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Abstract

In this paper, we introduce new totally blind spectrum sensing (SS) algo-
rithms, for fast time-varying channel, based on eigenvalue decomposition
(EVD) of the covariance matrix of the received signal. The new scheme is
based on the sliding window whose the size depends on the coherence time of
the channel. First, we evaluate the impact of the mobility on the detection
performance. Then, by applying EVD in each window, we focus our study
on the maximal estimated largest eigenvalue (MELE). We provide simulation
results in order to validate the proposed theoretical expression of the proba-
bility density function of the MELE. Finally, simulation results illustrate the
performance of the contributions and are compared to other SS methods.

Keywords: Spectrum sensing, time-varying channel, cognitive radio, sliding
window.

1. Introduction

This last decade, cognitive radio (CR) systems which are able to sense
their radio surroundings, have attracted more and more attention to tackle
the scarcity of the frequency spectrum by enabling opportunistic resource
utilization. This issue is all the more relevant today when many new tech-
nologies, such as the Internet of things (IoT) [1]. Thus, it is relevant to
explore the integration of newly emerging technologies with the CR-based
IoT systems [2]. In CR networks, one defines two kinds of users, the primary
user (PU) who has all the priority on the frequency band and the secondary
user (SU) who can opportunistically benefit from some part of the spectrum
resource. The SU indeed aims at exploiting the spectrum holes through a
dynamic reconfiguration of the radio frequency front-end. In this context,
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the SU has thus to be always aware of its environment. This is achieved
by applying the so-called cognition loop to identify the available spectrum
resource and then as possible at least not interfere with the PU. The decision
on the availability or unavailability of the resource is based on the result of
the spectrum sensing (SS) step which is the basic building block of any CR
system. The first standard defining CR system capabilities is the wireless re-
gional area networks (WRAN) IEEE 802.22 designed for the bands assigned
to TV broadcasting. The performance constraints of this standard is to sense
the PU, for a signal-to-noise ratio (SNR) around −21 dB, at a probability of
detection (Pd) of at least 0.9 and a probability false alarm (Pfa) lower than
0.1 [3]. But the CR network can be exploited for other applications:

1. Next generation wireless networks: Cognitive radio is promising tech-
nology for the next generation of heterogeneous wireless networks. Cog-
nitive radio will provide intelligent information for both the user equip-
ment and the network equipment provider. A mobile device can ob-
serve the state of wireless access networks (transmission quality, speed,
delay) and make a decision on the selection of network access.

2. Cyber health services (eHealth services): Different types of wireless
technologies are adopted in health services to improve the efficiency
of patient care and healthcare management. The concepts of cognitive
radio are user in order to allow the multiples wireless medical sensors to
choose the best transmission bands to avoid interference and to ensure
a better quality of service.

3. Emergency Networks: Public safety and emergency networks use the
concepts of cognitive radio to provide reliability and flexibility in wire-
less communications. In disaster, standard communications infrastruc-
tures are not available ; a cognitive radio network may be required to
support wireless communication after the disaster.

4. Military networks: The parameters of wireless communication can be
dynamically adapted according to time and location as well as the
soldier’s mission. For example, if certain frequencies are jammed or
noisy, cognitive radio devices (transmitters / receivers) can search for
alternative access frequency bands for communications.

Recently, many research studies have focused on new blind SS methods
using multiple-input multiple-output (MIMO) configuration and exploiting
the covariance matrix of the received signal. Some methods track scalar
metrics directly computed from the entries of the covariance matrix, such
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as the covariance Frobenius norm (CFN) or the covariance absolute value
(CAV) [4]. Other classes of methods are rather based on eigenvalue decom-
position (EVD) of the covariance matrix, such as the blindly combined en-
ergy detection (BCED) [5], the arithmetic-to-geometric mean (AGM) [6],
the energy with minimum eigenvalue (EME), maximum-minimum eigen-
value (MME) [7], the unified sensing algorithm (USA) [1], the maximum-
eigenvalue-geometric-mean (MEGM) [8], the mean-to-square extreme eigen-
value (MSEE) [9] algorithms and a combined fully blind self adapted two-
stage approach [10]. Recent contribution introduces the machine learning,
specifically the radial basis function support vector machine (RBF-SVM) to
improve the sensing performance [11]. However, all these methods were orig-
inally designed for quasi-static channels and are not adapted for the high
mobility issue.

