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ABSTRACT

Building a surrogate model of an objective function has shown
to be effective to assist evolutionary algorithms (EAs) to solve
real-world complex optimisation problems which involve either
computationally expensive numerical simulations or costly phys-
ical experiments. However, their effectiveness mostly focuses on
small-scale problems with less than 10 decision variables. The scala-
bility of surrogate assisted EAs (SAEAs) have not been well studied
yet. In this paper, we propose a Gaussian process surrogate model
assisted EA for medium-scale expensive multi-objective optimisa-
tion problems with up to 50 decision variables. There are three
distinctive features of our proposed SAEA. First, instead of using all
decision variables in surrogate model building, we only use those
correlated ones to build the surrogate model for each objective
function. Second, rather than directly optimising the surrogate ob-
jective functions, the original multi-objective optimisation problem
is transformed to a new one based on the surrogate models. Last but
not the least, a subset selection method is developed to choose a cou-
ple of promising candidate solutions for actual objective function
evaluations thus to update the training dataset. The effectiveness of
our proposed algorithm is validated on benchmark problems with
10, 20, 50 variables, comparing with three state-of-the-art SAEAs.
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1 INTRODUCTION

Multi-objective optimisation problems (MOPs) are ubiquitous in
real-world applications, such as integrated circuit design [19], water
distribution network design [7] and aerodynamic design [9]. The
MOP considered in this paper is defined as:

minimize F(x) = (f1(x), - ,fm(X))T
subjectto x € Q ’

(1)

where x = (x1,- - ,xn)T € Q is a decision variable (vector), Q =
7, [a;, bi] € R™ is the decision space, F : Q — R™ consists of
m conflicting objective functions and R™ is the objective space. A
solution x! € Q is said to dominate x2 € Q, denoted as x! < x?,
if and only if F(x') is not worse than F(x?) in any objective and
it has at least one better objective. A solution x* € Q is called
Pareto-optimal in case there does not exist any solution x € Q
that dominates x*. Different from global optimisation, there does
not exist a global optimum that optimises all conflicting objectives.
Instead, multi-objective optimisation usually seek a set of Pareto-
optimal solutions, termed as Pareto-optimal set (PS), that achieve
the best possible trade-off among conflicting objectives. The image
of PS in the objective space is called the Pareto-optimal front (PF).

Due to the population-based property, evolutionary algorithms
(EAs) have been widely applied for solving MOPs. Over the past
three decades and beyond, many efforts have been devoted to the
development of evolutionary multi-objective optimisation (EMO)
algorithms, such as fast non-dominated sorting genetic algorithm
(NSGA-II) [5], indicator-based EA (IBEA) [32] and multi-objective
EA based on decomposition (MOEA/D) [29]. One of the major hur-
dles for a wider application of EAs in real-world scenarios is their
iterative nature which normally requires a vast amount of function
evaluations (FEs) to approximate reasonably acceptable solution(s).
This is even unacceptable in many real-world optimisation prob-
lems which involve either computationally expensive numerical
simulations or costly physical experiments. For example, computa-
tional fluid dynamic simulations can take from minutes to hours
to carry out one FE [13]. To overcome this issue, surrogate mod-
els have shown their effectiveness to be incorporated in EAs, as
known as surrogate assisted EAs (SAEAs), for solving expensive
optimisation problems. However, it is worth noting that most, if not
all, SAEAs are developed for small-scale problems with a relatively
small number of decision variables (e.g., n < 10). As discussed
in [22], the performance of SAEAs degenerate dramatically with
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the increase of the number of variables. This might be attributed to
the defects of three major design components of a SAEA.

o Surrogate modelling: Most, if not all, surrogate models used
in SAEAs are built by machine learning algorithms. It is well
known that the curse-of-dimensionality is the Achilles heel
of learning algorithms. For example, the widely used Gauss-
ian process (GP) [21] or Kriging model [15] were criticised
for a dramatically degenerated modelling ability with an
increase of the number of variables [18]. There have been
some attempts to use other machine learning algorithms,
e.g., radial-basis function networks [22] and random for-
est [26], to build the surrogate model for problems up to
100 variables. Another alternative solution to combat the
curse-of-dimensionality is to transform the decision vari-
ables from tens of dimensions to a few dimensions by using
dimensionality reduction techniques. For example, Liu et al.
proposed to use Sammon mapping to enable the GP to build
surrogate models in a low-dimensional space [18].

