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Abstract. We consider itinerant spinless electrons moving as defects in a dilute two-dimensional

Ising spin system, leading to an effective interaction mediated by spin fluctuations. Coupled self-

consistent equations are analyzed after expressing the spin and fermion operators in terms of

Grassmann variables. The effective mass, density of states, and specific heat are evaluated. We

found that at low temperature and low electron density the effective mass is reduced, whereas in

the critical region it sharply diverges. At higher temperature, the fermions behave like a Fermi

liquid with a small enhanced mass.

PACS numbers: 05.50.+q,71.10.-w,71.27.+a,75.10.Hk

1. Introduction

The interplay between spin fluctuations and itinerant holes or electrons is important in

understanding the nature of quasiparticles in complex systems where cooperative phenomena

are dominant. For example, in hole doped copper oxide material La1.6−xNd0.4SrxCuO4, hole

segregation was observed and interpreted as stripe modulation [1] and this spatial structure is

assumed to be responsible for the suppression of superconductivity. In general mobile defects in

spin environment have been studied theoretically [2, 3, 4], and itinerant electrons coupled to a

spin bath are known to generate domain structures [5, 6, 7]. Quantum Monte Carlo methods were

investigated in order to determine the magnetic properties of coupled lattices between spins and

fermions in models for metal-insulator interfaces [8]. It is expected that in the case of coupled layers

itinerant electrons will suppress the magnetic order, and spin fluctuations will induce correlation

between electrons. In this paper we would like to analyze the coupling between spinless electrons

and ferromagnetic Ising spins in two-dimensional lattices where itinerant electrons occupy empty

sites and interact via indirect spin fluctuations. We would like to study in particular how spin

fluctuations modify the effective mass.

The paper is organized as follow. In section 2, we define the Hamiltonian of the model,

then we use a Grassmannian representation of the spin sector in presence of holes or defects to
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(a) (b)

Figure 1: Spin configurations separating two regions of opposite polarity, when one hole is located

along the domain wall (a) and outside (b). The energy Ea for the spin configuration (a) has a

lower energy than the energy Eb in (b), since Eb − Ea = 4J .

obtain an effective fermionic action. Then the electronic part of the action is also transformed

into a Grassmann integral representation at finite temperature. In section 3 we present the self-

consistent equations for the model using an approximation of the Green function and self-energy.

Finally in section 4 we study the physical solutions and evaluate the effective mass, density of

states, and specific heat.

2. Model

We consider a two-dimensional lattice of size L2 = N where each site r is occupied either by a Ising

spin σr = ±1 or an electron or hole with Fermi statistics. Spins are interacting with a ferromagnetic

coupling J > 0. The electrons are represented by a tight-binding model and we do not consider

their Coulomb interaction. A spin-hole configuration in a N = 5 × 5 system is represented in

Figure 1 with a single hole defect and a domain wall (red dashed line) separating two regions of

opposite spin polarity due for example to opposite boundary conditions. The indirect interaction

between holes and spins can be understood by the fact that there exist hole configurations which

lower the domain wall excess energy. These configurations have the hole attached to the domain

wall, which gives in Figure 1(a) an energy gain of 4J compared to configuration (b) where the

hole sits strictly inside the region of spins up. We therefore expect an effective interaction between

holes and spins where spin fluctuations play an essential role in the electron or hole dynamics.

The Hamiltonian describing the interaction between spins and electrons can be written in

terms of fermionic operators (cr, c
†
r
) and fermion numbers nr = c†

r
cr as

H = −J

2

∑

r,δ=±x,±y

σrσr+δ(1− nr)(1− nr+δ)− t
∑

r,δ=±x,±y

c†
r+δ

cr, (1)

where t is the kinetic energy for the itinerant electrons. We first consider the fermionic action of
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the Ising spin system in absence of holes, H0 = −1
2J
∑

r,δ=±x,±y σrσr+δ, and the representation of

its partition function Z0 in terms of Grassmann variables ar and ār [9, 10]

Z0 = Tr e−βH0 =

∫

(

∏

r

dārdar

)

eS0 , (2)

where the Grassmannian action S0 is defined by

S0 =
∑

r

Sr,

Sr = arār + u(ar + ār)(ar−x − ār−y)− u2ar−xār−y + 2 ln cosh(βJ), (3)

