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Abstract

A mesh adaption approach for strongly coupled problems is proposed, based on a variational principle. The adaption
technique relies on optimality properties of an energy-like potential and is hence free from error estimates and the
associated computational cost. According to the saddle point nature of this variational principle, a staggered solution
approach appears more natural and leads to separate the mesh adaption for the mechanical and the thermal fields. Us-
ing different meshes for different phenomena, precise solutions for the various fields under consideration are obtained.
Mesh adaption steps (subdivision, merging) are local operations only, so that no complex remapping procedures are
necessary to transfer internal variables. In practice, nearest-neighbor interpolations were used. The proposed method
is shown to be cost effective with respect to a uniform mesh refinement. Some applications of the proposed approach
are presented on various examples, including shear banding and friction welding.

Keywords: Variational mesh adaption, Thermo-mechanics, Coupled problem, Rivara’s LEPP algorithm, Single edge
bisection technique

1. Introduction

Several industrial phenomena involve strongly coupled problems, for example, forging, machining, friction weld-
ing and many others. In these problems, the dynamic and transient effects cause the domains of interest to change
rapidly. In the framework of the finite element method, this means that the domains of interest change their spatial
location with time. Therefore, in order to obtain precise solutions at each time step, a mesh adaption strategy is
required.

Mesh adaption processes can be divided into three broad categories. The first one is the h-adaption, where the mesh
size is optimized [21]. It may contain processes of element refinement and/or coarsening. This approach is considered
in this article. Second, r-adaption keeps the same number of nodes, changes their location and the connectivity [56].
Third, p-adaption adapts the order of the interpolation polynomial within elements [54]. Mesh adaption strategies
depend on both the adaptive techniques and adaption criteria. Adaptive techniques essentially deal with geometrical
aspects of adaption, whereas the adaption criteria captures the peculiarity of the problem under consideration.

Several mesh adaption techniques were proposed in the literature. Rivara et al. [60, 59, 58] proposed explicit
updates for local mesh changes. Molinari et al. [49] used a local coarsening and refinement method based on the
mesh size for shear bands. Mesh adaption for shear bands has also been studied in plane strain [6, 10]. Global
mesh adaption procedures create a completely new mesh and use remapping procedures to transfer internal variables
[52, 57]. Using gradient based indicators, the global remeshing technique has been applied to impact problems [22].
Global remeshing techniques also handle mesh distortions in machining problems [46]. Methods based on global
remeshing of the domain of interest require to transfer internal variables between meshes, which can lead to artificial
diffusion of the latter unless specific methods are used [11]. Camacho et al. [13] proposed remeshing methods using
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advancing front methods for ballistic penetration problems. Mesh adaption was also used in [19, 68] for the shape
optimization of structures. Grinspun et al. [27] proposed the CHARMS method for hierarchical mesh refinement.

Classically, mesh adaption criteria have been based on error-estimates or mesh skewness. The commonly used
Z2 error estimate proposed by Zienkiewicz and Zhu [72] uses stresses within an element and is based on a recovery
process to obtain the reference nodal stresses. The difference between the element and the reference stresses provides
a gradient based error estimate. Curvature based error estimates have been proposed by Borouchaki et al. [10]. Error
estimates based on the error in constitutive relation have also been studied [39, 17, 38]. In these methods, the finite
element solution is described as a displacement-stress pair such that the displacements satisfy kinematic constraints
like boundary conditions and initial conditions while the stresses satisfy the equilibrium conditions. The displacements
and the stresses do not satisfy the constitutive relations (stress-strain relations) which provides a measure of the error,
which they refer to as the constitutive relation error. Romero et al. [62] proposed an error estimate based on the time
update. Gurtin [28] used configurational forces for r-adaption. Some authors also used gradients of physical quantities
as mesh adaption criteria [6, 10, 52]. Error estimates can also be based on variational principles [33, 34, 14, 57]. Many
other error estimators were studied by various researchers [2, 36, 43, 26].

While mesh adaption using error estimation is well established for single field problems, only few attempts have
been made towards mesh adaption methods for strongly coupled problems. Most of the methods available in the
literature adapt the mesh for only one of the considered fields [4]. Solin et al. [63] used a multimesh adaption
approach for weakly coupled problems, but the method is limited to thermo-elasticity. Vokas et al. [69] consider a
single mesh and h-refinement affects all fields simultaneously, therefore the method fails to capture different scales
and spatial resolutions of different fields. Moreover, the mesh adaption criteria relies on error estimators that work
well with linear constitutive models, but are very complex in the case of non-linear constitutive models due to their
need to reconstruct admissible fields. Therefore, it can appear difficult and expensive to use this approach for strongly
coupled problems with non-linear constitutive models and/or large deformation.

In the present article, we present a strategy of mesh adaption for thermomechanical strongly coupled problems
based on the variational approach of [53]. The variational form of the coupled thermo-elastic and thermo-visco-
elastic problems has been extensively investigated [9, 8, 5, 7, 31, 48]. Variational principles for equilibrium problems
of general dissipative solids in the isothermal setting have been proposed in [15, 18, 29, 30, 45]. Next, variational
visco-plastic constitutive updates were introduced by Stainier and Ortiz [53]. Variational formulations have also been
proposed for the case of brittle and ductile damage in [3, 24, 37]. Formulations for coupled thermo-mechanical
problems involving non-linear dissipative behaviour, such as thermo-elasto-visco-plasticity have been more recently
summarized by Stainier [65, 70]. In this paper, we focus on initial boundary value problems that gather transient heat
transfer and a quasi-static mechanical problem.

The adaption strategy for coupled problems is derived from a method proposed for purely structural problems by
Mosler et al. [50, 51]. This variational h-adaption method has also recently been applied to phase field approach to
model fracture [44]. The proposed mesh adaption criteria depends on the error indicated by the variational functional
[70, 65]. The method is free from any costly error estimation, and the variational functional itself drives the mesh
refinement and coarsening. The approach relies on a staggered approach [1] and uses different meshes for different
fields. The sequential adaption of different meshes allows to capture different scales and spatial resolutions of the
different fields. Assuming a constant distribution of internal variables over elementary cells consisting of the inter-
section between Voronoı̈ cells and triangular elements, complex remapping procedures causing significant numerical
diffusion from the initial mesh to the adapted mesh can be avoided. The same holds true between the steps of the
staggered scheme.

Two mesh adaption techniques are presented in this work. First, a single edge bisection technique [50], allowing
the generation of anisotropic meshes. Second, Rivara’s LEPP algorithm [60] is used which constrains the element
aspect ratio. The mesh adaption criterion is based on an error indicator provided by the variational functional. The
authors earlier proposed a strategy of using this error indicator for 1D thermal and thermo-mechanical problems [55].
However, the extension of the strategy to 2D and 3D problems poses additional difficulties. These difficulties are
addressed in this article. In addition to being free from error estimates and remapping procedures, the algorithm also
proves to be cost effective with respect to using uniform refinement technique.

The structure of the article is as follows: in Section 2, the continuous and discrete thermo-mechanical variational
formulations are reviewed, the latter being formulated as an incremental boundary value problem. Examples of
practical expressions for the variational functionals are given for some particular media of interest (thermoelasticity,
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thermo-elastic-viscoplasticity). In Section 3, the mesh adaption algorithm is explained. The local error indicators
based on the variational functional are presented. Finally, Section 4 shows some numerical examples. First, a steady
state thermal problem with an existing analytical solution is examined for error analysis purpose. Then, test cases
involving a linear thermo-elastic medium and shear banding are presented. Finally, a test case representative of linear
friction welding is simulated.