o Model-based search process: Due to the use of surrogate model,
the model-based search process is either driven towards the
surrogate objective function(s) or an alternative utility func-
tion, e.g., acquisition functions used in GP assisted EAs. How-
ever, since surrogate modelling is unlikely to be accurate for
high-dimensional problems, the model-based search process
is highly likely to be misled. There have been some attempts
to develop fine-grained search strategies to have a better
exploration in the surrogate search space. For example, Sun
et al. [24] proposed a surrogate assisted cooperative particle
swarm optimisation (PSO) algorithm that takes advantages
of two cooperative PSO variants to balance the exploration
and exploitation. In particular, the global PSO aims to iden-
tify the region(s) in which the global optimum might be
located; whilst the local PSO is responsible for an intensive
exploitation of those identified promising region(s). Similar
idea has been studied in [28] where the PSO is replaced by
differential evolution.

o Model management: This step mainly aims to select promis-
ing solution(s) output from the search process for expen-
sive objective function valuations. These newly evaluated
solutions will thus be used to update the surrogate model
accordingly. However, partially due to the degenerated capac-
ity of the surrogate modelling and the model-based search
process with an increase of the dimensionality, the model
management becomes less effective or even pointless thus
further aggravate the surrogate modelling and the search
process. For example, as discussed in [25], the increase of
the dimensionality makes the estimated standard deviation
for measuring the uncertainty of the approximated objective
function value become indifferent to each other. To overcome
this issue, they proposed a multi-objective infill criterion for-
mulation to strike a better balance between exploration and
exploitation in the model management.

Bearing the above discussions in mind, this paper proposes a
SAEA (dubbed SAEA/ME) for solving medium-scale expensive
multi-objective optimisation problems where n < 50. In partic-
ular, we use GP to build the surrogate model given its intriguing
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Algorithm 1: GP surrogate model assisted EA

1 Use an experimental design method to sample a set of initial

solutions X « {x! }?ill from Q and evaluate their
objective function values Y « {f(x’ )}f\fl. Set the initial
training dataset D « {(x’, f(xi)}f\gl;

2 while termination criteria is not met do

3 Build a GP model based on D;

4 Use EA to optimise an acquisition function to obtain a
candidate solution x*;
5 Evaluate the objective function values of x* and set

D = DU fE)L

6 return arg min f(x)
x€D

capability to provide an estimation of not only an objective func-
tion value but also its associated uncertainty. To combat the curse-
of-dimensionality, we analyse the correlation between decision
variables and each objective function. Thereafter, only correlated
variables for the corresponding objective function are used to build
its surrogate model. During the model-based search process, the
original MOP is transformed into a many-objective formulation in
order to strike a balance between exploration and exploitation. In
the model management step, a subset selection method is proposed
to choose a couple of solutions for actual objective function evalua-
tions and consequently to update the model. In experiments, we
compare the performance of SAEA/ME with three state-of-the-art
SAEAs for expensive MOPs with 10, 20 and 50 variables. Experi-
mental results demonstrate that SAEA/ME outperforms those peer
algorithms in 95 out of 108 comparisons.

The rest of this paper organised as follows. Section 2 provides
a pragmatic tutorial of a SAEA based on GP model which is the
building block of our proposed algorithm. Section 3 delineates the
technical details of our proposed algorithm step by step. Section 4.1
shows the empirical results along with a gentle analysis. Section 5
concludes this paper and outlines some future directions.

2 PRELIMINARIES

This section provides a gentle tutorial of the working mechanism
of GP surrogate model assisted EA, the pseudo-code of which is
given in Algorithm 1. It is worth noting that Algorithm 1 is similar
the efficient global optimisation (EGO) [15] or Bayesian optimisa-
tion [23] whilst the major difference lies in the optimiser is replaced
by an EA. Although Algorithm 1 is for global optimisation, it can
be generalised to the multi-objective optimisation scenario. In the
following paragraphs, we elaborate on its two major components,
i.e., GP regression model and acquisition functions.

