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Abstract—Due to environmental concerns, renewable energy
sources (RES) play an increasingly important role in the energy
mix. In France, from 2018 to 2019, an increase of 21.2%
and 7.8% of energy production was observed for wind and
solar respectively [1]. RES are characterized by high variability
and limited predictability, mostly due to their dependence on
meteorological factors. This variability presents challenges for
RES integration into grids and electricity markets: as the
penetration of RES increases, power system balancing becomes
more complex, and congestions may occur in the grid. This
lack of predictability can also have financial consequences. In
some European countries, energy producers have to pay penalties
proportional to the forecasting error of the injected power. To
address these challenges, it is important to accurately predict
the future amount of energy production. In this paper we
propose a spot statistical forecasting model for very short-term
time horizons (from a few minutes up to 6 hours ahead).
This model is based on a combination of heterogeneous inputs
with a conditioned learning approach. Spatio-temporal inputs
(measurements from geographically distributed PV sites and
satellite images) are used to enhance short-term predictability,
while a weather analog approach enables adaptability to changes
in meteorological conditions by considering the most relevant past
observations. The performance evaluations are carried out on a
case study featuring nine PV plants located in France, over a
one-year period.

Index Terms—Short-term solar power forecasting, analog
approach, conditional forecast, spatio-temporal, auto-regressive
processes, smart grid.

I. INTRODUCTION

Over the past years, environmental awareness, policies to
promote sustainability, and even a reduction in production
costs have led to the development of RES in many coun-
tries. Nevertheless, RES remain a challenging technology for
transmission and distribution system operators. As a weather-
dependent source of energy, RES are characterized by high
variability. As a result, high penetration rates into the electrical
grid can jeopardize the safe and economic operation of the
power system. Apart from security concerns, fluctuations in
RES can also induce financial penalties for power producers.
In the coming years, feed-in tariff policies are due to end in

several European countries which will lead related actors to
participate in electricity markets. In addition, operators that
sell energy on electricity markets are required to pay financial
penalties proportional to any mismatches between the energy
sold based on forecasts and the energy actually produced.
Thus, to maintain grid stability and avoid economic losses
for power producing companies, efficient power forecasting
models are needed.

Unlike wind production forecasting which dates back to the
1980s [2], research on PV production forecasting is a more
recent field of research, mainly due to the later development
of solar power penetration [3]. Nevertheless, the state of the
art regarding PV production forecasting has developed rapidly
in recent years [4]. The literature provides us with a large
number of models tailored for specific lead time ranges. For
instance, day-ahead and longer horizon forecasting models are
based on down-scaling approaches from Numerical Weather
Predictions (NWPs), while short-term models typically use
past production [5] and remote sensing observations (e.g. sky
or satellite images). Recent studies have shown that accu-
rate forecasting benefits from combining endogenous inputs
(variables influenced by other factors within the model, in
this case, past production) with exogenous ones (variables
influenced by external factors to the model) such as satellite
images [6] or measurements from geographically distributed
PV units [7], [8]. These models use the spatial dependency of
weather variables to provide valuable information regarding
cloud movements. For a few years, to enhance PV production
forecast performances (in terms of accuracy and computational
cost), some authors turned to analog-based methods. This set
of methods, initially used for down-scaling NWPs outputs,
supposes that two similar synoptic states lead to similar local
situations [9]. This idea can be extended for PV production
forecasting assuming that for two similar atmospheric states,
related PV production is comparable [10].

The key contribution of this paper is to propose a short-term
forecasting model using spatio-temporal inputs conditioned
to the synoptic atmospheric state thanks to an analog-based
selection. This approach aims at making efficient use of
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past production information by providing a coherent learning
subset conditioned to meteorological conditions. Our approach
extends current methods that mainly use local information
from NWPs and explores the contribution that this type of
information may bring. In contrast to the tendency for black- or
grey-box models today, the proposed approach, although data-
driven, makes it possible to link the PV prediction output to
specific weather situations, thus enhancing the interpretability
of the forecast results in terms of both forecasts and prediction
errors.

