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Abstract— New generation X-ray detectors enables cutting-edge 
experiments that can produce very high throughput data 
streams that are challenging to manage and store. This paper 
presents an evaluation of a configurable data placement 
mechanism from an FPGA device collecting detector raw data 
to a burst-cache memory and concurrently to a GPU 
accelerator, bypassing hardware and software extraneous 
copies and bottlenecks via PCI-Express. It includes a DMA 
controller dynamically configured in real-time by a Microblaze 
soft-processor. A low-latency synchronization mechanism using 
GPUDirect technology is presented as well. Multi-GB, DMA-
able memory buffer allocation, leveraging Linux contiguous 
memory allocator is investigated. As illustrative workloads, 
real-time raw-data correction as foreseen in Serial Synchrotron 
X-ray experiments were processed. Obtained results showed 
that if one could reach a data throughput of 12.7GB/s to CPU 
memory when using PCIe gen3 x16, a 12-cores OpenMP CPU 
application processes the raw data only up to 2.7GB/s and is 
outperformed by a GPU accelerator (NVIDIA RTX 6000). 

FPGA; PCIe; DMA; CMA; GPUDirect; Microblaze 

I.  INTRODUCTION 
Many photon science experiments are producing huge 

amount of data at high repetition rates. Using X ray detectors 
at full capacity requires not only a high throughput data links, 
but also challenges traditional workflow (acquisition, transfer, 
storage, batch processing) putting tremendous pressure on 
storage and computing infrastructures. Therefore, this 
enforces online data analysis in real-time pipeline and 
immediate rejection of non-pertinent data or compression to 
alleviate the pressure on the storage system. 

Serial Synchrotron Crystallography (SSX) is one of the 
most demanding use case as it produce large amount of data 
for a long time and will be used in this paper as a realistic 
challenge as far as data processing is concerned. The foreseen 
detector has an adaptive gain feature: the processing of a 
single 4M pixels image requires 8 million 32-bit floating-
point operations and will produce nearly one Terabyte of data 
in one minute [1]. 

A. Overview of Bottlenecks in Computer Architecture 
In traditional design, CPUs are the main bottleneck source 

when data transfer is concerned. This problem can be 
mitigated using Direct Memory Access engine (DMA). 

Other bottlenecks in the operating system itself might 
affect the throughput of the data transfer: 

- during multiple copies of data from the kernel space to 
user space,  

- when the processor goes from user to supervisor state and 
vice-versa, at each system call or interrupt handling. 

B. Background of Online Data Processing in GPU 
During the limited time slot available between two images 

(1ms), a GPU accelerator is the best candidate to perform 
detector raw-data correction, followed by image geometrical 
reconstruction and then by data compression or rejection. 

This data treatment requires transferring the detector data 
into the GPU accelerator and a low-latency trigger mechanism 
to synchronize the computation and DMA data flow as well.  

C. Proposed FPGA/GPU system 
Figure 1. shows the proposed system. An X-ray detector 

Front-end electronics outputs data on Xilinx Aurora serial 
link. In the backend computer, an FPGA board serves as an 
Aurora/PCIe bridge.  

A DMA engine push data to their final location in main 
memory for storage and batch processing or straight into GPU 
memory for fast-feedback. In this paper, we are only 
discussing the right side of the design. 
 

 
Figure 1.  Architectural overview of the data acquisition system. 

D. State of the Art 
RDMA transfer is routinely done by using Mellanox 

Technologies adapters. Our framework address the other use 
cases, not compliant with Ethernet or Infiniband links. Many 
authors have proposed frameworks leveraging different GPU 
accelerators and programming API such as AMD/OpenCL [2] 
or GPUDirect/CUDA [3]. 
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II. PROPOSED DMA TRANSFERFRAMEWORK 
Our work is part of the RASHPA project [4], a data 

acquisition framework optimized for 2D X-ray detectors that 
would be suf ciently generic and scalable to be used in a wide 
diversity of new high-performance detector developments. 
We have restricted the scope of this paper to a limited subset 
of the RASHPA capabilities: 

• Zero-copy transfer 
The operating system isolates users and kernel memory 

spaces. Thus, data copies happen between memory regions: 
this leads to a non-unneglectable overhead for large buffers. 

• Direct Memory Access 
In modern computers, DMA controllers located in 

peripheral PCIe devices manage data transfer to and from the 
main memory without CPU intervention. The CPU only 
configures the DMA controller with a list of source and 
destination memory descriptors. 

• Geometry reconstruction 
Detectors are made of multiple independent modules, as 

sensor size is limited. To simplify the final data processing, 
the detector data are moved at an address in destination 
memory matching their real geometrical arrangement. 

• Event mechanism 
The CPU is not aware of an on-going DMA transfer by 

design and therefore, the DMA engine must notify the CPU, 
or GPU accelerator, about any event such as end of transfer, 
in order to let them start data processing. 

