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Abstract

The Price of Anarchy measures the welfare loss caused by selfish behavior: it is defined as the ratio of the social
welfare in a socially optimal outcome and in a worst Nash equilibrium. Similar measures can be derived for other
classes of stable outcomes. We observe that Pareto optimality can be seen as a notion of stability: an outcome is
Pareto optimal if and only if it does not admit a deviation by the grand coalition that makes all players weakly better
off and some players strictly better off. Motivated by this observation, we introduce the concept of Price of Pareto
Optimality: this is an analogue of the Price of Anarchy, with the worst Nash equilibrium replaced with the worst
Pareto optimal outcome. We then study this concept in the context of hedonic games, and provide lower and upper
bounds on the Price of Pareto Optimality in three classes of hedonic games: additively separable hedonic games,
fractional hedonic games, and modified fractional hedonic games.

1 Introduction
The prisoners’ dilemma and the tragedy of commons [Osborne and Rubinstein, 1994] are two prominent examples
where selfishness causes significant loss of social welfare. In game theory, the outcome of interaction among selfish
agents is usually modeled as a Nash equilibrium, i.e., a collection of strategies (one for each player) such that no
player wants to change her strategy given the other players’ strategies. Consequently, a standard measure of disutility
caused by selfish behavior is the Price of Anarchy [Koutsoupias and Papadimitriou, 1999]: this is the ratio of the social
welfare in a socially optimal outcome of the game and in a worst (social welfare-minimizing) Nash equilibrium of the
game. Good upper and lower bounds on the Price of Anarchy have been obtained for many classes of games [see, e.g.,
Roughgarden and Tardos, 2007]; researchers have also considered the related concept of Price of Stability [Correa et
al., 2004; Anshelevich et al., 2008], which compares socially optimal outcomes and best Nash equilibria.

Importantly, the concept of the Price of Anarchy is defined for a specific notion of stability, namely, Nash equi-
librium. Nevertheless, its analogues can be defined for other game-theoretic solution concepts: e.g., Strong Price of
Anarchy [Andelman et al., 2007] and Enforcement Value [Ashlagi et al., 2008; Brandt et al., 2009] measure the worst-
case welfare loss in, respectively, strong Nash equilibria and correlated equilibria (we refer the reader to the textbook
of Osborne and Rubinstein [1994] for the definitions of these concepts; we will briefly discuss strong Nash equilib-
ria in Section 6.2). Indeed, one can extend these concepts beyond normal-form games and explore the worst-case
efficiency loss caused by strategic behavior in other types of games.

In this paper, we are interested in exploring Price of Anarchy-like measures in hedonic games. These are games
where players form coalitions, and each player has preferences over coalitions that she can be a part of [Drèze and
Greenberg, 1980; Banerjee et al., 2001; Bogomolnaia and Jackson, 2002]. While the standard model assumes that
players’ preferences over coalitions are ordinal, there are several prominent classes of hedonic games where players
assign cardinal utilities to coalitions (e.g., a player may assign utilities to individual players, and lift them to coalitions

∗A preliminary version of this work has been published in AAAI 2016 [Elkind et al., 2016].
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by computing the sum or average of its utilities for players in a coalition). In such settings it is desirable to have a
measure of welfare loss caused by stability considerations.

This agenda was recently pursued by Bilò et al. [2018] and Kaklamanis et al. [2016], who have analyzed the
analogues of the Price of Anarchy and the Price of Stability for the concept of Nash stability in the context of fractional
hedonic games—a simple, but expressive class of hedonic games that was proposed by Aziz et al. [2014] (see also
the extended version by Aziz et al. [2019]). Kaklamanis et al. [2016] and Monaco et al. [2018] extended this analysis
to a variant of this model known as modified fractional hedonic games. A similar study for a different subclass of
hedonic games, called social distance games [Brânzei and Larson, 2011], has been performed by Balliu et al. [2017a]
and Kaklamanis et al. [2018]. In a similar spirit, Feldman et al. [2015] studied the Price of Anarchy and the Price of
Stability in hedonic clustering games, where players are located in a metric space and their utility for a coalition is
determined by their distance from a coalition center or from other players in their coalition, and Feldman and Friedler
[2015] provided bounds on the Price of Anarchy and the Strong Price of Anarchy for another class of clustering
scenarios, which can also be viewed as hedonic games.

Now, Nash stability is a well-known notion of stability for hedonic games, and can be seen as the closest analogue
of Nash equilibrium for such games. However, in contrast to normal-form games, where Nash equilibrium is clearly
the most prominent solution concept, there are several notions of stability that are commonly studied for hedonic
games. Indeed, Nash stability focuses on individual deviations and assumes that any player can join any existing
coalition, without asking permission of the coalition members. Given that hedonic games are intended to model group
formation, we may consider modifying the notion of a permissible deviation along two dimensions: first, we can allow
for group deviations, and second, we can allow (some of) the non-deviators to veto the deviators’ moves. These two
modifications have the opposite effect: the former enriches the set of actions available to the deviators, while the latter
shrinks it. By combining these ideas and their variants, one arrives at the well-known notions of individual stability,
contractual individual stability, core, strict core, and several others (see an overview by Aziz and Savani [2015]; Sung
and Dimitrov [2007] propose a somewhat different classification).

The classic notion of Pareto optimality has a natural interpretation within this framework. Indeed, according to
the standard definition, an outcome is Pareto optimal if there is no other outcome that makes all players weakly better
off and some players strictly better off. In the language of deviations and vetoes, this can be restated as follows: an
outcome is Pareto optimal if there is no group of players that can deviate (possibly by forming several pairwise disjoint
coalitions) so that all of the deviators are weakly better off, some of them are strictly better off, and no non-deviating
player is negatively affected by the deviation (and therefore does not want to veto it). Indeed, Pareto optimality is
recognized as a valid notion of stability for hedonic games [Morrill, 2010; Aziz and Savani, 2015]. We remark that it
can be viewed as a refinement of contractual strict core [Sung and Dimitrov, 2007]: the latter is defined similarly, the
only difference being that the deviating players should form a single coalition.

In this paper, we introduce and study the Price of Pareto Optimality (PPO): this is the ratio of the social welfare
in a social welfare-maximizing outcome of the game and the social welfare in a worst Pareto optimal outcome. This
concept is a direct analogue of the Price of Anarchy—the only difference is that we maximize over all Pareto optimal
outcomes rather than all Nash equilibria. (Note that defining an analogue of the Price of Stability with respect to
Pareto optimal outcomes is meaningless: every social welfare-maximizing outcome is Pareto optimal, and therefore
the respective quantity would always be 1). While viewing Pareto optimality as a notion of stability is motivated by the
analysis of solution concepts in hedonic games, and our technical results pertain to hedonic games, the definition of the
PPO applies equally well to arbitrary non-cooperative games. This concept has the following intuitive interpretation.
Consider a society where all decisions are made consensually, and therefore the status quo can only be changed if the
change does not harm any of the members of the society. The Price of Pareto Optimality is exactly the worst-case loss
of total welfare that such a society may experience because of its principles.

While similar measures can be defined for other notions of stability in hedonic games, we believe that the PPO is
particularly appealing, because every hedonic game admits a Pareto optimal outcome; in contrast, many well-known
classes of hedonic games (including the ones considered in this paper) contain games with no Nash stable outcomes.
Thus, the PPO is immune to an important critique of the Price of Anarchy, namely, that it is not clear how to interpret
bounds on welfare loss in welfare-pessimal Nash stable outcomes: even if such bounds are not too bad, when a Nash
stable outcome does not exist, players may cycle through outcomes with arbitrarily bad social welfare. Indeed, Pareto
optimality appears to be the most demanding solution concept for hedonic games that has this property: the set of
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individually stable or core stable outcomes may be empty, and, while the contractual strict core is always non-empty,
the argument above shows that the set of Pareto optimal outcomes is a subset of the contractual strict core.

Our technical contribution in this paper is the study of the PPO in three classes of succinctly representable hedonic
games: additively separable hedonic games (ASHGs), fractional hedonic games (FHGs), and a variant of fractional
hedonic games, which we call modified fractional hedonic games (mFHGs). In each of these classes, every player
assigns a numerical utility to every other player and these utilities are then lifted to coalitions: in ASHGs, the utility
of a player i for a coalition C containing i is the sum of her utilities for other players in C, in FHGs her utility for C
is the ratio between the sum of her utilities for other players in C and the size of C, and in mFHGs her utility for C is
her average utility for other members of C. Formally, if we denote the sum of i’s utilities for members of C by wi(C)
(we assume that each player’s utility for herself is 0), then her utility for C can be expressed as, respectively, wi(C) in
ASHGs, wi(C)

|C| in FHGs, and wi(C)
|C|−1 in mFHGs.

We focus on these classes of games as they capture a broad range of coalition formation scenarios. Indeed, it is
very natural to measure the value of a coalition by the total utility or the average utility of its members (the difference
between FHGs and mFHGs reflects the fact that, when computing the average utility, the player has to decide whether
to count herself when calculating the coalition size). They have also been extensively studied in hedonic games
literature. In particular, the work of Aziz et al. [2011], Aziz et al. [2019] and Olsen [2012] provides a discussion of
applications of, respectively, additively separable hedonic games, fractional hedonic games and modified fractional
hedonic games; for further results, see, e.g., the papers by Aziz et al. [2015], Kaklamanis et al. [2016], Flammini et
al. [2017], Bilò et al. [2018], Monaco et al. [2018], and Bullinger [2020].

There are also several technical reasons to study the PPO in these games. First, unlike in general hedonic games, in
these games players assign numerical values to coalitions, which means that the notion of PPO is well-defined in this
setting. Further, for fractional hedonic games and modified fractional hedonic games there are bounds in the literature
on the analogues of the Price of Anarchy and Price of Stability for the concept of Nash stability [Bilò et al., 2018;
Kaklamanis et al., 2016; Monaco et al., 2018], which enables us to directly compare the quality of Pareto optimal
outcomes and that of Nash stable outcomes. Finally, the analysis of the PPO for these classes of games presents an
interesting technical challenge, and our results provide new insights into the structure of Pareto optimal outcomes
in these games. We provide a summary of our technical results, together with a discussion of their significance, in
Section 6. However, we believe that the best way to view our results is as a proof of concept, showing that the PPO
is a reasonable measure, which can also be investigated in other scenarios (including, but not limited to, other classes
of hedonic games). In fact, the preliminary version of the current work has been followed by the study of the PPO
in another class of hedonic games [Balliu et al., 2017b], and very recently our result for modified fractional hedonic
games has been strengthened by Bullinger [2020].

2 Preliminaries
We consider games with a finite set of players N = {1, . . . , n}. A coalition is a non-empty subset of N . The set of all
players N is called the grand coalition, and a coalition of size 1 is called a singleton coalition. Given a player i ∈ N ,
letNi = {S ⊆ N : i ∈ S} be the set of all coalitions containing i. For the purposes of this paper, it will be convenient
to define a hedonic game as a pair (N, (vi)i∈N ), where vi : Ni → R is the utility function of player i (traditionally, a
hedonic game is defined by endowing each player i with a weak order on Ni; in contrast, in our definition we assume
that we are given cardinal representations of these orders). We assume that vi({i}) = 0 for all i ∈ N . For every pair
of coalitions S, S′ ∈ Ni, we say that i strictly prefers S to S′ if vi(S) > vi(S

′); if vi(S) = vi(S
′), we say that i is

indifferent between S and S′. The value of a coalition S is defined as V (S) =
∑
i∈S vi(S). A coalition structure

(also called a partition or an outcome) is a partition P = {P1, P2, . . . , Pm} of N into pairwise disjoint coalitions. We
denote by P(i) the coalition of P that includes player i; the value vi(P(i)), also denoted by vi(P), is the utility of i
in P .

The social welfare of a partition P = {P1, P2, . . . , Pm} is defined as

SW (P) =

m∑
k=1

V (Pk) =
∑
i∈N

vi(P(i)).
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A partition P is optimal if SW (P) ≥ SW (P ′) for every other partition P ′. We say that P Pareto dominates another
partition P ′ if vi(P) ≥ vi(P ′) for every i ∈ N and vi(P) > vi(P ′) for some i ∈ N . A partition P is Pareto optimal
if there is no partition P ′ that Pareto dominates P . In other words, a Pareto optimal partition is an outcome that does
not permit a deviation by the grand coalition that makes all players weakly better off and some players strictly better
off. Note that an optimal partition is necessarily Pareto optimal.

Let P be the set of all Pareto optimal partitions and let P∗ be an optimal partition. Clearly SW (P∗) ≥ 0, as the
players can form the partition that consists of n singletons.

Definition 2.1. Given a hedonic game Γ = (N, (vi)i∈N ), the Price of Pareto Optimality (PPO) of Γ is defined as

PPO(Γ) = max
P∈P

SW (P∗)
SW (P)

if SW (P) > 0 for all P ∈ P, PPO(Γ) = 1 if SW (P) = 0 for all P ∈ P, and PPO(Γ) = +∞ in all other cases.
Given a class of games G, we define the Price of Pareto Optimality in G as PPO(G) = supΓ∈G PPO(Γ).

