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Abstract: This review highlights recent progress in the synthesis and application of vinyl ethers (VEs) as monomers 
for modern homo- and co-polymerization processes. VEs can be easily prepared using a number of traditional 
synthetic protocols including a more sustainable and straightforward manner by reacting gaseous acetylene or 
calcium carbide with alcohols. The remarkably tunable chemistry of VEs allows designing and obtaining polymers 
with well-defined structures and controllable properties. Both VE homopolymerization and copolymerization 
systems are considered, and specific emphasis is given to the novel initiating systems and to the methods of 
stereocontrol.
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Dichloromethane (DCM)
Differential scanning calorimetry (DSC)
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1. Introduction

Amazing achievements in vinyl ether (VE) chemistry, from the first example of VE 

polymerization [1] to a plethora of recent research [2-10], facilitated enormous progress in VEs 

synthesis and in design of advanced polymer materials. The fundamentally important point in 

this subject is the remarkable versatility of VE structures that resonates with the tunability of 

the corresponding polymeric systems. To exemplify, industrially manufactured iso-butyl vinyl 

ether (IBVE) has being ubiquitously utilized as monomer in a diverse range of research projects 

[11-17]. At the same time, many VEs and poly(VE)s are now ton-scale products of the chemical 

industry [18]. 

A new wave of interest to VEs was raised by sustainability demands.  For instance, VEs can 

be obtained from various sources of carbon using calcium-carbide-based technologies from 

fossil carbon (coal, etc.), regenerated carbon (wastes and end-of-life sources), biomass 

(including biomass processing wastes), as well as from carbon dioxide in a future perspective 

(via conversion of carbon dioxide to carbon) [19]. Potential ability to access VEs from virtually 

any carbon source including renewable biomass [20] identified these monomers as highly 

promising candidates to design bio-based and sustainable plastics.

The classical chain-growth polymerization protocols provide major advantages over the 

step-growth (e.g., polycondensation) processes in accessing functional polymers with enhanced 

control over the organization of repeating units. This supremacy, once declared [21], has been 

substantiated by regular upgrades of the chain-growth polymerization methods and conditions. 

The regular protocols of VE polymerization include (Scheme 1): i) living cationic polymerization; 

ii) reversible addition-fragmentation chain transfer (RAFT) and related polymerization 

reactions; iii) free radical polymerization. Another option is copolymerization of VEs by using 

coordination/insertion catalysts or combined composition- and topology-controlled 

polymerization techniques. 

O R
Vinyl ether

HomopolymerizationCopolymerization
Poly(VEs)VEs-co-polymers

i) "living" polymerization
ii) RAFT-polymerization
iii) free-radical polymerization

i) coordination/insertion
ii) combined
iii) topology-controlled

Scheme 1. Methods of VE polymerization. 
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For a long time, methods of cationic polymerization of VEs lacked control over the 

molecular weight distributions and also resulted in the poorly controlled nature of the chain-

end groups in poly(VE)s. The failure was due to excessive activity of the carbenium end groups. 

A solution came with the discovery of long-lived cationic species [22,23] and their application in 

polymerization of VEs [24] and other vinylic monomers [11,25]. Thus, the new approach 

allowed suppressing the reactivity of the chain-ends thus significantly reducing the rates of 

chain termination without inhibiting the initiation and propagation processes. The proposed 

methodology allowed syntheses of well-defined products [26,27], including stimuli-responsive 

polymers [28] and cyclic polymers [29]. Controlled polymerization requires a catalyst (initiator) 

to promote chain initiation and propagation; the properties of this agent can largely define 

efficiency of the overall process, which provides chemists with reliable means for its control. 

Besides chemical initiation, a controlled release of initiating cations can be triggered by external 

light or electrical stimuli [30,31]. 

The RAFT approach in both cationic and radical polymerization reactions was found suitable 

for poly(VE) synthesis [32]. Initiation with thiocarbonylthio or xanthate compounds in 

combination with a Lewis acid (LA) and a base resulted in well-defined synthetic polymers and 

was advantageous in terms of simplicity of the experimental procedure. Polymerization of VEs 

by free-radical protocols, once considered impossible, is now well established; we will highlight 

the recent achievements in this area as well. 

The use of VEs as monomers expands rapidly, and many reviews have been focused on the 

mechanistic studies of VE polymerization [33-36]. In this review, we do not intend surveying the 

mechanistic details, rather we give a scope of the most recent and relevant examples of VE 

involvement in different polymerization protocols. We also highlight advanced procedures for 

the preparation of VE monomers underscoring their potential as building blocks for sustainable 

and eco-friendly syntheses. 

