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Abstract

Mass transfer in porous media is governed, besides the species diffusion coef-

ficient, by the porosity and the geometrical parameters of the materials mi-

crostructure. This paper aims at developing a methodology for the determina-

tion of tortuosity and constrictivity factor based on a diffusion modeling in a

porous medium of neutral species. Tortuosity was obtained by the computation

of particles trajectory. After which, constrictivity was deduced from the forma-

tion factor, represented by the relative diffusion coefficient. Results show that

tortuosity evolves in the opposite direction that the porosity while constrictivity

evolves in the same direction. In addition, both parameters further slowdown

the transfer for lower porosities.
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Nomenclature

δ Constrictivity of the porous medium

Γ Microscopic boundary of Ω

Γff Fluid-fluid interface

Γsf Solid-fluid interface

χ Local variable

Ω Microscopic domain

Ωf Fluid phase of Ω

Ωs Solid phase of Ω

σ Standard deviation

τ Tortuosity of the porous medium

ϕ Porosity of the porous medium

∆y Laplacien operator according to the microscopic coordinates

〈 · 〉 Average operator upon Ω

( · )T Transposition operator

· Arithmetic mean of ·

divy Divergence operator according to the microscopic coordinates

Dhom Homogenized diffusion tensor

I Identity tensor

q Position vector of particle

v Velocity of particle

x Macroscopic coordinates
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y Microscopic coordinates

F Geometrical factor

D Local diffusion coefficient in fluid phase

L Macroscopic characteristic length

l Microscopic characteristic length

li Length path travelled by particle i

N Number of paths

Nbc Number of circular inclusions

R Radius of circular inclusions

Rmax Maximum radius of circular inclusions

Rmin Minimum radius of circular inclusions

Sp Specific surface

t Time

u Dimensionless concentration of tracer

1. Introduction

The diffusion of aggressive ions, moisture, gases and other aggressive agents

in porous cementitious materials is central for predicting the durability of re-

inforced concrete (RC) structures. In the case of marine or de-icing salt envi-

ronments, chloride penetration induces the corrosion of reinforcements in RC

[1]. Sulphates induces the concrete degradation [2], and the reaction of carbon

dioxide with dissolved hydrates coupled with moisture transfer [3] contributes to

both concrete damage and steel reinforcement corrosion [4]. These phenomena

affect the durability of the materials and consequently reduces the service life
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of structures. The macroscopic properties of cementitious materials are linked

directly to their microstructure and, more precisely, to the morphology of their

pores. There are several parameters used to characterize the microstructure of

cement-based materials. Porosity is one of the most used. Another essential

parameter describing porous media is pore connectivity. This property directly

affects the durability of cementitious materials. In fact, a high degree of pore

connectivity means an interconnected porosity and consequently the aggressive

agents easily penetrate into the porous network of the material. Different meth-

ods are used for studying the microstructure of cementitious materials, such as

mercury intrusion porosimetry (MIP) [5], nitrogen adsorption BET [6], measure-

ment of electrical resistivity [7], nuclear magnetic resonance [8, 9], Small-Angle

scattering [10], etc. Moreover, due to the complexity of cementitious materials,

the porosity and the connectivity of the pores are not sufficient to character-

ize their microstructure finely. Another morphological property represents a

common characteristic of transport phenomena in cementitious materials, it is

associated with the geometry of the pore structure. This geometry is described

by two parameters: tortuosity, usually defined as the ratio of the mean effec-

tive path length of the fluid through a porous medium (Le) and the material

length (L) [11, 12] and constrictivity, usually defined as the ratio between two

successive different sections of pores [5]. In recent studies [13, 14, 15, 16], the

fractal theory is used to characterize the transport properties of porous media

and to establish a link with geometrical parameters of microstructure such as

tortuosity. These works are not interested particularly in cementitious materi-

als, but are focused on porous media that by nature have fractal characteristics.

They contribute to provide clearer answers about the general problem treated

in this study in terms of identification of the geometrical parameters affect-

ing the transport phenomena in a porous medium. Regarding cementitious

materials, electrical resistivity measurements are also proposed to establish a

link with the morphology of the microstructure network of cementitious mate-

rials [7, 17]. These approaches involve an empirical relationship expressing the

tortuosity as a function of the volume fraction of pore entrapment. Indirect

4



methods, such as ultrasonic methods [18], were used to estimate the tortuos-

ity from the measurements of reflected waves at two oblique incidence angles.