2.1 Gaussian Process Regression Model
Given a set of training data D = {(x!, f(x))}N , GP regression

i=1 >
model aims to learn a latent function g(x) by assuming f(x') =
g(x') + € where € ~ N(0,62) is an independently and identically

distributed Gaussian noise. For each testing input vector z* € Q,
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the mean and variance of the target f(z*) are predicted as:
§@') = m(z") + kT (K + i)™ (f ~ m(X))
Vig(z")] = k(z", 2") - KT (K + o21) k"

where X = (x!,---,xM)T and f = (f(x}),---, FGV)NT. m(X) is
the mean vector of X, k* is the covariance vector between X and
z*, and K is the covariance matrix of X. In particular, a covariance
function, also known as a kernel, is used to measure the similarity
between a pair of two data points x and x” € Q. Here we use the
squared exponential function in this paper and it is defined as:

@)

k(x,x') = af2 exp(—#(x - X')T(x -x')), (3)

where oy is the scale parameter and ! is the length-scale parame-
ter [8]. Note that this covariance function is negatively related to
the Euclidean distance between x and x”. The predicted mean g(z*)
is directly used as the prediction of f(z*), and the prediction vari-
ance V[g(x*)] quantifies the uncertainty. As recommended in [21],
the hyperparameters associated with the mean and covariance
functions are learned by maximising the log marginal likelihood
function defined as:

log p(E1X) =~ (F = mOO) (K + 020) 7 (f - m(x)
) LN )
- Elog|K+anI| - Eloan

2.2 Acquisition Functions

Instead of optimising the surrogate objective function, the search
process of the GP surrogate model assisted EA considered in this
paper is driven by the acquisition function. Generally speaking, an
acquisition function is used to measure the value that would be
generated by evaluating the objective function at a new sample
point x, based on the current posterior distribution over f(x). There
are three most popular acquisition functions in the literature.

e Probability of improvement (PI) [17]:

9(x) — f(x¥) )
Vigx)l )’
where ®(-) is the cumulative distribution function (CDF) of
the standard normal distribution. The PI aims to measure the
probability of achieving any improvement over the current
best sample point x*.

e Expected improvement (EI) [14]:

El(x) = E [max(f(x*) — £(x). 0]]
— (F(x*) — T M)
- (f) g(x))cb( oo
Fx) —§<x>)
+V[g(x)]¢( Vo]

where ¢(-) is the probability density function (PDF) of the
standard normal distribution. The EI is able to evaluate the
expectation of improvement over x*.

e Upper confidence bound (UCB) [4]:

UCB(x) = g(x) + kV[g(x)] ™

PI(x) = ® ( ©)

(©)

where k is a control parameter used to characterise the trade-
off between exploration and exploitation.
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Noting that all these acquisition functions are designed as a
combination of the predicted mean and its associated variance. In
this case, they all imply an aggregated way to strike a balance
between exploration and exploitation. As discussed in a recent
study [27], optimising an acquisition function is highly multi-modal
and is far from trivial.

3 PROPOSED ALGORITHM

Algorithm 2: SAEA/ME

1 Use an experimental design method to sample a set of initial
solutions X « {x! }?ifl from Q and evaluate their
objective function values Y « {F(xi)}?ill. Set the initial
training dataset D « {(x/, F(xi)}ﬁ\i’l;
2 {Gi}, «CorrelationAnalysis();
3 while not terminated do
4 Build GP models for each objective function based on D;
5 Use NSGA-II to optimise the problem shown
in equation (9) and output a set of solutions S;

6 S* «SubsetSelection(S);

7 Evaluate the objective function values of S* and set
D « DU{E"FE))Ix* € S}

s return all non-dominated solutions in D

Algorithm 2 gives the pseudo-code of our proposed SAEA/ME.
Note that we build a GP surrogate model for each objective as we
are going to solve MOPs. The general framework is similar to that
of Algorithm 1 whilst there are three distinctive features: 1) to
reduce the dimensionality of the feature space when building a GP
model, we analyse the association relationship between decision
variables and each objective functions at the outset of SAEA/ME;
2) the model-based search process is driven towards a transformed
many-objective optimisation problem; and 3) a subset selection
mechanism is proposed to choose a couple of promising solutions
for function evaluations and model management. We will elaborate
on these three design components in the following paragraphs.

