
HAL Id: hal-02932093
https://hal.science/hal-02932093

Submitted on 7 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online GPUAnalysis using Adaptive DMA Controlled
by Softcore for 2D Detectors

R Ponsard, N. Janvier, D Houzet, V. Fristot, W. Mansour

To cite this version:
R Ponsard, N. Janvier, D Houzet, V. Fristot, W. Mansour. Online GPUAnalysis using Adaptive
DMA Controlled by Softcore for 2D Detectors. Euromicro DSD 2020, Aug 2020, Portorož (Virtual),
Slovenia. �10.1109/DSD51259.2020.00075�. �hal-02932093�

https://hal.science/hal-02932093
https://hal.archives-ouvertes.fr

Online GPUAnalysis using Adaptive DMA Controlled by Softcore for 2D Detectors

R. Ponsard*
ESRF

GIPSA-LAB
Grenoble, France
ponsard@esrf.fr

N. Janvier
ESRF
IEEE

Grenoble, France

D. Houzet
GIPSA-LAB

Grenoble, France

V. Fristot
GIPSA-LAB

Grenoble, France

W. Mansour
ESRF
IEEE

Grenoble, France

Abstract— New generation X-ray detectors enables cutting-edge
experiments that can produce very high throughput data
streams that are challenging to manage and store. This paper
presents an evaluation of a configurable data placement
mechanism from an FPGA device collecting detector raw data
to a burst-cache memory and concurrently to a GPU
accelerator, bypassing hardware and software extraneous
copies and bottlenecks via PCI-Express. It includes a DMA
controller dynamically configured in real-time by a Microblaze
soft-processor. A low-latency synchronization mechanism using
GPUDirect technology is presented as well. Multi-GB, DMA-
able memory buffer allocation, leveraging Linux contiguous
memory allocator is investigated. As illustrative workloads,
real-time raw-data correction as foreseen in Serial Synchrotron
X-ray experiments were processed. Obtained results showed
that if one could reach a data throughput of 12.7GB/s to CPU
memory when using PCIe gen3 x16, a 12-cores OpenMP CPU
application processes the raw data only up to 2.7GB/s and is
outperformed by a GPU accelerator (NVIDIA RTX 6000).

FPGA; PCIe; DMA; CMA; GPUDirect; Microblaze

I. INTRODUCTION
Many photon science experiments are producing huge

amount of data at high repetition rates. Using X ray detectors
at full capacity requires not only a high throughput data links,
but also challenges traditional workflow (acquisition, transfer,
storage, batch processing) putting tremendous pressure on
storage and computing infrastructures. Therefore, this
enforces online data analysis in real-time pipeline and
immediate rejection of non-pertinent data or compression to
alleviate the pressure on the storage system.

Serial Synchrotron Crystallography (SSX) is one of the
most demanding use case as it produce large amount of data
for a long time and will be used in this paper as a realistic
challenge as far as data processing is concerned. The foreseen
detector has an adaptive gain feature: the processing of a
single 4M pixels image requires 8 million 32-bit floating-
point operations and will produce nearly one Terabyte of data
in one minute [1].

A. Overview of Bottlenecks in Computer Architecture
In traditional design, CPUs are the main bottleneck source

when data transfer is concerned. This problem can be
mitigated using Direct Memory Access engine (DMA).

Other bottlenecks in the operating system itself might
affect the throughput of the data transfer:

- during multiple copies of data from the kernel space to
user space,

- when the processor goes from user to supervisor state and
vice-versa, at each system call or interrupt handling.

B. Background of Online Data Processing in GPU
During the limited time slot available between two images

(1ms), a GPU accelerator is the best candidate to perform
detector raw-data correction, followed by image geometrical
reconstruction and then by data compression or rejection.

This data treatment requires transferring the detector data
into the GPU accelerator and a low-latency trigger mechanism
to synchronize the computation and DMA data flow as well.

C. Proposed FPGA/GPU system
Figure 1. shows the proposed system. An X-ray detector

Front-end electronics outputs data on Xilinx Aurora serial
link. In the backend computer, an FPGA board serves as an
Aurora/PCIe bridge.