However, different factors such as the geometry and the heterogeneity of the

cementitious materials, the presence of steel reinforcement and moisture, make

these methods less precise. Boukhatem et al [19] used a soft computing ap-

proach to predict the transport tortuosity of the pore system of fly ash concrete

by building an intelligent hybrid system. In their system, a genetic algorithm

was used to optimize the structure and the hyper- parameters of the network.

The system presented in their study takes into account the effect of the porous

network concrete in terms of porosity, and it does not consider the transport

properties (permeation or diffusion), which are governed by the tortuosity and

the constrictivity of the porous network. 3D reconstructions obtained by X-ray

tomography were used to quantify the tortuosity and connectivity of the pores

using a specific 3D-image analysis and a random walk simulation [20, 21, 22].

Authors showed that this technique provides a promising non-destructive alter-

native for the pore-related characterization of cementitious materials. However,

cementitious materials present a very fine micro porosity at nano-metric scale

and the use of such approaches is currently limited by the spatial resolution and

the precision that can be obtained. Several theoretical models were also used

to assess the tortuosity of cementitious porous media [23, 24, 25, 26], based on

a certain model of the structure of a porous medium. However, they are very

idealized. Empirical approaches have been also proposed to estimate a com-

bination of the two parameters tortuosity and constirctivity of porous media

as a function of porosity [27, 28, 29, 30]. They contain parameters determined

by adjusting experimental data. In contrast, these adjustable parameters vary

considerably depending on the materials used and on of their pores geometry

[31], and their values reported in literature vary widely.

The effect of pore geometry on the transport properties of cement-based ma-

terials makes the problem of predicting tortuosity and constrictivity extremely

complex. Indeed, it is known that cementitious materials are very heteroge-

neous porous media and have a complex microstructure at the microscopic and
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nanoscopic scales [32]. The global behavior of these materials is then governed

by local mechanisms acting at the pore scale. The major challenge consists of a

better comprehension of physical phenomena that intervene at the scale of the

pore, and their relation with the global behavior, all this taking into account

the effect of pore geometry. The possible solution is the use of homogenization

methods to describe finely these very heterogeneous media at the pore scale.

One of the widely used homogenization methods in literature is the periodic ho-

mogenization method [33, 34, 35, 36, 37]. It is mainly based on the method of

asymptotic developments and it assumes that the microstructure of the medium

is constituted of a periodic repetition of a certain basic elementary cell. In [36]

and [37], the periodic homogenization method is based on a dimensional analysis

of the transport equations written on the microscopic scale, making naturally

appear dimensionless numbers characterizing the problem. Recent contributions

in the literature have presented asymptotic periodic homogenization studies on

cementitious materials, applied to heat and moisture transfers [38, 39, 40], pre-

diction of effective mechanical, diffusive, and chemo-expansive properties [41],

diffusion-reaction problems [42], alkaline - silica reaction (ASR) [43], thermal

conduction [44, 45], modeling of calcium leaching [46], and the transfers of chlo-

ride ions taking into account ionic electrocapillary interactions with the solid

matrix [37, 47, 48, 49], etc. Finally, let us cite also recent works using homoge-

nization by two scales convergence methods [50, 51]

The aim of this paper is to develop a pertinent approach to evaluate the tor-

tuosity and constrictivity of porous media, mainly cementitious materials, by

asymptotic periodic homogenization from transport equations written at the lo-

cal scale for each phase of the cementitious material. The limitations mentioned

above have been overcome and the effect of the pore geometry on the tortuosity

and constrictivity of the material has been considered by rigorously incorporat-

ing the geometric characteristics of the microstructure. The equations of the

model, developed by the upscaling micro-macro method, depend directly on the

geometry of the porous medium through the homogenized parameters and the

boundary value problem calculated numerically on microstructures of the mate-
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rial considered. The article is organized as follows. Section 2 presents a review

of the homogenized model developed by asymptotic periodic homogenization.

Then, the properties of the material are calculated by numerical simulations

in section 3 by solving the boundary value problem which depends on the mi-

crostructure of the material. Different geometries of the porous medium were

considered for the tortuosity calculation and the constrictivity deduction. Fi-

nally, final conclusions are given in section 4.