The paper is organized as follows. Section II describes
the objectives of the present study and the approaches
implemented. Section III presents the inputs used. Then
section IV describes the model’s implementation while
section V discusses the outcomes. Finally, section VI draws
the conclusions of this study.

II. MOTIVATION AND APPROACH
A. Objectives

We propose a meteorological data-driven approach based
on an analog method to define coherent learning subsets
from a weather point of view. To do so, we use a synoptic
scale analog predictor, namely the geopotential field which
is considered as a wind driver, to condition the learning
phase of the forecast model. In other words, an analog based
method makes it possible to determine a subset of past PV
production, observed under similar weather conditions, to fit
the forecasting model. Moreover, the forecast model is tailored
for short-term lead times by considering endogenous data and
heterogeneous spatio-temporal inputs. The innovative aspect
of this paper is that we propose a spatio-temporal weather-
dependent model to forecast PV production for short-term
horizons. To our knowledge no other contributions address
this topic on the same forecast lead time range (i.e. 15’ up to
6h ahead).

B. Conditioned Learning Set Based on an Analogy Approach

PV production is intermittent in nature because of variable
cloud cover. Accurate short-term predictions require forecast
models that are able to operate efficiently on a wide range
of weather conditions (from sunny to overcast skies). To take
into account constantly variable weather conditions, models
must be dynamically adaptable to the current weather situation.
[11] proposed an online adaptive linear prediction model using
recursive least squares with a forgetting factor. This approach
proved to be more accurate than a static approach because
it took into account weather variability and the changing
conditions of the PV systems.

Rather than considering only recent observations, some
authors have chosen to consider PV production observations
related to similar weather states, i.e. analog techniques. The
main idea behind analogy can be summed up by the saying:
History repeats itself. Indeed, similar weather states can be
observed throughout time. Of course, depending on the num-
ber of physical variables at stake or the extent of the spatial

windows over which the analogy is performed, perfect analogy
can be illusory. In that case, one must be satisfied with partial
similarity. In the literature, this principle has been used through
various adaptations. For instance, [12] proposed an analog
down-scaling technique to forecast fine-scale variability from
a coarse-scale NWPs. As for [10], the authors used an analog
based approach to provide probabilistic forecast assuming that
similar NWPs present similar forecast errors.

Step 1: Among the available
historical ~ dataset, identify
similar situations with situation
attime t + h.

Past
meteorological
archive

Step 2: Match candidate
meteorological situations with
PV production observations

Past observed
PV production
archive

Time
Historical dataset t

Legend | Target meteorological situation | Target PV production to forecast

| Analogous meteorological situation | PV production observation used to fit models

Fig. 1: Schematic representation of the analog process, in-
spired from [13] and [14].

In the present study, we propose to implement an analog ap-
proach to determine a weather-consistent learning subset with
the aim of providing a model adapted to future meteorological
states. Figure 1 shows in a schematic way how the analogy
method is used throughout this study:

« First, we build two past data sets for the same period:
a past meteorological archive (containing the analog pre-
dictors) and a previously observed PV production archive.

« We then retrieve the forecast of analog predictors at time
t+h.

« A score of analogy is used to measure similarity between
the target meteorological situation, at time ¢+ h, and the
candidate situations from the past meteorological archive.

o Next, we rank each meteorological situation from the
most similar to the least similar. The N best meteo-
rological situations are selected. This approach can be
assimilated to a k-Nearest-Neighbor approach.

o The N PV production observations associated with the
previous subset are used to train the forecasting model.

1) Analog variable: The proposed conditioning approach
aims at providing learning samples with coherent PV produc-
tion patterns. To do so, it is necessary to find situations with
similar cloud dynamics. In the meteorology field, geopotential
height, which is considered as a wind driver, is a common
predictor used to forecast precipitation generation. The geopo-
tential height can be used to derive the pressure gradient that
drives the air flow from high to low pressure regions. Thus,
geopotential heights are highly correlated to wind flow and
cloud development. In this perspective, [15] used geopoten-
tial height to forecast global horizontal irradiance (GHI) in
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California. It has been previously shown that the formation
of local fog and stratus systems is dependent on the synoptic
atmospheric flow conditions.