A DMA engine push data to their final location in main
memory for storage and batch processing or straight into GPU
memory for fast-feedback. In this paper, we are only
discussing the right side of the design.

Figure 1. Architectural overview of the data acquisition system.

D. State of the Art
RDMA transfer is routinely done by using Mellanox

Technologies adapters. Our framework address the other use
cases, not compliant with Ethernet or Infiniband links. Many
authors have proposed frameworks leveraging different GPU
accelerators and programming API such as AMD/OpenCL [2]
or GPUDirect/CUDA [3].

436

2020 23rd Euromicro Conference on Digital System Design (DSD)

978-1-7281-9535-3/20/$31.00 ©2020 IEEE
DOI 10.1109/DSD51259.2020.00075

II. PROPOSED DMA TRANSFERFRAMEWORK
Our work is part of the RASHPA project [4], a data

acquisition framework optimized for 2D X-ray detectors that
would be suf ciently generic and scalable to be used in a wide
diversity of new high-performance detector developments.
We have restricted the scope of this paper to a limited subset
of the RASHPA capabilities:

• Zero-copy transfer
The operating system isolates users and kernel memory

spaces. Thus, data copies happen between memory regions:
this leads to a non-unneglectable overhead for large buffers.

• Direct Memory Access
In modern computers, DMA controllers located in

peripheral PCIe devices manage data transfer to and from the
main memory without CPU intervention. The CPU only
configures the DMA controller with a list of source and
destination memory descriptors.

• Geometry reconstruction
Detectors are made of multiple independent modules, as

sensor size is limited. To simplify the final data processing,
the detector data are moved at an address in destination
memory matching their real geometrical arrangement.

• Event mechanism
The CPU is not aware of an on-going DMA transfer by

design and therefore, the DMA engine must notify the CPU,
or GPU accelerator, about any event such as end of transfer,
in order to let them start data processing.

A. Memory Allocation Overview
On the receiver host, the system should allocate and

handle local memory buffer suitable for DMA operations: i.e.
featuring large memory region, physically contiguous, non-
movable and ensuring cache coherency.

Existing solutions on Linux based system include:
• Reserved memory
Reserved Memory is not visible from the Linux

Operating System. By definition, this memory region is non-
movable and therefore DMA-able.

• Standard memory allocation
Malloc allocates memory regions that are scattered in

4KB pages in physical memory that can be migrated during
memory management operations to different physical
locations. Therefore, they must be pinned to be suitable for
DMA, which takes time and then DMA requires a huge
number of different descriptors for multi-GB allocations.

• Huge pages
On high-performance workstation, it is possible to

allocate memory backed 1GB pages, but noncontiguous.
• Allocation in a kernel module using kmalloc
It is possible to allocate kernel virtual memory, but

movable and backed by 4KB physical pages.
• Contiguous memory allocation
A large pool of memory is dedicated to CMA allocation

at boot time, which remains available by other non-CMA
application. In this work, we took advantage of the CMA
methods and developed a custom kernel module as the

dma_alloc_coherent system-call is not directly accessible
from a user application

B. FPGA Soft-Core Design
A proof of concept of a fast data-acquisition system has

been developed using an already existing detector equipped
of a high-speed serial link (Xilinx Aurora).

Figure 2. shows the transfer of scattered rectangular sub-
images, extracted from the produced image (dark and light
gray rectangle area).

Figure 2. Multiple Region of Interest transfers serialized by DMA engine.

The final location in memory can be changed to match by
example the gaps between detector modules.

The system is scalable to multiple detectors and can
aggregate multiple Region of Interest from different detectors
into a single computing unit. Fanning out data to multiple
accelerator is also possible as well.

At CPU or GPU memory destination, a double buffer
provides a lockless ping-pong mechanism between transfer
and data processing.

C. On-the-fly DMA Configuration using Microblaze
The DMA descriptors are prepared during the previous

on-going transfer. Two memory-descriptor configurations
(addresses, size, both at source and destination) must be
computed in real-time: this could not be fully pre-processed
in advance as we are handling very large datasets and storing
all descriptors would require a huge amount of memory.

We have developed an FPGA design for Xilinx Virtex
Ultrascale+ (Alveo U200) and a firmware running on the
Xilinx Microblaze soft-core to perform the on-the-fly
configuration of the DMA engine.

