Hamiltonian formulations for perturbed dissipationless plasma equations - Archive ouverte HAL
Article Dans Une Revue Physics of Plasmas Année : 2020

Hamiltonian formulations for perturbed dissipationless plasma equations

Alain J. Brizard
  • Fonction : Auteur
  • PersonId : 927860

Résumé

The Hamiltonian formulations for the perturbed Vlasov-Maxwell equations and the perturbed ideal magnetohydrodynamics (MHD) equations are expressed in terms of the perturbation derivative $\partial{\cal F}/\partial\epsilon \equiv [{\cal F}, {\cal S}]$ of an arbitrary functional ${\cal F}[\vb{\psi}]$ of the Vlasov-Maxwell fields $\vb{\psi} = (f,{\bf E},{\bf B})$ or the ideal MHD fields $\vb{\psi} = (\rho,{\bf u},s,{\bf B})$, which are assumed to depend continuously on the (dimensionless) perturbation parameter $\epsilon$. Here, $[\;,\;]$ denotes the functional Poisson bracket for each set of plasma equations and the perturbation {\it action} functional ${\cal S}$ is said to generate dynamically accessible perturbations of the plasma fields. The new Hamiltonian perturbation formulation introduces the framework for the application of functional Lie-transform perturbation methods in plasma physics and highlights the crucial roles played by polarization and magnetization in Vlasov-Maxwell and ideal MHD perturbation theories.

Dates et versions

hal-02932384 , version 1 (07-09-2020)

Identifiants

Citer

Alain J. Brizard, Cristel Chandre. Hamiltonian formulations for perturbed dissipationless plasma equations. Physics of Plasmas, 2020, 27, pp.122111. ⟨hal-02932384⟩
58 Consultations
0 Téléchargements

Altmetric

Partager

More