Based on the above, we chose the geopotential field as
an analog predictor. This variable can be defined as roughly
the height above sea level of a pressure level [16] (e.g.
considering the 500 hPa pressure level, if at a specific location
the geopotential height is 5,300 m?s? this means that a 500
hPa atmospheric pressure is achieved at 5,300 m above sea
level).

2) Analog metric: To measure analogy between target and
candidate situations, it is important to define a metric. In
the literature on PV forecasting, metrics based on Euclidean
distances have been proposed to measure similarity between
local variables. In the present study, we consider geopotential
height as a spatial variable; thus, it is necessary to use a metric
that takes into account the predictor spatial distribution. In the
meteorology domain, the score S1 is usually employed [9]:

SIS Al Al
Sl Al - ard]
S max (jaT A )+
Sy 3 ma (|aT | a2e])
Where: { ij( = Viil,j - V2)§ Xel{oT}

73X __ X X
Ay = Vi = Vi

S1 =100

T the target situation (i.e. future state)
C' the candidate situation (i.e. from past records)

X . .
i, the east-west geopotential gradient
Al i the north-south geopotential gradient

Vi,; the geopotential field at grid node (i,j)

C. Multi-Input Approach

The literature has shown the relevance of exogenous inputs
for PV production forecasting. Indeed, recent years have seen
an increasing use of satellite images [6], [17] and distributed
PV sites [7], [8] to reduce forecasting errors for short lead
times. By considering nearby weather conditions, spatio-
temporal models tend to outperform temporal-only models.

Due to their wide spatial range, satellite images are used
to improve our knowledge of spatio-temporal phenomena
occurring close to the site. In contrast to surrounding sites,
which are generally sparsely distributed, satellite images
provide a much denser source of information with evenly
distributed pixels. As a result, it is possible to select a subset
of pixels with relevant locations to get the full benefits of
the spatio-temporal information (e.g. pixels in the cloud
displacement direction). On the other hand, the spatial
resolution of satellite images can be too coarse to reveal
small cloud structures. Thus, combining distributed PV sites
and satellite images seems relevant. It is worth mentioning
that satellite images are delivered with a time delay of a few
minutes enabling nowcasting approaches.

III. OBSERVATIONAL AND METEOROLOGICAL DATA SETS

The data set considered here is composed of PV production
observations from 9 PV plants, satellite images centered on
the PV plants, and a geopotential fields reanalysis used as
an analog predictor. The PV production observations and
satellite images have a temporal resolution of 15 minutes,
while reanalysis data have an hourly time step. All of these
data range from 2015-01-01 to 2016-12-31.

A. PV Power Production

Production records provided by the Compagnie Nationale
du Rhéne (CNR), France’s leading 100% RES producer, are
considered throughout this study. The data set is composed
of 9 PV grid-connected systems located in the Rhone valley,
mainly along the Rhone River (Figure 2). The installed power
capacity ranges from 1.2 to 12 MWp, while the distance
between sites ranges from 7.3 to 133 km. Considering this
specific data set, spatio-temporal dependencies between sites
can be taken to outperform a temporal forecasting approach
[18].

Despite the fact that the sites are located in the same region,
meteorological conditions can vary from one place to another:
the southernmost site is mainly influenced by a Mediterranean
climate while the westernmost one is subject to an Alpine
climate.

Each site’s production observation is normalized by the cor-
responding installed capacity to enable comparison between
PV plants.

Fig. 2: PV sites located in southeast France.

B. Satellite Images

We considered satellite images obtained from the
HelioClim-3 database with the HelioSat-2 method [19].
Helioclim-3 images provide an estimation of the GHI at
ground level. The spatial and time resolutions are respectively
0.0625° x 0.0625° and 15 minutes. The images are converted
into time series of estimated GHI for each pixel.
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C. Analog Predictor

The geopotential height variable comes from the reanalysis
data set ERAS-ECMWF [20]. Thus, the expected target situ-
ation at time ¢ + h corresponds to observed data whereas in
an operational context, NWPs would be used. As a result, the
approach implemented corresponds to a perfect prognosis case.
This choice was made to evaluate the benefits of conditioning
the learning to synoptic states, while excluding forecasting
errors. However, as pointed out by [15], NWPs models are
relatively good at predicting synoptic scale variables such as
geopotential height fields. Thus, we can assume that conclu-
sions drawn in section VI can be extended, up to a point, to
an approach based on predicted rather than reanalysis data.