2. Variational formulation of the thermo-mechanical initial boundary value problem

2.1. Continuum setting
The variational formulation of the thermo-mechanical initial boundary value problem introduced in [70] consists

of a functional admitting a saddle point involving internal variables Z and external fields, the displacement u and
the temperature T . Since the optimality of the functional with respect to internal variables involves local quantities
defined at the scale of a material point, while its optimality with respect to external fields involve quantities defined
on the whole domain Ω, both are described separately hereafter.

2.1.1. Local constitutive problem
The set of constitutive equations for a nonlinear dissipative model can admit a variational principle by defining

the functional D(Ḟ, η̇, Ż,T ; F, η,Z):

D(Ḟ, η̇, Ż,T ; F, η,Z) =
d
dt

[U(F, η,Z)] − ρ0η̇T + Φ
(
Ḟ, Ż; F,Θ(F, η,Z),Z

)
(1)

where F is the deformation gradient, ρ0 is the initial mass density, η is the entropy, U is the internal energy density, Φ

is the convex dissipation potential and Θ denotes some equilibrium or internal temperature given by:

Θ(F, η,Z) =
1
ρ0

∂U
∂η

(F, η,Z) (2)

One can rewrite the above equation in terms of Helmholtz’s free energy W(F,T,Z) as follows:

D(Ḟ, η̇, Ż,T ; F, η,Z) =
d
dt

[W(F,T,Z)] + ρ0ηṪ + Φ
(
Ḟ, Ż; F,Θ(F, η,Z),Z

)
(3)

Thermodynamic forces consist of the first Piola-Kirchhoff stress tensor P conjugate to the deformation gradient F,
and of forces Y conjugate to internal variables Z. These thermodynamic forces can be additively decomposed into
reversible and irreversible components [71]:

P = Prev + Pirr

Y = Yrev + Yirr (4)

such that their reversible components are conjugate to state variables (F,Z) through Helmholtz’s free energy:

Prev =
∂W
∂F

Yrev =
∂W
∂Z

(5)

Since internal variables should not produce any work, i.e. Y · Ż = 0, ∀Ż, it follows that

Yrev + Yirr = 0. (6)

The reversible power per unit volume received by the system ẇτ can be defined as

ẇτ =
d
dt

[U(F, η,Z)] − ρ0η̇T =
d
dt

[W(F,T,Z)] + ρ0ηṪ = Prev · Ḟ + Yrev · Ż = (P − Pirr) · Ḟ − Yirr · Ż (7)
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whereas the dissipation potential represents the power per unit volume that can be dissipated. Therefore, the functional
D can be interpreted as the sum of the two homogeneous terms representing a power per unit volume. One is associated
to reversible processes, the other is associated with irreversible processes.

The general thermo-mechanical rate problem does not have an obvious variational structure. The weak formulation
obtained by multiplying the field equations by admissible variation of fields does not derive from a potential. It was
shown in [70] that using two key ideas, the thermo-mechanical initial boundary value problem can be made symmetric.
First, a two-field thermal formulation allows to separate some internal temperature Θ from the unknown external
temperature T appearing in the energy equation. Equality between these two temperatures Θ = T is enforced as an
internal constraint in the model, and relaxed in state laws. Second, in order to find a variational form to the general
rate problem, an integration factor that allows to recover the requisite symmetry of the strong form is identified. Yang
et al. [70] identifies the integrating factor T

Θ
by considering a time re-scaling of rate quantities appearing as arguments

of the dissipation potential, which thus reads Φ
(

T
Θ

Ḟ, T
Θ

Ż; F,T,Z
)
.

A multifield variational principle is then defined. Given an external state {u,T }, the stationarity of the functional
D with respect to the rate of internal variables

Deff = inf
Ż

D = inf
Ż

{
dU
dt
− ρη̇T + Φ

(T
Θ

Ḟ,
T
Θ

Ż; F,Θ(F, η,Z),Z
)}

(8)

yields the effective value Deff of the functional D thanks to the convexity of the dissipation potential, from which the
evolutions laws read

Yirr =
T
Θ

∂Φ

∂Ż
= −

∂W
∂Z

, (9)

where the second equality results from (6). The Piola-Kirchchoff stress tensor P is obtained by the variation of Deff

with respect to Ḟ:
∂Deff

∂Ḟ
=
∂W
∂F

+
T
Θ

∂Φ

∂Ḟ
= Prev + Pirr = P (10)

Equality between the equilibrium and the external temperatures is recovered through the optimality of D with respect
to the entropy rate

stat
η̇

D(Ḟ, η̇, Ż,T ; F, η,Z)⇔
∂U
∂η
− ρ0T = 0⇔ T = Θ(F,T,Z) (11)

The variation of Deff with respect to the external temperature T gives

∂Deff

∂T
= −ρ0η̇ +

Dint

T
, (12)

whereDint denotes the mechanical dissipation caused by the dissipative forces Pirr and Yirr

Dint = Pirr : Ḟ + Yirr · Ż ≥ 0 (13)

that should be non-negative.

2.1.2. Initial boundary value problem
The initial boundary value problem consists of the transient heat transfer problem plus a quasi-static mechanical

one defined in the initial domain Ω0 (at time t = 0), whose solution consists of the displacement field u, the temperature
field T and internal variables Z. The latter being determined locally, the external fields {u,T } are to be determined in
the domain Ω0. Assuming a non-overlapping partition of Dirichlet and Neumann subparts of the boundary ∂Ω0 of the
domain Ω0 for both thermal and mechanical physics, boundary conditions are prescribed such that u = ū on ∂uΩ0,
P · N = t̄ on ∂tΩ0, T = T̄ on ∂T Ω0 and Q · N = Q̄ on ∂QΩ0, where ū, t̄, T̄ and Q̄ are the imposed displacement,
tractions, temperature and outward heat flux density respectively. Besides, P denotes the first Piola-Kirchhoff stress
tensor, Q the outward heat flux density, and N the outward unit normal to the initial boundary ∂Ω0. As shown by Yang
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et al. [70], the variational functional for this initial boundary value problem is given by:

Φ(u̇, η̇,T ) =

∫
Ω0

[
Deff(Ḟ, η̇,T ) − χ

(
−
∇T
T

; F,Θ(F, η,Z),Z
)]

dV

+

∫
Ω0

[
ρr log

T
Θ
− ρ0b · u̇

]
dV −

∫
∂tΩ0

t̄ · u̇da −
∫
∂QΩ0

Q̄ log
T
Θ

da (14)

where r and b refer to the distributed heat source and body force densities, both per unit mass; dV and da refer to
infinitesimal elements of volume and area respectively. Following Biot [9], the heat conduction potential χ is given
as follows:

χ =
1

2T
∇T ·K · ∇T (15)

where K is the thermal conductivity tensor. Stationarity of Φ with respect to u̇ yields the weak form of the linear
momentum balance

< Du̇Φ, δu̇ >= −

∫
Ω0

δu̇ · {∇0P + ρb} dV −
∫
∂tΩ0

δu̇ ·
(
t̄ − P · n

)
da = 0, (16)

while its stationarity with respect to T yields the weak work of the energy balance

< DT Φ, δT >=

∫
Ω0

δT
{
−ρ0η̇ +

Dint

T

}
dV +

∫
Ω0

Θ∇

(
δT
T

)
·K ·

∇T
T

dV

+

∫
Ω0

ρrδT
Θ

dV −
∫
∂QΩ0

Q̄δT
Θ

da = 0.
(17)

Finally, its optimality with respect to η̇ yields (11). Hence, the extremal point of the functional Φ is expressed as

{u̇, η̇,T } = arg stat
u̇

inf
η̇

sup
T

Φ(u̇, η̇,T ) (18)

However, in a number of cases, depending on the actual expression for Deff, the extremal point will actually correspond
to a saddle-point, so that the optimality with respect to u̇ defines a minimum.