To improve the PU detection [12], new contributions proposed beamform-
ing approach such as maximum-to-minimum beam energy [13], maximum-
to-mean energy detector [14] and maximum energy beamforming-output-to-
input [15]. But these methods consider ray propagation channel.

Recent contributions for time-varying channels essentially are based on
applying weights on the covariance matrix of the received signal to adequately
smooth the effects of the channel response modifications [16]. As this strategy
is sensitive to the correlation between receive antennas, the authors in [17]
considered the Ljung-Box (LB) test for CR networks with low-correlated
receive antennas. However the detection performance of the LB test decreases
in low SNR regions. When the number of antennas is not large enough. The
impact of mobility has also been well investigated in [18] for cooperative SS in
vehicular networks. The impact of acceleration on the detection performance
for energy detection is proposed in [19]. This work is, however, based on
energy, whose performance depends on the perfect knowledge of the noise
level.

Contrary to the contributions cited above, we propose in this paper to
improve the robustness of the SS algorithms based on the EVD strategy
for fast-varying channels. To that aim, we define a sliding window (SW)
on the observed samples to mitigate the effects of the channel variations
onto the EVD-based detection metrics. The concept of sliding window has
indeed been used in [20] for SS algorithms considering orthogonal frequency
division multiplex (OFDM) system. It is extended and analyzed here for
the BCED sensing method. Namely, we first derive the statistical test of
the proposed SW-BCED algorithm which turns out to be reliant on the
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maximal estimated largest eigenvalue (MELE). We then evaluate and propose
an analytical expression of the probability density function of the MELE
among all the windows.

The MELE is then applied to the BCED algorithm and comparison results
with the original algorithm are provided in order to illustrate the contribution
of the windowing in the sensing performance.

2. System model

Let us consider a CR terminal as the SU with M(M > 1) receiving an-
tennas. We assume the following scenario, a fixed PU and a moving SU
equipped with a speedometer. We define two hypotheses H0, when the re-
source is vacant and H1, when the PU is present.

We assume a frequency-flat fading and time-selective channel. The source
signal from the PU is assumed to be independent and identically distributed
(i.i.d.). The received signal vector is expressed as

y(n) = ξH(n)x(n) + b(n), n = 1, 2, · · · , N (1)

where ξ = 0 under H0, ξ = 1 under H1, N is the number of samples, y(n)
is the received signal, x(n) is the transmitted signal from the PU, Rayleigh
fading channel, noted H(n), is the spatially-uncorrelated complex matrix of
the MIMO channel at instant n

b(n) = [b1(n), b2(n), · · · , bM(n)]T (2)

is a zero-mean additive white Gaussian noise with variance σ2
b . Each chan-

nel matrix entry hik(n), i = 1, ...,M , k = 1, ...,K, is Rayleigh distributed and
time-varying for each MIMO symbol n withM receive antennas andK trans-
mit antennas (M > K). The time variation considered in this paper is the
Jake’s model. The Jakes’ model [21] is widely used to represent the Doppler
power spectrum of a mobile radio channel. The autocorrelation function of
the channel is given by

rh (τ) = J0 (2πfdτ) , (3)

Notation: Boldface lower letters to denote vectors and boldface capital letters to
denote matrices. Superscript (.)T and (.)H stand for transpose and Hermitian (complex
conjugate transpose) respectively. Tr(.) denotes the trace of a matrix. Iu denotes the
identity matrix of order u.
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where J0 (.) is the zero-order Bessel function of the first kind, fd = v/λ is the
maximum Doppler frequency, where v is the speed of the SU and λ is the
carrier wavelength. Obviously, knowing the frequency carrier to sense, the
SU can easily determine the maximum Doppler frequency.