2. Advanced green syntheses of vinyl ether monomers

Reactions that lead to vinyl ethers can be divided into four groups: i) of laboratory interest 

only; ii) affording vinyl ethers as side products; iii) used in industry to produce vinyl ether 

monomers; iv) potentially upgradable for reasonable production of vinyl ether monomers. 
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The first synthesis of vinyl ether was reported by Wislicenus in 1878 [1]. The method was 

based on addition of sodium metal to hot monochloracetal (Scheme 2) since it was essentially 

an elimination reaction in the presence of a strong base. 

Na

130 - 140 °C
O

O

O
Cl

Scheme 2. The first synthesis of vinyl ether.

Improved by subsequent studies [37-39], this versatile synthesis allowed obtaining a wide 

range of vinyl derivatives. The two-stage methodology yields a halogenated derivative (or an 

alcohol) at the first stage, which is followed by elimination under basic conditions (Scheme 3, 

part A). Although being efficient in a lab, the approach is unsuitable for industrial applications. 

Another strategy developed for the generation of vinyl functionality is based on the 

reaction of primary aliphatic alcohols with vinyl acetate in the presence of a mercury catalyst at 

−60−10 °C [40]. The reaction proceeds by dissociation of vinyl acetate into acetylene-mercury 

complex ion and acetic acid in the presence of mercury sulfate (Scheme 3, part B). Trans-

vinylations are fairly common, but their use implies availability of vinylated substrates. 
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O

O
+

HgSO4

OH

O
+ R

OR OH
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B

Elimination

Trans-vinylation

+ R OH
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O C

Addition150 °C and higher
10 atm and higher

Scheme 3. Common strategies for the vinyl functionality incorporation.

A fundamental breakthrough in the chemistry of vinyl ethers was made in 1888 by Favorskii 

who discovered nucleophilic addition of alcohols to acetylenes in the presence of bases [41]. 

Allyl bromide, synthesized by elimination of hydrogen bromide from propylene bromide, was 

absorbed by cold absolute ethanol with dry potassium hydroxide added in advance. The vessel 
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was sealed and heated at 170–180 ° C for 12 h; the ether was subsequently purified by 

distillation. 

Nowadays, vinyl ethers are commonly synthesized in laboratory practice to be applied as 

synthons and precursors. An interesting iridium-catalyzed dehydrogenation with ethylene as a 

hydrogen acceptor affords unsaturated vinyl ethers from non-functionalized ethers, mixed or 

simple (e.g. diethyl ether) [42]. Iridium pincer complexes iPr4PC(sp3)P−Ir(H)(Cl) and 

(iPr4PCP)−Ir(H)(Cl) catalyze dehydrogenation-reduction reactions in the presence of a base under 

a pressure of ethylene equal to the ambient atmospheric pressure (Scheme 4). 

Ir PP
H Cl

O O

cat. (0.5 mol%)
NaOtBu (1 mol%)

mesitylene

120 °C, 48 h

atmospheric
pressure

14-44%
cat =

P PIr
H Cl

or

Scheme 4. Iridium-catalyzed dehydrogenation of ethers.

Another organometallic route involves spontaneous decomposition of planar platinum 

complexes [PtCl(N−N)(η1−CH2CH2OR)] by a pseudo-Wacker-type mechanism [43]. The 

complexes are stable in the solid state at room temperature; however, upon dissolution in 

CH2Cl2, CHCl3 or benzene they slowly decompose to give methyl vinyl ether and a Pt-containing 

precipitate. The described method is convenient for preparation of challenging vinyl ethers in a 

lab due to the simplicity of both decomposition and isolation procedures (Scheme 5). 

N

N
Pt

Cl

CH2CH2OR

N

N
Pt
Cl

H OR -CH2CHOR

N

N
Pt

Cl

H
80 °C

Scheme 5. Plausible mechanism of vinyl ether formation from [PtCl(Me2phen)η1−CH2CH2OR)]. 

A solid-phase reaction of polystyrene-supported β-phenylselenoethanol or 2-

phenlsulfonylethanol with phenols under the Mitsunobu reaction conditions with subsequent 

oxidation-elimination affords a scope of vinyl ethers in 84–95% yields [44,45]. Despite the 

multistep protocol (Scheme 6), the procedure is universal for a wide range of products. 