In addition to the soft-core, the proposed design includes
the following intellectual property blocks (IP):

• DMA engine (Xilinx CDMA IP)
This is the DMA engine operating in Scatter/Gather

mode: it can transfer a list buffers, predefined by a list of
buffer descriptors (BD). The idea was to evaluate for which
configuration the calculation of the next list of BD could be
hidden during the transfer of the previous list.

• PCIe Bridge (Xilinx DMA Bridge subsystem IP)
This IP handles data transfer to/from FPGA from/to CPU

performing address translation between soft-core addresses
(AXI bus) and host CPU physical addresses.

437

Allocating all the available memory in a single NUMA
set was possible.

III. GPU ONLINE DATA ANALYSIS
GPU accelerators efficiently handle massively parallel

operations but are not fully autonomous. We developed a
CPU application to orchestrate data transfers from the host
CPU to the GPU device and back and to the scheduling of the
sequence of operation.

A. Proposed ODA Pipeline
This application pre-launches the GPU kernels so that

their execution could begin as soon as the data are available
with the smallest overhead.

In the GPU device, we have implemented an execution
loop with the three sequences of parallel operations:

• Data transfer from FPGA to GPU via PCIe,
• Processing of the data correction,
• Transfer of results to a large CPU memory buffer.

The sequences are CUDA Streams can possibly execute
in parallel. This transforms the previous loop into a three-
stage pipeline in which transfers overlap with computations.

End of DMA transfer must trigger the GPU processing:
i) the FPGA soft-core application increments a host memory
location by a PCIe write operation, ii) a CUDA stream
memory operation puts the GPU stream on hold, iii) polling
this memory location until data availability.

Transfers from CPU to GPU memory and way back and
computations can overlap if the CPU memory is pinned so
that GPU DMA engine could be activated.

Figure 3. Synchronization mechanism between FPGA and GPU.

B. GPU Algorithm
The data pre-processing to convert detector raw-data into

float value is performed by the formula:

Where: Gaink is the gain factor at level k as set by two
most significant bits of the data, Pixel the raw data expressed
in Arbitrary Detector Units (ADU), Pede is the dark image.

This computation is inherently parallel. The gain factor is
a large constant data set kept in GPU memory. The pedestal
is a dark X-ray beam interleaved between images.

C. GPUDirect Peer Device DMA from FPGA to GPU
It is possible with specific high-end GPUs to decrease the

transfer latency by directly transferring data from the FPGA
card to the accelerator memory using GPUDirect technology.

cuMemAlloc allocates memory in GPU device by CUDA
driver. In order to make this GPU memory DMA-able by the
FPGA, we have developed a kernel module to pin this GPU
memory region in host address space and to get its physical
address forwarded to the DMA controller. The code is based
on nv_p2p_get_pages [5].

IV. EXPERIMENTAL RESULTS

A. Methodology
We have performed bandwidth and latency benchmarks:

• FPGA pushing the detector data to CPU memory for
storage or processing by an OpenMP application.

• Data forwarded from CPU memory to GPU
accelerator and processed by CUDA application.

• Data sent directly from the FPGA board to the GPU.
• CPU and GPU simultaneously processing data.

B. Test Setup
Due to the Covid19 lock-down, we could not upgrade our

test bench for proper performance evaluations. An ALVEO
U200 board is installed in PCIE gen3 x16 slot but RTX6000
GPU is in a PCIE x4 slot, unfortunately in different PCIe
interconnect. Consequently, throughput is capped below
2.8GB/s from CPU to GPU. Workstation is a Supermicro
with two XEON, 12 cores, 64GB and Linux kernel 4.19.75.

C. DMA Transfer to CPU Memory Throughput
The Figure 4. shows FPGA TO host throughput: best

results are achieved when it is possible to hide BD processing
during ongoing data transfer.

Figure 4. Observed DMA throughput from/to host memory.

DMA throughput does not suffer limitation within the
FPGA design. In our setup with PCIe gen3 x16, the
theoretical maximum is 16GT/s. As expected when taking
into account the diverse overheads, the observed maximum is
around 12.8GB/s.