We will consider several classes of hedonic games defined on graphs. Let G = (N,E,w) be a weighted directed
graph, where N is the node set, E is the edge set, and w : E → R is a real-valued edge weight function. We denote
a generic edge of G by (i, j) and denote its weight by wi,j . We say that G is unweighted and write G = (N,E) if
wi,j = 1 for every (i, j) ∈ E; otherwise we say that G is weighted. We say that G is symmetric if it holds that (a)
(i, j) ∈ E if and only if (j, i) ∈ E and (b) wi,j = wj,i; for symmetric graphs, we will treat the pair of directed edges
connecting i and j as a single undirected edge {i, j}. The degree δG(i) of a node i ∈ N in a symmetric unweighted
graph G is the number of nodes j ∈ N with {i, j} ∈ E. We let ∆G = maxi∈N δG(i). The subgraph of G induced
by a subset S ⊆ N is denoted by GS = (S,ES), where ES is the subset of all edges in E that have both of their
endpoints in S. For readability, when the graph G is clear from the context we denote the degree of a node i in a
subgraph GS of G by δS(i) (instead of δGS

(i)). A tree is a symmetric unweighted graph with at least two nodes that
is acyclic and connected. In a tree, a node with degree one is called a leaf ; a non-leaf node is called an internal node.
A tree with no internal nodes and only two leaves (i.e., two nodes connected by an edge) is called a 1-star. A tree with
one internal node and d ≥ 2 leaves is called a d-star. A d-star with d ≥ 2 is also called a nondegenerate star. The
only internal node of a nondegenerate star is also referred to as its center. We use the term star to refer to both 1-stars
and nondegenerate stars; thus, in particular, a singleton node is not a star. A tree G is called a (d, e)-superstar, where
d, e ≥ 2, if it has a node of degree d (called the center) that is adjacent to d internal nodes, and each of these nodes is
adjacent to e−1 leaves. Note that a (d, e)-superstar has diameter 4 and admits a vertex cover of size d (which consists
of all internal nodes other than the center). A symmetric unweighted graph G = (N,E) is a clique if it holds that
{i, j} ∈ E for each pair i, j ∈ N ; throughout this paper, we only use this term to refer to graphs with at least three
nodes. A clique with three nodes is also called triangle. We emphasize that, according to our definitions, a singleton
node is neither a star nor a clique, and no star graph is a clique.

A rooted tree is a tree in which there is a distinguished node called the root. The root serves as a reference point
to classify the nodes of the tree. Let G = (N,E) be a tree rooted at r ∈ N . The level of a node i ∈ N is the length
(number of edges) of the unique path connecting i to r. Notice that the root is at level 0. For every node i ∈ N \ {r},
the nodes other than i along the unique path connecting i to r are called the ancestors of i. A node j ∈ N is called a
descendant of node i ∈ N if i is an ancestor of j; the set of all descendants of i is denoted by Descendantsr(G, i). If
{i, j} ∈ E and j ∈ Descendantsr(G, i) then j is called a child of i (with respect to r). The set of all children of i is
denoted by Childrenr(G, i).

In what follows, we will consider several classes of hedonic games where each player assigns numerical values
to all other players, and the utility that player i derives from being in a coalition S is computed based on the values i
assigns to the other members of S. Any such game can be associated with a complete weighted directed graph whose
set of nodes is the set of all players, and the weight of the edge from player i to player j is the value that i assigns to j.
If two players assign value 0 to each other, we omit the respective edge from the graph, so that the resulting graph is no
longer complete. We say that a hedonic game is unweighted or symmetric if its respective graph has these properties,
and use other conventional graph-theoretic terminology when speaking about players and coalitions.
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3 Additively Separable Hedonic Games
In this section, we consider a well-studied class of hedonic games known as additively separable hedonic games. The
analysis of the PPO for this class of games turns out to be fairly straightforward, and can be seen as a warm-up for the
more sophisticated analysis in subsequent sections.

An additively separable hedonic game (ASHG) is defined by a weighted directed graph G = (N,E,w). In this
game, the set of players corresponds to the set of nodes, and the utility of player i from a coalition S ∈ Ni is given
by vi(S) =

∑
(i,j)∈E:j∈S wi,j . We denote the additively separable hedonic game that corresponds to a graph G by

H(G).
Our first observation is that if we allow the edge weights to be negative, the Price of Pareto Optimality may be

+∞, even if the game is symmetric; this is due to the fact that the the social welfare of a Pareto optimal partition could
be negative.

Example 3.1. Let N = {1, 2, 3}, w1,2 = w2,1 = w1,3 = w3,1 = 1, w2,3 = w3,2 = −3. Then the grand coalition is
Pareto optimal, as any deviation will lower the utility of player 1. However, its social welfare is negative.

The game in Example 3.1 is symmetric. However, it contains a cycle. We will now show that Pareto optimal par-
titions with negative social welfare may exist even in the absence of (directed) cycles as long as we allow asymmetric
weights.

Example 3.2. Let N = {1, 2, 3}, w1,2 = w1,3 = 1, w2,3 = −3. Then the grand coalition is Pareto optimal, as any
deviation will lower the utility of player 1. However, its social welfare is negative.

In contrast, if the game is symmetric and acyclic, then it has a unique Pareto optimal partition. Since every social
welfare-maximizing partition is Pareto optimal, this implies that the Price of Pareto Optimality is 1 in this case.

Proposition 3.3. For every additively separable hedonic game H(G) where G = (V,E,w) is symmetric and every
connected component ofG is acyclic it holds that every Pareto optimal partition inH(G) maximizes the social welfare,
and hence PPO(H(G)) = 1.

Proof. We obtain an optimal partition by removing all negative-weight edges from G, and placing nodes in each
connected component in a coalition of their own (note that the notion of a negative-weight edge is well-defined, since
the graph is symmetric). Indeed, as the graph is acyclic, the social welfare of this partition is 2

∑
(i,j)∈E:wi,j>0 wi,j ,

which is an upper bound of the social welfare of any partition of N .
We will now argue that for any Pareto optimal partition it holds that if wi,j > 0 then i and j belong to the same

part of the partition and if wi,j < 0 then i and j belong to different parts. this would imply that the social welfare in
a Pareto optimal partition equals the social welfare in an optimal partition. Indeed, consider a Pareto optimal partition
P , and suppose that wi,j > 0, but P(i) 6= P(j). Then the deviation where P(i) and P(j) merge increases the utility
of i and j and does not affect other players. The argument for the case where wi,j < 0, but P(i) = P(j) is symmetric:
splitting this coalition along the edge {i, j} increases the utility of i and j and does not affect other players.

Now, suppose that all weights are non-negative. In this case, every Pareto optimal partition maximizes the social
welfare. This holds even if the game is not symmetric, and irrespective of the graph topology.

Proposition 3.4. For every additively separable hedonic gameH(G) where all weights are non-negative it holds that
every Pareto optimal partition inH(G) maximizes the social welfare, and hence PPO(H(G)) = 1.

Proof. If all weights are non-negative, for any pair of players i, j with wi,j + wj,i > 0 it holds that in every Pareto
optimal outcome i and j belong to the same coalition: if this is not the case, merging i’s coalition with j’s coalition
offers a Pareto improvement. Thus, in every Pareto optimal outcome the utility of each player is maximized and hence
the Price of Pareto Optimality is 1.

The proof of Proposition 3.4 also shows that if all weights are strictly positive, the grand coalition is the unique
Pareto optimal outcome; however, in the presence of zero weights there may be several Pareto optimal outcomes.
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4 Fractional Hedonic Games
In this section we consider fractional hedonic games. In these games, a player’s utility is its average value for the
members of its coalition (including itself). Formally, given a weighted directed graph G = (N,E,w), we define a
fractional hedonic game (FHG) F(G), where the set of players isN and the utility of player i from a coalition S ∈ Ni
is given by

vi(S) =
1

|S|
∑

(i,j)∈E:j∈S

wi,j .

To illustrate this definition, we will now compute the social welfare of two types of coalitions that will play an
important role in our analysis in this section.

Example 4.1. Suppose that G is a d-star and the players form the grand coalition. If d ≥ 2, the utility of the center
is d
d+1 and the utility of each of the d leaves is 1

d+1 , so the social welfare is 2d
d+1 . For d = 1 the utility of each player

is 1
2 , so the social welfare can be written as 2d

d+1 in this case as well.
Now, suppose that G is a (d, e)-superstar and the players form the grand coalition. The utility of the center is

d
de+1 , the utility of each of the d internal nodes other than the center is e

de+1 , and the utility of each of the d(e − 1)

leaves is 1
de+1 . Thus, the social welfare is 2de

de+1 .

We first observe that for weighted games the PPO can be unbounded, even if all weights are positive, the game is
symmetric, and the underlying graph is a tree.

Proposition 4.2. For any M > 1 there is a symmetric weighted fractional hedonic game F(G) where G = (N,E,w)
is a tree and all weights are positive such that PPO(F(G)) = M .

Proof. Let N = {1, 2, 3, 4}, E = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3)}, w1,2 = w2,1 = w3,4 = w4,3 = 1,
w2,3 = w3,2 = 2M . It is immediate that {{1, 2}, {3, 4}} is Pareto optimal: player 1 would be worse off in any
coalition other than {1, 2}, and, symmetrically, player 4 would be worse off in any coalition other than {3, 4}. On the
other hand, the only partition maximizing the social welfare is {{1}, {2, 3}, {4}}.

Therefore from now on we will focus on symmetric unweighted graphs. We collect a few useful observations
about games on such graphs in the following proposition.

Proposition 4.3. Let G = (N,E) be a symmetric unweighted graph with |N | ≥ 2, and let P = {P1, . . . , Pm} be a
Pareto optimal partition for F(G). Then

(a) every coalition in P is connected,

(b) the set of players in singleton coalitions of P forms an independent set in G,

(c) if E 6= ∅, then P contains at least one non-singleton coalition.

Proof. We prove each statement separately.

(a) Assume for the sake of contradiction that P contains a coalition P1 that is not connected. We have |P1| ≥ 2.
P1 can be partitioned into two non-empty components S and S′ that are not connected to each other, i.e.,
P1 = S ∪ S′, where S ∩ S′ = ∅, |S| ≥ 1, |S′| ≥ 1 and there is no edge in E connecting a node in S to a
node in S′. We prove the claim by showing that the partition S = {S, S′, P2, . . . , Pm} Pareto dominates P .
We first note that vh(S) = vh(P) for every h 6∈ P1. Moreover, for every player h ∈ S we have P(h) = P1

and S(h) = S. Hence, by definition, vh(P) = vh(P1) = 1
|P1|δP1

(h) and vh(S) = vh(S) = 1
|S|δS(h). Since

δP1
(h) = δS(h) and |P1| > |S|, we get vh(P) < vh(S). The same argument applies to every player in S′.

(b) If E = ∅, then the claim follows trivially. Otherwise, assume for the sake of contradiction that P contains
some singleton coalitions P1, P2 such that P1 = {i}, P2 = {j}, and {i, j} ∈ E. Let S = {i, j}. We
prove the claim by showing that the partition S = {S, P3, . . . , Pm} Pareto dominates P . We first note that
vh(S) = vh(P) for every h ∈ N \ {i, j}. For player i we have P(i) = P1 and S(i) = S. Hence, by definition,
vi(P) = vi(P1) = 1

|P1|δP1
(i) = 0 and vi(S) = vi(S) = 1

|S|δS(i) = 1
2 . Thus, vi(P) < vi(S). The same

argument applies to player j.
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(c) If |P | = 1 for every P ∈ P and E 6= ∅, every edge in E connects players in two different singleton coalitions,
a contradiction with part (b).

Using Proposition 4.3, we can show that for FHGs on symmetric unweighted graphs the Price of Pareto Optimality
is upper-bounded by the number of players.

Proposition 4.4. Let G = (N,E) be a symmetric unweighted graph with |N | ≥ 2. Then PPO(F(G)) ≤ |N |.

Proof. Let n = |N |. The utility of every player in a socially optimal partition is at most 1, so the social welfare in
an optimal partition is at most n. Now, if E = ∅, every partition maximizes the social welfare, so there is nothing to
prove. Otherwise, consider a Pareto optimal partition P . By Proposition 4.3, P contains a connected non-singleton
coalition. Let P be some such coalition, and let s = |P |. Since P is connected, the utility of every player in P is at
least 1

s , so the social welfare of P is at least |P | · 1
s = 1, and the bound follows.

The following theorem upper-bounds the PPO in terms of the maximum degree of the graph.

Theorem 4.5. LetG = (N,E) be a symmetric unweighted graph with |N | ≥ 2. Then PPO(F(G)) ≤ 2∆G(∆G+1).

Proof. Let ∆ = ∆G and let Ni denote the set of all neighbors of a node i in G. Let P be a Pareto optimal partition.
Note that the size of each coalition inP is at most ∆(∆+1). Indeed, if there is a coalition P ∈ P with |P | > ∆(∆+1),
then the utility of each player in P is strictly less than 1

∆+1 . On the other hand, we can take a spanning tree of P (note
that P is connected by Proposition 4.3), split it into stars, and obtain a utility of at least 1

∆+1 for everyone in P . This
means, in particular, that the utility of each player in a non-singleton coalition in P is at least 1

∆(∆+1) .
Let P∗ be an optimal partition. Let S denote the set of all players that form singleton coalitions in P; by Propo-

sition 4.3 the set S is an independent set in G. Consider an arbitrary player i in N \ S. Let D(i) = P∗(i) ∩ S ∩Ni,
and let d(i) = |D(i)|. We define the following payment scheme: for each i ∈ N \ S we pay 1 to node i to keep for
itself, and also give it another d(i)

d(i)+1 units of currency, and ask it to pass on 1
d(i)+1 to each of the nodes in D(i). In

this way, we initially give at most 2 units of payoff to each node in N \ S and 0 to nodes in S, but the nodes in S will
then receive some transfers from their “neighbors” in the optimal partition P∗.

We will now argue that under this payment scheme each player gets at least as much utility as in the optimal
partition P∗. Consider first a player in N \ S. It gets to keep 1 unit of payoff, and in any outcome of an unweighted
fractional hedonic game the utility of every player is at most 1. Now, consider a player j ∈ S. If in P∗ player j
also forms a singleton coalition, we are done. Otherwise, let F (j) = Nj ∩ P∗(j). By Proposition 4.3 S forms an
independent set in G, so all nodes in F (j) belong to N \ S. Pick r ∈ F (j) so that d(r) ≥ d(`) for all ` ∈ F (j). By
construction, r belongs to P∗(j), and all d(r) nodes in D(r) also belong to P∗(j). Thus, |P∗(j)| ≥ d(r) + 1, and
therefore the utility of j in P∗ is at most 1

d(r)+1 |F (j)|. On the other hand, if t is some other node in F (j), then it
transfers 1

d(t)+1 ≥
1

d(r)+1 units of payoff to j (where the inequality holds by our choice of r), so the sum of transfers
received by j is at least 1

d(r)+1 |F (j)|, which is exactly what we wanted to prove.
To conclude, under our payment scheme we paid at most 2 to each node inN \S, and, after the transfers, each node

received at least as much as in P∗. Therefore we have 2|N \S| ≥ SW (P∗). Each node inN \S earns at least 1
∆(∆+1)

in P , so the social welfare in P is at least 1
∆(∆+1) |N \ S| ≥

1
2∆(∆+1)SW (P∗). Thus, PPO ≤ 2∆(∆ + 1).