2.2. Discrete setting

2.2.1. Local time-discrete constitutive problem
Consider the discrete time increment ∆t = t − t0, and assume the local material state {F0, η0,Z0} is completely

known at time t0. In order to compute internal variables Z, an incremental function I (F,T,Z) is sought in such a
way that it approximates the integral of the functional D (1) over the time increment ∆t:

I (F,T,Z; F0,T0,Z0) ≈
∫ t

t0
D(Ḟ, η̇, Ż,T (τ); F(τ), η(τ),Z(τ))dτ

= W(F,T,Z) −W0 + ρ0η0∆T + ∆t
〈
Φ

(
T
T0

∆F
∆t
,

T
T0

∆Z
∆t

; F(τ),T (τ),Z(τ)
)〉 (19)

where the identity U̇ − ρ0η̇T = Ẇ + ρ0ηṪ has been used. In the above equation, the definitions ∆(·) = (·) − (·)0,
W0 = W(F0,T0,Z0) have been used, and the factor T

Θ
have been replaced by T

T0
where T0 denotes the temperature

at time t0. This corresponds to the time discretization of the local functional (1) associated with the local variational
principle, as shown in [70]. The brackets 〈•〉 denotes a consistent average value of the quantity (•) over the time
increment. More details are provided on its computation in [64, 12]. The incremental variational update for internal
variables Z takes the form of the following minimization problem:

W(F,T ; F0,T0,Z0) = inf
Z

I (F,T,Z; F0,T0,Z0), (20)
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that is
∂W
∂Z

+
T
T0

∂

∂Ż

〈
Φ

(
T
T0

∆F
∆t
,

T
T0

∆Z
∆t

)〉
= 0. (21)

Consistency with respect to the continuous operator expresses as

lim
∆t→0

∂

∂Ż

〈
Φ

(
T
T0

∆F
∆t
,

T
T0

∆Z
∆t

)〉
=
∂Φ

∂Ż

(
Ḟ, Ż

)
(22)

Hence, provided known external fields {F,T }, the internal variables Z can be computed at each integration point at
each discrete time step.

2.2.2. Incremental boundary value problem
Consider now a discrete time increment for the variational initial boundary value problem, whose object is to

compute the external fields {u,T } at each time step. An incremental functional I(u,T ) is sought in such a way that it
approximates the integral of the functional Φ (14) over the time increment ∆t:

I(u,T ) =

∫
Ω0

[
W(F,T ; F0,T0,Z0) − ∆t

〈
χ

(
−
∇T
T

; F(τ),T (τ),Z(τ)
)〉]

dV

+

∫
Ω0

[
∆t ρ r log

T
T0
− ρb · ∆u

]
dV −

∫
∂tΩ0

t̄ · ∆uda −
∫
∂QΩ0

∆t Q̄ log
T
T0

da

(23)

The time discretized balance laws can be obtained from stationary conditions of the incremental functional (23). Thus,
the external fields {u,T } can be computed as optimizers of the above functional at each time step

{u,T } = arg stat
u,T

I(u,T ) (24)

Most of the times, W is convex in u and concave in T . Therefore, solution fields can be characterized as a saddle point
of the incremental functional:

{u,T } = arg inf
u

sup
T

I(u,T ) (25)

2.3. Examples of particular media

2.3.1. Purely thermal transient problem
In the case of a purely thermal problem, the free energy and the dissipation potential respectively reduce to:

W(T ) = −
ρC
2

(T − Tref)2

Tref
(26)

and
χ(−∇T ) =

1
2Tref

∇T ·K · ∇T (27)

where C is the specific heat capacity, K the heat conductivity tensor, and Tref some reference temperature. The
incremental potential (23) then takes the following form (up to a constant factor Tref):

I(T ) =

∫
Ω

{
C

2∆t
(Tn+1 − Tn)2 +

1
2
∇Tn+1 ·K · ∇Tn+1 − r(Tn+1 − Tn)

}
dV (28)
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It is easy to see that the discrete weak form coupled to an implicit Euler finite difference scheme is obtained by taking
the first variation of the above functional:

< DT I, δT >=

∫
Ω

{ C
∆t

(Tn+1 − Tn)δT + ∇δT ·K · ∇Tn+1 − rδT
}

dV = 0 (29)

2.3.2. Linear thermo-elasticity
For linear thermo-elasticity in the linearized geometrical framework, Helmholtz’s free energy takes the form:

W(ε,T ) =
1
2
ε : C : ε − ε : C : α(T − Tref) −

1
2
ρC

(T − Tref)2

Tref
(30)

where ε denotes the linearized strain tensor, C the elastic stiffness tensor, α the tensor of thermal dilatation, C the
specific heat capacity (at constant strain) and Tref the reference temperature. Denoting the temperature increment as
θ = T − Tref, the constitutive law reads:

σ =
∂W
∂ε

= C : (ε − αθ) (31)

2.3.3. Thermo-elasto-visco-plasticity
For thermo-elasto-visco-plastic media, a multiplicative decomposition is applied to the deformation gradient F =

Fe · Fp [40]. In the linearized geometrical framework, the linearized strain ε is additively split into elastic and plastic
part ε = εe + εp. Helmholtz’s free energy is defined in this case as:

W(ε, εp,T ) = We(ε − εp,T ) + W p(εp,T ) + W t(T ) (32)

where We is the elastically stored energy (recoverable), W p is the plastically stored energy (not directly recoverable)
and W t the thermally stored energy (heat capacity). The reversible stress σrev is then given by:

σrev =
∂W
∂ε

=
∂We

∂ε
= C : ((ε − εp) − αθ) (33)

Denoting the back stress by X ≡ − ∂W p

∂εp , the mechanical dissipation Dmech reads

Dmech = −
∂W
∂εp : ε̇p =

(
∂We

∂εe −
∂W p

∂εp

)
: ε̇p = (σ − X) : ε̇p ≥ 0 (34)

and should be non-negative. A plastic flow rule corresponding to von Mises-type plasticity can be written as follows:

ε̇p = ε̇pM (35)

where ε̇p stands for some effective plastic strain rate, and M its flow direction. The dissipation potential Φ(ε̇p; εp,T )
takes the general form:

Φ(ε̇p; εp,T ) =

φ(ε̇p; εp,T ) if ε̇p
≥ 0

+∞ otherwise
(36)

with φ a convex function such that φ(0; εp,T ) = 0 and ∂ε̇pφ(0; εp,T ) = σY (εp,T ) ≥ 0, where σY denotes the tensile
yield stress. For rate-independent plasticity, φ can be considered as:

φ = σY ε̇
p (37)

More details about the incremental variational formulation of thermo-visco-elasto-plasticity and the implementa-
tion of specific models in finite strain can be found in [66] and [65].
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3. Variational h-adaption algorithm

3.1. Refinement

3.1.1. Adaption criteria
The incremental variational problem results is an optimization problem of the form:

inf
u∈V

sup
T∈W

Ih(u,T ) (38)

where V andW refer to spaces of continuous and regular functions defined in the domain Ω0, respecting Dirichlet
boundary conditions. A staggered solution scheme for the coupled problem [1] is preferred, which allows to use
different meshes for the mechanical and the thermal parts.