2. Double-scale asymptotic method

The periodic homogenization method is one of many other up-scaling tech-

niques used to describe the physical phenomena at the global scale starting

from the local one. Let us consider that the porous material studied occupies

the domain S of the three-dimensional space IR3, whose characteristic length is

denoted L (Fig. 1). The macroscopic domain S is limited by the boundary ∂S.

A point of the macroscopic domain S will be denoted x = (x1, x2, x3). The

microstructure of the considered porous material is assumed to be periodic and

constituted of the repetition of the elementary cell Ω = Ωs ∪Ωf composed of a

solid phase Ωs and a fluid phase Ωf (Fig. 1). The characteristic length of the

elementary cell is denoted l.

Figure 1: Description of the porous material.

The boundary of the domain Ω is noted Γ. It is composed of the solid-fluid
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interface Γsf between the solid and the fluid phases and of the fluid-fluid in-

terface Γff separating two neighbouring elementary cells at the micro-scale. A

point of the domain Ω at the elementary cell will be noted y = (y1, y2, y3). The

characteristic length of the elementary cell l must be very small compared to

the macroscopic characteristic length L.

If we consider classical molecular diffusion in cementitious materials or ionic

diffusion without electrical double layer effects [48], the diffusion is governed

by Fick equation or Nernst-Planck equation (without charge effects) and the

homogenized diffusion tensor is given by1

Dhom = 1
|Ω|

∫
Ωf

D

(
I +

(
∂χ

∂y

)T
)
dΩ (1)

where vector χ is periodic and of zero average on Ωf , solution of the following

boundary value problem:


divy

(
D
(

I +
(
∂χ
∂y

)T))
= 0 in Ωf(

D
(
I + ∂χ

∂y

))
.n = 0 on Γsf

(2)

In (2), I denotes the identity tensor and ()T is the transposition operator. D

is the local diffusion coefficient in the fluid phase Ωf .

In this study, the local diffusion coefficient D is assumed to be constant. The

1This is a classical result well established in periodic homogenization techniques whose
details may be found in [48, 52].
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boundary value problem (2) then simplified to:



∆χi = 0 in Ωf

∂χi

∂y .n = −ni on Γsf

χi (y) = χi (y + l) on Γff

〈χi〉 = 1
|Ω|

∫
Ωf

χidΩ in Ωf

(3a)

(3b)

(3c)

(3d)

where χi represents the components of the vector χ and 〈χi〉 denotes the aver-

age of χi over Ω.

In numerous references in the literature for non reactive molecular diffusion,

authors define the ratio Dhom/D as a geometrical factor F including porosity,

tortuosity and constrictivity of the pore network, when the diffusion is elec-

trically neutral, i.e. without interactions between species or at the solid-fluid

interface Γsf .

We propose in this work to focus on the most common definition of the geomet-

rical factor used in literature [53, 54, 55, 56] that is

Dhom

D
= ϕδ

τ2 (4)

where ϕ denotes the porosity and δ the constrictivity. The relationship (4)

highlights that for the particular case of a cylindrical porous network, i.e. when

δ and τ are equal to 1, the ratio between Dhom and D is directly given by the

porosity, i.e. by the reduction of the section through which the species diffuses.

The tortuosity τ of the porous medium is generally defined as:

τ =

(
1
N

N∑
i=1

li

)
l

(5)

where li denotes the i-th tortuous path, N is the number of paths and l is the

size of the elementary cell.
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To determine the length of possible paths li, we propose to solve the following

auxiliary (dimensionless) diffusion problem posed on the elementary cell with

associated homogeneous Neumann boundary conditions:



∆yu = 0 in Ωf

∂u

∂y .n = 0 on Γsf

u (0, y1) = 1 on Γff (Inlet)

u (l, y2) = 0 on Γff (Outlet)

(6a)

(6b)

(6c)

(6d)

where u presents the tracer dimensionless concentration. For this steady-

problem, the paths (trajectories) are superimposed to the streamlines of prob-

lem (6). To determine trajectories, we solve the following equation of motion of

massless particles:
dq
dt

= v (7)

where t denotes the time, q is the particle position vector of components q =

(qy1 qy2) and v is the velocity function of diffusion flux streamlines obtained

from the solution of problem (6) as:

v=
(
− ∂u

∂y1
− ∂u

∂y2

)T

(8)

After the determination of the trajectories of particles, we calculate the distance

travelled by each particle. Let us notice that the path number is equal to the

particle number injected in Ωf along the inlet interface Γff where the boundary

condition (6c) is imposed. Indeed, the trajectory of each particle allows to

determine one value of tortuosity τ i. The tortuosity in the considered direction

is the arithmetic average of all tortuosity particles according to equation (5).