In this expression u = tanh(βJ) = tanh(J/kBT ) and r runs over the lattice. The action S0 is

quadratic in Grassmann variables and was derived in detail by Plechko [11, 12, 10, 13] who studied

various geometries of the lattice. We now consider a dilute system where empty sites are replaced

by itinerant spinless electrons. In presence of vacancies (or empty sites) at different locations ri,

the partition function is modified accordingly [14, 15, 16]

Zh[{ri}] =
∫

∏

r

dārdar
[

δnr,0e
Sr + δnr,1arār

]

, (4)

where nr = 1 when a hole is present at site r = ri, and nr = 0 otherwise, when the site is occupied

by a spin. This partition function can be rewritten as

Zh[{ri}] =
∫

∏

r

dārdar
[

1 +
(

arāre
−Sr − 1

)

nr

]

eS0 . (5)

We first diagonalize S0, using the Fourier space transformation ar = L−1
∑

k ake
ik.r, ār =

L−1
∑

k āke
−ik.r, and express the partition function Z0 as a product over decoupled momentum

dependent factors, after relabeling kx → −kx, see Appendix A:

S0 = 2N ln cosh(βJ)

+
∑

k

′

[gkakāk + ḡka−kā−k − 2iu sin kxaka−k + 2iu sin kyākā−k] ,

gk = 1− u(eikx + eiky)− u2eikx+iky , (6)

Z0 = cosh(βJ)2N
∏

k

′ (

gkḡk − 4u2 sin kx sin ky
)

= cosh(βJ)2N
∏

k

′ [

(1 + u2)2 − 2u(1− u2)(cos kx + cos ky)
]

.

The prime symbol corresponds to the set of momenta k located in half of the Brillouin zone,

the opposite momenta −k completing the zone. One can write an effective action for (5) by

introducing nilpotent commuting variables br such that b2r = 0 and

Zh[{ri}] =
∫

∏

r

dārdardbr exp

(

S0 +
∑

r

br(1− nr) +
∑

r

brnrarāre
−Sr

)

. (7)
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One should notice that br can always be written as a product of two Grassmann variables. The

term arāre
−Sr = arār+u2arar−xārār−y will be approximated in the following by the quadratic part

since the quartic part contains second order derivatives which will be assumed to be negligible for

small momenta. From Zh we can now construct the total partition function Z = Tr e−βH =
∫

eS,

where the action S includes the Ising part, the electron kinetic energy, and the hole constraint in

equation (1). It can be expressed as a Grassmannian functional integral by substituting the Fermi

operators with dimensionless Grassmann variables cr → cr(τ) and c†
r
→ c̄r(τ) [17, 18], where τ is

an imaginary time variable taking values between 0 and β

Z =

∫

∏

r

dārdardbr

∫

∏

r,τ

dc̄r(τ)dcr(τ) exp

(

S0 +
∑

r

br

[

1

2
− β−1

∫ β

0

dτ c̄r(τ)cr(τ)

]

+
∑

r

br

[

1

2
+ β−1

∫ β

0

dτ c̄r(τ)cr(τ)

]

arār

+
∑

r

∫ β

0

dτ

[

−c̄r(τ)∂τcr(τ) + t
∑

δ

c̄r+δ(τ)cr(τ)

])

. (8)

We have used the following prescription in the case where products of two Fermi operators on the

same site are encountered: c†
r
cr = (c†

r
cr − crc

†
r
+1)/2 → c̄r(τ)cr(τ) + 1/2. In the following section

we study the extrema of this action using Lagrange multipliers.