3.1 Identifying Correlation Relationship
between Variables and Objective Functions

As discussed in Section 1, the curse-of-the-dimensionality is one
of most important reasons that leads to the degenerated surrogate
modelling performance of GP with an increase of the dimensionality.
Due to the existence of more than one objective function, it is
highly likely that not every decision variable is correlated with
each objective function. For example, the widely used test problem
instance ZDT1 [31] is formulated as:

fix) =x1 @
o) = g®[1 - VA®/9x)]

where g(x) = 149 (Zl’.'zz xi) /(n-1)andx = (x1, - - - ,xn) T e o, 1]
According to equation (8), it is obvious that the first objective func-
tion fi(x) only depends on xj. In this case, the GP surrogate model
of fi(x) can be directly built upon x; without compromising any
accuracy. By doing so, we can expect a significantly reduced feature
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Algorithm 3: CorrelationAnalysis()

Output: {G;}]2, correlation groups between decision
variables and objective functions
1 fori — 1tondo

2 | Gi—0;

3 fori < 1tondo

4 L xiS — a;;

5 Evaluate the objective function of x!;
6 fori < 1tondo

7 xb x5, xf —b;;

8 Evaluate the objective function of xt
9 forj «— 1tomdo

10 A —|fix") = fix);

1 if A < 6 then

12 | G — G5 U{iks

13 return {G;}]7,

space thus leading to a mitigation of the curse-of-dimensionality.
Bearing this consideration in mind, we propose to analyse the
correlation relationship between decision variables and each ob-
jective function before building GP surrogate models. Inspired by
the variable grouping idea proposed for problem decomposition in
large-scale global optimisation [20], the correlation analysis used
in SAEA/ME is given in Algorithm 3.

Specifically, we first initialise a set of correlation groups for each
objective function where G; consists of the indices of variables cor-
related with the i-th objective function (lines 1 and 2 of Algorithm 3).
Thereafter, we generate a sentinel solution x* whose decision vari-
ables are all set to be the lower bounds (i.e., aj, i € {1,---,n})
of the underlying MOP (lines 3 and 4 of Algorithm 3). During
the main for-loop, each variable of x°* is perturbed to the upper
bound (i.e., b;, i € {1,-- -, n}) of the underlying MOP (lines 7 and
8 of Algorithm 3). If we observe a significant change at the j-th
objective between x* and its perturbed solution, the i-th variable
is thus considered to be correlated with the j-th objective (lines
9 to 12 of Algorithm 3). In particular, the significance level § > 0
is set to be a small number which is set as 107 in this paper. Dif-
ferent from the grouping operation in [20], which requires O(n?)
function evaluations, the correlation analysis in Algorithm 3 only
requires n + 1 function evaluations which is acceptable even under
a computationally expensive optimisation scenario.

3.2 Search Based on a Transformed
Many-Objective Optimisation Problem

As discussed in Section 1, the model-based search process can be
misled, especially when having a large number of variables, by an
inappropriate problem formulation. In particular, the widely used
acquisition functions, as discussed in Section 2.2, in many GP model
assisted EAs are essentially linear combinations of exploration and
exploitation. As reported in [1], there exist natural trade-offs be-
tween exploration and exploitation, a linear combination between
which does not fully reflect their trade-offs. In this paper, we pro-
pose a transformation of the original m-objective problem into a
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Figure 1: An illustrative example our subset selection
method for model management.

Algorithm 4: SubsetSelection(S)

Input: S solutions output by the search process
Output: S k solutions for model management
1 Use the GP model to predict the objective function values
and their variances in S and obtain S° « {g(x)|x € S};
2 Set 8! {1I; = g;(x) - 2V[g:(¥)],i=1,-- ,m,x € S};
3 for i « 1to |S| do
4 /* HV(S) is the HV of 8 and HVC(x) is the HV

contribution of x *x/
HVC(x!) — HV(S) — HV(S \ {x'});
5 | HVC(lY) « HV(S!) — HV(S!\ {11});
6 Sort the HV contributions of each solution in S and store
the top k solutions in SZf ;
7 Sort the HV contributions of each solution in S! and store
the top k solutions in S k ;
s return Sk — Sk USIk

2m-objective problem formation as follows:

minimize H(x) = (h1(x),- -, h2m(X))T
subjectto x€ Q

, ©)

where hp;_1(x) = g;(x) and hy;(x) = g;(x)-V[gi(x)],i € {1,--- ,m}.
In this sense, each of those original objective functions is trans-
formed into another two surrogate objective functions: one is the
predicted mean whilst the other is used to evaluate the uncertain
over the prediction. In particular, the uncertainty term gives a lower
confidence bound at the predicted point. Here we use NSGA-II as
the EA to optimise the newly formed optimisation problem.
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3.3 Model Management Based on Subset
Selection