7

SeBr

i LiBH4 / THF, rt
ii ClCH2CH2OH / rt
iii ROH / Ph3P, DEAD, THF, rt
iv H2O2 / rt

R O

or

SO2Na

i ClCH2CH2OH / TBAI, KI, 80 °C
ii ROH / Ph3P, DIPAD, THF, rt
iii DBU / CH2Cl2, rt

R O

More than 15 examples
84-95%

Scheme 6. Solid-phase polystyrene-supported synthesis of aryl vinyl ethers. 

A similar principle is employed in biosynthetic implementation of desired organic functionalities 

in living organisms. A photochemically generated carbine precursor undergoes rearrangement 

to give the corresponding vinyl ether (Scheme 7). While vinyl ethyl ether can be produced by 

either 1,2-H or 1,2-ethoxy shift in the carbine [46],  both theoretical calculations and deuterium 

labeling experiments supported the 1,2-H route. 

(D)H OEt

hv (D)H
OEt

OEt

E/Z

H

H

H(D)

EtO
H(D)

H

H

1,2-H shift

1,2-OEt shift

Scheme 7. Rearrangement pathways for ethylidene and its deuterated analog. 

A number of industrial processes yielding VEs as side products are certainly worth 

mentioning in this context.  Thus, semireduction of acetylene during ethylene manufacturing 

and the corresponding semireduction of other alkynes to alkenes with the avoidance of 

complete reduction to alkanes is a hot topic in catalysis [47-52]. The use of highly efficient 

metal and polymetal catalysts prevents exhaustive reduction, thus, enabling isolation of 

alkenes. A selective transfer semireduction of phenoxyacetylene with supported gold 

nanoparticles as a catalyst has been reported [52]. The catalytic system fed with formic acid as 

a hydrogen source affords 99% yield of phenyl vinyl ether in 30 min (Scheme 8). 
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O
0.3% Au/TiO2-R

Formic acid/NEt3
Acetone, 60 °C

O

99%

Scheme 8. Semireduction of phenoxyacetylene using a gold catalyst.

The above methods of VEs synthesis are interesting from the point of view of fundamental 

chemistry, however, their industrial implementations are limited due to poor availability of the 

starting materials. The potential of VEs in chemistry and materials science was recognized quite 

early with continuous efforts to develop a procedure for efficient massive production of these 

monomers.

The real rise of vinyl ethers started with the outstanding work by Reppe [53]. The 

experiment consisted of various alcohols added to gaseous acetylene in an autoclave in the 

presence of a strong base (Scheme 3, part C). This approach is efficient but highly hydrocarbon-

dependent. It has been recently transformed into new acetylene gas-independent 

methodologies that have crucial advantages and may attain industrial significance in the 

nearest future. 

Certain enzymes in living organisms are capable of dehydrating long-chain bases (LCBs) to 

corresponding vinyl ethers [54]. Enzymatic conversion of odd chain-length tracers C-17-

dihydrosphingosine (dehydro-PHS) and C17-sphingosine (PHS) into corresponding LCB vinyl 

ether derivatives in yeasts has been described (Scheme 9). The conversion proceeds without 

toxic over-accumulation of LCBs. 

11
OH

OH

OH
NH2

Phytosphingosine

i acetyl-CoF transferase
ii ketoreductase
iii dehydratase

Phytosphingosine vinyl ether

11
OH

OH

O
NH2

Scheme 9. Plausible sequence of the of PHS vinyl derivative biosynthesis. 

All of these methods, including the workup under high pressure in an autoclave, are readily 

reproducible in laboratory settings. However, nucleophilic addition of alcohols to acetylene in 

the presence of a base (KOH, CsOH, KF or CsF) remains the only industrially relevant method. 

Acetylene can be directly manufactured from oil or fossil gas; alternatively, it is accessible 
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through carbide-based technologies [55]. Acetylene manufacturing from calcium carbide 

emerged at the end of XIX century [56]. This approach significantly enhanced the industrial 

relevance of vinyl derivatives by providing efficient route to vinyl ethers as starting materials 

[57]. 