For FHGs on trees, we can show a better bound on the PPO. We use the following characterization of the structure
of optimal partitions.

Lemma 4.6 (Bilò et al. [2018]). Let G = (N,E) be a tree with |N | ≥ 2, and let P∗ be an optimal partition for the
fractional hedonic game F(G). Then every coalition in P∗ is a star.

Lemma 4.6 enables us to prove an upper bound on the social welfare of an optimal partition.

Lemma 4.7. Let G = (N,E) be a tree with |N | ≥ 2. If G admits a vertex cover of size s then the social welfare of
any optimal partition for the fractional hedonic game F(G) is at most 2∆G

∆G+1s.
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Proof. Let P∗ = {P ∗1 , P ∗2 , . . . , P ∗m} be an optimal partition of N into m coalitions. From Lemma 4.6 we know that
each coalition P ∗k is a dk-star with dk ≥ 1, hence its value is V (P ∗k ) = 2dk

dk+1 . We conclude that the social welfare of
P∗ can be upper-bounded as follows:

SW (P∗) =

m∑
k=1

2dk
dk + 1

≤ 2∆G

∆G + 1
·m,

where the inequality follows from observing that the value of a star coalition is an increasing function of its degree.
On the other hand, since each coalition in P∗ is a star, by picking an edge from every coalition, we obtain a

matching of size m in G. Hence, the size of every vertex cover for G is at least m, and our claim follows.

Lemma 4.6 states that every coalition in an optimal partition is a star. In contrast, Pareto optimal partitions consist
of singletons, stars and superstars, as stated by the following lemma. We defer its proof to Appendix A.2.

Lemma 4.8. Let G = (N,E) be a tree with |N | ≥ 2, and let P be a Pareto optimal partition for the fractional
hedonic game F(G). Then every coalition in P is a singleton, a star or a superstar.

Our next proposition describes neighbors of singleton coalitions in Pareto optimal partitions. We defer its proof to
Appendix A.3.

Proposition 4.9. Let G = (N,E) be a tree with |N | ≥ 2. Let P be a Pareto optimal partition for the fractional
hedonic game F(G). If P contains a singleton P = {i} then every node j such that {i, j} ∈ E satisfies the following
conditions:

(a) j is not in a singleton coalition in P ,

(b) j is not the center of a superstar coalition in P ,

(c) j is not the leaf of a superstar coalition in P .

A direct consequence of Proposition 4.9 is that, in a Pareto optimal partition, a player in a singleton coalition can
be adjacent only to a node of a d-star with d ≥ 1, or to the internal nodes of a superstar (other than the center).

We are now ready to present our upper bound on the PPO of fractional hedonic games on trees.

Theorem 4.10. Let G = (N,E) be a tree with |N | ≥ 2. Then PPO(F(G)) ≤ ∆G + 2.

Proof. Let P = {P1, P2, . . . , Pm} be a Pareto optimal partition with m coalitions. Let Q1 be the set of indices of the
star coalitions in P , and let Q2 be the set of indices of the superstar coalitions in P . Let Q = Q1 ∪ Q2. Then the
number of singleton coalitions is m − |Q|, and by Proposition 4.3 we have |Q| ≥ 1. Note that every non-singleton
coalition contributes at least 1 to the social welfare and hence SW (P) ≥ |Q|.

We will first show that for every k ∈ Q we can pick a node rk ∈ Pk so that

V (Pk) ≥ 2δPk
(rk)

∆G + 1
. (1)

Indeed, if k ∈ Q1 and Pk is a nondegenerate star coalition with degree dk and center rk, we get

V (Pk) =
2dk
dk + 1

≥ 2δPk
(rk)

∆G + 1
.

If Pk is a 1-star coalition, with rk being one of its two nodes, we get

V (Pk) = 1 ≥ 2δPk
(rk)

∆G + 1
.

Finally, suppose that k ∈ Q2 and Pk is a (dk, ek)-superstar with center rk. Since ek > 1, we have

V (Pk) =
2dkek
dkek + 1

>
2dkek

dkek + ek
=

2δPk
(rk)

δPk
(rk) + 1

≥ 2δPk
(rk)

∆G + 1
. (2)
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For every k ∈ Q, define the set Ck as follows: for k ∈ Q1 let Ck = Pk, while for k ∈ Q2 let Ck = {j ∈ Pk |
{rk, j} ∈ E}, i.e., Ck is the set of internal nodes of Pk other than the center. By construction, Ck is a vertex cover for
Pk. Let C ′ =

⋃
k∈Q Ck. Clearly, since |Q| ≥ 1, we have C ′ 6= ∅. Moreover, as Ck covers Pk, every edge inside every

non-singleton coalition is covered by C ′. By Proposition 4.9 a player in a singleton coalition can only be adjacent to
a player in C ′, so all edges incident with players in singleton coalitions are covered by C ′. Thus, the only edges that
may be left uncovered by C ′ are edges that connect nodes in different superstars. Since G is a tree, there are at most
|Q2| − 1 such edges, which can be covered by |Q2| − 1 nodes. Thus, G admits a vertex cover of size |C ′|+ |Q2| − 1,
and if C is a minimum vertex cover, we have

|C| ≤ |C ′|+ |Q2| − 1

=
( ∑
k∈Q1

(δPk
(rk) + 1) +

∑
k∈Q2

δPk
(rk)

)
+ |Q2| − 1

=
( ∑
k∈Q1∪Q2

δPk
(rk)

)
+ |Q| − 1. (3)

Now from (1) we obtain

SW (P) =
∑
k∈Q

V (Pk) ≥ 2

∆G + 1

( ∑
k∈Q1∪Q2

δPk
(rk)

)
≥ 2

∆G + 1

(
|C| − |Q|+ 1

)
(4)

≥ 2

∆G + 1

(
|C| − SW (P) + 1

)
, (5)

where (4) follows from (3), and (5) follows from the fact that SW (P) ≥ |Q|. From (5) we obtain(
1 +

2

∆G + 1

)
SW (P) ≥

( 2

∆G + 1

)
· (|C|+ 1) ≥

( 2

∆G + 1

)
· |C|,

from which

SW (P) ≥
2

∆G+1

1 + 2
∆G+1

· |C| = 2

∆G + 3
· |C|. (6)

Let P∗ be an optimal partition. Combining (6) and Lemma 4.7, we get

SW (P∗)
SW (P)

≤
2∆G

∆G+1 · |C|
2

∆G+3 · |C|
= ∆G +

2∆G

∆G + 1
≤ ∆G + 2.

The following proposition shows that the upper bound given by Theorem 4.10 is optimal up to a small additive error.

Proposition 4.11. For every n ∈ N there exists a fractional hedonic game on a tree G = (N,E) with |N | ≥ n for
which the Price of Pareto Optimality is strictly greater than ∆G − 1

∆G
.

Proof. Given a n ∈ N, let d = n and let G be a (d, d)-superstar with center r (note that by definition d ≥ 2). Consider
the partition P where each leaf of G forms a singleton coalition and the remaining nodes form a d-star1. This partition
is Pareto optimal: in any partition where the internal nodes do not form a d-star the center has a lower utility. The
social welfare of P is 2d

d+1 .
We now give a lower bound on the social welfare of an optimal partition. Without loss of generality, assume that

the neighbors of r in G are {1, . . . , d} , and for each k ∈ {1, . . . , d} let Sk be the set consisting of k and the leaves of
G that are adjacent to k.

1We are grateful to Panagiotis Kanellopoulos for suggesting this partition; in the preliminary version of this paper, we used another partition,
which had higher social welfare
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Let R = S1 ∪ {r}. Consider the partition P ′ = {R,S2, S3, . . . , Sd}. The value of R is 2d
d+1 , and the value of

every other coalition in P ′ is 2(d−1)
d . Thus, the social welfare of P ′ is

SW (P ′) =
2d

d+ 1
+

2(d− 1)2

d
= (d− 1)

(
2d

d2 − 1
+

2(d− 1)

d

)

> (d− 1)

(
2

d
+

2(d− 1)

d

)
= 2(d− 1), (7)

where (7) follows from the fact that d2/(d2 − 1) > 1, and hence d/(d2 − 1) > 1/d.
We can conclude that the Price of Pareto Optimality can be bounded from below as follows:

SW (P∗)
SW (P)

≥ SW (P ′)
SW (P)

>
2(d− 1)(d+ 1)

2d
= d− 1

d
= ∆G −

1

∆G
,

proving our claim.

5 Modified Fractional Hedonic Games
In fractional hedonic games, the value that a player i assigns to a coalition is averaged over all members of that
coalition, including i itself. Arguably, it is more natural to compute the average value of all other members of the
coalition. This approach gives rise to a new class of hedonic games, which has been introduced by Olsen [2012] and
which we call modified fractional hedonic games. Formally, given a weighted directed graph G = (N,E,w) we
define a modified fractional hedonic game (mFHG)MF(G), where the set of players is N and the utility of player i
from a coalition S ∈ Ni with |S| ≥ 2 is given by

vi(S) =
1

|S| − 1

∑
(i,j)∈E:j∈S

wi,j ;

the utility of i from the singleton coalition {i} is assumed to be 0.
mFHGs share many properties of FHGs; for instance, the example in Proposition 4.2 can be adapted to show that

for weighted graphs the PPO may be unbounded, observations in Proposition 4.3 also apply to mFHGs, and so do the
upper bounds on the PPO for general symmetric unweighted graphs (Proposition 4.4 and Theorem 4.5). However, for
general symmetric unweighted graphs and unweighted bipartite graphs we can obtain a much stronger upper bound
on the PPO.

We start by presenting an example illustrating the differences between FHGs and mFHGs.

Example 5.1. Just as in Example 4.1, suppose that G is a d-star with d ≥ 2, and the players form the grand coalition.
In the associated mFHG, the utility of the center is 1, and the utility of each of the d leaves is 1

d , so the social welfare
is 2, irrespective of d. If G is a 1-star, the social welfare is 2 as well.

Now, suppose that G is a (d, e)-superstar with d ≥ 2, e ≥ 2, and the players form the grand coalition. The utility
of the center is d

de = 1
e , the utility of each of the internal nodes other than the center is e

de = 1
d , and the utility of each

of the leaves is 1
de . Note that the grand coalition is not Pareto optimal in this setting: if one of the neighbors of the

center deviates together with all of its adjacent leaves to form a separate coalition of size e, this does not affect the
utility of the center and makes all other players better off.

On the other hand, a clique of any size is Pareto optimal, as every player has the highest possible utility of 1.
Conversely, if a partition P contains a coalition P that is not a clique, but can be partitioned into cliques, then it is
not Pareto optimal: replacing P by a collection of cliques that form a partition of P makes no player worse off and,
at the same time, makes some player (e.g., a player with fewer than |P | − 1 neighbors) better off.

In some of the proofs of this section, we will make use of the notion of matching, Hall’s theorem and König’s
theorem, that we summarize in the following.
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Let G = (N,E) be a symmetric graph. For every subset of nodes A ⊆ N , let DG(A) be the set of all nodes in
N \ A that are adjacent to some node in A. Given any pair of subsets of nodes A1, A2 ⊆ N , a matching between A1

and A2 in G is an injective mapping f : A1 7→ A2 such that {i, f(i)} ∈ E for every i ∈ A1, and if i ∈ A1 ∩ A2 and
f(i) ∈ A1 ∩A2 then it must hold that f(f(i)) = i. We say that the nodes in A1 ∪A2 are matched by f . Equivalently,
the matching f can be specified by the set of edges {{i, f(i)} | i ∈ A1}, which we denote byF(f). We refer to |F(f)|
as the size of f . A maximum matching in G is a matching with maximum size, i.e., f∗ ∈ arg maxf∈Match(G) |F(f)|,
where Match(G) is the set of all matchings in G.

Theorem 5.2 (Hall’s theorem [Diestel, 2005]). Let G = (N1 ∪ N2, E) be a symmetric unweighted bipartite graph.
There exists a matching f : N1 7→ N2 if and only if |DG(A)| ≥ |A| for every subset A ⊂ N1.

Theorem 5.3 (König’s theorem [Diestel, 2005]). Let G be a symmetric unweighted bipartite graph. The size of any
maximum matching in G is equal to the size of any minimum vertex cover of G.

We are now ready to show our first result. We will derive a bound on the optimal social welfare in mFHGs. Our
proof is very similar to the proof of the bound on the optimal social welfare in FHGs by Bilò et al. [2018].

Proposition 5.4. Let G = (N,E) be a symmetric unweighted graph with |N | ≥ 2. Let P = {P ∗1 , P ∗2 , . . . , P ∗m} be an
optimal partition forMF(G). If G admits a vertex cover of size s then the social welfare of P is at most 2s.

Proof. Let C be a minimum vertex cover of G and consider some k ∈ {1, . . . ,m}. If |P ∗k | = 1, we have V (P ∗k ) = 0.
Thus, suppose that |P ∗k | ≥ 2. Let Ck = P ∗k ∩C and let Ik = P ∗k \C; note that P ∗k = Ck ∪ Ik, C =

⋃
1≤k≤m Ck, and

Ik is an independent set. We have

V (P ∗k ) =

∑
i∈P∗k

δP∗k (i)

|Ck|+ |Ik| − 1

≤
2
(
|Ck||Ik|+ 1

2 |Ck|(|Ck| − 1)
)

|Ck|+ |Ik| − 1

= 2|Ck|
|Ik|+ 1

2 (|Ck| − 1)

|Ck|+ |Ik| − 1
≤ 2|Ck|. (8)

The last inequality in (8) holds trivially if |Ck| = 0 and for |Ck| ≥ 1 it follows from observing that |Ik|+ 1
2 (|Ck|−1) ≤

|Ck|+ |Ik| − 1 whenever |Ck| ≥ 1.
We can now bound the social welfare of P:

SW (P) =

m∑
k=1

V (P ∗k ) ≤
m∑
k=1

2|Ck| = 2|C|.