In parallel, we will solve closure problem (3) to determine vector χ on the same

elementary cell characterizing the porous network and compute the homogenized

diffusion tensor Dhom from equation (1). Then, from (4), we can deduce the

value of the constrictivity δ for each considered porosity ϕ. This procedure will
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be applied in the next section for different elementary cell geometries.

3. Numerical simulations and parametric study

The aim of this section is the determination of the tortuosity and constric-

tivity parameters on 2D elementary cells.

3.1. Case of one pore with variable size

We consider the periodic elementary cell of size (l × l), which is constituted

of a solid domain Ωs and a fluid domain Ωf . The interface solid-fluid Γsf is

defined quadratic Bézier curve of three points (P1 (0, 0) ; P2 (l/2, d) ; P3 (l, 0))

for the bottom interface and (P4 (0, l) ; P5 (l/2, l − d) ; P6 (l, l)) for the top in-

terface (Fig 2). The positions of points P2 and P5 varies according to the

variation of parameter d ∈ [0.1 0.9] with a step of about 0.1, leading to porosi-

ties ϕ ∈ [0.486 0.943]. The finite element method is used to solve problems (3),

(6) and (7).

Figure 2: Description of the elementary cell.

Let us apply the numerical procedure described previously to compute the tor-

tuosity τ . It is important to underline that according to the geometry of the

elementary cell, only χ1 is non null. Thus, we solve problem (3) for the variable
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χ1 only. The periodic boundary conditions (3c) are imposed on boundaries Γ1
ff

and Γ2
ff .

The problem (6) is then solved in direction y1 by imposing Dirichlet boundary

conditions (6c)-(6d) on Γ1
ff and Γ2

ff with u = 1 at y1 = 0 and u = 0 at y2 = l,

respectively. The Neumann boundary conditions (3b) and (6b) of problems (3)

and (6) are applied on the interface solid-fluid Γsf . Figure 3(a) shows the dis-

tribution of variable χ1.

(a) (b)

Figure 3: (a) Variable χ1. (b) Variation of relative homogenized diffusion coefficient versus
porosity ϕ.

After solving problem (3), the homogenized diffusion tensor Dhom is determined

by using expression (1) for different values of the porosity ϕ. Figure 3(b) shows

the variation of Dhom/D versus porosity ϕ of the elementary cell of figure 2. As

expected, we observe that the relative diffusion coefficient Dhom/D increases

with the increase of the porosity.

The second step of this numerical procedure consists in solving problem (6) in

order to determine u in fluid domain Ωf (see figure 4(a)). From u, we determine

the velocity vector given by expression (8). The equation of motion (7) is then

solved by injecting particles on the boundary Γ1
ff , which represents the inlet

of particles (Γ2
ff is the outlet). The number of particles injected is N = 100

uniformly distributed on the inlet Γ1
ff . The time step is about ∆t = 5× 10−3 s,
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the simulation stops when all particles reach the outlet boundary Γ2
ff . Figures

4(b) and 4(c) show the trajectories and velocity magnitude of particles injected

for two time values.

The determination of the elementary cell tortuosity of figure 2 in the direction

(a) (b)

(c) (d)

Figure 4: (a) Contours of variable u. (b) Particle trajectories at t = 0.2 s and (c) at t = 1.01 s.
(d) Path travelled by each particle.

y1, requires the calculation of the length of each particle trajectory. For any

particle i (i = 1, N), the length of path li is given by:

∆li (t) =
(

(qy1 (t+ ∆t)− qy1 (t))2 + (qy2 (t+ ∆t)− qy2 (t))2
) 1

2 (9)

li =
tf∑

t=0
∆li (t) (10)
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where ∆li (t) is the increment of distance travelled at time t and tf is the time

required for particle i to reach the outlet Γ2
ff .

Figure 4(d) shows the distance travelled by each particle. We remark that in the

vicinity of the solid-fluid interface Γsf the paths are longer. Far from Γsf , the

paths length becomes closer to the size of the elementary cell l. The tortuosity

is finally determined from equation (5) with N = 100 and for different values of

porosity ϕ (see figure 5(a)).