We chose geopotential fields at pressure levels of 500 and
925 hPa. In the meteorology domain, these fields are known
to contain essential information about dynamic and thermody-
namic physical processes behind precipitation generation and
distribution [21].

IV. FORECAST METHODOLOGY

This section presents the model used to forecast PV pro-
duction and how the conditioning approach is implemented.
All of the developments are made in R language [22].

A. Data Stationarity

PV production is a non-stationary process due to astronomi-
cal and meteorological phenomena. A common way to remove
the deterministic astronomical component of the signal is to
normalize PV production with a clear sky model output, which
is a model estimating irradiance with clear sky conditions.
Here, the MacClear model [23] is used.

Moreover, in-situ measurements are more subject to error
for low solar elevation [24], leading to aberrant normalized
values. To deal with this, we imposed a 5° threshold on the
solar elevation angle, and only considered observations above
this threshold as production observations.

B. Reference Model

The persistence model is often used as a reference in the
literature for RES forecasting. This method is simple inasmuch
as it does not consider off-site data and does not require
modeling processes. The smart persistence model used is
defined as follows:

B Py if P2 # 0 (i.e. daytime)
T\ Py ouy i PP =0 (ie. nighttime)

h  Forecasting horizon
x Site of interest
PP Observed stationarized production at time ¢

Forecast stationarized production at time ¢ + h

To avoid obtaining overoptimistic results, we also imple-
mented a more advanced forecasting model, Random Forest
(RF), considering only past production observations of the site
of interest.

C. Forecasting Models

The core of the forecasting approach presented here is an
auto-regressive (AR) model. ARIMA models are a family that
is well suited to short-term predictions and provides easy-to-
understand regression coefficients. The initial AR model, fitted
on all available data (i.e. independently of the time of day
or the weather state), is then extended by conditioning the
learning set, which leads to the conditioned auto-regressive
(CAR) model. For each forecast, a two-phase conditioning
approach is used:

o First, a selection is performed based on a temporal
criterion (CAR-T model): the learning set is conditioned
to the time of the day. This approach is somewhat similar
to [10] who used solar angles (i.e elevation and azimuth).
A comparison between time and solar angle conditioning
showed that the first approach leads to slightly better
performances.

o Then, a second selection step based on the analog
approach presented in II-B is performed (CAR-T.An
model): the future geopotential height field at time ¢ + h
is used to determine a coherent learning subset among
the past records.

Eventually, spatio-temporal (ST) data (neighboring sites and

satellite pixels) are added to the model as exogenous inputs,
which leads to the CARST-T.An model expressed as:

L N
~x ~ /\l’ — AS — .
tnleA = On + Z Z B fan(PLy) + Zﬂh,%th,t(Sf)
1=0 yeX i=1
7 3)
S¢  Stationarized GHI satellite observation at time ¢ and

__ pixel ¢

B Regression coefficients

L Order of the AR model (here, L = 2H)

X  Set of neighboring plants

A Analog predictor state at time t + h
fa, Analog based conditioning function

D. Dimensionality Reduction

Taking into account satellite images substantially increases
the number of variables. To decrease the related computational
burden, only the most informative pixels are retained. To select
the relevant pixels, the mutual information (MI) criterion is
used [17]. Here, only the 10 most informative pixels are kept.