A crucial difference between FHGs and mFHGs is the structure of Pareto optimal outcomes: it turns out that
in mFHGs Pareto optimal outcomes consist of singletons, stars and cliques. The proof of Theorem 5.5 requires a
substantial amount of groundwork, provided by Claims 1–14; we conclude the proof on p. 20.

Theorem 5.5. Let G = (N,E) be a symmetric unweighted graph with |N | ≥ 2. Let P be a Pareto optimal partition
for the modified fractional hedonic gameMF(G). Then every coalition in P is a singleton, a star, or a clique.

Proof. Assume for the sake of contradiction that P contains a coalition P that is not a singleton, a star, or a clique.
We will show that we can obtain a new partition S that Pareto dominates P by decomposing P into a set of stars and
triangles.

Let GP = (P,EP ) be the subgraph of G induced by P . By Proposition 4.3, the graph GP is connected. Let C
be a minimum vertex cover of GP . Let I = P \ C; note that I is an independent set in GP . Consider a function
f : EP 7→ R+ ∪ {0} such that
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(a) f(i, j) = 0 if {i, j} /∈ I × C,

(b)
∑
j∈C f(i, j) = 1 for each i ∈ I .

We refer to f as a fractional assignment of nodes in I to nodes in C. Given a fractional assignment f , for every node
j ∈ C we set

Lfj = {i ∈ I | f(i, j) > 0} and xfj =
∑
i∈I

f(i, j).

The quantity xfj is called the value of node j with respect to f .
Our first objective is to define a fractional assignment f∗ which evenly distributes the fractions of the nodes in I to

the nodes inC. As we show in the sequel, this property guarantees that f∗ can be converted into an integral assignment
which can be interpreted as a partition of GP into starts and triangles. To conclude the proof, we will argue that in the
combined partition the utility of every node in P is at least as high as its utility in P , and there is at least one node
whose utility strictly increases.

Let φ : R+ ∪ {0} 7→ R+ ∪ {0} be an arbitrary positive strictly increasing and strictly concave function of its
argument; for instance, we can take φ(x) = x

x+1 . Given a fractional assignment f , we define ξ(f) as

ξ(f) =
∑
j∈C

φ(xfj ),

We define f∗ to be a fractional assignment that maximizes the function ξ over the polytope defined by the (linear)
constraints (a) and (b).

We first use f∗ to partition the set C into h+ 1 pairwise disjoint subsets C0, C1, . . . , Ch as follows. Let H be a set
of real values defined as H = {xf

∗

j ≥ 1 | j ∈ C}, and set h = |H|. The set C0 consists of all the players j ∈ C such

that xf
∗

j < 1, for each k ∈ {1, . . . , h} we have xf
∗

j = xf
∗

` for all j, ` ∈ Ck and for each k, k′ with 0 ≤ k < k′ ≤ h

and all j ∈ Ck, ` ∈ Ck′ we have xf
∗

j < xf
∗

` . Now, let us divide the set I into h+ 1 sets I0, I1, . . . , Ih defined as

Ik =
⋃
j∈Ck

Lf
∗

j for every k ∈ {0, 1, . . . , h}.

Further, for every k ∈ {1, . . . , h}, set

C≥k =
⋃

k≤t≤h

Ct, I≥k =
⋃

k≤t≤h

It.

In Claim 1 and Claim 2 we establish important properties of these sets. Specifically, in Claim 1 we show that
no edge can connect a node in Ik to a node in Ck′ , with k′ < k; in Claim 2 we show that if there is an edge
connecting a node i in Ik to a node j in Ck′ , with k′ > k, then f∗ does not assign any portion of i to j, i.e.,
f∗(i, j) = 0. An immediate consequence of these two claims is that the sets Ik are pairwise disjoint, i.e., for every
k, k′ ∈ {0, 1, 2, . . . , h} with k 6= k′ we have Ik ∩ Ik′ = ∅. The subdivision of the two sets C and I induced by f∗ is
illustrated in Figure 1.

Claim 1. For every pair of integers k, k′ with 0 ≤ k′ < k ≤ h and for every i ∈ Ik and ` ∈ Ck′ we have {i, `} 6∈ E.

Proof. Fix k, k′ with 0 ≤ k′ < k ≤ h, and assume for the sake of contradiction that {i, `} ∈ E for some i ∈ Ik,
` ∈ Ck′ . Since i ∈ Ik, there exists a node j ∈ Ck such that f∗(i, j) > 0. Moreover, since k > k′, it holds that

xf
∗

j > xf
∗

` . Set ε = min

{
f∗(i, j),

xf∗
j −x

f∗
`

2

}
and define a new fractional assignment f̄ as follows:

f̄(i′, t) =


f∗(i′, t)− ε if i′ = i, t = j

f∗(i′, t) + ε if i′ = i, t = `

f∗(i′, t) otherwise.

12



C0

C1

C2

Ch

I0

I1

I2

Ih

Figure 1: A fractional assignment. An edge {i, j} is shown as a solid line if it may be the case that f∗(i, j) > 0; an
edge {i, j} such that f∗(i, j) is necessarily 0 is shown as a dotted line. Edges between nodes in C are not shown.

We have xf̄j = xf
∗

j − ε, x
f̄
` = xf

∗

` + ε and xf̄t = xf
∗

t for every t 6∈ {j, `}. Note that we defined ε so that f̄(i, j) ≥ 0,

f̄(i, `) ≥ 0 and xf̄j ≥ xf̄` . We denote by Dj the decrease in j’s contribution to the value of ξ, and by D` the increase
in `’s contribution:

Dj = φ(xf
∗

j )− φ(xf̄j ), D` = φ(xf̄` )− φ(xf
∗

` ).

We have ξ(f̄) = ξ(f∗)−Dj+D`. Since φ is a positive strictly increasing and strictly concave function of its argument,
we obtain Dj < D` and hence ξ(f̄) > ξ(f∗), which contradicts the optimality of f∗.

Claim 2. For every pair of integers k, k′ with 0 ≤ k < k′ ≤ h and for every i ∈ Ik and ` ∈ Ck′ we have f∗(i, `) = 0.

Proof. Fix k, k′ with 0 ≤ k < k′ ≤ h and assume for the sake of contradiction that f∗(i, `) > 0 for some i ∈ Ik,
` ∈ Ck′ . Since i ∈ Ik, there exists a node j ∈ Ck such that f∗(i, j) > 0. Moreover, since k′ > k, it holds that

xf
∗

` > xf
∗

j . Set ε = min

{
f∗(i, `),

xf∗
` −x

f∗
j

2

}
and define a new fractional assignment f̄ as follows:

f̄(i′, t) =


f∗(i′, t) + ε if i′ = i, t = j

f∗(i′, t)− ε if i′ = i, t = `

f∗(i′, t) otherwise.

We have xf̄` = xf
∗

` − ε, xf̄j = xf
∗

j + ε and xf̄t = xf
∗

t for every t 6∈ {j, `}. Note that we have defined ε so that

f̄(i, `) ≥ 0, f̄(i, j) ≥ 0 and xf̄` ≥ xf̄j . We denote by Dj the increase in j’s contribution to the value of ξ, and by D`

the decrease of `’s contribution:

Dj = φ(xf̄j )− φ(xf
∗

j ), D` = φ(xf
∗

` )− φ(xf̄` ).

We have ξ(f̄) = ξ(f∗)+Dj−D`. Since φ is a positive strictly increasing and strictly concave function of its argument,
we obtain D` < Dj and hence ξ(f̄) > ξ(f∗), which contradicts the optimality of f∗.

Together, Claims 1 and 2 imply that the sets Ik, k = 0, 1, . . . , h, are pairwise disjoint. In the remainder of the
proof, we will first show how to partition each set Ck ∪ Ik with k ∈ {1, . . . , h} into a collection of stars with centers
in Ck so that each player in C≥1∪ I≥1 weakly prefers the new partition to P , and, if C≥1∪ I≥1 6= ∅, then at least one
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player in C≥1 ∪ I≥1 strictly prefers the new partition to P . Then, we show how to partition C0 ∪ I0 into a collection
of stars and triangles so that each player in C0 ∪ I0 weakly prefers the new partition to P and, if C≥1 ∪ I≥1 = ∅, at
least one player in C0 ∪ I0 strictly prefers the new partition to P . This enables us to conclude that the new partition
Pareto dominates P .

Since the sets Ik are pairwise disjoint, it follows that for every k ∈ {0, 1, 2, . . . , h} it holds that the nodes in Ik
distribute their unit of value among the nodes in Ck:

|Ik| =
∑
i∈Ik

∑
j∈C

f∗(i, j) =
∑
j∈Ck

xf
∗

j .

Since xf
∗

j = xf
∗

` for each k ≥ 1 and each j, ` ∈ Ck, from the previous identity we obtain

xf
∗

j =
|Ik|
|Ck|

for each k ≥ 1 and each j ∈ Ck. (9)

Note that for each k ≥ 1 we have xf
∗

j ≥ 1 for all j ∈ Ck, so equation (9) implies that |Ck| ≤ |Ik| for all k ≥ 1.

Similarly, since for each k, k′ with 0 ≤ k < k′ ≤ h and all j ∈ Ck, ` ∈ Ck′ we have xf
∗

j < xf
∗

` , equation (9) implies

that |Ik||Ck| <
|Ik′ |
|Ck′ |

for each k, k′ with 0 ≤ k < k′ ≤ h.

Claim 3. For every k ∈ {1, 2, . . . , h} there exists a partition of the set Ik into |Ck| sets (Ijk)j∈Ck
such that for each

j ∈ Ck we have {i, j} ∈ E for each i ∈ Ijk and |Ijk| ∈
{⌊
|Ik|
|Ck|

⌋
,
⌈
|Ik|
|Ck|

⌉}
.

Proof. We prove the claim by defining a instance of the network flow problem, and using an integral flow in this
network to obtain the desired partition.

Fix a k ∈ {1, 2, . . . , h} and let x = |Ik|
|Ck| . We construct an s-t flow network as follows. The set of nodes is

{s, t, u} ∪ Ck ∪ Ik, where s, t are the source and the sink, respectively. The set of arcs is

{(s, j) | j ∈ Ck} ∪ {(s, u)} ∪ {(u, j) | j ∈ Ck} ∪ {(j, i) | j ∈ Ck, i ∈ Ik, {j, i} ∈ E} ∪ {(i, t) | i ∈ Ik}.

The arc capacities are defined as follows. We set c(s, j) = bxc for every j ∈ Ck, and c(s, u) = |Ik| − bxc|Ck|. All
other arcs have capacity 1. Note that all capacities are integer and c(s, u) = 0 if x is an integer.

We define a flow ϕ∗ as follows.

• ϕ∗(s, j) = c(s, j) for every j ∈ Ck,

• ϕ∗(s, u) = c(s, u),

• ϕ∗(u, j) = x− bxc for every j ∈ Ck,

• ϕ∗(i, t) = c(i, t) for each i ∈ Ik,

• ϕ∗(j, i) = f∗(i, j) ≤ 1 for every {j, i} ∈ E such that j ∈ Ck and i ∈ Ik.

It follows from (9) that ϕ∗ is a feasible flow from the source s to the sink t with value |Ik|. It is a maximum flow, as
its value is equal to the sum of the capacities of the edges leaving s:

c(s, u) +
∑
j∈Ck

c(s, j) = |Ik| − bxc|Ck|+
∑
j∈Ck

bxc = |Ik|.

Since all capacities are integer, by the integrality theorem it follows that there exists an integral flow ϕ of value
|Ik|. Set Ijk = {i ∈ Ik | ϕ(j, i) = 1}. By construction, we have {i, j} ∈ E for each i ∈ Ijk, and it remains to show
that |Ijk| ∈ {bxc, dxe}.

Observe that ϕ, in order to reach value |Ik|, must necessarily route c(s, j) units of flow along (s, j) for every
j ∈ Ck and c(s, u) units of flow along (s, u). Moreover, exactly c(s, u) of the arcs leaving the node u must carry one
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unit of flow. Therefore there are exactly c(s, u) nodes j ∈ Ck that have outgoing flow c(s, j) + c(u, j) = bxc+ 1; for
the remaining nodes j ∈ Ck the flow is c(s, j) = bxc. Since ϕ is integral, the flow along each arc (j, i) with j ∈ Ck
and i ∈ Ik is either 0 or 1. To establish our claim, it remains to note that if x is not an integer then bxc+ 1 = dxe, and
otherwise c(s, u) = 0.

Now, for each k ∈ {1, . . . , h} and each j ∈ Ck, set Sjk = {j} ∪ Ijk. By Claim 3 each coalition Sjk is a star with
center j. We add all such coalitions to S. We will now argue that all players in these coalitions weakly prefer S to P
and, moreover, some of them strictly prefer S to P .

For each k ∈ {1, . . . , h} and each j ∈ Ck player j’s utility in S is 1, hence at least as large as its utility in P . Now,
consider a player i ∈ Sjk \ {j}. Its utility in S is at least 1⌈

|Ik|
|Ck|

⌉ . On the other hand, by Claim 1, the utility of i in P is

at most |C
≥k|

|P |−1 . We have

|C≥k|
|P | − 1

≤ |C≥k|
|C≥k|+ |I≥k| − 1

=
1

1 + |I≥k|
|C≥k| −

1
|C≥k|

≤ 1

1 +
∑h

t=k |It|∑h
t=k |Ct|

− 1
|Ck|

≤ 1

1 + |Ik|
|Ck| −

1
|Ck|

≤ 1⌈
|Ik|
|Ck|

⌉ , (10)

where we use the fact that |Ik′ ||Ck′ |
≥ |Ik|
|Ck| for every k′ > k, and observe that for every pair of positive integers x, y it

holds that 1 + x
y −

1
y ≥ d

x
y e. Thus, player j weakly prefers S to P .