3. Self-consistent equations

We consider the total action S in equation (8) with antisymmetric boundary conditions cr(0) =

−cr(β) and c̄r(0) = −c̄r(β). These operators can be expanded using the Matsubara frequencies

ωn = (2n+ 1)π/β, n = 0,±1,±2, · · ·, for which we have

cr(τ) = β−1/2
∑

ωn

e−iωnτcr(ωn), c̄r(τ) = β−1/2
∑

ωn

eiωnτ c̄r(ωn). (9)

This allows us to write the total action as

S = S0 +
∑

r

br

[

1

2
− β−1

∑

ωn

c̄r(ωn)cr(ωn)

]

+
∑

r

br

[

1

2
+ β−1

∑

ωn

c̄r(ωn)cr(ωn)

]

arār

+
∑

r

∑

ωn

[

(iωn + µ)c̄r(ωn)cr(ωn) + t
∑

δ

c̄r+δ(ωn)cr(ωn)

]

, (10)

nr =
1

2
+ β−1

∑

ωn

c̄r(ωn)cr(ωn),

where we have introduced a chemical potential µ. To simplify the problem, we would like to

express the action in terms of order parameters satisfying self-consistent mean-field equations.

The idea is to replace c̄r(ωn)cr(ωn) by a Green function Gr(ωn) with conjugate variable Σr(ωn),
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or self-energy. After integrating over br, we can write the following effective action

Seff = S0 +
∑

r

ln

(

1

2
− β−1

∑

ωn

Gr(ωn)

)

+
∑

r

1 + 2β−1
∑

ωn
Gr(ωn)

1− 2β−1
∑

ωn
Gr(ωn)

arār

+
∑

r,ωn

Σr(ωn)
[

Gr(ωn)− c̄r(ωn)cr(ωn)
]

+
∑

r

∑

ωn

[

(iωn + µ)c̄r(ωn)cr(ωn) + t
∑

δ

c̄r+δ(ωn)cr(ωn)

]

. (11)

From this expression, we then compute the effective thermodynamical potential −βΩ = ln(
∫

eSeff)

which is given by

−βΩ = 2N ln cosh(βJ) +
∑

r

ln

(

1

2
− β−1

∑

ωn

Gr(ωn)

)

+
∑

r,ωn

Σr(ωn)Gr(ωn)

+
1

2
ln det

(

A0 + V
)

r,r′
+
∑

ωn

ln det
(

[iωn + µ− Σr(ωn)]δr,r′ + t
∑

δ

δr′,r+δ

)

r,r′
,

where A0 is the matrix corresponding to the Ising part in the real space: S0 =
1
2

∑

r,r′ Ψ
⊤
r (A0)r,r′Ψr′ ,

and V the local potential due to the hole contribution

(V )r,r′ = δr,r′
1 + 2β−1

∑

ωn
Gr(ωn)

1− 2β−1
∑

ωn
Gr(ωn)

iσ2, (12)

in the basis of vectors Ψr = (ar, ār)
⊤ (see Appendix B). If we extremize Ω with respect to the

parameters Σr(ωn) and Gr(ωn), we obtain a set of self-consistent equations for the different order

parameters, in particular

Gr(ωn) = − δ

δΣr(ωn)
ln det

(

[iωn + µ− Σr(ωn)]δr,r′ + t
∑

δ

δr′,r+δ

)

r,r′
,

1

1− nr

− βΣr(ωn) =
β

2

δ

δGr(ωn)
ln det

(

A0 + V
)

r,r′
. (13)

Since the system is invariant by translation, we may seek solutions of the form Gr(ωn) = G(ωn),

Σr(ωn) = Σ, and nr = ne the particle density. We can therefore simplify (13) and obtain under

this approximation the following equations

G(ωn) =
1

N

∑

k

1

iωn + µ− Σ− ǫk
, ǫk = 2t (2− cos kx − cos ky) ,

βΣ =
1

1− ne

− F (v)

(1− ne)2
,

F (v) ≡ 1

N

∑

k

′ 2v + gk + ḡk
(gk + v)(ḡk + v)− 4u2 sin kx sin ky

,

ne =
1

2
+ β−1

∑

ωn

G(ωn),
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Figure 2: Plot of function F (v) in the thermodynamical limit, equation (C.10), for several

temperature values or u = tanh(βJ). At v = 0 the function becomes singular with respect to u for

the critical value u =
√
2− 1 ≃ 0.414. The dashed line is the asymptotic value F (v) = (1 + v)−1

in the high temperature regime, see equation (C.11). For comparison, dark green circles are values

from the discrete formula defined in equation (14) with u = 0.3 and N = 2500 lattice points.

v =
1 + 2β−1

∑

ωn
G(ωn)

1− 2β−1
∑

ωn
G(ωn)