(a) (b)

Figure 5: (a) Variation of tortuosity versus porosity ϕ. (b) Variation of constrictivity δ versus
porosity ϕ.

We remark that the squared tortuosity τ2 obtained from equation (5) is lower

than the ratio
(
Dϕ/Dhom

)
derived from homogenization procedure. This means

that the geometrical tortuosity effects should be completed by the constrictiv-

ity δ, accounting for shrinkage or enlargement between obstacles. All these

geometrical effects are taken into account in the expression of the homogenized

diffusion tensor Dhom. The knowledge of tortuosity τ and ratio
(
Dhom/Dϕ

)
en-

ables to determinate the constrictivity δ from equation (4). Figure 5(b) shows

the variation of δ versus the porosity ϕ. We notice that δ increases with the

increase of the porosity ϕ, even if its value is contained in the interval [0.9, 1]

in the configuration studied.
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3.2. Case of a circular inclusion

Let us consider an elementary cell with a circular inclusion of radius R lo-

cated in the center of the periodic cell of size 1× 1 (Fig 6). The radius R varies

in the interval R ∈ [0.05 0.45] leading to a variation of the porosity in the range

ϕ ∈ [0.3, 0.99].

Figure 6: Elementary cell with circular inclusion.

The same procedure detailed in section 3.1 is used again for the new elementary

cell considered here. Because of the geometrical symmetry of the considered

unit cell, we solve problems (3), (6) and (7) only in the direction y1. In that

case the homogenized diffusion tensor is isotropic. The periodic boundary con-

ditions are imposed on the external boundary (fluid-fluid interface Γff ) of the

elementary cell. The boundary of the circular inclusion represents the fluid-solid

interface Γsf where boundary conditions (3b) and (6b) are imposed. For each

value of porosity ϕ, we solve the Neumann problem (3) and we determine the

homogenized diffusion coefficient Dhom by using equation (1).

Figures 7(a) shows the variation of the relative homogenized diffusion coefficient

Dhom/D versus the porosity ϕ. We notice that the homogenized diffusion coef-

ficient increases with the increase of the porosity as observed in the example of

section 3.1. The same result, which is intuitive, is also obtained in [48, 57].

Then, we solve problem (6) and (7) to determine the length of all possible paths
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(a) (b)

Figure 7: (a) Variation of Dhom/D versus porosity. (b) Path travelled by each particle for
ϕ = 49.7%.

in direction y1 for different values of porosity. Figure 7(b) shows the paths of

100 particles. We observe that the path length increases in the vicinity of the

circular inclusion. Far from the inclusion, the paths are closer to an ideal path

equal to the unit cell size l = 1.

(a) (b)

Figure 8: (a) Variation of tortuosity versus ϕ. (b) Variation of constrictivity versus ϕ.

The tortuosity τ is determined from equation (5) for different values of the

porosity ϕ. Figure 8(a) shows the variations of the tortuosity (τ and τ2) and

of the ratio Dϕ/Dhom with respect to the porosity ϕ for the elementary cell of

figure 6. It is important to underscore that, in the case of the circular inclusion,
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the tortuosity τ follows a quasilinear behaviour with respect to the porosity

ϕ. We notice also that the variation of the ratio Dϕ/Dhom is non-linear for

ϕ < 0.5. The ratio Dϕ/Dhom increases sharply when the porosity is in the

vicinity of the threshold of fluid phase connectivity (ϕ ' 0.33). We underline

that the ratio Dϕ/Dhom is higher than the squared tortuosity τ2. The differ-

ence between Dϕ/Dhom and τ2 is due to the reduction of the distance between

neighbouring inclusions. This effect is represented by the constrictivity factor

δ according to equation (4), whose variation versus the porosity ϕ is plotted in

figure 8(b). We observe that δ increases with the increase of the porosity, with

non linear variations for porosity ϕ < 0.5. In this range (low value of ϕ), the

constrictivity effect is more important because of the decrease of the distance

between solid inclusions.

3.3. Case of a random porous media

In this section we are interested in the case of a random bi-dimensional

porous medium (Fig 9). The periodic elementary cell, of size 1×1, is composed

of discs representing the solid phase Ωs, the domain between discs is the fluid

phase Ωf . The disc boundaries represent the solid-fluid interfaceΓsf . The ex-

ternal boundary of the elementary cell defines the fluid-fluid interface Γff .