During DMA transfer handled by CDMA engine, the
Microblaze soft-core remains free for other tasks. This free
time is used to process the configuration of the next list of

438

BD. DMA transfer take less time than BD pre-processing
except, as expected, for small size transfer.

D. CPU OpenMP Processing Results
A CPU processing application was developed using

OpenMP compiler to automatically dispatch computations on
the available cores using directive #pragma omp for.

Observed throughput on 12 cores was around 2.8GB/s.

E. GPU Processing Results
FPGA and CPU to GPU data transfer results are shown in

Figure 5. Poor BW result using GPUDirect technology result
might be explained: i) FPGA and GPU not in the same
NUMA set, ii) GPU is in PCIe a gen x4 slot, iii) old
motherboard PCIe root complex (RC) is badly handling PCIe
peer to peer requests. On another test bench, we performed
DMA transfer with a Mellanox Technologies network
adapter instead of an FPGA, and achieved 12GB/s to CPU
and 10GB/s to GPU.

Figure 5. Observed throughput from FPGA and CPU to GPU.

F. Evaluation of GPU Low-latency Synchronization
For proper operation, the duration of the selected GPU

kernel must take less time that data transfer to enable
pipelined data processing.

In our setup, we have implemented overlapping data
transfer in both directions and successfully process raw data
correction as needed by a PSI Jungfrau detector.

Three heterogeneous systems are involved in our
pipeline: an FPGA, a CPU and a GPU. However, to date, a
FPGA system cannot directly trigger a GPU event and we
have designed a specific cascaded synchronization
procedure, described below:

- By design, the receiver CPU is not informed of the
on-going DMA traffic. However, it is possible to notify an
event to the CPU: when the FPGA has sent a full image, it
writes a 32 bit event value in a predefined memory location.

- Upon notification, the CPU control application in
turn triggers the GPU stream execution. A memory lock
mechanism relying on CUDA stream memory operation
(cuStreamWaitValue32) starts with a minimal latency the
actions previously put on hold in their streams. This

mechanism removes the launch overhead detrimental to real-
time data processing as shown Figure 6. Hence, we measured
a total kernel launch time of 4us instead of 40us.

Figure 6. Low-latency GPU commands launch time.

For real-time data processing, a low execution jitter is
desirable. This jitter was measured during the transfer of one
buffer of 4 bytes. Round-trip was evaluated by a read
operation from the FPGA (single sided communication).

V. CONCLUSION
We have developed the core components of a versatile

data acquisition framework performing DMA transfer at full
throughput over PCIe from FPGA to CPU memory or GPU
accelerator, configurable by a soft-core firmware and
featuring a low-latency synchronization mechanism with
CUDA kernels.

We proposed two kernel modules for large memory
allocation on host CPU and GPU device, suitable for DMA
operations. New data transfer patterns can easily be tested,
bypassing long workflow such as HDL synthesis.

REFERENCES
[1] F. Leonarski et al., “JUNGFRAU detector for brighter

x-ray sources: Solutions for IT and data science
challenges in macromolecular crystallography,”
Structural Dynamics, vol. 7, no. 1, p. 014305, Jan.
2020, doi: 10.1063/1.5143480.

[2] R. Kobayashi, N. Fujita, Y. Yamaguchi, A. Nakamichi,
and T. Boku, “GPU-FPGA Heterogeneous Computing
with OpenCL-Enabled Direct Memory Access,” in
2019 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), May
2019, pp. 489–498, doi: 10.1109/IPDPSW.2019.00090.

[3] P. Huber and M. Rosenthal, “Direct data exchange
between FPGAs and GPUs using GPUDirect,”
presented at the Embedded World Conference 2020,
Nürnberg, 25.-27. Februar 2020, Feb. 2020, Accessed:
May 08, 2020. [Online]. Available:
https://digitalcollection.zhaw.ch/handle/11475/19732.

[4] F. L. Mentec, P. Fajardo, T. L. Caer, C. Herve, A.
Homs, and R. J. Horowitz, “RASHPA: A DATA
ACQUISITION FRAMEWORK FOR 2D X-RAY
DETECTORS,” p. 4, 2014.

[5] D. Rossetti, NVIDIA/gdrcopy. NVIDIA Corporation,
2020.

439