As discussed in Section 1, the major purpose of the model manage-
ment is to select promising solution(s) for actual function evalu-
ation(s) thus to update the model. Classic GP model assisted EAs
were designed to carry out the model management in a sequential
manner where only one solution is selected for the actual function
evaluation at a time. As discussed in [10], it is desirable to simul-
taneously evaluate multiple solutions in a batch manner thus to
facilitate a better parallelism. Bearing this consideration in mind,
this paper proposes a subset selection method to choose a couple of
solutions for function evaluations. In particular, subset selection is
a post-hoc method that is able to find a pre-defined number of solu-
tions from a population for Hypervolume (HV) maximisation [12].
As a result, these selected solutions are representative enough to
resemble the PF for performance benchmarking. However, since
the solutions returned by the model-based search process are eval-
uated by surrogate models, the subset selection merely based on
the predicted objective function values is inevitably error-prone.
To mitigate the uncertainty brought by the surrogate models, our
subset selection for model management also takes the estimated
variance into account.

The pseudo-code of our proposed subset selection method is
given in Algorithm 4. To have a better intuition, let us explain
Algorithm 4 by an illustrative example shown in Fig. 1. Suppose
that there are five solutions S = {xi}?: returned by the model-
based search process. According the GP model in equation (2), their
predicted mean objective functions can be predicted and consti-
tute S° = {g(x)|x € S}g’:1 (line 1 of Algorithm 4). By taking
the estimated variance into account, each g(x) is surrounded by a
rectangle which represents a 95%x95% confidence level. Accord-
ingly, its corresponding rectangle is bounded by g;(x) + 2V[g;(x)]
at the i-th objective. It is worth noting that such derivation can
be easily generalised to more than two-dimensional space. Since
the transformed many-objective optimisation formulation used in
the model-based search process takes the lower confidence bound
into consideration, here we are only interested in the lower con-
fidence bounds (i.e., those lower bound vertex of each rectangle
Sl = {1i|lJ’: =g;(x) - 2V[gi(x)].j € {1,---, m}}?zl, line 2 of Al-
gorithm 4). During our subset selection process, we use the Hy-
pervolume (HV) contribution as the criterion to choose the top
k > 1 solutions from both S° and S (lines 3 to 7 of Algorithm 4).
Note that k is a control parameter and it is set as 10 in our exper-
iments. At the end, the intersection between S° and S! is used
for actual function evaluations. Let us look back to the illustrative
example shown in Fig. 1, by setting k = 3, we have the solutions
selected from S° are {x%, x°, x*} whilst those selected from S’ are
{11, 13,14}, Finally, only x3 and x* are chosen for actual function
evaluations and model management thereafter.

4 EMPIRICAL STUDY

In order to validate the effectiveness of SAEA/ME, this section
presents the comparison results of SAEA/ME against three state-
of-the-art SAEAs (i.e., ParEGO [16], MOEA/D-EGO [30] and K-
RVEA [3]) for expensive multi-objective optimisation. The inverted
generational distance (IGD) [2] is used as the performance metric to
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evaluate the performance of different algorithms. Furthermore, we
choose 12 test problems from the widely used 2-objective ZDT [31]
and 3-objective DTLZ [6] benchmark suites. Followings are some
parameter settings.

e The number of decision variables for each test problem con-
sidered in our experiments are 10, 20 and 50.

e The population size is set to 50, 100 and 300 for n = 10, 20
and 50, respectively.

e The number of function evaluations is set to 300, 400 and
800 for n = 10, 20 and 50, respectively.

e Each experiment is repeated 20 times and we use the rank
sum test at 5% significance level to validate the statistical
significance of the results.

o In the subset selection for model management, we set k = 10
in our experiments.

4.1 Experimental Results

The comparison results of IGD values obtained by different algo-
rithms are given in Table 1. In particular, the best result for each test
problem instance is highlighted in bold face with a gray background.
From these comparison results, we can clearly see the overwhelm-
ingly better performance achieved by SAEA/ME in 95 out of 108
comparisons. In the following paragraphs, we will give a gentle
discussion over these results.