The circular inclusions are generated randomly, the radius R of each disc is cho-

sen in the interval Rmin 6 R 6 Rmax. In addition, positions of particle centers

are also determined arbitrarily in order to avoid the overlapping between discs.

For that purpose, we impose that the separation distance between the centers

of disc to all neighbouring ones to be smaller than a minimum distance. With

this criterion, the connectivity of the fluid phase is guaranteed. The number of

discs depends on the value of the fixed porosity. As a first step, we consider four

values of porosity (40% 50% 60% 70%)2. For each porosity value, six samples

2Other numerical simulations with a global porosity of the sample between 8% and 20%
could be performed to be more representative of porosities of classical concretes or mortars.
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Figure 9: Periodic elementary cell of the random porous medium (bi-dimensional case).

are generated randomly. The chose of 6 samples seems to be sufficient to take

into account a geometric variability. Table 1 summarizes the geometrical prop-

erties considered for the corresponding samples for all porosities. The minimum

and maximum radii are fixed to be Rmin = Rmax/20 and Rmax = 0.15× l where

l = 1 is the size of the unit cell. We determine for each sample the mean radius

R and the standard deviation σ. Finally Nbc denotes the number of circles

necessary to reach the fixed value of the porosity.

The disc size distribution curve is presented in figure 10, for four values of the

porosity. We remark for several samples that when the porosity increases, the

dispersion of the size disc distribution becomes important. We observe that

R and σ are closer for lowest porosity (see Table 1). Progressively, the gap

increases with the increase of the porosity.

In this example, we have focused on a clearer picture of the results.
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Figure 10: Grain size distribution curve for different porosities.
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As previously, we adopt the procedure outlined in section 3.1. Firstly, we

solve the boundary value problem (3) in direction y1 and y2 to determine the

components χ1 and χ2 of vector χ. After that, we calculate the components of

the homogenized diffusion tensor using (1). In that case, Dhom is an anisotropic

tensor.

In a second time, we solve the diffusion problem (6) to determine scalar variables

u1 and u2 in direction y1 and y2 respectively. The periodic boundary conditions

(3c) of problem (3) are applied on the external fluid-fluid interfaces Γff . Neu-

mann boundary conditions (3b) and (6b) of problems (4) and (6) are applied on

the solid-fluid interface Γsf . In addition, boundary conditions (6b) are applied

on Γ3
ff and Γ4

ff (Γ1
ff and Γ2

ff ), when problem (6) is solved in direction y1 (in

direction y2 respectively). The Dirichlet boundary conditions (6c)-(6d) are ap-

plied on Γ1
ff with u1 = 1 and on Γ2

ff with u1 = 0 in direction y1 (on Γ3
ff with

u2 = 1 and on Γ4
ff with u2 = 0 in direction y2).

Afterwards, we solve the motion equation (7) of massless particles by injecting

N = 200 particles on boundary Γ1
ff and on boundary Γ3

ff corresponding to the

inlet, according to y1 and y2 directions. The N particles injected are uniformly

distributed on the inlet boundaries and they are collected on boundaries Γ2
ff

and Γ4
ff . The velocity of particles is then computed from the flux diffusion

streamlines obtained using the gradient of variables u1 and u2 as follows:

v1=

 −∂u1
∂y1

−∂u1
∂y2

 ; v2=

 −∂u2
∂y1

−∂u2
∂y2

 (11)

The determination of the vector position from equation (7) enables to calculate

the distance travelled by each particle in the two-dimensional porous medium.

Finally, we determine the tortuosity using equation (5) and we deduce the con-

strictivity form equation (4).

We use finite element method to solve problems (3), (6) and (7). The mesh is

refined in the vicinity of solid-fluid interface Γsf (Fig. 11), where the code color

represents the normalized size of triangular element of the mesh.
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Figure 11: Mesh size distribution (the code color corresponds to the size of elements).

(a) (b)

Figure 12: Numerical results for the sample number 5 with a porosity ϕ = 0.4. (a) Distribution
of χ1. (b) Distribution of χ2.
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Figure 12(a) and 12(b) show the average3 of components χ1 and χ2 of vector χ

in direction y1 and y2, respectively for sample number 5 with porosity of 40%.