In finite element analysis, the solutions lie in subspaces Vh and Wh of V and W respectively, which are built
from nodal shape functions associated with the triangulations Tu and TT of the domain Ω0. In the present context of
mesh adaption,Vh andWh are the nets of linear spaces generated by edge bisection and parameterized by a directed
index set A1. Hence, dime(Vh1) ≤ dime(Vh2) if the triangulation Th2 corresponding toVh2 can be reached from Th1
by successive edge bisections. The initial triangulation and the solution space corresponding to the initial mesh are
T0 andV0 respectively. Therefore, the corresponding element 0 ∈ A precedes all the other elements.

For regular problems, the variational functional is convex with respect to the displacement field, and concave
with respect to the temperature field. This provides a comparison criterion to judge the quality of meshes. Thus,
a triangulation Tu1 associated with a displacement field u1 can be judged better than a triangulation Tu2 with a
displacement field u2 if and only if I(u1,T ) < I(u2,T ). Similarly, a triangulation TT1 associated with a temperature
field T1 can be judged better than a triangulation TT2 with a temperature field T2 if and only if I(u,T1) > I(u,T2).
This allows to formulate the problem of variational mesh adaption as an optimization problem:

inf
u∈Vh

sup
T∈Wh

{
Ih(u,T ) + µu

gNu − µ
T
g NT

}
(39)

where Nu and NT are the number of nodes of the triangulations of the mechanical and thermal meshes respectively.
Indeed, the global parameters µu

g and µT
g are needed to define a criterion to stop the mesh adaption process because

additional degrees of freedom will never worsen the variational potential. When a node is added to the mechanical
mesh, the value of the potential Ih decreases, while Nu increases by one. The net effect of the addition of one node
is an offset by an amount µu

g due to the second term in equation (39). Hence, mesh refinement is only admissible if
the node added to the mechanical mesh reduces the potential Ih by a value greater than µu

g. Similarly, when a node
is added to the thermal mesh, the value of the potential Ih increases, while NT increases by one. The net effect of
an additional node in the thermal mesh in equation (39) is an offset by an amount µT

g due to the third term. For the
thermal part, mesh refinement is only admissible if a node added to the thermal mesh increases the potential Ih by a
value greater than µT

g . Therefore, the parameters µu
g and µT

g appear as the energetical costs linked to the addition of a
new node in the mechanical and the thermal meshes respectively, which should be strictly positive. If the improvement
of the value of the incremental functional is more than that of the cost of a node, refinement is admissible.

Assuming the mechanical problem is solved before the thermal one in a staggered approach, the mesh adaption
problem (39) can be represented separately for the mechanical and the thermal meshes at a given time step tn as:

inf
u∈Vh

{
Ih(un,Tn−1) + µu

gNu

}
≡ inf

u∈Vh

Iu(un,Tn−1,Nu) (40)

sup
T∈Wh

{
Ih(un,Tn) − µT

g NT

}
≡ sup

T∈Wh

IT (un,Tn,NT ) (41)

However, it is sometimes convenient to solve the thermal problem before the mechanical one, especially when a weak
coupling is considered with a one-way effect of the thermal part onto the mechanical part. In such scenario, the mesh

1A directed set is a nonempty set A together with a binary relation ≤ with properties of reflexivity(a ≤ a, ∀a ∈ A), transitivity(if a ≤ b and
b ≤ c, then a ≤ c), and directedness(for any pair a, b ∈ A, there exists a c ∈ A such that a ≤ c and b ≤ c).

8



adaption problem can be stated as follows:

sup
T∈Wh

{
Ih(un−1,Tn) − µT

g NT

}
≡ sup

T∈Wh

IT (un−1,Tn,NT ) (42)

inf
u∈Vh

{
Ih(un,Tn) + µu

gNu

}
≡ inf

u∈Vh

Iu(un,Tn,Nu) (43)

In the above expressions, fields with subscript n − 1 are computed at the previous time step. Equation (40) adapts the
mechanical mesh and computes the displacement solution un at time tn. Equation (41) considers un as given, adapts
the thermal mesh and computes the thermal solution Tn at time tn. The converse operates in equations (42) and (43),
for which the mechanical and thermal steps are swapped.

Problems (40)-(41) and (42)-(43) are of combinatorial complexity, that is, for each value of number of nodes,
several meshes with different values of incremental variational functional are possible. Thus, infinite choices of
number of nodes are possible. This combinatorial complexity makes these problems very hard to solve in general.
Hence, a greedy approach is used by means of an iterative procedure in order to take advantage of the additive
property of the incremental variational potential, Ih(u,T ) =

∑nElem
i Ii(ui,Ti). The geometry is divided into patches,

and refinable elements are collected from each patch. This is done by locally refining each patch and checking the
following condition for the mechanical part:

Il
i (u

l
1,T

l) − inf
ul

2∈V

Il
i (u

l
2,T

l) > µu
lr∆Nu (44)

where Il
i represents the incremental variational potential for the ith patch (l stand for local), ul

1 and ul
2 refer to the

displacement field computed on the original and the refined patch respectively, T l is the thermal field interpolated
from a different thermal mesh, µu

lr is the cost linked to the addition (r stands for refinement) of a new node in a patch
of the mechanical mesh, and ∆Nu denotes the number of new nodes introduced in the refined patch. Similarly, the
following condition is verified by the thermal part:

sup
T l

2∈W

Il
i (u

l,T l
2) − Il

i (u
l,T l

1) > µT
lr∆NT (45)

where T l
1 and T l

2 refer to the temperature fields computed on the original and the refined patch respectively, ul is
the displacement field interpolated from a different mechanical mesh, µT

lr is the cost linked to the addition of a new
node in the patch of the thermal mesh and ∆NT is the number of new nodes introduced in the refined patch. If the
improvement of the incremental functional due to the introduction of an additional node is greater than the energetical
cost associated with the addition of a node in this patch, the refined mesh of the patch is retained, otherwise, the
original mesh of the patch is kept. Checking conditions (44) and (45) involves the solution of a local problem on the
refined patch with fixed Dirichlet boundary conditions on its boundary (which are available from the previous global
solution).

3.1.2. Local adaption techniques
Two methods are considered in this work for the construction and the refinement of patches. The first one is the

single edge bisection technique [50]. It consists in identifying a single edge in the mesh to be bisected, from which a
patch is identified as the ring of elements around this edge. For P1 elements, the refinement process introduces one
node, as shown in Figure 1. For a boundary edge, a similar process is applied, as shown in Figure 2. For P2 elements,
if the target edge is on the boundary, three new nodes are added, otherwise four new nodes are added. No bound
is here applied on the element aspect ratio, therefore meshes obtained tend to be anisotropic because the variational
approach does not apply any constraint on the geometrical aspect of the mesh. This can provide different degrees of
spatial resolution in different directions suitable for the problem under investigation at the cost of elongated elements.