ZDT1 and ZDT?2 are relatively simple test problems, on which
all four algorithms do not have too much difficulty to converge to
the global PFs when the number of variables is small (i.e., n = 10),
as shown in Figure 1 and Figure 4 in the supplementary document!.
However, the performance of MOEA/D-EGO and K-RVEA degen-
erate dramatically when having more variables. ParEGO performs
slightly better than MOEA/D-EGO and K-RVEA when n = 20, but
its IGD becomes over 10 which indicates its poor convergence.
As shown in Fig. 2, none of ParEGO, MOEA/D-EGO and K-RVEA
can find any solution on the PF. In contrast, the performance of
SAEA/ME is relatively consistent across n = 10 to n = 50.

ZDT3 is a discontinuous problem whose PF is five disconnected
segments. Similar to the observations on ZDT1 and ZDT?2, all al-
gorithms do not have too much trouble to find solutions on the PF
when n = 10, but their performance degenerate with the increase
of the number of variables except SAEA/ME. In particular, it is in-
teresting to see that ParEGO and K-RVEA can still find meaningful
solutions when n = 20 whereas MOEA/D-EGO can hardly converge
even in this case.

The PF of ZDT6 has a biased distribution. All four algorithms
cannot find fully converged solutions on this problem even when
n = 10. However, most solutions found by SAEA/ME are along
the PF whereas those found by the other three algorithms are way
beyond the PF. It is also interesting to see that the performance of
SAEA/ME on problems with 50 variables is even better than those
with less variables according to Table 1.

As for the 3-objective DTLZ test problems, the performance of
SAEA/ME also degenerate with the increase of the number of vari-
ables. Nevertheless, such degeneration is not as significant as the
other three peer algorithms. More specifically, DTLZ2 is a relatively

'Due to the space limit, the comprehensive results of population plots can be found
from https://tinyurl.com/yx4pmwwq
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Figure 2: Non-dominated solutions obtained by four algorithms on ZDT1 (n = 50) with the best IGD value.
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Figure 4: Non-dominated solutions obtained by four algorithms on ZDT6 (n = 50) with the best IGD value.
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Figure 6: Non-dominated solutions obtained by four algorithms on DTLZ6 (n = 50) with the best IGD value.
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Table 1: Comparison Results of SAEA/ME Against Three State-of-the-art SAEAs on 12 Test Problems
with 10, 20 and 50 Decision Variables.