Now, if k > 1 or if C0 ∪ I0 6= ∅, the first inequality in (10) is strict, so at least one of the players in Ik strictly
prefers S to P . It remains to identify a strictly improving player in the case where C0 = I0 = ∅ and h = 1, i.e.,
C = C1, I = I1. Note first that we have |C| > 1, since otherwise P would be a star. There exists a player j ∈ C such
that |Ij1 | =

⌊
|I|
|C|

⌋
. In P the utility of each player in Ij1 is at most |C|

|C|+|I|−1 , whereas its utility in S is

1⌊
|I|
|C|

⌋ ≥ |C|
|I|

>
|C|

|C|+ |I| − 1
,

where the last inequality uses the fact that |C| > 1. Thus, every player in Ij1 strictly prefers S to P .
In the remainder of the proof we deal with the nodes in C0 and I0. Let Z = C0∪I0. We will show how to partition

Z into stars and triangles so that the utility of every node in Z is at least as high as in P . This is not yet sufficient
to establish that P is not Pareto optimal: while we have argued that if C≥1 ∪ I≥1 6= ∅ there is at least one player in
C≥1 ∪ I≥1 that strictly prefers S to P , we cannot rule out the possibility that C≥1 ∪ I≥1 is empty. Thus, to complete
the proof, we will show that if C≥1 ∪ I≥1 = ∅, i.e., if P = Z, then for some node in Z its utility in S is strictly higher
than its utility in P .

We describe the partitioning of Z by a sequence of claims. Recall that, given a matching f with domain A, we
denote by F(f) the set of edges specified by f , i.e., F(f) = {{i, f(i)} | i ∈ A}.

Claim 4. There exists a matching C0 7→ Z.

Proof. Let us consider the subgraph GC0 = (C0, EC0) induced by the set C0. Let M ⊂ EC0 be a maximum-size
collection of edges such that e ∩ e′ = ∅ for every pair e, e′ ∈M with e 6= e′. Let X ⊆ C0 be the set of nodes that are
not incident with any edge in M . Note that if there is a matching C0 7→ C0 then X is empty. X is an independent set
in GC0

, and hence the subgraph GX∪I0 induced by X ∪ I0 is bipartite. For every Y ⊆ X we have DGX∪I0
(Y ) ≥ Y :

otherwise, (C \ Y ) ∪ DGX∪I0
(Y ) would be a vertex cover for GP that is strictly smaller than C, a contradiction with

our choice of C. Hence, by Theorem 5.2 there exists a matching f : X 7→ I0. Therefore we can define a matching
g : C0 7→ Z such that F(g) = M ∪ F(f).

Let us denote by G the set of matchings C0 7→ Z. Given a matching g ∈ G, we partition the set F(g) into two sets,
QCC (g) and QCI (g), defined as follows:

QCC (g) = {{i, g(i)} ∈ E | i ∈ C0, g(i) ∈ C0}, QCI (g) = {{i, g(i)} ∈ E | i ∈ C0, g(i) ∈ I0}.
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We denote by C0(g) the subset of nodes in C0 that are incident with edges in QCI (g), and by I0(g) the subset of
nodes in I0 that are incident with edges in QCI (g). Note that I0 may contain nodes that are not incident with any
of the edges of F(g). We denote the set of all such nodes by Free(g), i.e., Free(g) = I0 \ I0(g). Finally, let us
denote by G∗ the subset of matchings in G that maximize the number of nodes in C0 matched to nodes in I0, i.e.,
G∗ = {g′ ∈ G | g′ ∈ arg maxg∈G |QCI (g)|} (or, equivalently, G∗ = {g′ ∈ G | g′ ∈ arg ming∈G |Free(g)|}).

Claim 5. For every matching g ∈ G∗, every {i, j} ∈ QCC (g), and every pair of distinct nodes i′, j′ ∈ Free(g) it is
not the case that {i, i′} ∈ E and {j, j′} ∈ E.

Proof. Fix a matching g ∈ G∗ and assume for the sake of contradiction that there is an edge {i, j} ∈ QCC (g)
and two nodes i′, j′ ∈ Free(g), i′ 6= j′, such that {i, i′} ∈ E and {j, j′} ∈ E. Define a new mapping g′ so that
F(g′) = (F(g) \ {{i, j}})∪{{i, i′}, {j, j′}}. Then g′ matches more nodes in I0 than g does, a contradiction with the
assumption that g is in G∗.

Claim 6. There exist a matching g∗ ∈ G∗ and an injective function γ : Free(g∗) 7→ QCC (g∗) such that for every
i ∈ Free(g∗) there is an edge in E connecting i to an endpoint of the edge γ(i).

Proof. Recall that for every j ∈ C0 we have xf
∗

j < 1 and, by Claims 1 and 2, the nodes in I0 distribute their unit of
value among the nodes in C0 only. This implies that for every subset H ⊆ I0 we have |DGZ

(H)| ≥ |H|, as otherwise
at least one node j in DGZ

(H) would have xf
∗

j > 1. Hence, by Theorem 5.2 there is a matching p : I0 7→ C0 in the
subgraphGZ . For everyH ⊆ I0, let pH : H 7→ C0 be the restriction of p to the domainH , i.e., pH(i) = p(i) for every
i ∈ H; denote the image of pH by Im(pH). For every matching g ∈ G∗, let T (g) = Im(pFree(g))∩C0(g). In order to
construct g∗, we start from an arbitrary matching g0 ∈ G∗ and produce a finite sequence of matchings g0, g1, g2, . . . , gτ

in G∗, with the property that T (gτ ) = ∅ and |T (gk+1)| < |T (gk)| for every k ∈ {0, 1, . . . , τ − 1}. Note that for every
i ∈ Free(gτ ), the node p(i) is an endpoint of an edge in QCC (gτ ). Consider a function γ : Free(gτ ) 7→ QCC (gτ )
that maps a player i ∈ Free(gτ ) to the edge in QCC (gτ ) with endpoint p(i). Since p is a matching in GZ , for every
i ∈ Free(gτ ) we have {i, p(i)} ∈ E. To see that γ is injective, we note that for every pair i, j ∈ Free(gτ ) with i 6= j it
holds that p(i) 6= p(j) (because p is a matching) and {p(i), p(j)} 6∈ QCC (gτ ) (by Claim 5). Hence, the claim follows
by setting g∗ = gτ .

It remains to show how to obtain the sequence of matchings g0, g1, g2, . . . , gτ . Initially, we set k = 0. We then
repeat the following step until T (gk) = ∅, in which case we set τ = k and terminate. Given a matching gk with
|T (gk)| > 0, we build the matching gk+1 in the following way. There exists a node u ∈ Free(gk) that has been
matched by p to a node in C0(gk). Let i1 = p(u) and j1 = gk(i1). Note that, by definition, {u, i1} ∈ F(p) and
{i1, j1} ∈ QCI (gk) ⊆ F(gk). Since QCI (gk) is finite and p and gk are matchings, there must exist a finite sequence
of edges of QCI (gk),

(
{i1, j1}, . . . , {iq, jq}

)
, such that ir+1 = p(jr) for every r ∈ {1, . . . , q − 1} and p(jq) = v is

an endpoint of an edge in QCC (gk). Let

X = {{i1, j1}, . . . , {iq, jq}}, Y = {{u, i1}, {j1, i2}, . . . , {jr, ir+1}, . . . , {jq, v}};

we have X ⊆ QCI (gk) ⊆ F(gk) and Y ⊆ F(p). Define a new matching gk+1 so that F(gk+1) = (F(gk) \
X) ∪ (Y \ {{jq, v}}) (see Figure 2). Then C0(gk+1) = C0(gk) and hence gk+1 belongs to G∗. On the other hand,
Free(gk+1) = (Free(gk) \ {u}) ∪ {jq}. Since p(jq) = v, and v is an endpoint of an edge in QCC (gk+1), we have
T (gk+1) = T (gk)\{u} and hence |T (gk+1)| = |T (gk)|−1. We can now increment k and start the next iteration.

In the remainder of the proof, we fix a matching g∗ that satisfies the conditions of Claim 6, and use the following
notation (see Figure 3).

QCC (g∗) = {{u1, s1}, {u2, s2}, . . . , {ut, st}}, QCI (g∗) = {{x1, y1}, {x2, y2}, . . . , {xq, yq}},

where si = g∗(ui) and ui = g∗(si) for every i ∈ {1, 2, . . . , t}, and yi = g∗(xi) for every i ∈ {1, 2, . . . , q}. Then we
have

C0(g∗) = {x1, x2, . . . , xq} ⊆ C0, I0(g∗) = {y1, y2, . . . , yq} ⊆ I0.

Also, let
Free(g∗) = {w1, w2, . . . , w`}.
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j1

j2

jq

v

Figure 2: Proof of Claim 6. The thick edges (both solid and dashed) belong to the matching gk; the thin edges (both
solid and dashed) belong to the matching p. The matching gk+1 is obtained from the matching gk by replacing the
thick dashed edges with the thin dashed edges.

Let Im(γ) be the image of γ, i.e., Im(γ) = {γ(i) ∈ QCC (g∗) | i ∈ Free(g∗)}. Without loss of generality we
assume that Im(γ) is given by the first ` elements of QCC (g∗), i.e., Im(γ) = {{u1, s1}, {u2, s2}, . . . , {u`, s`}},
where {ui, si} = γ(wi) and {wi, ui} ∈ E for every i ∈ {1, 2, . . . , `}. Finally, let us denote by S(g∗) the set
{s1, s2, . . . , s`}, and let QCC (g∗) = QCC (g∗) \ Im(γ). We are ready to state some properties of the nodes in Z.

Claim 7. For every node wi ∈ Free(g∗) it holds that there is no edge in E connecting wi to a node in S(g∗) \ {si}.

Proof. Assume for the sake of contradiction that there is a node wi ∈ Free(g∗) such that {wi, sj} ∈ E for some
j ∈ {1, 2, . . . , `} and i 6= j. We know that {uj , sj} ∈ F(g∗). Since {wi, sj} ∈ E, we can define a new function g′

such that F(g′) = (F(g∗) \ {{uj , sj}}) ∪ {{wi, sj}, {wj , uj}}. Then g′ matches more nodes in I0 than g∗ does, a
contradiction with the fact that g∗ is in G∗.

Recall that C = C≥1 ∪ C0 and I = I≥1 ∪ I0. The proofs of Claims 8 and 11 use the fact that for each k ≥ 1

and each node j ∈ Ck we have xf
∗

j = |Ik|
|Ck| (see equation (9)) and, on the other hand, xf

∗

j ≥ 1, which means that
|Ik| ≥ |Ck| and, consequently, |I≥1| ≥ |C≥1|.

Claim 8. Suppose that |Free(g∗)| ≥ 2. If the utility of a node wi ∈ Free(g∗) in P is at least 1/2 then wi forms a
triangle with {ui, si} or with an edge in QCC (g∗).

Proof. Consider a player wi ∈ Free(g∗) whose utility in P is at least 1/2. In the coalition P player wi is connected
to at least 1

2 |P \ {wi}| nodes. Since wi belongs to I0 ⊆ I , it can only be connected to nodes in C. This implies that,
since |C≥1| ≤ |I≥1|, even if wi is connected to all the nodes in C≥1, it must be connected to at least half of the nodes
in Z \ {wi}. In particular, since |C0| = |QCI (g∗)|+ 2|QCC (g∗)| and |I0 \ {wi}| = |QCI (g∗)|+ |Free(g∗)| − 1, this
implies that wi must be connected to at least

|QCI (g∗)|+ |QCC (g∗)|+
⌈

1

2
(|Free(g∗)| − 1)

⌉
> |QCI (g∗)|+ |QCC (g∗)|
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Figure 3: The nodes in Free(g∗) are white; all other nodes are black. Thick dashed lines indicate edges in QCI (g∗).
Thick solid lines indicate edges in Im(γ). Thick dotted lines indicate edges in QCC (g∗). Each node wi ∈ Free(g∗)
is connected to an endpoint of the edge γ(wi) by a thin solid line.

nodes in Z. Within Z, wi can be connected only to nodes in C0, and C0 consists of |QCI (g∗)| nodes in C0(g∗) and
the endpoints of the edges in QCC (g∗). This implies that wi must form a triangle with some edge in QCC (g∗). By
Claim 7 the node wi cannot be connected to any node in S(g∗) \ {si}, i.e., wi cannot form a triangle with any edge in
QCC (g∗) \QCC (g∗) other than {ui, si}. Hence, if wi does not form a triangle with {ui, si}, it has to form a triangle
with an edge in QCC (g∗).

The argument in the proof of Claim 8 goes through for the case |Free(g∗)| = 1 as long as we assume that in P the
utility of the unique node in Free(g∗) is strictly greater than 1/2.

Claim 9. Suppose that |Free(g∗)| = 1. If the utility of the unique node w1 ∈ Free(g∗) in P is strictly greater than
1/2 then w1 forms a triangle with {u1, s1} or with an edge in QCC (g∗).

Claim 10. The set S(g∗) is an independent set in GP .

Proof. Assume for the sake of contradiction that there is an edge {si, sj} ∈ E for some i, j ∈ {1, 2, . . . , `} such that
i 6= j. We know that {ui, si} ∈ F(g∗) and {uj , sj} ∈ F(g∗). Since {si, sj} ∈ E, we can define a new function g′

such that F(g′) = (F(g∗) \ {{ui, si}, {uj , sj}})∪ {{si, sj}, {wi, ui}, {wj , uj}}. Then g′ matches more nodes in I0
than g∗ does, a contradiction with the fact that g∗ is in G∗.

Claim 11. Suppose that |Free(g∗)| ≥ 2. If the utility of a node si ∈ S(g∗) in P is at least 1/2 then si forms a triangle
with {wi, ui} or with an edge in QCC (g∗) ∪QCI (g∗).