The second one is the longest edge propagation path (LEPP) strategy of Rivara [60, 59], that allows to guarantee
an upper bound on the element aspect ratio. The list of edges to be bisected is obtained from the algorithm of Rivara
and the patch is constructed by taking the union of elements around these edges. The process is illustrated in Figure
3.
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Figure 1: The edge identified is BD. Therefore, the patch contains the two elements adjacent to the edge BD. The refined version of patch contains
the new node E. If the edge is on the boundary, the original patch will only have a single element.
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D
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Figure 2: The edge identified is AB, which is on the boundary. Therefore, the patch contains a single element DAB. The refined version of the
patch contains the new node E.

3.2. Coarsening
For transient problems, the domains of interest evolve with the time and the loading. Therefore, mesh coarsening

is also important to adapt the mesh in such a way that the sole domain of interest be refined. The process of mesh
coarsening is similar to that of mesh refinement. The identification of a previously refined edge, candidate for a
potential coarsening, allows to go back to the original mesh irrespective of the method of refinement used. For
example, consider the refinement obtained by the LEPP strategy as shown in Figure 3. One can easily go back to
the original mesh by a two-step coarsening procedure as shown in Figure 4. The following condition associated with
coarsening is checked for the mechanical problem on each patch:

inf
ul

2∈V

Il
i (u

l
2,T

l) − Il
i (u

l
1,T

l) < µu
ld (46)

where ul
1 and ul

2 refer to the displacement fields computed on the original and coarsened patches respectively, and
µu

ld is the cost associated with the removal (d stands for derefinement) of a node in the ith patch of the mechanical
mesh. Note that only one node is removed from the patch, therefore the resulting increase of the incremental potential
should be less than the energetical cost associated with a single node. Similarly for a thermal problem, the following
condition is checked on each patch:

Il
i (u,T

l
1) − sup

T l
2∈W

Il
i (u,T

l
2) < µT

ld (47)

where T l
1 and T l

2 refer to the temperature fields computed on the original and the coarsened patches respectively, and
µT

ld is the cost associated with the removal of a node in the ith patch of the thermal mesh. Here, the decrease of the
incremental potential caused by coarsening should be less than the energetical cost associated with a single node. In
other words, if the saving of energetical cost associated with a node is greater than the effect on the solution field
due to the removal of a node, the patch can be coarsened. Conversely, if the deterioration of the solution due to the
removal of a node is significant with respect to the energy cost associated with a node, the patch is not coarsened in
order to obtain a sufficiently accurate solution. Note that allowing different values for the parameters µu

ld, µT
ld, µu

lr, µ
T
lr,

µu
g and µT

g can give a better control over the adaption procedure.

3.3. Mesh adaption procedure
The mesh adaption procedure including refinement and coarsening steps can be summarized as follows:
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Figure 3: The edge identified is AC, the triangles ACD and ACB share this edge. The segment AC is the longest edge for the triangle ACD but not
for the triangle ACB. The longest edge of the triangle ACB is AB. The edge AB is shared by triangles ACB and AEB. Since AB is the longest edge
for both of them, it is the terminal longest edge in LEPP and is hence first bisected. Then the edge AC is bisected which is now the terminal longest
edge in LEPP. Here, the patch contains three elements and two new nodes, but in general it can contain any number of elements corresponding to
the Longest Edge Propagation Path (LEPP).

Algorithm 3.1 (Staggered computation and adaption of meshes).
Provided the solutions (un−1,Tn−1,Zn−1) defined on their respective meshes at time tn−1,

1. Solve the mechanical problem
while convergence is not obtained, iterate on k such that

(i) Adapt the mechanical mesh by checking conditions (44) and (46) on each patch.

(ii) Find u(k)
n by minimizing (40).

(iii) Update Z(k)
n at each Gauss point of the mechanical mesh by minimizing the local functional

I (F(k)
n ,Tn−1,Z(k)

n ; Fn−1,Zn−1) (20)

2. Solve the thermal problem
while convergence is not obtained, iterate on k such that

(i) Adapt the thermal mesh by checking conditions (45) and (47) on each patch.

(ii) Find T (k)
n by maximizing (41).

(iii) Update Z(k)
n at each Gauss point of the thermal mesh by minimizing the local functional

I (Fn,T
(k)
n ,Z(k)

n ; Fn−1,Tn−1,Zn−1) (20)

If the thermal and mechanical steps are swapped, equations (40)-(41) are replaced by equations (42)-(43). For
practical implementation purpose, the above µ parameters that are homogeneous to an energy are replaced by three

A B

CD

E

F

G

B

C

A

D

E

F
B

C

A

D

E

Figure 4: The LEPP algorithm gives the single step refinement of several edges. They are coarsened one by one. Here edge AGC is coarsened to
AC first, then edge AFB is coarsened to AB.
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dimensionless parameters, namely Tolr, Told and Tol0, respectively associated with the refinement of a patch of
element, its derefinement, and the global iterative processus on a mesh. These parameters are defined on both thermal
and mechanical meshes, so that six parameters can be defined in a thermomechanical analysis. Convergence criteria
are defined on some relative improvement of the variational functional between two iterations. More details about this
point as well as about the definition and the influence of tolerance parameters can be found in [55], and are hence not
repeated here.

3.4. Management of internal variables

Mesh adaption problems often involve complex remapping procedures for transferring the internal variable set
from an initial mesh to an adapted mesh. Remapping of internal variables causes significant numerical diffusion. In
the present work, the internal variables are assumed to be piece-wise constant over elementary cells consisting of the
intersection between Voronoı̈ cells and triangular elements. Therefore, at any given point in an element, the values
of internal variables are assumed to be equal to that of the closest integration point within that element as shown in
Figure 5.

A B

C

B

C

A B

C

A

Figure 5: The sketch on the left shows a triangular parent element with three integration points shown in different colours. Pieces of Voronoı̈ cells
intersected with that triangle corresponding to each Gauss point are shown in the sketch at the middle. These elementary cells represent the domain
of influence of each Gauss point. The right sketch on the right shows the bisected triangle, hence generating two new triangles. The children Gauss
points inherit data from parent Gauss points, as shown in the same colors.

Upon edge bisection, when a new integration point is created, the process of remapping involves simple inheritance
of internal variables at the new integration point from the closest integration point in the parent element. In this way,
children elements remain consistent with the history of deformation of their parent elements and satisfy the internal
constraints. Upon coarsening, the integration point inherits internal variables from the closest integration point within
the refined elements. Again, parent elements remain consistent with the average history of deformation of their
children elements and satisfy the internal constraints. This variational transfer operator is dealt with in detail by Ortiz
and Quigley [52].

3.5. Interpolation of fields from one mesh to another

The coupled thermo-mechanical problem is solved with a staggered approach using two different meshes for the
mechanical and the thermal parts. In order to deal with the coupling effects, information transfer from one mesh to
another is necessary. For nodal fields, this transfer consists of a simple interpolation of fields to the Gauss points of
the other mesh. Therefore, given an integration point, a search is made to find the element in the other mesh in which
the integration point lies. Using the nodal values, a finite element interpolation is performed. For variables defined
at integration points, the process consists in finding the closest integration point in the other mesh and the values are
inherited. Using spatial coordinates, a linear search can allow to obtain the element in the other mesh in which the
current integration point lies. This process is shown in Figure 6.