Due to their low toxicity [58] and efficient manufacturing, vinyl ethers have been 

extensively used in research and industry without any significant amendments to the concept 

of their synthesis [59,60]. A number of modifications have been introduced, including variation 

of eliminating agents [61], upgrade of the catalysts and conditions for trans-vinylation 

processes [62-65], adjustment of the solvents and expansion of the substrate scope for the 

addition technique [66,67]. The increasing demand for vinyl monomers requires a sustainable 

and scalable manufacturing methodology, preferably based on renewables. These 

requirements are met by the syntheses of vinyl functionalities starting from calcium carbide 

[19]. Utilization of calcium carbide instead of bulk gaseous acetylene is actively promoted in 

recent studies [68-73]. In addition to operational safety, this approach provides a sustainable 

route to vinyl derivatives. The carbide methodology allows to vinylate both aliphatic and 

benzylic alcohols [74], polyols and phenols [69], aryl ethers and epoxides [75], various 

multifunctional substrates [76] and carbohydrates [77], with alkalis (KOH, CsOH) or salts (KF, 

CsF) as bases and water as a hydrolyzing agent. The use of deuterated water leads to 

deuterated vinyl ethers [78]. The reaction proceeds at 100 °C or higher for 3–5 hours in air-tight 

ampoules to prevent the release of gaseous acetylene from the mixture. Acetylene gas is 

generated in situ and dissolved in DMSO; subsequent addition of an alcohol leads to the 

corresponding vinyl ether. As the external pressure is rather small, there is no need to use an 

autoclave. The substrate scope for this process is very wide (Scheme 10). 

Substrate Substrate OH2O, Base

DMSO, 130-150 °C
3-5 h. More than 100 examples

up to 99% yield

CaC2 (solid)

Substrate = Aliphatic and aromatic alcohols
Diols and polyols
Aryl ethers
Epoxides
Polyfunctional alcohols
Carbohydrates

Scheme 10. The use of calcium carbide in vinyl ether synthesis.
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Certain vinyl ethers obtained through the carbide route can be utilized as monomers in 

polymerization by cationic and free-radical mechanisms [68,76,77]. Usage of calcium carbide 

for vinylation reaction is a rapidly expanding area with numerous research efforts to produce 

VEs from alcohols, thiols, amines, among many other examples [69,71,74,79-82].

3. Methods for controlled synthesis of poly(vinyl ether)s

Physicochemical and thermomechanical properties of polymers significantly depend on 

their size (molecular weight, polydispersity) and macromolecular structure (architecture, 

topology, regio- and stereochemistry). A number of recent studies are specifically aimed at 

achieving a better control over polymerization of vinyl ether monomers. The intrinsic “living” 

character of cationic polymerization provides exclusive opportunity of precise control over the 

length and structure of monomer sequences. This opportunity has been intensively used for the 

construction of macromolecules with predefined structures and also for the production of 

polymers with functional chain-ends for subsequent assembly and/or use as building units. 

Successful implementation of the new initiation and chain-transfer protocols combining 

cationic polymerization with free-radical processes (e.g. the RAFT-like and degenerative chain 

transfer polymerizations) is complemented by advanced means to control initiation and 

propagation by applying external stimuli (light, electrical, etc.). 

3.1. Living cationic polymerization
Early examples of IBVE cationic polymerization with ionic salts [Ph3C]+[X]– [83] and hydrogen 

iodine/iodine [11] as initiators was reported in 1971 and 1984 respectively. Among different 

types of initiating systems identified later on, the two-component combinations of initiator 

(proto- or cationogen) and coinitiator (Lewis acids (LA), metal halides, ammonium salts) were 

shown to efficiently trigger the living polymerization mechanism (Scheme 11). Such well-

defined systems as HI/I2, HI/ZnX2 (X = halogen), IBEA/EtAlCl2 or CH3CH(OiBu)Cl/SnCl4, etc. were 

efficiently employed for the controlled synthesis of poly(VE)s. This subject has been 

comprehensively reviewed by Sawamoto in 1991 [27] and by Aoshima et al. in 2009/2010 

[33,34]. 
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X = halogen, OC(O)CH3, OC(O)CF3 etc
A = coinitiator (Lewis acid LA; LA/base; LA/X-[NR4]+ )
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n
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X A

Scheme 11. Controlled cationic polymerization of vinyl ethers initiated by a cationogen/coinitiator combination 

During the last decade, several newly described multi-component initiating systems 

facilitated the emergence of new types of poly(VE)-based polymers. First, initiating systems 

combining metal precursors with various sources of cations were successfully refined and 

upgraded. For example, Sawamoto et al. reported the application of a tri-component system 

consisting of alcohol, BF3·(Et2O) and a base (alcohol = MeOH, sBuOH, iBuOH, tBuOH, DMBOH, 

AdOH; base = ethyl acetate, 1,4-dioxane, THF, Et2O, Me2S) to initiate controlled polymerization 

of IBVE, EVE, CHVE, TBVE or CEVE at -15 °C in CH2Cl2 to afford the corresponding polymers of 

predictable molecular weight [84]. Alternative combinations of alcohol with MClx and a base 