d ParEGO MOEA/D-EGO K-RVEA SAEA/ME
10 | 2.376E-2 (7.20E-3)* | 1.634E-1(1.46E-1) | 2.702E-2 (6.82E-3) 1.290E-1 (7.32E-2)
7DT1 | 20 | 1.554E-1(3.78E-2)" | 3.031E+1 (9.46E+0)" | 1.083E-1(5.98E-2)7 | 2.847E-2 (1.93E-2)
50 | 1.666E+1 (7.00E+0)" | 1.120E+2 (2.73E+1)7 | 1.529E+2 (2.90E+1)T | 9.662E-3 (2.31E-3)
10 | 2.211E-2 (4.27E-3)F | 2.488E-1 (1.14E-1)T | 4.866E-2 (4.72E-2) 4.055E-2 (1.74E-2)
7DT2 | 20 | 1.919E-1(7.78E-2)" | 2.804E+1 (1.24E+1)" | 2.870E-1 (1.39E-1)7 | 5.641E-2 (3.33E-2)
50 | 1.143E+1 (2.96E+0)" | 1.145E+2 (3.04E+1)7 | 1.632E+2 (6.23E+0)" | 1.659E-2 (8.33E-3)
10 | 7.567E-2 (2.25E-2)* | 3.979E-1(1.83E-1)" | 5.917E-2 (3.45E-2)* | 1.121E-1 (5.81E-2)
7DT3 | 20 | 1.857E-1 (3.71E-2)" | 2.333E+1 (9.79E+0)" | 1.392E-1 (8.08E-2) | 1.424E-1 (1.02E-1)
50 | 1.691E+1 (6.70E+0)" | 1.010E+2 (2.99E+1) | 1.576E+2 (5.42E+0)" | 8.997E-2 (1.09E-1)
10 | 7.124E+1 (1.13E+1)7 | 7.892E+1 (1.18E+1)T | 2.996E+1 (1.39E+1)F | 5.398E+1 (1.8E+1)
7DT4 | 20 | 1.830E+2 (2.27E+1)" | 2.167E+2 (1.49E+1)7 | 1.269E+2 (2.92E+1)* | 1.394E+2 (2.11E+1)
50 | 6.280E+2 (4.59E+1)" | 6.431E+2 (3.88E+1)7 | 6.369E+2 (4.05E+1)T | 3.997E+2 (2.52E+1)
10 | 4.221B-1(9.97E-2)" | 1.233E+0 (1.23E+0)" | 1.467E+0 (2.48E-1)T | 1.188E-1 (5.51E-2)
7DT6 | 20 | 3.801E+0 (6.53E-1)" | 1.245E+1 (1.52E+0)" | 3.101E+0 (6.63E-1)" | 9.490E-2 (2.42E-2)
50 | 1.295E+1 (8.20E-1)" | 1.836E+1 (6.48E-1)" | 1.276E+1 (4.17E+0)" | 6.603E-2 (2.56E-2)
10 | 6.295E+1 (7.08E+0)F | 8.388E+1 (1.21E+1)T | 8.394E+1 (1.92E+1)¥ | 9.765E+1 (1.43E+1)
DTLZ1 | 20 | 2.346E+2 (1.51E+1)f | 2.752E+2 (6.31E+1) | 3.102E+2 (5.17E+1) | 3.062E+2 (4.69E+1)
50 | 1.193E+3 (5.67E+1)" | 1.063E+3 (2.14E+2) | 1.142E+3 (7.67E+1)T | 1.032E+3 (1.05E+2)
10 | 3.665E-1(3.65E-2)7 | 3.307E-1(3.05E-2)" | 1.244E-1(1.41E-2)" | 8.815E-2 (5.34E-3)
DTLZ2 | 20 | 8.518E-1(7.37E-2)" | 6.444E-1(8.22E-2)7 | 4.812E-1(5.67E-2)" | 1.231E-1 (8.56E-3)
50 | 2.677E+0 (9.67E-2)" | 2.004E+0 (2.12E-1)7 | 2.079E+0 (1.20E-1)7 | 3.542E-1 (9.96E-2)
10 | 1.721E+2 (1.05E+1)F | 1.984E+2 (2.61E+1)T | 2.252E+2 (6.87E+1) | 2.452E+2 (5.63E+1)
DTLZ3 | 20 | 4.839E+2 (5.72E+1)* | 5.837E+2 (1.56E+2)% | 8.493E+2 (1.49E+2) | 8.539E+2 (1.44E+2)
50 | 3.666E+3 (2.01E+2)" | 2.979E+3 (7.18E+2)" | 3.387E+3 (1.60E+2)T | 2.127E+3 (5.59E+2)
10 | 6.286E-1 (1.02E-1) 6.363E-1 (5.18E-2) | 3.076E-1(9.98E-2)" | 6.377E-1 (1.41E-1)
DTLZ4 | 20 | 1.108E+0 (2.22E-1)7 | 1.165E+0 (1.15E-1)" | 8.426E-1 (1.49E-1)* | 9.564E-1 (1.05E-1)
50 | 2.859E+0 (3.74E-1)" | 2.431E+0 (2.66E-1)7 | 3.148E+0 (9.81E-2)7 | 1.139E+0 (1.17E-1)
10 | 2.711E-1(4.09E-2)7 | 2.569E-1(3.23E-2)" | 7.247E-2 (1.12E-2)" | 3.890E-2 (1.86E-2)
DTLZ5 | 20 | 7.485E-1(1.02E-1)" | 5.330E-1(5.80E-2)" | 4.157E-1(7.30E-2)" | 7.247E-2 (1.32E-2)
50 | 2.627E+0 (1.14E-1)" | 1.917E+0 3.71E-1)" | 1.992E+0 (3.22E-1)7 | 2.581E-1 (4.35E-2)
10 | 1.164E+0 (3.56E-1)T | 1.887E+0 (7.81E-1)7 | 2.902E+0 (3.60E-1)" | 5.782E-1 (2.74E-1)
DTLZ6 | 20 | 7.287E+0 (7.85E-1)7 | 6.757E+0 (1.54E+0)" | 1.021E+1 (7.42E-1)" | 1.939E+0 (9.58E-1)
50 | 3.657E+1 (6.82E-1)" | 2.723E+1 (3.93E+0)" | 3.848E+1 (1.24E+0)T | 2.073E+1 (5.59E+0)
10 | 1.782E-1(2.14E-2) | 2.284E-1(6.70E-2)7 [ 1.105E-1 (1.07E-2)¥ | 1.909E-1 (7.33E-2)
DTLZ7 | 20 | 2.177E-1 (4.13E-2)7 | 3.829E+0 (2.01E+0)" | 2.783E-1(1.97E-1)" | 1.130E-1(3.93E-2)
50 | 1.823E+0 (3.97E-1)" | 8.246E+0 (1.06E+0) | 6.520E+0 (3.88E+0)T | 7.334E-2 (4.52E-3)