From vector χ, we calculate the components of homogenized diffusion tensor

Dhom/D. The numerical values of the relative diagonals values Dhom
11 /D and

Dhom
22 /D are summarized in Table 2. We notice that the values of Dhom

11 /D and

Dhom
22 /D present some dispersion for fixed porosity (see Fig. 13) due to the

difference on the grain size distribution presented in figure 10. This dispersion

becomes more important with the increase of the porosity.

Figure 13: Variation of the mean value of the relative homogenized diffusion coefficients
in direction y1 and y2 versus porosity. The error bar represents the dispersion (standard
deviation) of the results.

The variations of the mean value and the standard deviation (error bar) of

Dhom
11 /D and of Dhom

22 /D as function of porosity are presented in figure 13. In

that case, the mean value is the arithmetic average on the samples with fixed

porosity. As expected, the relative homogenized diffusion coefficients increase

with ϕ. We observe that the mean values of Dhom
11 /D and of Dhom

22 /D are close

due to the relatively large number of samples considered for each porosity and

to the random process used. In this case, we can consider the homogenized

diffusion tensor and the microstructure as (nearly) isotropic.

Figures 14(a) and 14(b) show the trajectories in the direction y1 and y2 respec-

tively with a normalized magnitude velocity distribution.

3The average is calculated on the six samples tested and listed in table 1.

24



(a) (b)

Figure 14: Numerical results for the sample number 5 with a porosity ϕ = 0.4. (a) Particle
trajectories with the normalized velocity in direction y1. (b) Particle trajectories with the
normalized velocity in direction y2.

Tortuosity τ11 and τ22 are determined from equation (5) in the direction y1 and

y2 respectively. These values are presented in table 2 for each sample.

Figure 15: Variation of the mean value of the tortuosity in direction y1 and y2 versus porosity.

Figure 15 shows the variation of the mean value of the tortuosity τ and τ2 with

respect to the porosity ϕ in direction y1 and y2. In the same figure, the varia-

tion of the mean values of the ratios Dϕ/Dhom
11 and Dϕ/Dhom

22 versus porosity

are plotted. The difference between mean value of τ2
ii and the ratio Dϕ/Dhom

ii

can be quantified by the constrictivity δ11 and δ22 in direction y1 and y2 as in
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previous cases (Table 2).

(a) (b)

Figure 16: (a) Variation of constrictivity mean value versus porosity. (b) Variation of specific
surface mean value versus porosity.

Figure 16(a) shows the variation of the average constrictivity versus the porosity

in directions y1 and y2. We note that the constrictivities δ11 and δ22 increase

with porosity and tend to unity for high porosity values. In addition, we observe

that the constrictivity δ11 < δ22, except for porosity of 50%. This is due to the

variation of homogenized diffusion tensor components, which present the same

behaviour in Fig. 13 (even if it is less marked). The specific surface Sp = |Γsf |
|Ω|

takes into account the size and number of inclusions composing the numerical

porous medium. For a fixed porosity, we note that the specific surface is differ-

ent for different samples having the same porosity (Table 2). For a fixed value of

the porosity, the specific surface presents a dispersion linked to the random way

of generating the random porous medium. This dispersion is more important

for smallest porosities and decreases strongly for higher porosities (Fig. 16(b)).

We notice that the tortuosity increases and constricitivity decreases with the

increase of the specific surface Sp. Indeed, when the discs are closer, the paths

length required to bypass the solid obstacles increases. If constrictivity is con-

sidered to be the ratio of smallest to highest pore sizes, the increase of Sp leads

to a pore size decrease, which corresponds to a decrease of constricivity.
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3.4. Discussion and comparison

In this numerical study, we are interested in the calculation of the geometri-

cal parameters of porous media and in the determination of the tortuosity and

constrictivity with particular application to cementitious materials. The first

case studied concern a unit cell constituted of a single pore with variable size.

This simple geometry allowed us to highlight the effect of constrictivity and

tortuosity in the diffusion process in a porous media and to extract its effect

from the macroscopic ratio Dϕ/Dhom obtained by periodic homogenization and

often used in literature. These results were confirmed by the second example

considered (a unit cell with a circular inclusion) where the effects of tortuosity

and constrictivity are more important. In both cases, we observe the decreasing

of tortuosity and the increasing of constrictivity when porosity increases. The

last more complex case studied is a random porous media composed of poly-

disperse circular inclusions. The variation of Dϕ/Dhom is slightly different in

the two directions due to a non perfectly isotropic granular assembly. The same

tendency is still observed with an amplification of the variations. In addition,

the constrictivity in this case presents some dispersion due to the random way

to generate the porous medium. The specific surface which takes into account

the variation of the number and size inclusions, seems to have also an important

effect on the constrictivity.