=
ne

1− ne

, (14)

where we have shifted µ → µ−4t for convenience, so that for small momenta ǫk ≃ tk2. Σ depends

only on µ and the temperature. The exact expression of F (v) in the thermodynamical limit is given

in Appendix C, equation (C.10), in terms of elliptic functions. In Figure 2 we have plotted F (v)

for several temperature values or u, as well as the asymptotic value at high temperature (dashed

line) whose expression is given by equation (C.11). The sum over the Matsubara frequencies of

the Green functions G(ωn) can be performed since Σ is independent of ωn

∑

ωn

G(ωn) =
β

2N

∑

k

tanh
β

2
(µ− Σ− ǫk) . (15)

The potential is finally given by

− β

N
Ω = 2 ln cosh(βJ) + ln(1− ne) +

(

ne −
1

2

)

βΣ

+
1

N

∑

k

ln cosh

[

β

2
(µ− Σ− ǫk)

]

(16)
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+
1

2N

∑

k

ln
[

(1 + v)2 + u2(2 + u2)− 2u(1 + v − u2)(cos kx + cos ky)− 2u2v cos(kx + ky)
]

.

4. Effective mass and singular behavior of the self-energy

When the density is small ne ≃ 0, we have the approximations v ≃ ne and Σ ≃ kBT [1 − F (0)].

F (0) ≃ 1/4 when T → 0 and F (0) ≃ 1 − 3u4 when T → ∞. In the latter case, Σ ≃ 3J4/k3
BT

3

and is positive. We can notice that due to the dilution of the spins with electrons, the singular part

of Ω gives a critical temperature (βcJ)
−1 satisfying tanh(βcJ) =

√
2 + v − 1 = uc(v) and which is

lower than the Ising value uc(v) ≥ uc(0) deduced from the singular behavior of Z0 when k ≃ 0. We

can notice that this critical temperature vanishes when uc(v) = 1 at the density ne = 2/3 ≃ 0.67

given by the saddle point approximation. Efficient Monte Carlo algorithms give a lower value close

to ne = 0.59 for the percolation threshold [19, 20] above which the critical transition disappears.

When fermions are coupled separately with Ising lattices, the ferromagnetic coupling is known to

decrease the critical temperature whereas in the antiferromagnetic case it increases it [8]. Near

the Fermi surface, the normalized effective mass m∗ with respect to the bare mass of the particles,

which is defined as me = ~
2/2t, is equal to m∗ = 1− ∂Σ/∂µ [21, 22, 23, 24]. Using this definition,

we first derive the self-energy in (14) with respect to µ

β
∂Σ

∂µ
=

n′
e

(1− ne)4
[

(1− ne)
2 − 2(1− ne)F (v)− F

′(v)
]

= n′
eΛ, (17)

with F ′(v) = dF (v)/dv and the density of states n′
e = ∂ne/∂µ

n′
e ≡

(

1− ∂Σ

∂µ

)

β

4N

∑

k

[

1− tanh2 β

2
(µ− Σ− ǫk)

]

≡
(

1− ∂Σ

∂µ

)

βñ′
e

4
. (18)

We can then express the effective mass as m∗ = (1 + ñ′
eΛ/4)

−1, with 0 < ñ′
e < 1. The value of

the effective mass relatively to unity depends therefore on the sign of the function Λ. At high

temperature where u ≪ 1 we have Λ ≃ −6u4(1− ne) < 0. This follows from the series expansion

F (v) ≃ (1+v)−1−3u4(1+v)−4, see equation (C.11). We then obtain the following approximation

for the effective mass at high temperature, where u ≪ 1 and ñ′
e ≃ 1

m∗ ≃ 1 +
3

2
u4(1− ne) > 1, (19)

which is always greater than unity. In the following we will take t = 1 for the numerical evaluations.

At low temperature, or u . 1, we find that Λ > 0 for parameter u above a threshold value

u = u∗ > uc which depends on ne, see top inset of Figure 3. In this region m∗ < 1 and u∗ goes

to unity when the density approaches a critical value n∗
e ≃ 0.545, using N = 5002 lattice points.