E. Evaluation Metrics

The Root Mean Square Error (RMSE) is used to assess the
forecasting performances:

1 - (5 2
RMSE= | =3 (Pi— ) “

P,, the daytime production forecast is obtained by mul-
tiplying forecast stationarized production by the McClear
model and P; corresponds to non-stationarized observa-
tion. To compare model performances with the reference
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model, the following comparison skill score is used (with
RMSEPerfect model(h) = 07 Vh)

RMSEMOdel(h) — RMSEReference(h)

SS(h) =
( ) RMSEPerfect model (h) - RMSEReference(hzs

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Sensibility Analysis

In the next step, we carry out a sensibility analysis of the
spatial extent of the analog predictor, the number of analogous
situations to consider, and the geopotential field (i.e. 500 or
925 hPa). Three spatial windows centered over the Rhone
valley region are studied (Fig. 3).

< 852km

(a) Window 1 (b) Window 2

(c) Window 3

Fig. 3: Grid domains used for analog research

Overall, window 1 (Fig. 3a) leads to better RMSE scores
(Fig. 4). For short horizons (i.e h € [15min, 1H00]), better
performances are achieved when considering many analogs
(i.e. 100 or 200 analogs), while for longer horizons, it works
better to include fewer analogs (50 or 100 analogs). A good
compromise seems to be to consider 100 analog. The same
analysis is carried out for the 500 hPa geopotential field
pressure but lower performances are achieved.
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Fig. 4: RMSE scores considering the parameters: spatial
window scope, number of analogous situations and forecasting
horizons for the 925 hPa geopotential field pressure

B. Influence of Conditioning

With respect to the smart persistence model, the AR model
with only endogenous inputs leads to better performances (Fig.
5). Then, conditioning the AR model with the time of the day
(i.e. CAR-T model) improves RMSE scores. The AR model
conditioned simultaneously by temporal and weather situations
(CAR-T.An model) outperforms the previous models espe-
cially for longer lead-times. Thus, the proposed conditioning
approach allow us to improve forecast performance by up to
28% in comparison with a smart persistence model at a 6H
lead-time.

Score Skill Score

I

020 P

20.0%

EELC
EETE]

10.0%

0.0%

e &
& &

%“ d & o ¢ & @
ST L &S RS

Model + Smart Persistance + AR * CAR-T — CAR-T.An

Fig. 5: Averaged performances of conditioning approaches

C. Comparison with an Advanced Forecast Model

Considering only past endogenous observations, the RF
model outperforms the AR model (Fig. 6). However, the
proposed conditioning approach (CAR-T.An model) improves
the performances of the AR model compared to the RF model.
Applying the conditioning approach to the RF model (CRF-
T.An) improves performances for horizon longer than 1H30
(worse performances for shorter lead times are presumed to
result from over-fitting). It is worth mentioning that despite
this improved performances, the CRF-T.An model is still less
efficient than the CAR-T.An model.

D. Influence of Spatio-temporal Inputs

Finally, we can deduce that including data from the dis-
tributed sites and from the satellite images improves the
forecasting performances of the CAR model (Fig. 7). The
influence of spatio-temporal data is greater for very short-term
horizons (i.e. 30min ahead) and decreases progressively for
longer horizons, becoming negligible for 6h ahead.

VI. CONCLUSION

This study proposes a deterministic short-term forecast
model based on adaptive weather-conditioned learning and
fed with spatio-temporal inputs. The conditioning approach
is performed thanks to an analog based method using a
geopotential field as an analog predictor, which is considered
as a wind driver. To improve short-term accuracy, satellite
images and distributed PV sites are used as inputs. The
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Fig. 6: Averaged performance of the RF model compared with
the CAR approach
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Model Smart Persistance CAR-T.An
* CAR-T.An + Distributed Sites < CAR-T.An + Satellite + Distributed Sites [16]
Fig. 7: Averaged performances of the CARST models
[17]
results show that the conditioned auto-regressive model (CAR)
outperformed the smart persistence reference model by up to  [18]
28% for a 6H leading horizon. Thus, we deduce that the con-
ditioning process makes it possible to capture the interaction
between PV production and weather conditions. In addition, [19]
spatio-temporal data improve the CAR performances by up
to 3.5% for short-term horizons. The proposed deterministic  [20]
approach could be extended to probabilistic forecasting using,
for instance, kernel density estimation [17].
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