Proof. Consider a player si ∈ S(g∗) whose utility in P is at least 1/2. In the coalition P player si is connected to at
least 1

2 |P \ {si}| nodes. Note that si belongs to the subset C0 of the minimum vertex cover C, so by Claim 1 it cannot
be connected to nodes in I≥1. This implies that, since |C≥1| ≤ |I≥1|, even if si is connected to all the nodes inC≥1, it
must be connected to at least half of the nodes inZ\{si}. In particular, since |C0\{si}| = |QCI (g∗)|+2|QCC (g∗)|−1
and |I0| = |QCI (g∗)|+ |Free(g∗)|, this implies that si must be connected to at least

|QCI (g∗)|+ |QCC (g∗)|+
⌈

1

2
(|Free(g∗)| − 1)

⌉
> |QCI (g∗)|+ |QCC (g∗)|

nodes in Z. By Claim 7 the node si is not connected to any node in Free(g∗) \ {wi}. Therefore, within Z, si can be
connected only to wi, the endpoints of the edges in QCI (g∗) and the endpoints of the edges in QCC (g∗). This implies
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that si must form a triangle with {wi, ui}, some edge in QCI (g∗) or some edge in QCC (g∗). By Claim 10 the node si
is not connected to any node in S(g∗), i.e., si cannot form a triangle with any edge in QCC (g∗) \ QCC (g∗). Hence,
if si does not form a triangle with {ui, wi} then it forms a triangle with an edge in QCC (g∗) ∪QCI (g∗).

The argument in the proof of Claim 11 goes through for the case |Free(g∗)| = 1 as long as we assume that in P
the utility of the unique node in S(g∗) is strictly greater than 1/2.

Claim 12. Suppose that |Free(g∗)| = 1. If the utility of the unique node s1 ∈ S(g∗) in P is strictly greater than 1/2
then s1 forms a triangle with {w1, u1} or with an edge in QCC (g∗) ∪QCI (g∗).

Claim 13. For every edge {ui, si} ∈ QCC (g∗) there is at most one value h ∈ {1, . . . , `} such that wh or sh forms a
triangle with {ui, si}.

Proof. Assume for the sake of contradiction that there is an edge {ui, si} ∈ QCC (g∗) forming a triangle with wk ∈
Free(g∗) and with wh ∈ Free(g∗), where k 6= h. We know that the edge {ui, si} belongs to F(g∗). By our
assumption, E contains edges {wk, ui}, {wk, si}, {wh, ui}, {wh, si}, so we can define a new function g′ such that
F(g′) = (F(g∗)\{{ui, si}})∪{{wk, ui}, {wh, si}}. Then g′ matches more nodes in I0 than g∗ does, a contradiction
with the fact that g∗ is in G∗.

Now, let us assume that there is an edge {ui, si} ∈ QCC (g∗) forming a triangle with wk ∈ Free(g∗) and with
sh ∈ S(g∗), where k 6= h. We know that the two edges {ui, si}, {uh, sh} belong to F(g∗). By our assumption, E
contains edges {wk, ui}, {wk, si}, {sh, ui}, {sh, si}, so we can define a new function g′ such that F(g′) = (F(g∗) \
{{ui, si}, {uh, sh}})∪{{sh, ui}, {wk, si}, {wh, uh}}. Then g′ matches more nodes in I0 than g∗ does, a contradiction
with the fact that g∗ is in G∗.

Finally, let us assume that there is an edge {ui, si} ∈ QCC (g∗) forming a triangle with sk ∈ S(g∗) and with sh ∈
S(g∗), where k 6= h. We know that all the edges {ui, si}, {uk, sk}, {uh, sh} belong to F(g∗). By our assumption, E
contains edges {sk, ui}, {sk, si}, {sh, ui}, {sh, si}, so we can define a new function g′ such that F(g′) = (F(g∗) \
{{ui, si}, {uk, sk}, {uh, sh}})∪{{sk, si}, {sh, ui}, {wk, uk}, {wh, uh}}. Then g′ matches more nodes in I0 than g∗

does, a contradiction with the fact that g∗ is in G∗.

Claim 14. For every edge {xi, yi} ∈ QCI (g∗) there is at most one node in S(g∗) that forms a triangle with {xi, yi}.

Proof. Assume for the sake of contradiction that there is an edge {xi, yi} ∈ QCI (g∗) forming a triangle with sk ∈
S(g∗) and with sh ∈ S(g∗), where k 6= h. We know that the two edges {uk, sk}, {uh, sh} belong to F(g∗). By
our assumption, E contains edges {xi, sk}, {xi, sh}, {yi, sk}, {yi, sh}, so we can define a new function g′ such that
F(g′) = (F(g∗) \ {{uk, sk}, {uh, sh}}) ∪ {{xi, sh}, {yi, sk}, {wh, uh}, {wk, uk}}. Then g′ matches more nodes in
I0 than g∗ does, a contradiction with the fact that g∗ is in G∗.

We can now conclude the proof of Theorem 5.5 by describing how to partition the set Z into stars and triangles,
so that the players in these coalitions (strictly) prefer them to their coalitions in P . We distinguish among three cases:
|Free(g∗)| = 0, |Free(g∗)| ≥ 2 and |Free(g∗)| = 1. For readability, given a player z ∈ Z, we denote her utility in P
by v(z).

|Free(g∗)| = 0 For every edge {uj , sj} in QCC (g∗) and for every edge {x2, y2} in QCI (g∗) we construct a 1-star
coalition and add it to S. In the resulting partition the utility of each node in Z is 1. Thus, each player weakly
prefers S to P .

As argued after Claim 3, it remains to show that if Z = P then some player in Z strictly prefers S to P . To see
this, it suffices to observe that it cannot be the case that v(z) = 1 for all z ∈ P , as this could only happen if P
was a clique, and we assume that this is not the case.

|Free(g∗)| ≥ 2 Let us consider the tuples 〈wi, ui, si〉 for every i ∈ {1, 2, . . . , `}. If v(wi) < 1/2, v(si) < 1/2, we
construct the 2-star coalition {wi, ui, si} with center ui and add it to S. In this case the new utility of ui is 1,
hence at least as high as its utility in P , while the utilities of wi and si are 1/2, which is strictly higher that their
utility in P . On the other hand, if v(wi) ≥ 1/2 or v(si) ≥ 1/2, we construct a triangle coalition and possibly a
1-star coalition to add to S in the following way.
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If v(wi) ≥ 1/2 then we construct a triangle coalition induced by wi and the endpoints of an edge in QCC (g∗)∪
{{ui, si}} with which wi forms a triangle and whose existence is guaranteed by Claim 8. Furthermore, if
{ui, si} has not been employed in a triangle coalition with wi, we construct a 1-star coalition {ui, si}.
Otherwise, we have v(wi) < 1/2 and v(si) ≥ 1/2. We then construct a triangle coalition induced by si and the
endpoints of an edge in QCC (g∗) ∪QCI (g∗) ∪ {{wi, ui}} with which si forms a triangle and whose existence
is guaranteed by Claim 11. Furthermore, if {wi, ui} has not been employed in a triangle coalition with si, we
construct a 1-star coalition {wi, ui}.
Note that at every step i ∈ {1, 2, . . . , `} of the procedure described in the previous two paragraphs, we are able
to construct a triangle when needed because Claims 13 and 14 guarantee that there is no conflict in picking
edges from QCC (g∗) or QCI (g∗).

Finally, for every edge in QCI (g∗) and QCC (g∗) that has not been used to construct a triangle in the previous
steps, we construct a 1-star coalition and add it to S.

In the resulting partition S, every player in Z whose utility in P was strictly less than 1/2 achieves utility at
least 1/2; for every other player in Z its utility in S is 1. Thus, this partitioning of Z into stars and triangles
does not lower the utility of any node in Z.

Now, suppose that Z = P ; we will argue that in this case some player strictly prefers S to P . If some player in
P has utility 1/2 in S then this player strictly prefers S to P . Otherwise, every player in P obtains utility 1 in
S. In this case at least one player strictly prefers S to P since we assume that P is not a clique.

|Free(g∗)| = 1 Let us consider the tuple 〈w1, u1, s1〉. If v(w1) ≤ 1/2, v(s1) ≤ 1/2, we construct the 2-star
coalition {w1, u1, s1} with center u1 and add it to S. In this case the new utility of u1 is 1, hence at least as high
as its utility in P , while the utilities of w1 and s1 are 1/2, which is at least as high as their utility in P . On the
other hand, if v(w1) > 1/2 or v(s1) > 1/2, we construct a triangle coalition and possibly a 1-star coalition to
add to S in the following way.

If v(w1) > 1/2 then we construct a triangle coalition induced by w1 and the endpoints of an edge inQCC (g∗)∪
{{u1, s1}} with which w1 forms a triangle and whose existence is guaranteed by Claim 9. Furthermore, if
{u1, s1} has not been employed in a triangle coalition with w1, we construct a 1-star coalition {u1, s1}.
Otherwise, v(w1) ≤ 1/2 and v(s1) > 1/2. In this case we construct a triangle coalition induced by s1 and the
endpoints of an edge in Q′CC (g∗)∪QCI (g∗)∪ {{w1, u1}} with which s1 forms a triangle and whose existence
is guaranteed by Claim 12. Furthermore, if {w1, u1} has not been employed in a triangle coalition with s1, we
construct a 1-star coalition {w1, u1}.
Finally, for every edge in QCI (g∗) and QCC (g∗) that has not been used to construct a triangle in the previous
steps, we construct a 1-star coalition and add it to S.

In the resulting partition S the utility of each node in Z \ {w1, s1} is 1; the utility of w1 and s1 is 1 unless
v(w1) ≤ 1/2, v(s1) ≤ 1/2, in which case the utility of each of these nodes in S is equal to 1/2. Thus, each
player weakly prefers S to P .

Now, suppose that Z = P ; we will argue that in this case some player strictly prefers S to P . If in S the utility
of every player in P is 1, at least one player strictly prefers S to P since we assume that P is not a clique.
Moreover, if v(w1) < 1/2 then w1 strictly prefers S to P , if v(s1) < 1/2 then s1 strictly prefers S to P , and
if v(z) < 1 for some z ∈ P \ {w1, s1} then z strictly prefers S to P . Thus, it remains to consider the case
v(s1) = 1/2, v(w1) = 1/2, v(z) = 1 for all z ∈ P \ {w1, s1}. If v(z) = 1 for all z ∈ P \ {w1, s1} then s1 is
adjacent in G to all nodes in P \ {w1, s1}. Therefore, v(s1) = 1/2 implies |P |−2

|P |−1 = 1
2 and hence |P | = 3. But

this is only possible if P is a star with center u1 and leaves s1 and w1, a contradiction with our assumption that
P is not a star.

The next proposition identifies additional structural properties of Pareto optimal partitions. Given a Pareto optimal
partition P of N , we say that a node i ∈ N is a critical node in P if it either forms a singleton coalition or is a leaf of
a nondegenerate star.
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Proposition 5.6. Let G = (N,E) be a symmetric unweighted graph with |N | ≥ 2. If P is a Pareto optimal partition
for the modified fractional hedonic gameMF(G) and i and j are critical nodes in P then {i, j} 6∈ E.

Proof. Let i and j be two critical nodes in P . Assume for the sake of contradiction that {i, j} ∈ E. By definition
of a critical node we have P(i) 6= P(j). Let R = {i, j}, P1 = P(i) \ {i} and P2 = P(j) \ {j}. Note that if P(i)
is a singleton coalition, then P1 = ∅ and otherwise |P1| ≥ 2; similarly, if P(j) is a singleton coalition, then P2 = ∅
and otherwise |P2| ≥ 2. Consider the partition S = (P \ {P(i),P(j)}) ∪ {R,P1, P2}. We claim that S Pareto
dominates P . Indeed, for every z /∈ P(i) ∪ P(j) we have vz(P) = vz(S). Now, consider an x ∈ {i, j}. If P(x) is a
singleton coalition, then we have 0 = vx(P) < vx(S) = 1. On the other hand, if P(x) is a nondegenerate star with
center r, then trivially vr(P) = vr(S) = 1, vx(P) ≤ 1/2 < vx(S) = 1, while for every z ∈ P(x) \ {r, x} we have
vz(P) < vz(S).

We remark that neither Theorem 5.5 nor Proposition 5.6 fully characterize Pareto optimal partitions: there are
partitions that consist of singletons, stars and cliques, and such that no two critical nodes are connected, but that are
nevertheless not Pareto optimal. For instance, consider a symmetric unweighted graph that consists of a triangle with
nodes a, b, c and a node d that is connected to a by an edge. Then partition P = {{a, b, c}, {d}} consists of a triangle
coalition and a singleton coalition, and no edge of the graph connects two nodes that are critical with respect to P , but
nevertheless P is Pareto dominated by {{a, d}, {b, c}}.

Another important observation is that Proposition 4.3 directly extends to modified fractional hedonic games; we
omit the proof, as it is identical to the proof of Proposition 4.3.

Proposition 5.7. Let G = (N,E) be a symmetric unweighted graph with |N | ≥ 2, and let P be a Pareto optimal
partition forMF(G). Then

(a) every coalition in P is connected,

(b) the set of players in singleton coalitions of P forms an independent set in G,

(c) if E 6= ∅, then P contains at least one non-singleton coalition.

We can now establish the following upper bound on the Price of Pareto Optimality.

Theorem 5.8. Let G = (N,E) be a symmetric unweighted graph with |N | ≥ 2. Then PPO(MF(G)) ≤ 2.

Proof. Let P = {P1, P2, . . . , Pm} be a Pareto optimal partition with m coalitions. By Theorem 5.5 P consists of
singletons, stars and cliques. Let Q1 be the set of indices of the nondegenerate stars in P , let Q2 be the set of indices
of the 1-stars in P , and let Q3 be the set of indices of the cliques in P . Let Q = Q1 ∪ Q2 ∪ Q3. By Proposition 5.7
we have |Q| ≥ 1. Note that the number of singleton coalitions is m− |Q|.

We will now define a vertex cover C for G and relate its size to the social welfare of P . For every k ∈ Q1, let rk
be the center of the nondegenerate star Pk. For every k ∈ Q, define the set Ck as follows: if k ∈ Q1 then Ck = {rk},
if k ∈ Q2 ∪Q3 then Ck = Pk. Let

CQ1 =
⋃
k∈Q1

Ck, CQ2 =
⋃
k∈Q2

Ck, CQ3 =
⋃
k∈Q3

Ck, C = C ′Q1

⋃
C ′Q2

⋃
C ′Q3

.