(alcohol = MeOH, iPrOH, tBuOH; M = Ti–Hf (x = 4); Nb, Ta (x = 5); Mo (x = 5); W (x = 6); Fe, Al, Ga 

(x = 3), Zn (x = 2); Sn (x = 4); Bi (x = 3)); base = ethyl acetate, 1,4-dioxane, THF) were studied as 

precursors for living polymerization of IBVE at 0 °C in toluene [17,85,86]. Among those, Fe- and 

Ga-based initiators afforded poorly controlled polymerization (PDI, 2.11–3.73), whereas the Zn, 

In- and Bi-based congeners were inactive. Under the living polymerization conditions, 

poly(IBVE) samples having Mn of 2,400–32,000 g·mol1 and narrow polydispersities (PDI, 1.10–

1.62) were prepared. The same group studied polymerization of IBVE under similar 

experimental conditions, with MClx (M = Ti–Hf (x = 4), Nb, Ta (x = 5), W (x = 6), Fe, Al (x = 3) and 

Sn (x = 4)) combined with a base (ethyl acetate, 1,4-dioxane, THF) and pyrrole as a chain-

transfer agent [87]. In this case, the adventitious H2O was identified as a proton donor. In this 

study, the initiating systems with Si, Ge, Ga, Zn, In and Bi chloride salts were inactive. The other 

systems were found active but allowing low degree of control in terms of PDI of the polymers 

(1.20–2.82).

Different substituted triazines reacting with a Lewis acid (TiCl4, SnCl4) afforded 

corresponding N-methyleneamines to be used in situ as cationic initiators of TBVE 

polymerization (78 °C, CH2Cl2) [88]. Only a moderate degree of control was achieved in the 

most polymerization experiments (PDI of 1.18–3.4), including those carried out in the presence 

of additives (nBu4NCl or 1,4-dioxane). 
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A study of polymerization of IBVE initiated with H2O/BF3·(Et2O) in aqueous media 

demonstrated a varying degree of control over molecular weights and distributions depending 

on the conditions (notably for suspensions, dispersions and emulsions) [89].

AuCl/AgPF6 at -78 °C in DCM produced poly(BVE)s of moderate molecular weight (Mn, 

4,500–44,000 g·mol1) and narrow to broad polydispersity (PDI, 1.41–8.28); the reaction 

proceeded at high rates (TOF up to 675 h–1) [90]. Another coinage metal-based initiating system 

AgClO4/C6H5CH2Br/base (base = Et2O, iPr2O, CPME, Me2S) was shown to provide a similar 

degree of control (PDI of 1.36–5.63) at 41 - 0 °C in different solvents (CH2Cl2, Et2O, toluene) 

[91,92]. Better results were achieved with Cp2MMe2/activator (M = Zr, Hf; activator = B(C6F5)3, 

[Ph3C]+[B(C6F5)4]–, [PhNMe2H]+[B(C6F5)4]–) in polymerization of EVE, BE and IBVE carried out at 

10 °C in CH3CN [93]. The system allowed obtaining corresponding polymers with narrower PDI 

(1.18–2.38) and broader Mn (5,600–206,000). Statistical copolymers of EVE and BE were 

prepared under the same experimental conditions and studied by DSC and TGA techniques.

In situ generation of cationogen CH3CH(OR)X from parent monomers IBVE, IPVE and TBVE 

with a Lewis acid-free initiating system CF3SO3H/nBu4NX (X = Cl, Br, I, CF3SO3) was examined 

under a range of conditions (78- 0 °C, 1 min–600 h, CH2Cl2) [94]. The nature of halide anion X– 

in nBu4NX was demonstrated to influence the degree of polymerization control as I– > Br– > Cl–; 

the narrowest PDI distributions (1.13–1.16) were achieved in polymerizations of IPVE and TBVE 

with nBu4NI as coinitiator.

Lewis acid-free triflate ester-based systems were reported to initiate carbocationic 

polymerization of IBVE at room temperature in CH2Cl2 providing access to polymers with a 

narrow range of Mn (8,320–9,620 g·mol1) and PDI (1.8–2.1) [95].

A series of systems containing various thienyl chlorides RS–Cl in combination with different 

LAs (SnCl4, ZnCl2, TiCl4, FeCl3, AlCl3) were used for initiation of cationic polymerization of IBVE, 

BVE and HBVE-TBS in CH2Cl2 at 78 °C [96]. The corresponding poly(VE)s with  Mn  of 2,900–

31,500 g·mol1) and PDI  of 1.06–1.19 bearing functional chain-ends were obtained. 