Using external fields u and T obtained by interpolation from their respective meshes to a particular integration
point, internal variables are updated using the local variational problem (20), as explained in algorithm 3.1.
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Figure 6: The sketch on the left shows an element ABC and one of its Gauss points, on which fields from the other mesh are to be interpolated. The
sketch at the middle shows the other mesh and the element ABC in blue dotted line. The element in which the Gauss point of the element ABC lies
is identified as the element DEF as shown in the sketch on the right. Therefore, the external fields can be interpolated from nodal values of nodes
D, E and F. The variables at integration points are inherited from the closest integration point in the element DEF, shown in red.

4. Examples

4.1. Steady state thermal problem

The proposed mesh adaption strategy is first tested on a steady state thermal example whose analytical solution
is known. Consider a rectangular plate of width W and height H, subjected to the following boundary conditions,
summarized in Figure 7:

T = T1 at x = 0 and x = W ∀y ∈]0,H[, y = 0 ∀x ∈]0,W[
T = T2 at y = H ∀x ∈]0,W[

(48)

The analytical solution for this test case can be found in [32, Chapter 3], and is given as follows:

T − T1

T2 − T1
=

2
π

∞∑
n=1

(−1)n+1 + 1
n

sin
(nπx

W

) sinh(nπy/W)
sinh(nπH/W)

(49)

The prescribed boundary conditions impose a jump of temperature from T1 to T2 at the two top corners of the plate
(see Figure 7). Because of this jump, the incremental variational functional (23) is expected to indicate a necessary
drastic improvement of the solution through refinement of patches close to these two corners, hence leading to a very
fine mesh in these areas due to this singularity.

This simulation of mesh adaption was carried out on a square of unit length, starting from a mesh of four 6-
node triangular elements as shown in Figure 7, and the edge bisection technique was used for mesh refinement. The
refinement parameter Tolr and the global tolerance parameter Tol0 are here set to 10−4 and 10−5 respectively. The
final adapted mesh and the solution field are shown in Figure 8. As expected, the obtained adapted mesh is very fine
near the two top corners. Note also that the obtained mesh is symmetric with respect to a middle vertical line, and is
well structured. This is due to the symmetry of the geometry and of the loading of this problem. The algorithm can
also be combined with other patching strategies to produce meshes with desired geometric characteristics.

Next, the efficiency of the algorithm is analyzed by computing the L2 error between the numerical and analytical
temperatures, as a function of the number of nodes of the mesh. Three cases are considered. First, a plot is made for
some uniform meshes, and will be used as a reference. A comparison of the variational mesh adaption with respect to
the ZZ2 Superconvergent Patch Recovery method [73, 74] was already performed in [55] leading to quite comparable
results, and is hence not repeated here. Second, the L2 error is plotted at each refinement iteration of the adaptive
mesh algorithm with respect to the current number of nodes of the mesh. However, since the mesh adaption is done
in several iterations, a consistent comparison between a uniform and the variational refinement should account for the
path of refinement followed during the mesh adaption procedure. One way to achieve this is to account for a cumulated
number of nodes associated with all the computations performed during the mesh adaption process. Therefore, a third
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Figure 7: Solution field on the initial mesh along with the bound-
ary conditions.

Figure 8: Numerical solution on the adapted mesh.

101 102 103 10410-4

10-3

10-2

10-1

uniform mesh
adaptive mesh (non cumulated)
adaptive mesh (cumulated)

Figure 9: Analysis of the algorithm. Number of nodes on X axis and L2 error in temperature on Y axis.

plot consists of the error computed at each refinement iteration of the variational adaptive mesh algorithm with respect
to the cumulated number of nodes.

Figure 9 shows these superposed plots. It can be observed that the plot linked to the cumulated number of nodes
crosses the uniform one from above, meaning that a more precise solution can be obtained with less computational
cost using variational mesh adaption.

4.2. Linear thermo-elastic holed plate
Consider a rectangular plate with a circular hole, made of a linear thermoelastic material. The plate is submitted

to compression through a negative prescribed normal displacement on its top face, in the Y direction. Making use of
the symmetries, only one quarter of the plate is modelled. A zero heat flux boundary condition is prescribed for the
thermal part on the whole boundary, whereas for the mechanical part symmetry conditions are accounted for at planes
x = 0 and y = 0 in addition to the prescribed negative displacement. Figure 10 shows the computational domain and
the boundary conditions, and Table 1 lists the numerical values of data associated with the geometry, the loading and
the material parameters. The loading is applied linearly on the time interval t ∈ [0, 1] s.

The purpose of this test case is to compare the single edge bisection [50] and Rivara’s [60, 59] mesh adaption
techniques. Also, this test case shows an application of the variational mesh adaption algorithm to a strongly coupled
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uy = 0
ex · σ · ey = 0
q · ey = 0

ey · σ · ex = 0
q · ex = 0

q · ey = 0
ex · σ · ey = 0
uy = − f (t)

ey · σ · −ex = 0
ux = 0

q · −ex = 0
H

L

R

ey

ex

Figure 10: Geometry and boundary conditions for the thermo-
elastic problem.

Geometry
L 32 × 10−3 m
H 50 × 10−3 m
R 2.5 × 10−3 m

Loading
ḟ (t) 10−4 m.s−1

Material parameters
ρ 1450 kg.m−3

E 2 × 109 Pa
ν 0.35
α 6 × 10−5 K−1

Tref 300 K
C 148 J.kg−1.K−1

k 1 × 10−2 W.m−1.K−1

Table 1: Numerical data

Mechanical mesh
Tol0 10−3

Tolr 10−4

Told 10−4

Thermal mesh
Tol0 0.1
Tolr 0.1
Told 0.1

Table 2: Tolerance parame-
ters for the holed plate
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(b) Magnitude of the temperature gradient

Figure 11: Plots along the ligament (y = 0).

problem, applying an isothermal staggered scheme [1] with P1 finite elements.
Figure 11 shows some plots of the solution along the ligament (y = 0), obtained with an initial coarse mesh. Due

to the stress concentration near the hole as shown in Figure 11(a), the mechanical mesh adaption should produce a
finer mesh around the hole at the first time step. The same holds for the thermal one, because of high temperature
gradients in that area, as shown in Figure 11(b). Unlike the purely transient thermal test [55], severe mesh coarsening
and refinement should not be observed at each time step here, because the domain of interest does not change with
respect to time.

Provided the tolerance parameters listed in Table 2, Figures 12(a) and 12(b) show the adapted meshes for the
mechanical part obtained by using simple patches consisting of two triangles, and by using Rivara’s patch respectively.
Observe that in both cases, a fine mesh has been generated close to the hole, and a coarser one is let far from it.
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(a) Adapted mechanical mesh
consisting of 329 nodes ob-
tained using the single edge bi-
section technique.

(b) Adapted mechanical mesh
consisting of 340 nodes ob-
tained using Rivara’s technique.

(c) Adapted thermal mesh con-
sisting of 44 nodes obtained
using the single edge bisection
technique.

(d) Adapted thermal mesh con-
sisting of 53 nodes obtained us-
ing Rivara’s technique.

Figure 12: Adapted meshes

Therefore, these two meshes allow to represent a good solution field. However, it is observed in Figure 12(a) that the
mesh has elongated elements, and has become anisotropic. This difference is even more evident on the temperature
field shown in Figures 12(c) and 12(d). Observe the four elongated elements in Figure 12(c). This anisotropy is
avoided in Rivara’s algorithm by finding the LEPP (Longest Edge Propagation Path) and refining backwards as shown
in Figure 12(d). It is important to note that the mesh adaption is performed only at the first time step and no major
changes in the mesh are observed after the first time step.