A. Memory Allocation Overview 
On the receiver host, the system should allocate and 

handle local memory buffer suitable for DMA operations: i.e. 
featuring large memory region, physically contiguous, non-
movable and ensuring cache coherency.  

Existing solutions on Linux based system include: 
• Reserved memory 
Reserved Memory is not visible from the Linux 

Operating System. By definition, this memory region is non-
movable and therefore DMA-able.  

• Standard memory allocation 
Malloc allocates memory regions that are scattered in 

4KB pages in physical memory that can be migrated during 
memory management operations to different physical 
locations. Therefore, they must be pinned to be suitable for 
DMA, which takes time and then DMA requires a huge 
number of different descriptors for multi-GB allocations. 

• Huge pages 
On high-performance workstation, it is possible to 

allocate memory backed 1GB pages, but noncontiguous. 
• Allocation in a kernel module using kmalloc 
It is possible to allocate kernel virtual memory, but 

movable and backed by 4KB physical pages. 
• Contiguous memory allocation 
A large pool of memory is dedicated to CMA allocation 

at boot time, which remains available by other non-CMA 
application. In this work, we took advantage of the CMA 
methods and developed a custom kernel module as the 

dma_alloc_coherent system-call is not directly accessible 
from a user application 

B. FPGA Soft-Core Design 
A proof of concept of a fast data-acquisition system has 

been developed using an already existing detector equipped 
of a high-speed serial link (Xilinx Aurora).  

Figure 2. shows the transfer of scattered rectangular sub-
images, extracted from the produced image (dark and light 
gray rectangle area). 

 
Figure 2.  Multiple Region of Interest transfers serialized by DMA engine. 

The final location in memory can be changed to match by 
example the gaps between detector modules.  

The system is scalable to multiple detectors and can 
aggregate multiple Region of Interest from different detectors 
into a single computing unit. Fanning out data to multiple 
accelerator is also possible as well. 

At CPU or GPU memory destination, a double buffer 
provides a lockless ping-pong mechanism between transfer 
and data processing. 

C. On-the-fly DMA Configuration using Microblaze 
The DMA descriptors are prepared during the previous 

on-going transfer. Two memory-descriptor configurations 
(addresses, size, both at source and destination) must be 
computed in real-time: this could not be fully pre-processed 
in advance as we are handling very large datasets and storing 
all descriptors would require a huge amount of memory.  

We have developed an FPGA design for Xilinx Virtex 
Ultrascale+ (Alveo U200) and a firmware running on the 
Xilinx Microblaze soft-core to perform the on-the-fly 
configuration of the DMA engine. 

In addition to the soft-core, the proposed design includes 
the following intellectual property blocks (IP): 

• DMA engine (Xilinx CDMA IP) 
This is the DMA engine operating in Scatter/Gather 

mode: it can transfer a list buffers, predefined by a list of 
buffer descriptors (BD). The idea was to evaluate for which 
configuration the calculation of the next list of BD could be 
hidden during the transfer of the previous list. 

• PCIe Bridge (Xilinx DMA Bridge subsystem IP)  
This IP handles data transfer to/from FPGA from/to CPU 

performing address translation between soft-core addresses 
(AXI bus) and host CPU physical addresses. 
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Allocating all the available memory in a single NUMA 
set was possible. 

III. GPU ONLINE DATA ANALYSIS 
GPU accelerators efficiently handle massively parallel 

operations but are not fully autonomous. We developed a 
CPU application to orchestrate data transfers from the host 
CPU to the GPU device and back and to the scheduling of the 
sequence of operation. 

A. Proposed ODA Pipeline 
This application pre-launches the GPU kernels so that 

their execution could begin as soon as the data are available 
with the smallest overhead. 

In the GPU device, we have implemented an execution 
loop with the three sequences of parallel operations: 

• Data transfer from FPGA to GPU via PCIe, 
• Processing of the data correction, 
• Transfer of results to a large CPU memory buffer. 

The sequences are CUDA Streams can possibly execute 
in parallel. This transforms the previous loop into a three-
stage pipeline in which transfers overlap with computations. 

End of DMA transfer must trigger the GPU processing: 
i) the FPGA soft-core application increments a host memory 
location by a PCIe write operation, ii) a CUDA stream 
memory operation puts the GPU stream on hold, iii) polling 
this memory location until data availability. 

Transfers from CPU to GPU memory and way back and 
computations can overlap if the CPU memory is pinned so 
that GPU DMA engine could be activated. 

 
Figure 3.  Synchronization mechanism between FPGA and GPU. 

B. GPU Algorithm 
The data pre-processing to convert detector raw-data into 

float value is performed by the formula: 
 

 

Where: Gaink is the gain factor at level k as set by two 
most significant bits of the data, Pixel the raw data expressed 
in Arbitrary Detector Units (ADU), Pede is the dark image.  

This computation is inherently parallel. The gain factor is 
a large constant data set kept in GPU memory. The pedestal 
is a dark X-ray beam interleaved between images. 