Another initiating system containing IBEA/Et1.5AlCl1.5/1,4-dioxane was used for the highly 

controlled polymerization of CEVE, and its copolymerization with IBVE as well, to produce di- 

and tri-block copolymers [97]. Treatment of the resulted polymers with different alkyl-

imidazolium bases allowed preparation of corresponding uniform polymeric ionic liquids of 

narrow polydispersity (PDI 1.06–1.22) (Scheme 12). The same initiating systems were applied 

for the synthesis of fluorinated poly(VE)s from the parent fluorine-containing  monomers 
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[98,99]. The use of fluorinated solvents (hydrofluorocarbons, chlorocarbons, ethers and 

aromatics) appeared to be mandatory to provide solubility of the resulting materials. Under the 

same conditions, fluorine-containing and fluorine-free star-shaped crosslinked polymers were 

produced upon addition of difunctional DVEs as cross-linking agents. Temperature-dependent 

sol-gel transitions of these reticulated polymers were also investigated.

O

Cl
O

Cl

n
NN

R1

R2

O
n

NN

R1

R2+

Cl O
n

NN

R1

R2+

XLiving Cationic
Polymerization

DMF, 80 °C, 72 h

MX = NaBF4
NaSbF8, LiNTf2

MX, water

Scheme 12. Synthesis of polymeric ionic liquids.

The use of IBEA/coinitiator/ethyl acetate (coinitiator = TiCl4, SnCl4, Et1.5AlCl1.5) in the 

presence of proton trap (2,6-di-tert-butyl-pyridine) for polymerization of IBVE in ionic liquids 

was reported by the same authors [100] and others [101] as well. IBEA-like initiators with 

diverse functional groups were successfully employed in controlled syntheses (PDI 1.05–1.14) 

of end-functionalized thermosensitive poly(MOVE)s featuring a range of temperature-induced 

phase-separation behaviors [102].

A combination of [60]fullerene- [103,104] or thiophene- [105] substituted triflate esters 

(Scheme 13) with EtAlCl2 and 1,4-dioxane for living polymerization of IBVE, MOVE and methoxy 

ethoxy ethyl vinyl ether (MEEVE) was applied to prepare the corresponding unsaturated group-

end-capped polymers. Self-assembly behavior of C60-poly(MOVE) in aqueous solution and in the 

presence of -cyclodextrine was also studied.

Ph

C60 O

O
O OCOCF3

O

O
O OCOCF3S

Scheme 13. Examples of cationogens for cationic polymerization of vinyl ethers. 

Highly-controlled polymerization of IBVE was achieved by utilizing an unusual initiating 

system HCl/LA/base (base = 1,4-dioxane or ethyl acetate) [106]. In this case, the chain-growth 

process was initiated at the Lewis acidic (LA) centers of Fe3O4 synthesized by magnetotactic 

bacteria or -Fe2O3 prepared by a microbial-mineralization-inspired approach, or oxides of 

other metals. Heteropolyacid H3PW12O40 and its various salts (AlPW12O40, FePW12O40, 
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K3PW12O40, Na3PW12O40) acted as coinitiators of the HCl-triggered cationic polymerization of 

IBVE to produce isotactic-enriched ([m] of 60%) polymers with poorly controlled PDI (2.4–4.4) 

[107]. Well-controlled cyclopolymerization (PDI 1.20–2.18) of divinyl ethers, e.g. 2-methyl-5,5-

bis(vinyloxymethyl)-1,3-dioxane (Scheme 14) and its likes, was achieved by using HCl/ZnCl2 in 

toluene or CH2Cl2 at 30 °C [108-110]. The resulting gel-free linear polymers, composed of 

cyclic repeating units, exhibited a range of high glass-transition points (Tg = 163–231 °C) and 

high thermal stability (Tdecomp > 338 °C). 

O O

O O
O O

O O

n

Scheme 14. Example of cationic cyclopolymerization of divinyl ether.

Initiating systems containing HCl and the in situ generated Salphen complexes of transition 

or main-group metals (Scheme 15) were successfully used for living polymerization of IBVE at 

0 °C in toluene [111,112]. Combinations of SnCl4, FeCl3 or ZnCl2 with Salphen resulted in poorly 

controlled polymerization (PDI 1.37–1.94), while the Ti- and Al-based analogs appeared to be 

sluggishly active. The ZrCl4/Salphen-derived system afforded poly(IBVE) in a controlled manner 

(Mn 3,200–17,300 g·mol1, PDI 1.15–1.49). 