3. Background on Blindly Combined Energy Detector (BCED)

We introduce a well-known eigenvalue-based spectrum sensing detector
called BCED [5] which provides good performance in non-cooperative con-
text [13]. First, the covariance matrix of the received signal is defined as

Ry(n) = HRxH
H + σ2

b IM , (4)

where

Ry = E[y(n)y(n)H ] (5)
Rx = E[x(n)x(n)H ]. (6)

Then, the eigenvalues are extracted from the covariance matrix Ry and are
noted `1, `2, · · · , `M such that `1 > `2 > · · · > `M . After that, the statistical
test is calculated and is expressed as

TBCED =
`1

1

M
Tr(R̂y)

H0

≶
H1

γBCED, (7)

where γBCED is the threshold well investigated in [22] using the randommatrix
theory.

In pratice, the estimated covariance matrix of the received signal R̂y with
N samples is given by

R̂y =
1

N

N∑
n=1

y (n)yH (n) . (8)

In H0 context, the covariance matrix R̂y follows a Wishart complex dis-
tribution corresponding to the generalization to multiple dimensions of the
chi-squared distribution χ2. Based on that, the expression of the threshold
is given by the probability of false alarm
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Pfa = 1− FTW

(
γBCED − µN,M

σN,M

)
+

1

MN

(
µN,M
σN,M

)2

F ′′TW

(
γBCED − µN,M

σN,M

)
, (9)

where FTW is the the Tracy-Widom distribution and F ′′TW represents the
second derivate of FTW,

µN,M =

(
1 +

√
M

N

)2

(10)

σN,M = N
−2
3

(
1 +

√
M

N

)1 +
1√
M
N

1/3

. (11)

4. Impact of the mobility

In order to motivate the necessity of improving the sensing performance in
mobility, we evaluate the impact of time-varying channel on the probability
density function (pdf) of the statistical test of the BCED method. First
simulation result is depicted in Fig. 1 under the following parameters: N =
10000, SNR = −19 dB and M = 5. The pdf of the statistical test is
illustrated for two different velocities (0 kmph and 350 kpmh).
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Figure 1: Impact of high mobility on the density of statistical test

In addition to the pdf of the statistical test, the dashed plot gives the
pdf of false alarm and the dotted line represents the threshold and set for
a probability of false alarm of 10% according to [22]. When the velocity is
growing, we clearly observe that the pdf of detection is shifted towards the
threshold. It is then understood that the impact of mobility is dramatic on
detection performance.
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Figure 2: Probability density function of the statistical test for a velocity of 0 kmph

In Fig. 2, we evaluate the pdf of the statistical test for a velocity of 0
kmph with presence of PU (blue) and without presence of PU (red) for a
SNR range of −25dB to −15dB. The green line represents the threshold
fixed at 10%. We can see that the two pdf are moving away from each other
from a SNR of −21dB
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Figure 3: Probability density function of the statistical test for a velocity of 150 kmph.

In Fig. 3 and 4, we can see the impact of the mobility for different velocity
150 kmph (relative speed between two cars) and 250 kmph (train speed for
railway) respectively. We can note that the two pdf (red and blue) are very
close even for relatively big SNR.
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Figure 4: Probability density function of the statistical test for a velocity of 250 kmph.

In Fig. 5, we evaluate the statistical test of the BCEDmethod (ST-BCED)
under H1 for the different velocities ({0, 60, 120, 240, 360} kmph) of the SU.
We can see the red and the green lines corresponding to the ST-BCED under
H0 and the threshold respectively. The parameters of simulation consider
here are N = 24000, M = 5.
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Figure 5: Probability density function of the statistical test of BCED method (ST-BCED)
for different velocities.