The low temperature correlated spin fluctuations reduce the effective mass, whereas they tend to

increase it at higher temperatures. At criticality the mass diverges, as evidenced in Figure 3. This

can be interpreted as the fact that large spin correlations lead to the localization of electrons. In

the low temperature regime, the mass is less that unity and tends to decrease as ne increases from

zero with a minimum around ne ≃ 0.425, see bottom inset of Figure 3. A qualitative criteria for
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Figure 3: Effective mass m∗ as function of u = tanh(βJ) for several values of ne and t = 1. First

inset: Threshold temperature or u∗ defined as the temperature below which the mass becomes

less that unity as function of ne. Red line is an interpolation which shows that m∗ > 1 for all

temperature above the critical value n∗
e ≃ 0.55. Second inset: Effective mass at low temperature

(u = 0.999) as function of ne. We have chosen N = 5002 lattice sites for evaluating the chemical

potential.

the existence of the crossover value u∗ can be given by comparing the two characteristic lengths

of the system, which are the average distance between the particles n
−1/2
e and the spin correlation

length ξ defined by

ξ−2 =
(1 + v − 2u− u2)2

u
√

(1 + v − u2)(1 + v + 2uv − u2)
(20)

This quantity is extracted from the constant term of the free energy singular part at low momenta

k, see equations (16) and (C.2), after expansion and diagonalization of the quadratic form, and

which can be identified as the inverse square of the correlation length. We propose to characterize

the transition at u∗ by the fact that both lengths are of the same order ξ ∼ n
−1/2
e which gives an
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equation for u∗ as function of ne. We then obtain a similar behavior to that of the curve in the first

inset of Figure 3, with a critical density value n∗
e ≃ 0.51 close to the numerical result 0.545. Spin

correlations in the low temperature regime are therefore efficient in reducing the effective particle

mass as long as their typical length does not exceed the average distance between particles, or

when the particle density is low enough. This can be compare with two-dimensional electron

systems involving Coulomb interaction in silicon where an electron density increase leads instead

to a reduction of the effective mass, whereas at lower electron density there is a sharp increase of

the mass below a threshold value [21, 25, 23, 26].

The density of states n′
e is displayed in Figure 4 as function of µ and for several values of u.

At low temperature (u ≃ 1) a peak in density develops which is due to the singular part of the

self-energy. The peak actually coincides with the divergence of the effective mass of Figure 3, due

to the fact that n′
e is proportional to m∗. The location of this peak moves to higher energy as

the temperature decreases. In Figure 5 we have plotted the specific heat Cv/kB = −T∂2Ω/∂2T

for different values of µ. For low chemical potential or low electron density the specific heat

is dominated by the spin fluctuations which is characterized by an exponential decay near zero

temperature and logarithmic divergence near the singularity at uc. As µ (or density) increases

the contribution from the electrons which is linear in T at low temperature becomes dominant

whereas the singular peak vanishes at a value µ < 6.

5. Conclusion

We have studied a two-dimensional system of itinerant Fermi particles embedded inside a dilute

Ising system or spin bath using Grassmannian path integral technique. Particles and spins are

interacting through the principle of volume exclusion which yields an effective interaction between

the electrons. This interaction originates from the spin fluctuations. At low temperature, the spin

fluctuations tend to lower the mass of the particles whereas in the high temperature regime the

independent spin fluctuations lead to a small mass increase proportional to 1/T 4, which makes

the electronic sector a Fermi liquid. At very low temperature, we expect that there are still

spin fluctuations as some of the electron kinetic energy t can be exchanged for spin fluctuations

mediated by J . At the critical point of the dilute Ising system, the long range fluctuations lead

to a sharp increase of the mass which can be considered as a localized phase. As a result the

density of states and specific heat present a similar singular behavior as function of the energy

and temperature respectively.

Appendix A. Representation of the fermionic action in terms of fermionic oscillator

The Ising action S0, equation (6), can be diagonalized in order to express the quadratic action as

a fermionic oscillator. Let us consider the following change of Grassmannian variables for which
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Figure 4: Density of states as function of µ for several temperature values. From bottom to top,

u increases (T decreases) from 0.2 to 0.95 (see arrow) by increments of 0.05. Each curve is shifted

upward for clarity.

the Jacobian is unity

ak = 2iuα sin ky

(

1

Regk +
√
∆k

b−k +
1

Regk −
√
∆k

bk

)

āk = 2iuα sin kx

(

1

Regk +
√
∆k

b̄−k +
1

Regk −
√
∆k

b̄k

)

a−k = α
(

b̄−k + b̄k
)

, ā−k = α (b−k + bk)
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Figure 5: Specific heat for several value of the chemical potential.