C. GPUDirect Peer Device DMA from FPGA to GPU 
It is possible with specific high-end GPUs to decrease the 

transfer latency by directly transferring data from the FPGA 
card to the accelerator memory using GPUDirect technology. 

cuMemAlloc allocates memory in GPU device by CUDA 
driver. In order to make this GPU memory DMA-able by the 
FPGA, we have developed a kernel module to pin this GPU 
memory region in host address space and to get its physical 
address forwarded to the DMA controller. The code is based 
on nv_p2p_get_pages [5]. 

IV. EXPERIMENTAL RESULTS 

A. Methodology 
We have performed bandwidth and latency benchmarks: 

• FPGA pushing the detector data to CPU memory for 
storage or processing by an OpenMP application.  

• Data forwarded from CPU memory to GPU 
accelerator and processed by CUDA application. 

• Data sent directly from the FPGA board to the GPU. 
• CPU and GPU simultaneously processing data. 

B. Test Setup 
Due to the Covid19 lock-down, we could not upgrade our 

test bench for proper performance evaluations. An ALVEO 
U200 board is installed in PCIE gen3 x16 slot but RTX6000 
GPU is in a PCIE x4 slot, unfortunately in different PCIe 
interconnect. Consequently, throughput is capped below 
2.8GB/s from CPU to GPU. Workstation is a Supermicro 
with two XEON, 12 cores, 64GB and Linux kernel 4.19.75. 

C. DMA Transfer to CPU Memory Throughput 
The Figure 4. shows FPGA TO host throughput: best 

results are achieved when it is possible to hide BD processing 
during ongoing data transfer. 

 
Figure 4.  Observed DMA throughput from/to host memory. 

DMA throughput does not suffer limitation within the 
FPGA design. In our setup with PCIe gen3 x16, the 
theoretical maximum is 16GT/s. As expected when taking 
into account the diverse overheads, the observed maximum is 
around 12.8GB/s. 

During DMA transfer handled by CDMA engine, the 
Microblaze soft-core remains free for other tasks. This free 
time is used to process the configuration of the next list of 
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BD. DMA transfer take less time than BD pre-processing 
except, as expected, for small size transfer. 

D. CPU OpenMP Processing Results 
A CPU processing application was developed using 

OpenMP compiler to automatically dispatch computations on 
the available cores using directive #pragma omp for.  

Observed throughput on 12 cores was around 2.8GB/s. 

E. GPU Processing Results 
FPGA and CPU to GPU data transfer results are shown in 

Figure 5.  Poor BW result using GPUDirect technology result 
might be explained: i) FPGA and GPU not in the same 
NUMA set, ii) GPU is in PCIe a gen x4 slot, iii) old 
motherboard PCIe root complex (RC) is badly handling PCIe 
peer to peer requests. On another test bench, we performed 
DMA transfer with a Mellanox Technologies network 
adapter instead of an FPGA, and achieved 12GB/s to CPU 
and 10GB/s to GPU. 

 
Figure 5.  Observed throughput from FPGA and CPU to GPU. 

F. Evaluation of GPU Low-latency Synchronization 
For proper operation, the duration of the selected GPU 

kernel must take less time that data transfer to enable 
pipelined data processing. 

In our setup, we have implemented overlapping data 
transfer in both directions and successfully process raw data 
correction as needed by a PSI Jungfrau detector. 

Three heterogeneous systems are involved in our 
pipeline: an FPGA, a CPU and a GPU. However, to date, a 
FPGA system cannot directly trigger a GPU event and we 
have designed a specific cascaded synchronization 
procedure, described below: 

- By design, the receiver CPU is not informed of the 
on-going DMA traffic. However, it is possible to notify an 
event to the CPU: when the FPGA has sent a full image, it 
writes a 32 bit event value in a predefined memory location.  

- Upon notification, the CPU control application in 
turn triggers the GPU stream execution. A memory lock 
mechanism relying on CUDA stream memory operation 
(cuStreamWaitValue32) starts with a minimal latency the 
actions previously put on hold in their streams. This 

mechanism removes the launch overhead detrimental to real-
time data processing as shown Figure 6.  Hence, we measured 
a total kernel launch time of 4us instead of 40us. 

 
Figure 6.  Low-latency GPU commands launch time. 

For real-time data processing, a low execution jitter is 
desirable. This jitter was measured during the transfer of one 
buffer of 4 bytes. Round-trip was evaluated by a read 
operation from the FPGA (single sided communication). 

V. CONCLUSION 
We have developed the core components of a versatile 

data acquisition framework performing DMA transfer at full 
throughput over PCIe from FPGA to CPU memory or GPU 
accelerator, configurable by a soft-core firmware and 
featuring a low-latency synchronization mechanism with 
CUDA kernels. 

We proposed two kernel modules for large memory 
allocation on host CPU and GPU device, suitable for DMA 
operations. New data transfer patterns can easily be tested, 
bypassing long workflow such as HDL synthesis. 
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