Let us now try to compare4 the order of magnitude the results obtained here

to some existing experimental and numerical models of the literature (Fig. 17

and 18). First, we propose to compare the ratio Dϕ/Dhom
ii for random porous

medium to experimental data obtained from diffusion test of chloride in cement

paste. This experimental data are represented by the fitted evolution laws of the

4It is important to underscore that the comparison is mainly illustrative as our simulations
are in 2D whereas the experimental results are obtained in 3D. Moreover, the latter have been
fitted and sometimes extrapolated for a possible comparison.
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Figure 17: Comparison of Dϕ/Dhom with experimental and numerical results in literature.

measured values. In addition, numerical models are used for this comparison as

the results of Feng et al. [58] and Damrongwiriyanupap et al. [59] which give a

good approximation of chloride diffusivity in cement paste. We notice that our

results are of the same order as the experimental data for the high porosities,

the gap becomes more important for the low porosities.

Figure 18: Comparison of τ2 with numerical results in literature.
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On Fig. 18, we compare the squared tortuosity obtained for the random porous

media of Fig. 9 to the some empirical expressions obtained from numerical sim-

ulations of 2D and 3D geometry [31, 60, 61, 62, 63]. We remark that there is

significant differences between our model and models of random squared over-

lapping inclusions [60, 61, 62]. For high porosities (ϕ > 0.5), our model gives

squared tortuosity value closer to those obtained in the case of the cubic and

tetrahedral packings of monosized spherical inclusions [63]. In the case of a

circular inclusion, the model developed by Sun el al. [31], where the tortuosity

is expressed with respect to porosity as τ = 1 − p ln (ϕ), is very closer to our

results with p = 0.409 (see equation (24) of [31]).

4. Conclusion

In this study, we presented a new approach to calculate numerically the

tortuosity and the constrictivity of the pores network of a porous medium, for

application to cementitious materials. In this context, the asymptotic periodic

homogenization method was used to calculate a homogenized diffusion coeffi-

cient of non-reactive and non-charged particles. The latter is directly related to

the geometry of the porous medium microstructure considered by means of the

formation factor. It has been shown that the diffusion coefficient increases with

the increase in the porosity. Then, the monitoring of particles injected in the

porous network allowed calculating numerically the tortuosity of the medium. It

was noted that the calculated tortuosity value is lower than the relative diffusion

coefficient, which derives from the homogenization procedure. The difference is

attributed to the constrictivity factor, which is deduced from this difference. In

addition, the study presented in this paper aims at considering the effect of var-

ious parameters characterizing the microstructure, such as porosity, grain size

distribution, specific surface of the pores and geometry of the porous medium,

on the tortuosity and the constrictivity of pore network. The results indicate

that:

• The values of the constrictivity evolve as the porosity. Regarding the
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tortuosity, its evolution is inversely proportional to the porosity of the

medium.

• The grain size distribution affects the values of the tortuosity and constric-

tivity of the pore network, due to the variation of the specific surface. In

fact, for the same porosity, the tortuosity increases and the constrictivity

of pore network decreases with the increase in the specific surface. In this

case, the solid inclusions are larger and closer, they induce an increase in

the paths necessary to get around the solid phase in the medium.

• For representative cells with generated inclusions, the study proved that

the length of the particle path increases in the vicinity of the inclusions

which oppose their trajectory. Consequently, a smaller constrictivity of

the pore network and a slightly higher tortuosity were observed.

• Finally, concerning the most realistic case where the microstructure of

the material is generated in a random way, the calculated tortuosity and

constrictivity are different in the main directions of the medium due to

the anisotropy of the microstructure.

This work provides fundamental data for a better understanding of the tortu-

osity and constrictivity of pore networks of complex materials. However, the

geometries considered in this study allow obtaining porosities that can corre-

spond to those of usually cement pastes and mortars. On the other hand, the

case of concrete, with lower porosity (sometimes <15%), was not tackled in

this study. It is therefore possible subsequently to extend this work to analyze

in depth the effect the microstructural parameters governing the durability of

concrete. We can consider the implementation of an approach allowing study-

ing geometries corresponding to those of cementitious materials with very low

porosities and in 3D dimensions for more realistic microstructure models.
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