∆k = (Regk)
2 − 4u2 sin kx sin ky, α

2 = u

(

sin kx sin ky
∆k

)1/2

. (A.1)

This transformation leads to an action that is simply the sum of two independent fermionic

oscillators with frequencies Ωk and Ω−k in the reduced Brillouin zone

S0 = 2N ln cosh(βJ) +
∑

k

′ (

Ωkbkb̄k + Ω−kb−kb̄−k

)

,

Ωk = 2u
√

sin kx sin ky

√
∆k + iImgk√
∆k − Regk

,

Ω−k = −2u
√

sin kx sin ky

√
∆k − iImgk√
∆k + Regk

. (A.2)

The partition function Z0 for the Ising model is therefore equivalent to

Z0 =

∫

∏

k

′

db̄kdbkdb−kdb̄−ke
S0 = cosh(βJ)2N

∏

k

′

ΩkΩ−k
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= cosh(βJ)2N
∏

k

′ [

|gk|2 − 4u2 sin(kx) sin(ky)
]

= cosh(βJ)2N
∏

k

′ [

(1 + u2)2 − 2u(1− u2)(cos kx + cos ky)
]

. (A.3)

Appendix B. Perturbation scheme for the Green function

The Ising unperturbed action S0, equation (3), can be written, up to the constant term

2N ln cosh(βJ), as

S0 =
1

2

∑

r,r′

Ψ⊤
r (A0)r,r′Ψr′ , (B.1)

with the 2× 2 matrix elements

(A0)r,r′ =

(

u(δr′,r−x − δr′,r+x) δr′,r − uδr′,r+x − uδr′,r−y − u2δr′,r+x−y

−δr′,r + uδr′,r−x + uδr′,r+y + u2δr′,r−x+y u(δr′,r+y − δr′,r−y)

)

,

and Ψr = (ar, ār)
⊤. The interaction part with the holes can be expressed as a local potential in

this new basis
∑

r

1 + 2β−1
∑

ωn
Gr(ωn)

1− 2β−1
∑

ωn
Gr(ωn)

arār =
1

2

∑

r

Ψ⊤
r VrΨr, (B.2)

with the 2× 2 local matrix

Vr =

(

0 vr
−vr 0

)

= vriσ2, vr =
1 + 2β−1

∑

ωn
Gr(ωn)

1− 2β−1
∑

ωn
Gr(ωn)

. (B.3)

The partial derivatives of ln detA that appears in the saddle point equations (13), with the global

block matrix A = A0+V and (V )r,r′ = Vrδr,r′ , can be expressed as a series expansion in powers of

V . These derivatives with respect to Gr(ωn) are both proportional to the derivative with respect

to vr and we define the quantity

Gr ≡
δ

δvr
ln detA =

δ

δvr
tr lnA (B.4)

=
δ

δvr
tr
[

lnA0 + ln(1 + A−1
0 V )

]

=
δ

δvr

[

tr(A−1
0 V )− 1

2
tr(A−1

0 V A−1
0 V ) + · · ·

]

.

Let Tr be the block matrix for which the diagonal element at position r is equal to iσ2, or

(Tr)s,s′ = δs,rδs′,riσ2. Then V =
∑

r vrTr, and one has the following expansion

Gr = tr(A−1
0 Tr)−

∑

s

vs tr(A
−1
0 TrA

−1
0 Ts)−

∑

s,s′

vsvs′ tr(A
−1
0 TrA

−1
0 TsA

−1
0 Ts′) + · · ·

Since the elements (A0)r,r′ depend only on the difference r − r′, we define the following Fourier

transform (A0)r,r′ =
∑

k(Ã0)ke
ik.(r′−r), with k = (−kx, ky) and

(Ã0)k =

(

−2iu sin kx gk
−ḡk −2iu sin ky

)

. (B.5)
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The Fourier elements of the inverse matrix A−1
0 are then given by