5. Sliding window

The SW technique is widely used in the literature when facing fast time
varying channels. The aim of the windowing is to attenuate the effect of
the fast time-varying channels. A window is defined by considering a certain
number of consecutive samples during a period which corresponds to the
channel normalized coherence time fsTc, where fs is the sampling frequency.
Hence, the number of sample Lw for each window is expressed as

Lw = fsTc, (12)

where Tc ' 9/ (16πfd) is given in [23]. The number nw of windows to consider
for sliding operation is then simply given by

nw = N/Lw. (13)

In order to make reading easier, the ith eigenvalue of the jth window is noted
`i,j in the sequel.
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6. The proposed SW-BCED detection

Let us now introduce our proposal which implements the BCED algorithm
along with the SW strategy. The main idea is to perform the SS at each
window individually. The new statistical test can then be rewritten as follows

T jBCED =
`1,j

1

M

∑M
i=1(`i,j)

. (14)

The statistical test at the jth window is compared to the new threshold,
noted γBCED{Lw}, considering Lw samples. Let us more investigate the de-
nominator of (14), which corresponds to the mean energy of each window.
The mean energy can be approximated by the Gaussian distribution with
mean σ2

b and variance 2σ4
b

MLw
[7]. Thus, the denominator is a deterministic

variable (MLw >> σ4
b ). Consequently, the case study can be limited to the

numerator.
By assuming nw windows, we perform the BCED algorithm in each win-

dow. In order to exploit all the results of the SS performance, if at least
one window corresponding to the coherence time of the channel detects the
PU, the final decision of the SU is the H1 hypothesis. This is equivalent to
consider only the maximum value among the nw largest eigenvalues. Hence,
the statistical test becomes

T jSW-BCED =
`1,j

1

M

∑M
i=1 `i,j

where j = argmax
k

(`i,k) (15)

For the sake of clarity, we denote ˆ̀
i,j the estimated eigenvalues. Therefore

based on the estimated values, in the practical case, we consider the highest
mean energy from the nw values. Eventually, we can restate the statistical
test of the proposed SW-BCED method as follows

TSW-BCED =
max
j

(
ˆ̀
1,j

)
max
j

(
1

M

∑M
i=1

ˆ̀
i,j

) H0

≶
H1

γBCED{Lw}, (16)

where γBCED{Lw} is the threshold of the BCED algorithm relying on Lw
samples.
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In order to provide more details about the work and a good overview
of the proposed method, we propose the algorithm de SW_BCED and its
corresponding computational complexity. The result of the comparison of the
statistical TSW-BCED test and the threshold γBCED{Lw} is a boolean expression
denoted as DSW−BCED. When DSW−BCED is true, the detector decides the
presence of PU signal.

Algorithm Algorithm for SW-BCED detector
Input: N .
Output: DSW−BCED

Initialisation :
`max = 0
Energymax = 0
Lw = 9/ (16πfD) % fD is the normalized Doppler frequency

1: if Lw > N then
2: Lw = N
3: end if
4: Compute the threshold γBCED{Lw}
5: nw = N/Lw
6: for i = 0 to nw − 1 do
7: Ri

y = y (iLw + 1, (i+ 1)Lw)y (iLw + 1, (i+ 1)Lw)
H /Lw

8: `imax ←− max(EVD(Ri
y)) % EVD : Eigenvalue decomposition

9: Energyi = Tr(Ri
y)

10: if `imax > `max then
11: `max ←− `imax
12: end if
13: if Energyi >Energymax then
14: Energymax ←−Energyi
15: end if
16: end for
17: TSW-BCED = `max/Energymax
18: if TSW-BCED > γBCED{Lw} then
19: DSW−BCED ←− true
20: else
21: DSW−BCED ←− false
22: end if
23: return DSW−BCED
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The complexity analysis is proposed in the following paragraph

CBCED = C1 + C2

= O (M ×N ×M) +O
(
2

3
(M)3

)
(17)

CSW−BCED = nw × CBCED (18)

where C1 is the complexity of computing the covariance matrix, C2 is that
of the eigenvalue decomposition. The sensing time depends on the number
of samples, N . The value of N represents the signal duration required for
spectrum sensing. The value of N is the most relevant feature for the com-
plexity order since the value of M and nw are very small when compared to
N . Hence, the two methods are practically of the same complexity order.