N N

tBu

tBu

tBu

tBu

O O
M
Clx

M = Zr, Sn, Fe, Zn, Ti, Al

Scheme 15. Examples of metal-based coinitiators for cationic polymerization of vinyl ethers. 

Diverse metal-free initiating systems have been reported recently. For example, apart 

from ubiquitous Brønsted acids (HCl·Et2O [113,114] or HNTf2 [115]), more sophisticated 

congeners can be utilized (Scheme 16) [116,117]. Polymerization of BVE in CH2Cl2 proceeded at 

low temperatures (–84–19 °C) with the optimum at 50 °C affording poly(BVE) (Mn 15,000–

29,300 g·mol1, PDI 1.05–1.83) in high yields. 
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Scheme 16. Examples of discrete cationogens. 

Graphite oxide was introduced as a heterogeneous catalyst for cationic polymerization of 

BVE under solvent-free conditions (Tpol = 22 °C) affording poly(BVE)-carbon composites 

featuring diverse molecular weight distributions (Mn 700–8,100 g·mol1, PDI 1.45–13.88, 

depending on the monomer/initiator ratio used) and high decomposition temperature (Tdec = 

354 °C) [118]. Graphene oxide was found to initiate cationic polymerization of IBVE in the same 

manner [119].

The halogen bonding-mediated cationic polymerization of IBVE involved initiating systems 

on the basis Cl-substituted cationogens and imidazolium salts (Scheme 17) [120]. 

Polymerization experiments, carried out at –40–20 °C in CH2Cl2, afforded poly(IBVE)s with low 

molecular weights Mn and broadened Mw/Mn values, 570–5,040 g·mol1 and 1.52–5.61, 

respectively.

cationogens coinitiators

O

Cl

Ph Cl

Ph

Cl

OiBu

N N

NN
Oct OctX X

N
N

IOct
OTf

N
N

IOct
OTf2 A

A = OTf, I

Scheme 17. Initiating systems for cationic polymerization of vinyl ethers based on organic cationogens and 
imidazolium derivatives. 

Another protocol of well-defined initiation with cyclic cationogens was introduced by 

Sawamoto, Ouchi et al. (Scheme 18) [36]. The ring-expansion cationic cyclopolymerization 

mediated by hemiacetal ester in combination with a Lewis acid (e.g. SnCl4) afforded macrocyclic 

polymers of broadened molecular weight distributions from IBVE at 0 °C in CH2Cl2, and TCDVE 
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or DDVE at 40 °C in toluene [121-124]. However, linear macromolecules exhibiting highly 

controlled molecular weight characteristics (Mn 3,500–18,500 g·mol1, PDI 1.10–1.36) were 

eventually produced from these samples by hydrolysis. Yet, the use of halogen (Br)-end-capped 

vinyl ether monomers enabled the synthesis of macrocyclic initiators for the ring-linear graft 

copolymers with polystyrene by radical polymerization.

O OO

LA

O OO LA O
O

O

OR
n

OR

kprop

n

hemiacetal
ester

OR
n-1

O O

HO

O
4

hydrolysis

cyclic polymer

linear polymer

- ROH

Scheme 18. Ring-expansion living cationic polymerization of vinyl ethers.

Cationic polymerization of vinyl ethers in a microflow reactor was attempted as a means of 

enhanced control over the propagation step. For example, initiation of IBVE polymerization 

with electrogenerated dendritic dicarbenium ion, followed by propagation in a flow 

microreactor and controlled entrapment of the reactive end-capped polymer with DTBP, 

yielded highly uniform polymers (PDI 1.08–1.19) [125,126]. The approach also worked with 

IBVE-HCl/MClx/base (MClx = SnCl4, FeCl3; base = 1,4-dioxane, 1,3-dioxolane) initiating systems at 

0 °C in toluene, producing poly(IBVE)s of PDI 1.09–1.21 [127,128].

3.2. RAFT polymerization
Converting the living cationic polymerization into RAFT was firstly proposed by Kamigato et 

al [129]. Initiating system containing trithiocarbonate initiator, LA and a base (ethyl acetate, 

Scheme 19) was shown to induce the reversible termination cationic polymerization of IBVE at 

20 °C in toluene affording narrowly dispersed polymers (PDI 1.18–1.49). The group also 

explored the influence of metal salts (AgOTf, AgPF6, AgSF6, Na+[B(C6H3(CF3)2)4]-, etc.) on the 

IBVE/HCl-initiated RAFT and the related degenerative chain transfer polymerization reactions of 

IBVE and EVE [130].
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Scheme 19. RAFT-like cationic polymerization of vinyl ethers.