(Ã−1
0 )k =

1

D0(kx, ky)

(

−2iu sin ky −gk
ḡk −2iu sin kx

)

,

D0(kx, ky) = (1 + u2)2 − 2u(1− u2)(cos kx + cos ky). (B.6)

One obtains, after some algebra, the expression for the Fourier transform of the quantity Gr

G̃k =
∑

k′

tr{(Ã−1
0 )k′iσ2} − ṽk

∑

k′

tr{(Ã−1
0 )k′iσ2 tr(Ã

−1
0 )k′−kiσ2}+ · · · (B.7)

Appendix C. Expression of F (v) in term of complete elliptic integrals

The expression of F (v) in equation (14) defined in terms of a double discrete sum converges, in

the thermodynamical limit N → ∞, to the following double integral

F (v) =
1

4π2

∫ π

−π

∫ π

−π

dkxdky
1 + v − u(cos kx + cos ky)− u2 cos(kx + ky)

D(kx, ky)
, (C.1)

where the denominator D(kx, ky) is equal to

D(kx, ky) = (1 + v)2 + u2(2 + u2)− 2u(1 + v − u2)(cos kx + cos ky)

− 2u2v cos(kx + ky). (C.2)

We can rearrange the expression for F (v) using symmetries such as D(kx, ky) = D(ky, kx) so that

F (v) =
1

2v
− 1− v2 + u2(2 + u2)

8π2v

∫ π

−π

∫ π

−π

dkxdky
D(kx, ky)

+
u(1− u2)

2π2v

∫ π

−π

∫ π

−π

dkxdky
cos ky

D(kx, ky)
. (C.3)

The computation of F (v) is reduced to evaluating two double integrals. The first integral gives
∫ π

−π

∫ π

−π

dkxdky
D(kx, ky)

≡ K1

(1 + v)2 + u2(2 + u2)

K1 =

∫ π

−π

∫ π

−π

dkxdky
1− α(cos kx + cos ky)− β cos(kx + ky)

, (C.4)

with

α =
2u(1 + v − u2)

(1 + v)2 + u2(2 + u2)
, β =

2u2v

(1 + v)2 + u2(2 + u2)
. (C.5)

After integrating over kx, we find that

K1 =
2π

α

∫ π

−π

dky
√

(r1 − cos ky)(r2 − cos ky)

r1 =
1 + β +

√

α2 + 2β(1 + β)

α
, r2 =

1 + β −
√

α2 + 2β(1 + β)

α
, (C.6)
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with r1 > r2 > 1. A standard change of variable ky → tan(ky/2) leads to the evaluation of the

following complete elliptic integral of the first kind [27]

K1 =
8π

|α|
K(q)

[(r21 − 1)(r22 − 1)]1/4
, q2 =

1

2

(

1− (r1r2 − 1)
√

(r21 − 1)(r22 − 1)

)

. (C.7)

The second integral is given by
∫ π

−π

∫ π

−π

dkxdky
cos ky

D(kx, ky)
≡ K2

(1 + v)2 + u2(2 + u2)

K2 =

∫ π

−π

∫ π

−π

dkxdky
cos ky

1− α(cos kx + cos ky)− β cos(kx + ky)
. (C.8)

As before, after integrating first over kx and performing the previous change of variable on ky, we

obtain [27]

K2 =
8π

|α|
1

[(r21 − 1)(r22 − 1)]1/4
1 + A0

1− A0

[

K(q)− Π

(

−(1− A0)
2

4A0

, q

)]

,

A2
0 =

(r21 − 1)(r22 − 1)

[(r1 + 1)(r2 + 1)]2
, (C.9)

where Π is the complete elliptic integral of the third kind. Finally, we can express F (v) as function

of K1 and K2

F (v) =
1

2v
− 1

v

1− v2 + u2(2 + u2)

(1 + v)2 + u2(2 + u2)

K1

8π2
+

1

v

u(1− u2)

(1 + v)2 + u2(2 + u2)

K2

2π2
. (C.10)

In particular, in the high temperature regime T → ∞ or u ≃ 0, we find the following asymptotic

limit

F (v) ≃ 1

1 + v
− 3u4

(1 + v)4
. (C.11)
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