7. Statistical analysis

We now aim at studying the statistical behavior of the statistical test
TSW−BCED. The numerator and denominator expressions of (16) are denoted

`max = max
j

(ˆ̀1,j) (19)

`mean = max
j

(
1

M

M∑
i=1

ˆ̀
i,j), (20)

respectively.
Let us first investigate `mean when ξ = 0. The mean energy can be ap-

proximated by the Gaussian distribution with mean σ2
b and variance 2σ4

b

MLw
[7].

Thus, `mean is a deterministic variable and the case study is limited to `max.
Then, it appears that `max corresponds to the maximal estimated largest

eigenvalue (MELE). We can then exploit the result stating that the largest
re-scaled eigenvalue of the covariance matrix `1,j−µ

υ
, where

µ = (
√
Lw − 1 +

√
M)2 (21)

υ =
√
µ(

µ

M(Lw − 1)
)1/6, (22)

converges to the Tracy-Widom (Fβ(γBCED)) distribution of order β (β = 1 if
the signal is real and β = 2 if the signal is complex) [22], that is,

Pr
(
`1,j − µ

υ
< γBCED{Lw}

)
→ Fβ (γBCED{Lw}) , (23)
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where Fβ (γBCED{Lw}) is the Tracy-Widom distribution of order β.

Proposition 1. Considering nw largest eigenvalues and Lw samples, the
probability density function of the MELE, `max is noted G`β, (see equation (32)
in Appendix). In our case, c = nw, R(x) and r(x) represent the distribution
and the derivative expression of the Tracy-Widom distribution Fβ respec-
tively. The pdf expression of the MELE is finally given by

G`β = nwF
′
β (γBCED{Lw})F nw−1

β (γBCED{Lw}) , (24)

where F ′β (γBCED{Lw}) represents the derivate of Fβ (γBCED{Lw}).

8. Results and Discussion

Let us first validate the analytical expression in (24). In Fig. 6 we compare
the pdf curves obtained through Monte-Carlo simulations (solid lines) and
implementing the theoretical result of (24) (dashed lines) for M = 5 and
Lw = 1000.
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Figure 6: Probability density function of the largest re-scaled eigenvalue `max for β = 1
and β = 2
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We can see that the theoretical values of pdf of the largest re-scaled
eigenvalue and those carried out by simulations are almost the same, hence
concluding that the pdf model in (24) is tight.
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Figure 7: Probability of misdetection versus SNR for N = 10000 and M = 5

We now evaluate the proposed SW-BCED method under different param-
eter setting. We first compare the proposed method with the original one
under different velocities and assuming a BPSK modulated signal for the
PU. Fig. 7 depicts the probability of misdetection versus the SNR (dB) for
different velocity {60, 80, 160, 320} kmph and considering 1000 Monte-Carlo
trials for each realization. As suggested in [23] and in order to keep a generic
algorithm, we consider the normalized maximum Doppler frequency values
for a carrier frequency of 2 GHz and a bandwidth of 5 MHz. It is clearly
observed that the proposed SW-BCED algorithm outperforms the original
one without SW whatever the velocity. But more interestingly, the SNR
gain between the proposed method and the original one increases when the
velocity gets higher. This proves the efficiency of the SW concept jointly
used with BCED. Furthermore, we can jointly extend the sliding window
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technique to other methods based on eigenvalue decomposition (see figures
in "Other eigenbased methods" Appendix). Let us now compare the two
methods using receiver operating characteristic (ROC) curves. The ROC
curves illustrated in Fig. 8 and in Fig. 9 represent the Pd versus the Pfa
for different numbers M of receive antennas and for different numbers N of
observed samples, respectively. As expected, when the M or N increase, the
detection performance improves.