In order to compare the edge bisection and Rivara’s mesh adaption techniques, the mesh adaption process is
allowed to continue for a few more iterations at the first time step. For comparison purpose, the parameters for both
cases are chosen such that the precision level of the solution is of similar order of magnitude. We here leverage the
fact that the mesh adaption is only performed at the first time step. Figures 13 and 14 show the comparison of the
potential energy computed for the mechanical and the thermal mesh respectively. It can be observed that the edge
bisection converges towards slightly better values of the potential energy for both thermal and mechanical meshes.
Indeed, since Rivara’s technique directly applies a constraint on the element aspect ratio and hence yields a constrained
optimization problem, it is normal to find slightly less optimal values of the potential energy than these obtained with
the edge bisection, which is associated with an unconstrained optimization problem. In the latter, the sole underlying
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Figure 13: Comparison of mesh adaption techniques for the me-
chanical mesh.
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Figure 14: Comparison of mesh adaption techniques for the ther-
mal mesh.

physics drives the mesh adaption through the value of the potential energy, and may hence show this small difference.

(a) Adapted mechanical mesh at early stages. (b) Adapted mechanical mesh at final time.

(c) Adapted thermal mesh at early stages. (d) Adapted thermal mesh at final time.

Figure 15: Adapted meshes with a prescribed moving heat source
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The holed plate is now submitted to a heat source, moving along an elliptical path about the hole center of the
thermoelastic plate. The heat source has a magnitude of 105W.m−3, a width of 10−3m and an angular range of 2°,
while the ellipse has semi-major and semi-minor axes set at 15.5 × 10−3 and 24.5 × 10−3m respectively.

Figure 15 shows the mechanical and thermal meshes at early stages and at final time of the simulation. When
the heat source is suddenly applied, the thermal mesh is refined around it to capture the strong thermal gradients (see
Figure 15(c)), while the mechanical mesh does not show nor need such refinement in the same area (see Figure 15(a)).
As the heat source moves along its elliptical path, derefinement has occured because the temperature distribution has
been smoothed with time (Figure 15(d)). Meanwhile, the mechanical mesh has continued to be refined close to the
hole as the compression loading has increased with time (Figure 15(b)).

4.3. Shear banding
A shear band is a narrow region experiencing an instability due to thermal softening associated with large defor-

mation, high strain rate and high temperature rise, occurring in various ductile materials [67]. The well-known hat
shaped specimen [47] has been designed to trigger such shear banding in dynamical testing in order to study the shear
response of some metallic alloys undergoing large strains, high strain rate and high temperature.

uz = 0
σzr = 0

B

uz = − f (t)
σzr = 0

ur = 0
σrz = 0

A

r

z

t

n

Axis of axisymmetry

σ · n = 0

R3

R2

R1

H3

H2

H1

Figure 16: Geometry and mechanical boundary conditions of shear band
specimen.

Geometry
H1 15 × 10−3 m
H2 7 × 10−3 m
H3 5 × 10−3 m
R1 5 × 10−3 m
R2 10−2 m
R3 4.5 × 10−3 m

Table 3: Numerical data for the hat
shaped specimen

Mechanical mesh
Tol0 0.1
Tolr 10−2

Told 0.1
Thermal mesh

Tol0 0.3
Tolr 0.9
Told 0.9

Table 4: Tolerance parame-
ters for the shear banding test
case

The present test case serves to show the good performance of the variational mesh adaption for complex coupled
problems in the framework of finite strains. However, some simplifications are considered here: the loading is not
prescribed as fast as it is in the experimental test and inertia terms are neglected. The thermo-elastic-viscoplastic
constitutive model developed in [66] is used for the hat shaped specimen, with the materials parameters associated
with an α-Titanium alloy which is known to be strain rate dependent. In particular, this constitutive model accounts
for isotropic strain-hardening and thermal softening. The geometry and the boundary conditions of the axisymmetric
hat shaped specimen are shown in Figure 16, and associated numerical values are listed in Table 3. A zero heat flux
is imposed on the whole boundary, and the specimen is compressed by means of a normal displacement of 5 × 10−5

m prescribed on the top face of the specimen, linearly on the time interval t ∈ [0, 5] s. The geometry and the imposed
displacement cause high shear stresses distributed along the segment AB, supported by the unit vector t shown in
Figure 16. Next, the mechanical dissipation causes a rise of temperature along the direction t, leading to the softening
of the material. Softening causes an increase of plastic strains such that a narrow shear band appears.

For the simulation, the same initial mesh is used for both mechanical and thermal parts, as shown in Figure 17.
Rivara’s LEPP mesh adaption technique is used in the presented results. An isothermal splitting is used along with P1
finite elements, and the values used for the tolerance parameters are listed in Table 4. The final adapted thermal mesh
at the final time step is shown along with its temperature distribution in Figure 18. Mesh adaption can be seen in areas
where a sharp temperature gradient needs to be captured. Similarly, the final adapted mechanical mesh at the final
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Figure 17: Initial mesh for both thermal and mechanical parts. Figure 18: Final adapted thermal mesh with temperature isovalues.

Figure 19: Final adapted mechanical mesh with equivalent plastic strain
isovalues.
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Figure 20: Evolution in time of the length of the segment computed with
k = 0.3 in equation (50).

time step along with the field of equivalent plastic strain is shown in Figure 19. Zooms on areas close to the sheared
zone are shown in Figures 21 and 22.

Estimating the width of the shear band is known to be a real challenge with standard isothermal finite element
analyses, since the modeling used may not include any internal length. However, thermal conduction solved here
allows to introduce such an internal length into the modeling [41, 16, 25], and hence allows to regularize the problem
by avoiding the width of the shear band to converge to an element length as the mesh is refined.In order to analyze
the evolution of the temperature increase in the narrow band with time, the length of a segment l, normal to the shear
band, is plotted along the direction n (see Figure 16). More precisely, the segment l is defined as:

l = {x | T (x) > kTmax}, 0 < k < 1. (50)

It corresponds to a certain width linked to the stencil of sharp temperature rise due to the appearance of the shear
band. At the beginning, a quite uniform temperature over the domain leads the segment l to cover its whole length in
the direction n. As soon as the shear band appears, the temperature increases in the band, causing the length of the
segment l to drop. This evolution is shown in Figure 20. The decrease of the length with time is the image of some
increase of the temperature. The time evolution of the average shear stress σnt along the segment AB ((n, t) being
shown in Figure 16) is shown in Figure 23. It is observed that the shear stress increases until time 0.10 seconds. Next,
the material softening starts, an evident temperature rise occurs, whose maximum value is shown in Figure 24, which
causes a decrease of the shear stress. A kink appearing in the temperature profile can be clearly observed at time 0.10
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Figure 21: Zoom on the final adapted thermal mesh with temperature
isovalues.

Figure 22: Zoom on the final adapted mechanical mesh with equivalent
plastic strain isovalues.

seconds.
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Figure 23: Evolution of 〈σnt〉AB with time.
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Figure 24: Evolution of maximum temperature Tmax with time.