Since |Q| ≥ 1, the set C is non-empty. Observe thatN can be partitioned into two sets: C and the set of critical nodes.
By Proposition 5.6 there is no edge between any pair of critical nodes, so C is a cover for G. Using observations in
Example 5.1, we get

SW (P) =
∑
k∈Q1

V (Pk) +
∑
k∈Q2

V (Pk) +
∑
k∈Q3

V (Pk) = 2|Q1|+ 2|Q2|+
∑
k∈Q3

|Pk| ≥ |CQ1
|+ |CQ2

|+ |CQ3
| = |C|.

Combining this bound and Proposition 5.4, we obtain PPO(MF(G)) ≤ 2.

For symmetric unweighted bipartite graphs, we can show a stronger result: every Pareto optimal partition maximizes
the social welfare.2

2After the publication of the preliminary version of this work, Bullinger [2020] extended this result to general symmetric unweighted graphs.
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Theorem 5.9. LetG = (N,E) be an symmetric unweighted bipartite graph with |N | ≥ 2. Then PPO(MF(G)) ≤ 1.

Proof. Let P = {P1, P2, . . . , Pm} be a Pareto optimal partition with m coalitions. Since G is bipartite, Theorem 5.5
implies that P consists of singletons and stars. We can assume without loss of generality that the coalitions in P
are ordered so that P1, . . . , P` are nondegenerate stars, P`+1, . . . , Pr are 1-stars, and all remaining coalitions are
singletons, for some 0 ≤ ` ≤ r ≤ m. Since the value of every star coalition is 2, we have SW (P) = 2r. We will
now argue that G admits a vertex cover C of size r; from this, together with Proposition 5.4, claiming that the social
welfare of the optimal partition is at most 2r, we obtain PPO(MF(G)) ≤ 1.

We construct the vertex cover C as follows. First, we include the centers of the ` nondegenerate stars. This covers
all edges within these stars. Moreover, by Proposition 5.6 we know that there is no edge between any pair of critical
nodes (recall that a critical node either forms a singleton coalition or is the leaf of a nondegenerate star). Thus, all
remaining edges to cover are incident with nodes that belong to 1-stars. We will show that it is possible to select a
set C ′ of r − ` nodes, one for each 1-star, to cover these remaining edges3. Finally, by adding C ′ to the centers of all
nondegenerate stars, we obtain a vertex cover C of size r.

We now show how to construct C ′. For every j = ` + 1, . . . , r, let Pj = {xj , yj}, where the nodes in X =
{x`+1, . . . , xr} belong to one side of the bipartition of G, while the nodes in Y = {y`+1, . . . , yr} belong to its other
side. Let Z be the set of critical nodes with respect to P . Consider the graphH induced by the set of nodesX∪Y ∪Z.
Let us consider the matching M : X 7→ Y which maps xj to yj for every j = ` + 1, . . . , r. We claim that M is a
maximum matching in H . As H is a bipartite graph, by Theorem 5.3 it follows that it has a vertex cover C ′ of size
|F(M)| = r − `.

To conclude the proof, it remains to show that M is a maximum matching in H . To this aim, assume for the
sake of contradiction that H admits another matching M ′ with |F(M ′)| > |F(M)|. Then these exists an augmenting
path in H , i.e., a sequence of nodes z1, . . . , zt, where t is an odd integer, such that {zi, zi+1} ∈ F(M ′) \ F(M)
if i is odd, {zi, zi+1} ∈ F(M) \ F(M ′) if i is even, and neither z1 nor zt is matched by M . It follows that z1

and zt are critical nodes. Moreover, they cannot belong to the same nondegenerate star, since t is odd, and G does
not have odd-length cycles. Given the augmenting path, we can modify P as follows. First, we remove coalitions
{z2, z3}, {z4, z5}, . . . , {zt−2, zt−1} fromP . Then if z1 is a leaf of a nondegenerate star P , we replace P with P \{z1},
and if {z1} is a singleton coalition in P , we remove {z1} from P . Similarly, if zt is a leaf of a nondegenerate star
P ′, we replace P ′ with P ′ \ {zt}, and if {zt} is a singleton coalition in P , we remove {zt} from P . Finally, we
add coalitions {z1, z2}, {z3, z4}, . . . , {zt−1, zt}. In the resulting partition, the utility of every player in {z1, . . . , zt}
is 1. Hence, each of the players z2, . . . , zi−1 has the same utility as in P and z1 and zt have strictly higher utility
than in P . Furthermore, if in P player z1 or zt is a leaf of a nondegenerate star, the utility of other leaves in that
coalition increases, whereas the utility of the center remains the same (recall that z1 and zt cannot belong to the same
nondegenerate star). We conclude that the new partition Pareto dominates P , a contradiction with the assumption that
P is Pareto optimal. Thus, it follows that M is a maximum matching in H .

6 Conclusion
We have introduced the notion of Price of Pareto Optimality (PPO) and obtained upper and lower bounds on the PPO
in three classes of hedonic games. We provide a summary of our results in Table 1.

6.1 Summary of Results
For ASHGs, the key feature of the game is whether players may have negative utilities for each other: if this is not the
case, every Pareto optimal outcome maximizes the social welfare, so PPO = 1. In the presence of negative utilities, it
is still the case that PPO = 1 if the game is symmetric and the underlying social graph is acyclic, but if either of these
conditions is violated, the Price of Pareto Optimality may be +∞.

For FHGs and mFHGs the Price of Pareto Optimality may be unbounded even if the game is symmetric, all players
have positive utilities for each other and the underlying social network is acyclic. Thus, for these classes of games we
focus on scenarios where the underlying social graph is symmetric and unweighted; under these assumptions in both

3We are grateful to the anonymous AI Journal reviewer who simplified our proof of this fact considerably.
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ASHG FHG mFHG

General graphs +∞ (Ex. 3.1) +∞ (Prop. 4.2) +∞ (Prop. 4.2)
Symmetric acyclic graphs, 1 (Prop. 3.3, Prop. 3.4) +∞ (Prop. 4.2) +∞ (Prop. 4.2)

non-negative weights
≥ ∆G − 1

∆G
(Prop. 4.11),

Symmetric unweighted graphs 1 (Prop. 3.4) ≤ min{n, 2∆G(∆G + 1)} ≤ 2 (Thm. 5.8)
(Prop. 4.4, Thm. 4.5)

Bipartite symmetric ≥ ∆G − 1
∆G

(Prop. 4.11),
unweighted graphs 1 (Prop. 3.4) ≤ min{n, 2∆G(∆G + 1)} 1 (Thm. 5.9)

(Prop. 4.4, Thm. 4.5)
Acyclic symmetric 1 (Prop. 3.4) ≥ ∆G − 1

∆G
(Prop. 4.11), 1 (Thm. 5.9)

unweighted graphs ≤ ∆G + 2 (Thm. 4.10)

Table 1: Summary of the results on the Price of Pareto Optimality. In the second row, the upper bound holds for graphs
that are symmetric and acyclic (Prop. 3.3) or have non-negative weights (Prop. 3.4), whereas the lower bounds hold
for graphs that are symmetric, acyclic and have non-negative weights (Prop. 4.2).

classes of games the Price of Pareto Optimality is trivially upper-bounded by the number of players n. It turns out
that in this setting mFHGs are much more well-behaved than FHGs: for mFHGs, we show that PPO ≤ 2 for arbitrary
graphs, whereas for FHGs PPO can be essentially as large as ∆G, i.e., the maximum degree of the graph, even if
the graph is acyclic; on the positive side, for FHGs we obtain PPO ≤ O(∆2

G). This difference between FHGs and
mFHGs is striking, giving the similarity between their definitions, and suggests that mFHGs deserve further attention;
indeed, after the conference version of our paper was published, several authors explored this class of games in more
detail [Kaklamanis et al., 2016; Monaco et al., 2018, 2019; Bullinger, 2020].

Both for FHGs and for mFHGs we obtain improved upper bounds on PPO for special classes of graphs: for FHGs
on acyclic graphs we improve the bound from O(∆2

G) to ∆G + 2 (and show that this bound is tight up to a small
additive constant), and for mFHGs on bipartite graphs we improve the bound from 2 to 1, thereby showing that if the
social network is bipartite, any Pareto optimal outcome maximizes the social welfare. These results are interesting
both because they identify the features of the social network which may lead to low social welfare in Pareto optimal
outcomes, and because real-life networks often have additional structure. In particular, an acyclic network models
a hierarchical organizational structure (see, e.g., Demange [2004]), and a bipartite network models a setting where
players belong to two types and only care about the presence of the agents of the other type (as in the Bakers and
Millers game described by Aziz et al. [2014]).

6.2 Pareto Optimality and Other Notions of Stability
We will now discuss the relationship between Pareto optimality and other notions of stability. First, we compare Pareto
optimality to two other concepts of stability that are based on resilience to group deviations, and then we compare our
results for the Price of Pareto Optimality to known results on the Price of Anarchy and the Price of Stability in ASHGs,
FHGs and mFHGs.

6.2.1 Pareto optimal outcomes vs. (super-)strong equilibria

Pareto optimal outcomes are similar in spirit to super-strong Nash equilibria [Rozenfeld, 2007], i.e., outcomes that do
not admit group deviations that make all of the deviating players weakly better off and some of the deviating players
strictly better off (some authors use the term strong equilibrium to refer to this solution concept, but the standard notion
of strong equilibrium [Aumann, 1959] only requires resistance to deviations that make all deviators strictly better off).
Following the standard terminology, we will refer to the ratio between the maximum social welfare and the social
welfare in the worst super-strong Nash equilibrium as the super-strong Price of Anarchy.
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In the context of hedonic games, strong equilibria can be mapped to partitions in the core, and super-strong equi-
libria can be mapped to partitions in the strict core [Aziz and Savani, 2015]: briefly, a partition P = {P1, . . . , Pm} is
in the core (respectively, strict core) if there is no group of players D such that each player i ∈ D strictly prefers D to
P(i) (respectively, each player i ∈ D weakly prefers D to P(i) and some player i ∈ D strictly prefers D to P(i)).

It is immediate that every super-strong Nash equilibrium (respectively, strict core outcome) is Pareto optimal, as
otherwise the grand coalition would have a beneficial deviation. However, the converse is not true: a Pareto optimal
outcome may admit a group deviation that is beneficial to the deviating players, but negatively affects some of the non-
deviators. Indeed, while all games have Pareto optimal outcomes, there are many interesting games with no strong
Nash equilibria (respectively, with an empty core).

Consider, for instance, the classic Prisoners’ Dilemma game: in this game, there are two players who can each
choose to cooperate (C) or defect (D); each player gets utility 2 if both of them defect, utility 1 if she cooperates and
the other player defects, utility 5 if she defects and the other player cooperates, and utility 3 if both of them cooperate.
It can be verified that this game has no strong Nash equilibria and hence no super-strong Nash equilibria; however, the
outcome where both players cooperate is Pareto optimal, and so are the outcomes where one player cooperates and the
other player defects.

Since every super-strong Nash equilibrium/strict core outcome is Pareto optimal, the social welfare in the worst
Pareto optimal outcome is less than or equal to the social welfare in the worst super-strong Nash equilibrium/strict
core outcome, i.e., the Price of Pareto Optimality is at least as high as the super-strong Price of Anarchy, and can be
much higher. However, this comparison is somewhat unfair, as it does not take into account that the set of super-strong
equilibria (respectively, the strict core) may be empty.

The relationship between Pareto optimality and strong equilibria/core outcomes is more complicated. There are
games where a strong equilibrium (respectively, an outcome in the core) is not Pareto optimal. Consider, for instance,
an additively separable hedonic game with N = {1, 2, 3} and w1,2 = 1, w2,1 = 100, w2,3 = −100, w1,3 = w3,1 =
w3,2 = 0. The only Pareto optimal partition in this game is {{1, 2}, {3}}; this is also the partition that maximizes
the social welfare. However, the grand coalition {1, 2, 3} admits no deviation that makes all deviating players strictly
better off: to see this, note that players 1 and 3 obtain their maximum possible utility in the grand coalition, and player
2 cannot profitably deviate on her own. Thus, in this game the Price of Pareto Optimality is 1, whereas there is an
outcome in the core with very low social welfare.

Conversely, a Pareto optimal outcome may have a much lower social welfare than every core outcome. Indeed,
consider, for instance, an unweighted symmetric FHG where the underlying graph is a (d, 2)-superstar, d > 2. In this
game the grand coalition is Pareto optimal, and its social welfare is 4d

2d+1 (see Example 4.1). On the other hand, a
partition is in the core of this game if and only if it consists of d connected coalitions of size 2 and an isolated node
(which may be the center node or one of the leaves); in any such partition the social welfare is d.

To summarize these observations, the Price of Pareto Optimality is at least as high as the super-strong Price of
Anarchy, and can be higher or lower than the Strong Price of Anarchy.

6.2.2 Price of Pareto Optimality vs. Price of Anarchy/Price of Stability in hedonic games

It is also interesting to compare the Price of Pareto Optimality to the Price of Anarchy/Price of Stability in hedonic
games, and in particular in ASHGs, FHGs and mFHGs.

For ASHGs, we were unable to find published results on the Price of Anarchy or Price of Stability. However,
we observe that it is easy to construct an ASHG on a symmetric unweighted graph in which the Price of Anarchy is
linear in the number of players n (recall that the Price of Pareto Optimality is 1 in this case). Specifically, consider a
graph on the node set {a1, . . . , as, b1, . . . , bs}, where both {a1, . . . , as} and {b1, . . . , bs} form cliques and there are
also edges between ai and bi for each i = 1, . . . , s. Then the partition {{a1, b1}, . . . , {as, bs}} is Nash stable, but
its social welfare is only 2s, whereas the optimal social welfare is 2s(s − 1) + 2s = 2s2 (this social welfare can be
attained when the players form the grand coalition). Conversely, there are ASHGs where PPO = +∞, but the Price
of Anarchy equals 1. For instance, set N = {1, 2, 3}, w1,2 = w2,1 = w2,3 = 1, w3,2 = −10. The unique Nash stable
partition in this game is {{1, 2}, {3}} and its social welfare is 2, which is the maximum possible social welfare in this
game; on the other hand, the grand coalition is Pareto optimal (as any other partition would provide lower utility to
player 2), but has negative social welfare. Thus, in general ASHGs the Price of Pareto Optimality and the Price of
Anarchy are incomparable. Our second example in this paragraph also shows that the Price of Pareto Optimality can
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be much higher than the Price of Stability, but we have not been able to construct an example where the converse is
true.