However, whatever the setting, the proposed algorithm provides better
performance than the original one. More precisely, on Fig. 8, the difference
in terms of performance is similar for the different values of M . This can be
explained by the fact that the performance gain is due to the SW size which
remains constant for all M .
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Figure 8: ROC curve for different values of receive antennaM for N = 15000, SNR = −21
dB and v = 60 kmph

Contrary to that, in Fig. 9, when the number N of samples increases,
so does the number of windows, and the performance of the proposed SW-
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BCED algorithm gets far better than the original one.
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Figure 9: ROC curve for different values of receive antenna M for M = 5, SNR = −21
dB and v = 60 kmph

9. Conclusion

In this paper we have introduced a new blind SS method based on the
EVD of the covariance matrix of the received signal combined with the sliding
window concept. The aim of this method is to improve the accuracy in
detecting a PU in a mobile environment. We have derived the statistical test
of the proposed SW-BCED method and have provided a theoretical analysis
of the MELE distribution involved in it. Through simulations, we have shown
the high robustness of the proposed algorithm compared to the original one
in high mobility scenarios, and whatever the number of antennas and number
of observed samples.
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Appendix

The probability density function of the order statistic

In this appendix, we describe the result of the order statistic of a random
sample Q1, Q2, · · · , Qd, · · · , QD. The pdf and cdf are respectively noted r(x)
and R(x). Considering c iterations of the process, we focus our study on the
pdf rd,c(x). First, the cdf Rd,c is noted

P (Xd,c < x) = RXd,c
(x) =

c∑
j=d

(
c
j

)
[R(x)]j [1−R(x)]c−j . (25)

Hence, the number of elements in the sample less than x follows a binomial
distribution B(c, j).

The pdf rd,c(x) is also given by [24]

rd,c =
dRXd,c

dx
(26)

=
c∑

j=d

(
c
j

)[
j [R(x)]j−1 r(x) [1−R(x)]c−j

]
−
[
(c− j) [R(x)]j r(x)

[1−R(x)]c−j−1
]

(27)

=
c∑

j=d

(
c
j

)[
j [R(x)]j−1 r(x) [1−R(x)]c−j

]
−

c∑
j=d

(
c
j

)[
(c− j) [R(x)]j

r(x) [1−R(x)]c−j−1
]

(28)

=

(
c
d

)
d [R(x)]d−1 r(x) [1−R(x)]c−d +

c∑
j=d+1

(
c
j

)[
j [R(x)]j−1 r(x)

[1−R(x)]c−j
]
−

c∑
j=d+1

(
c

j − 1

)[
(c− j + 1) [R(x)]j−1 r(x)

[1−R(x)]c−j
]

(29)
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=

(
c
d

)
d [R(x)]d−1 r(x) [1−R(x)]c−d +

c∑
j=d+1

((
c
j

)
j −

(
c

j − 1

)
(c− j + 1))

[
[R(x)]j−1 r(x) [1−R(x)]c−j

]
(30)

=

(
c
d

)
d [R(x)]d−1 r(x) [1−R(x)]c−d (31)

In particular for c = d, the pdf is given by

c [R(x)]c−1 r(x) (32)

Other eigenbased methods
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Figure 10: Probability of misdetection versus SNR at different velocity for MME method.
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Figure 11: Probability of misdetection versus SNR at different velocity for MEGMmethod.

−25 −20 −15
10

−2

10
−1

10
0

Probability of misdetection versus SNR at different velocity for AGM method

SNR

P
ro

b
a
b
ili

ty
 o

f 
m

is
d
e
te

c
ti
o
n

 

 

SW−AGM V = 60 km/h 

AGM V = 60 km/h 

SW−AGM V = 80 km/h 

AGM V = 80 km/h 

SW−AGM V = 160 km/h 

AGM V = 160 km/h 

SW−AGM V = 320 km/h 

AGM V = 320 km/h 

Figure 12: Probability of misdetection versus SNR at different velocity for AGM method.
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Figure 13: Probability of misdetection versus SNR at different velocity for EME method.
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