T denotes that the better IGD value obtained by SAEA/ME is significantly better than the corresponding peer
algorithm according to the Wilcoxon’s rank sum test at a 5% significance level; whilst ¥ denotes an opposite

conclusion.

simple test problem. But due to the increase of number of objec-
tives, the solutions found by SAEA/ME are not well converged. In
contrast, ParEGO and MOEA/D-EGO can hardly find a converged
solution even on DTLZ2. DTLZ4 has the same same PF shape as
DTLZ2, but it has a strong bias which makes algorithms difficult
to find a set of well distributed solutions. As shown in Table 1,
K-RVEA shows better performance than SAEA/ME when n = 10

and 20. DTLZ5 and DTLZ6 are MOPs with a degenerated PF. From
the results shown in Fig. 6, we can see that only SAEA/ME can find
solutions close to the PF whist the solutions found by the other
three algorithms are way beyond the PF. DTLZ7 is a test problem
with disconnected PF segments. K-RVEA is the best algorithm when
n = 20. However, it is interesting to see that the performance of
SAEA/ME become better when having a larger number of variables.
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Figure 8: Non-dominated solutions obtained by four algorithms on DTLZ1 (n = 50) with the best IGD value.

As shown in Fig. 7, only SAEA/ME can find solutions on the PF
whereas the solutions found by the other three algorithms are away
from the PF.

Although the performance of SAEA/ME is satisfactory in most
cases, it failed to find any meaningful solution for ZDT4, DTLZ1
and DTLZ3. In particular, these three test problems are with many
local optima. As the results shown in Table 1, the IGD values ob-
tained by all four algorithms are over 10 across all test instances.
As the population plots shown in Fig. 8, we can clearly see that
solutions obtained by all algorithms are way beyond the PF. The
poor performance of all these algorithms on ZDT4, DTLZ1 and
DTLZ3 can be attributed to their multi-modality which makes the
surrogate modelling become even more difficult.

5 CONCLUSIONS

Building a surrogate model of the originally computationally expen-
sive objective function has been recognised as the stepping stone
of EA towards a wider range of application in the real world. How-
ever, due to the curse-of-dimensionality, most existing research on
SAEAs have been wandered in problems with a relatively small
number of variables. To address the scalability issue, this paper
proposed SAEA/ME for solving medium-scale MOPs with less than
50 variables. According to the experimental results, we have wit-
nessed a clear superiorly of our proposed SAEA/ME against three
state-of-the-art SAEAs in over 85% comparisons. The success of
SAEA/ME can be attributed to three distinctive features.

o To combat the curse-of-dimensionality in surrogate model
building, the surrogate models in SAEA/ME are built upon a
reduced feature space by analysing the correlation relation-
ship between decision variables and objective functions.

o To strike a better balance between exploration and exploita-
tion, the underlying MOP is transformed to a many-objective
optimisation problem formulation based on the surrogate

objective functions and their associated estimations of un-
certainty.

e To implement a model management in a batch manner, a
subset selection method is proposed to select a couple of
promising solutions for actual function evaluations.

Although SAEA/ME is only tested on medium-scale MOPs, it
does not mean that SAEA/ME is not scalable any further. In future,
it is interesting to investigate other dimensionality reduction tech-
niques to mitigate the curse-of-dimensionality in surrogate model
building. It is arguable to use NSGA-II to optimise a many-objective
optimisation problem in the model-based search process, given its
reported drawbacks for many-objective optimisation [11]. We will
investigate other many-objective optimiser in this optimisation.
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