efforts on the limitations of our algorithm
to be stable, as parameters c0, c2 and N .

Moreover, some progress in flocking formation and
convergence proofs [13], [17], [20], [21] were made
in the past, with a maturation conducting to a success
of real experiments [24]. We want to use those tools
to control the inter-robot distance in the swarm and
the heading of our robots. The control of inter-robot
distance is crucial to avoid collisions and to see the
surface taken by the swarm and needed to track a
source.

We also want to use localization to add an individual
component permitting a track not only directed by
social characteristics. Moreover, our model only takes
into account the diffusion parameters of the source.
We want to add a dynamic environment.
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