Su et al. [67] used an analytical solution developed by Leroy et al. [41] for a 1D shear band problem. The
temperature distribution predicted in the band is given by:

T (y) = Tmax − (Tmax − Tre f )
log

(
cosh

(
y
h

))
log

(
cosh

(
H
h

)) , (51)

and the velocity is given by

V(y) = V0

tanh
(

y
h

)
tanh

(
H
h

) . (52)

However, this solution is valid for a 1D problem with prescribed temperature boundary conditions and a specific
constitutive model. Therefore, a regression is used in order to find the parameter h appearing in equations (51) and
(52). That model also neglects the elastic part of the strain so that plastic strains are compatible with the displacement
field. The analytical expression of the plastic strain rate is then obtained by taking the gradient of the velocity V
(52). The plots shown in Figures 25 and 26 show the numerical and analytical solutions of the temperature and the
plastic strain rate along the direction n, neglecting the domains close to boundaries. It can be seen that the analytical
and numerical profiles are close. The differences are essentially due to the different boundary conditions. This test
case shows how accurate solutions of complex strongly coupled problems can be obtained using the proposed mesh
adaption strategy.
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Figure 25: Numerical and analytical temperature profile along n at time
1.03 × 10−2 seconds.

1.0 0.5 0.0 0.5 1.0 1.5
1e 3

0.0

0.5

1.0

1.5

2.0

Ra
te

 o
f p

la
st

ic
 s

tr
ai

n

1e1
Analytical
Numerical

Figure 26: Numerical and analytical rate of plastic strain along n at time
1.03 × 10−2 seconds.

4.4. Linear friction welding

Linear friction welding is an industrial process in which the two parts to be welded are put in contact with a given
pressure, then rubbed against each other. The friction causes a rise of temperature, which leads to the softening of
materials up to that they get welded.

Since this process involves a very strong thermo-mechanical coupling, this is an interesting test case to show the
good behavior of the proposed variational mesh adaption technique. Numerical simulation of linear friction welding
has already been studied, among others, by Debeugny [20], Foca [23] who used a mesh free approch for simulating
the process, but also by Li et al. [42] who used a complete remeshing to advance the simulation. However, the latter
procedure may cost loss in precision due to significant numerical diffusion. Figure 27 shows the geometry and the

Contact

σ · n = 0

ux = 0

σyx = 0

Pressure

σxy = 0

σ · n = 0

ux = 0

σyx = 0

L

H1

H2

Figure 27: Geometry and boundary conditions of
the linear friction welding problem, extracted from
[42].

A B

CD

Figure 28: Simplified modeling of the prob-
lem. Symmetry boundary condition is ap-
plied on AD, contact and heat flux on AB,
free tractions on BC and imposed displace-
ment on DC.

Geometry
L 17 × 10−3 m
H1 10−2 m
H2 30 × 10−3 m

Table 5: Numerical data for
the linear friction welding
test case.

Mechanical mesh
Tol0 10−2

Tolr 5 × 10−3

Told 5 × 10−3

Thermal mesh
Tol0 0.1
Tolr 0.5
Told 0.5

Table 6: Tolerance param-
eters for the linear friction
welding test case

boundary conditions used by Li et al. [42]. In order to focus on effects generated by the linear friction welding, the
sole bottom part of the specimen is considered, with free lateral boundary conditions, as shown in Figure 28 with
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numerical values listed in Table 5. Next, half of this bottom part is meshed due to symmetry, so that ux = 0 and
q · n = 0 are applied on the segment AD. This modelling assumes that the area above the line DC shown in Figure 27
is rigid, hence the loading is prescribed by means of a displacement uy imposed on that segment. Contact is applied
on the segment AB for the mechanical part, and a given heat flux is prescribed in order to model the heat generation
due to friction. The applied heat flux can be assessed as follows, assuming that all the heat generated during friction
contributes to the input heat flux q̄:

q̄ = τ · v = 4τα f (53)

where v denotes the tangential velocity, α the magnitude of the sliding motion imposed between the two parts to be
welded, f the frequency of oscillations and τ the shear stress whose magnitude can be evaluated by Coulomb’s law:

τ = µσN (54)

where µ is the friction coefficient and σN is the normal stress. Parameters used for the loading and Coulomb’s law
are extracted from Li et al. [42]. At last, the part to be welded is assumed to be made of Ti-6Al-4V alloy, whose
constitutive response of the medium is modelled by the thermo-elasto-visco-plastic Johnson-Cook model [35]. The
numerical implementation of the latter in the variational framework and the values of material parameters associated
with Ti-6Al-4V can be found in [67].

(a) Thermal initial mesh (b) Mechanical initial mesh

Figure 29: Initial meshes

The initial meshes used for the thermal and mechanical parts are shown in Figure 29. The single edge bisection
technique is used for the mesh adaption in this problem. At the beginning of the loading, high strains occur close to
the boundary, causing some refinement of the mechanical mesh in that region as shown in Figure 30. After a few time
steps, the mesh is adapted according to the stress field as shown in Figure 31. Figure 32 shows the stress field at the
final computed time step.

At the beginning, the adapted thermal mesh easily captures the smooth temperature field, as shown in Figure 33.
The maximum temperature is reached close to the contact surface, while it is almost uniform far from it. This causes
a finer mesh to develop between these two zones in order to capture the temperature gradient. The adapted thermal
mesh along with the associated temperature isovalues are shown in Figure 34 at the final computed time step. A finer
refinement appears close to the contact boundaries because of the mechanical effects seen in Figure 32. Figures 35
and 36 show time evolutions of the temperature and the stress magnitude at a point located at the middle of the bottom
line. It can be seen that these time evolutions are smooth, the temperature keeping on increasing while the stress
magnitude tend to reach a plateau.

The proposed variational mesh adaption strategy thus appears useful for test cases involving strong thermo-
mechanical coupling along with large deformations.
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Figure 30: Magnitude (Frobenius norm) of the stress field shown on
the deformed mechanical mesh (The solution has been mirrored for
display) at preliminary stages.

Figure 31: Magnitude (Frobenius norm) of the stress field shown on
the deformed mechanical mesh (The solution has been mirrored for
display) after developed stress field.

Figure 32: Magnitude (Frobenius norm) of the stress field shown on the deformed mechanical mesh (The solution has been mirrored for display)
at the last computed time step.

5. Conclusion

A mesh adaption strategy for coupled thermo-mechanical problems based on a variational approach was pre-
sented in this work. The adaption criteria are based on a multifield variational principle, whose discrete incremental
functional plays the role of an error indicator. The approach is hence free from error estimates and associated compu-
tational cost. The solution procedure uses a staggered scheme, which is leveraged to associate different meshes to the
different physics in presence in order to capture their respective different scales and spatial resolutions.

Complex remapping procedures and excessive numerical diffusion is avoided by using a simple interpolation for
nodal fields and the closest integration point for fields defined at Gauss points. Indeed, since mesh refinement leads
to nested successive meshes, diffusion is controlled. The single edge bisection as well as Rivara’s mesh adaption
techniques have been used and compared on different test cases. The proposed approach shows good performance
on strongly coupled problems and industrial-like processes, like shear banding and linear friction welding. As a
perspective, the method could be readily extended to three-dimensional problems. The basic simple edge bissection
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Figure 33: Temperature field shown on the undeformed thermal mesh
(The solution has been mirrored for display) at preliminary stages.

Figure 34: Temperature field shown on the undeformed thermal mesh
(The solution has been mirrored for display) at the final time step.
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Figure 35: Time evolution of the temperature of the middle bottom
point.
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Figure 36: Time evolution of the stress magnitude (Frobenius
norm) of the middle bottom point.

can certainly be used in 3D problems. Besides, the extension to the 3D case of LEPP-bisection algorithm is discussed
in [61].
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