For FHGs, Bilò et al. [2018] show that the Price of Anarchy may be linear in the number of players, even on
symmetric unweighted acyclic graphs whose maximum degree is equal to 2, simply because players may be stuck in
the grand coalition. In contrast, Pareto optimality allows group deviations, and therefore PPO is reasonably low in
low-degree graphs, especially if these graphs are acyclic. Bilò et al. [2018] and Kaklamanis et al. [2016] also obtain
upper and lower bounds on the Price of Stability in FHGs. These bounds are somewhat similar to our bounds on PPO
in these games: on weighted graphs, the Price of Stability can grow linearly with the number of players, but in the
unweighted case the Price of Stability is bounded by a small constant for bipartite graphs and is equal to 1 on trees
and graphs of girth at least 5. Interestingly, in contrast to our results, Bilò et al. [2018] and Kaklamanis et al. [2016]
do not provide upper or lower bounds on the Price of Stability in terms of the maximum degree.

For mFHGs, Monaco et al. [2018] observe that the lower bound on the Price of Anarchy for paths obtained by
Bilò et al. [2018] in the context of FHGs applies to mFHGs as well. They also show a linear lower bound on the Price
of Stability for weighted symmetric acyclic graphs. However, for symmetric unweighted graphs the Price of Stability
is 1 [Kaklamanis et al., 2016; Monaco et al., 2018].

These results indicate that in many classes of games the Price of Pareto Optimality tends to be much lower than
the Price of Anarchy, but behaves broadly similarly to the Price of Stability; there are also several examples where
the known upper bounds on the Price of Stability are stronger than the known upper bounds on the Price of Pareto
Optimality, and in particular where the Price of Stability is 1, but the Price of Pareto Optimality is greater than one.
However, in general it is not the case that the Price of Stability is always lower than the Price of Pareto Optimality, as
illustrated by the Prisoners’ Dilemma; moreover, while Pareto optimal outcomes are guaranteed to exist, Nash stable
outcomes may fail to exist.

6.3 Future Work
There are many open problems suggested by our work. For instance, it is not clear if the upper bound in Theorem 4.5
is tight; in fact, we do not have examples of fractional hedonic games on symmetric unweighted graphs whose PPO
exceeds ∆G. In particular, we do not know if the upper bound of ∆G + 2 can be extended from acyclic graphs to
bipartite graphs, in line with the results for mFHGs. More broadly, we believe that the PPO is a useful measure, and it
would be interesting to compute or bound it for other classes of (cooperative and non-cooperative) games; while first
steps in this direction have been made by Balliu et al. [2017b], there is more to be done.
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APPENDIX

A.1 Preliminaries for the Appendix
We often make use of the following technical claim.

Proposition A.1. For every pair of positive reals x, y ≥ 1 it holds that x+1
2y ≤

x
y .

Proof. We have y ≤ xy and hence y + yx ≤ 2xy. Dividing both sides by 2y2, we get the desired inequality.

A.2 Proof of Lemma 4.8
Assume for the sake of contradiction that P contains a coalition P that is not a singleton, a star, or a superstar.
By Proposition 4.3 coalition P is connected. Let r ∈ P be a median of P , that is, a node such that the size of
each connected component of GP\{r} is at most |P |2 . Assume without loss of generality that Childrenr(GP , r) =
{1, 2, . . . , d} and for every k ∈ {1, 2 . . . , d} set Sk = Descendantsr(GP , k) ∪ {k}. Since r is the median of P , it
must hold that d = δP (r) ≥ 2 and |Sk| ≤ |P |2 for every k ∈ {1, 2 . . . , d}.

Assume without loss of generality that for every 1 ≤ k ≤ k′ ≤ d it holds that |Sk| ≤ |Sk′ |. Suppose first that there
exists an index h ∈ {1, . . . , d−1} such that |S1| = |S2| = . . . = |Sh| < |Sh+1|. LetR = S1∪S2∪ . . . Sh∪{r}. Note
that |R| ≥ 2 and |Sk| ≥ 2 for every k ≥ h + 1. Let us define a new partition S = (P \ {P}) ∪ {R,Sh+1, . . . , Sd}.
We will argue that S Pareto dominates P , which contradicts the Pareto optimality of P .

For every j /∈ P we have vj(P) = vj(S). Let us now consider the members of P .
For every k ∈ {h+ 1, . . . , d} and every j ∈ Sk \ {k} we have P(j) = P and S(j) = Sk. Since δP (j) = δSk

(j)
and |P | > |Sk|, we get

vj(P) =
δP (j)

|P |
<
δSk

(j)

|Sk|
= vj(S).

Further, for every k ∈ {h + 1, . . . , d} we have P(k) = P and S(k) = Sk. Since δP (k) = δSk
(k) + 1 and

|P | ≥ 2|Sk|, we get

vk(P) =
δP (k)

|P |
≤ δSk

(k) + 1

2|Sk|
≤ δSk

(k)

|Sk|
= vk(S),

where the second inequality follows from Proposition A.1.
For every k = 1, . . . , h and every j ∈ Sk, we have P(j) = P and S(j) = R. Since δP (j) = δR(j) and |P | > |R|,

we get

vj(P) =
δP (j)

|P |
<
δR(j)

|R|
= vj(S).

Finally, for r, we have P(r) = P and S(r) = R. Hence, by our choice of h,

vr(P) =
δP (r)

|P |
=

d

|S1|+ |S2|+ . . .+ |Sd|+ 1
≤ d

h|Sh|+ (d− h)|Sh+1|+ 1
,

vr(S) =
δR(r)

|R|
=

h

h|Sh|+ 1
=

1

|Sh|+ 1/h
.

Since |Sh|+ 1 ≤ |Sh+1| and 1 ≤ h < d, we get

vr(P) ≤ d

h|Sh|+ (d− h)(|Sh|+ 1) + 1
=

1

|Sh|+ 1− (h− 1)/d
≤ 1

|Sh|+ 1/h
= vr(S),

where the last inequality follows from the fact that 1/h ≤ 1− (h− 1)/d, for every h < d.
Alternatively, suppose that |Sk| = |Sk′ | for every k, k′ ∈ {1, 2, . . . , d}; since P is not a star, each Sk contains at

least two players. Further, since all sets Sk have the same size, and P is not a superstar, there must exist a player j at
distance 3 from r. Let j∗ be the parent of j with respect to r; we can assume without loss of generality that j∗ is in
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S1. Let R = Descendantsr(GP , j
∗) ∪ {j∗} and T = (S1 \ R) ∪ {r}. Note that |R| ≥ 2. We will now argue that the

partition S = (P \ {P})∪{R, T, S2, S3, . . . , Sd}. Pareto dominates P , which contradicts the Pareto optimality of P .
For every j /∈ P we have vj(P) = vj(S). Let us now consider the members of P .
For every k = 2, . . . , d and every j ∈ Sk \ {k} we have P(j) = P and S(j) = Sk. Since δP (j) = δSk

(j) and
|P | > |Sk|, we get

vj(P) =
δP (j)

|P |
<
δSk

(j)

|Sk|
= vj(S).

Further, for every k = 2, . . . , d we have P(k) = P and S(k) = Sk. Since δP (k) = δSk
(k) + 1 and |P | ≥ 2|Sk|,

we get

vk(P) =
δP (k)

|P |
≤ δSk

(k) + 1

2|Sk|
≤ δSk

(k)

|Sk|
= vk(S),

where the second inequality follows from Proposition A.1.
For every j ∈ R \ {j∗}, we have P(j) = P and S(j) = R. Since δR(j) = δP (j) and |P | > |R|, we get

vj(P) =
δP (j)

|P |
<
δR(j)

|R|
= vj(S).

For j∗, we have P(j∗) = P and S(j∗) = R. Since δP (j∗) = δR(j∗) + 1 and |P | ≥ 2|S1| > 2|R|, we get

vj∗(P) =
δP (j∗)

|P |
<
δR(j∗) + 1

2|R|
≤ δR(j∗)

|R|
= vj∗(S),

where the second inequality follows from Proposition A.1.
For every j ∈ S1 \ (R ∪ {1}) we have P(j) = P and S(j) = T . Since δP (j) = δT (j) and |P | > |T |, we get

vj(P) =
δP (j)

|P |
<
δT (j)

|T |
= vj(S).

For player 1, we have P(1) = P and S(1) = T . Since δP (1) = δT (1) + 1 and |P | ≥ 2|S1| > 2|T |, we get

v1(P) =
δP (1)

|P |
<
δT (1) + 1

2|T |
≤ δT (1)

|T |
= v1(S),

where the second inequality follows from Proposition A.1.
For r, we have P(r) = P and S(r) = T . We get

vr(P) =
δP (r)

|P |
=

d

|S1|+ |S2|+ . . .+ |Sd|+ 1
=

d

d|S1|+ 1
=

1

|S1|+ 1/d
<
δT (r)

|T |
= vr(S),

where the last inequality follows from the fact that |T | < |S1|.

A.3 Proof of Proposition 4.9
We prove each statement separately.

(a) Assume for the sake of contradiction that j forms a singleton coalition R = {j} in P . Let R′ = {i, j}, and let
S = (P \ {P,R}) ∪ {R′}. It is easy to see that S Pareto dominates P , which contradicts the Pareto optimality
of P .

(b) Assume for the sake of contradiction that j is the center of a superstar R. Assume without loss of generality that
Childrenj(GR, j) = {1, 2, . . . , d}, and set Sk = Descendantsj(GR, k) ∪ {k} for every k ∈ {1, 2, . . . , d}, and
R′ = (R \ S1) ∪ {i}. We prove our claim by showing that the partition S = (P \ {P,R}) ∪ {S1, R

′} Pareto
dominates P .

We first note that for every t /∈ P ∪R we have vt(P) = vt(S).
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For i we have P(i) = P and S(i) = R′. Since δP (i) = 0 and δR′(i) = 1, we get

vi(P) =
δP (i)

|P |
<
δR′(i)

|R′|
= vi(S).

For j we have P(j) = R and S(j) = R′. Since δR(j) = δR1
(j) and |R| > |R′|, where the last inequality

follows from the fact that |S1| > |P |, we get

vj(P) =
δR(j)

|R|
<
δR1

(j)

|R′|
= vj(S).

For every k ∈ {2, . . . , d} and every t ∈ Sk we have P(t) = R and S(t) = R′. Since δR(t) = δR′(t) and
|R| > |R′|, where the last inequality follows from the fact that |S1| > |P |, we get

vt(P) =
δR(t)

|R|
<
δR′(t)

|R′|
= vt(S).

For every t ∈ S1 \ {1} we have P(t) = R and S(t) = S1. Since δR(t) = δS1(t) = 1 and |R| ≥ 2|S1|+ 1, we
get

vt(P) =
δR(t)

|R|
≤ δS1

(t)

2|S1|+ 1
<
δS1

(t)

|S1|
= vt(S).

Finally, for player 1 we have P(1) = R and S(1) = S1. Since δR(1) = δS1(1) + 1 and |R| > 2|S1|, we get

v1(P) =
δR(1)

|R|
<
δS1

(1) + 1

2|S1|
≤ δS1

(1)

|S1|
= v1(S),

where the second inequality follows from Proposition A.1.

(c) Assume for the sake of contradiction that j is a leaf of a superstar R with center r. Assume without loss of
generality that Childrenr(GR, r) = {1, 2, . . . , d} and set Sk = Descendantsr(GR, k) ∪ {k} for every k ∈
{1, 2, . . . , d}. Without loss of generality, we assume that j ∈ S1. Let R′ = {i, j} and R1 = (S1 \ {j}) ∪ {r}.
To prove our claim, we show that the partition S = (P\{P,R})∪{R′, R1, S2, S3, . . . , Sd} Pareto dominatesP .

For every t /∈ P ∪R we have vt(P) = vt(S).

For i we have P(i) = P and S(i) = R′. Since δP (i) = 0 and δR′(i) = 1, we get

vi(P) =
δP (i)

|P |
<
δR′(i)

|R′|
= vi(S).

For j we have P(j) = R and S(j) = R′. Since δR(j) = δR′(j) = 1 and |R| > |R′| = 2, we get

vj(P) =
δR(j)

|R|
<
δR′(j)

|R′|
= vj(S).

For every k ∈ {2, . . . , d} and every t ∈ Sk \ {k} we have P(t) = R and S(t) = Sk. Since δR(t) = δSk
(t) = 1

and |R| > |Sk|, we get

vt(P) =
δR(t)

|R|
<
δSk

(t)

|Sk|
= vt(S).

For every k ∈ {2, . . . , d} we have P(k) = R and S(k) = Sk. Since δR(k) = δSk
(k) + 1 and |R| > 2|Sk|, we

get

vk(P) =
δR(k)

|R|
<
δSk

(k) + 1

2|Sk|
≤ δSk

(k)

|Sk|
= vk(S),

where the second inequality follows from Proposition A.1.
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For every t ∈ S1 \ {1, j}, we have P(t) = R and S(t) = R1. Since δR(t) = δR1(t) = 1 and |R| > |R1|, we
get

vt(P) =
δR(t)

|R|
<
δR1

(t)

|R1|
= vt(S).

For player 1 we have P(1) = R and S(1) = R1. Since δR(1) = δR1
(1)+1 and |R| ≥ 2|S1|+1 = 2|R1|+1 >

2|R1|, we get

v1(P) =
δR(1)

|R|
<
δR1

(1) + 1

2|R1|
≤ δR1

(1)

|R1|
= v1(S),

where the second inequality follows from Proposition A.1.

For r, we have P(r) = R, S(r) = R1. Since |R| = d · |S1|+ 1, |R1| = |S1| and δR1
(r) = 1, we get

vr(P) =
δR(r)

|R|
=

d

d · |S1|+ 1
<

1

|S1|
=
δR1

(r)

|R1|
= vr(S).
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