Since then, different metal-free initiating systems for cationic RAFT via degenerative chain-

transfer have been developed. For example, binary systems combining triflic acid (TfOH) as 

cationogen and a RAFT agent, e.g. thiocarbonyl [131], thioether [132], phosphate or 

phosphinate [133], were used for highly controlled polymerization of vinyl ethers (IBVE, EVE, 

CEVE or CHVE). The resulting polymers featured high molecular weights (Mn up to 105 g·mol1) 

with very narrow distributions (PDI < 1.1). Another metal-free system, competent of IBVE, 

nitrophenyl vinyl ether or EOVE polymerization, consisted of HCl·Et2O adduct and thioester and 

provided a slightly lower degree of control (PDI of 1.20–1.28) [2]. Besides, the intrinsic ability of 

trithiocarbonates as RAFT agents [32] to mediate both cationic and radical polymerization 

mechanisms was exploited to promote in situ switch from one type of polymerization to 

another. The approach afforded diblock polymers consisting of a poly(VE) segment obtained by 

cationic polymerization (e.g. poly(IBVE) or poly(MOVE)) and another segment derived from 

radically polymerizable monomers (acrylates, acrylamides, vinyl acetate, styrenics, etc.) 

[121,122,129,133-136]. 

3.3. Novel photo- and electro-controlled methods of polymerization
The externally stimulated initiation of VE cationic polymerization has been receiving 

increased attention in recent years. The traditional Brønsted or Lewis acids-based initiating 

systems can be replaced with the systems capable of the controlled release of initiating cations 

under external stimuli (light, electrical, chemical, etc.) [137]. 

For example, Yagci et al. used binary systems composed of aryl-substituted vinyl halides and 

ZnX2 or metallic Zn (Scheme 20) for the photoinitiated living cationic polymerization of IBVE or 



18

divinyl ethers (BDVE, HDVE, DEGDVE, TEGDVE) at 0 °C in CH2Cl2 [138-140]. The resulting 

poly(IBVE) polymers featured Mn 9,950–67,900 g·mol1 and PDI 1.35–2.03, whereas 

polymerization of difunctionalized monomers resulted in crosslinked materials with high gel 

content (70–100 %). 

Ar

Ar

X

Ar

hv Ar

Ar

X

Ar

Ar

Ar

X

Ar ZnX2
or Zn

OR Ar

Ar Ar
OR

X ZnX2

Scheme 20. The mechanism of vinyl halide-mediated photoinitiation-dependent cationic polymerization of vinyl 
and divinyl ethers.

A number of recently introduced photoinitiating systems comprise functionalized 

carbazoles [141,142], pyrenes [143], di- and polythiophenes [144] and disulfones [145], C60-

fullerene [146], allylic ammonium or phosphonium salts [147,148], acylgermanes [149] or 

different dyes [150,151], in the presence of oxidants/coinitiators AgPF6 or [Ph2I]+[PF6]–. Light-

controlled catalytic polymerization of EVE (Mn 10,000 g·mol1, PDI 1.74) was achieved with a 

photosensitizing BINAP complex of palladium [152]. Supramolecular complexes of 

diaryliodonium salts with crown ethers were tested as initiators of cationic polymerization of 

triethyleneglycole divinyl ether [153].

The intermediacy of radical species was specifically exploited in photogeneration of active 

systems for cationic polymerization. For example, a classical combination of benzyl bromide 

with Mn2(CO)10 affords benzyl radical. Under UV irradiation, upon activation with [Ph2I]+[Br]- or 

[Ph2I]+[PF6]-, it produced benzyl cation that promoted polymerization of IBVE in a controlled 

living manner [6]. Another initiating mechanism involves either upconverting glass with 

fluorescein and PMDETA [154] or lanthanide-doped upconverting nanoparticles/Cp2TiAr2 [155] 

as sources of radicals emitted under near-infrared irradiation. Such techniques  were employed 

for polymerization of IBVE and BVE in the presence of [Ph2I]+[PF6]- [154]. 

Photocontrolled VE polymerization processes with initiation by visible or blue light were 

studied as well. Fors et al. reported application of both metal-based and metal-free 

photocatalysts (Scheme 21) in complex initiating systems with thioester or trithiocarbonate as a 

chain transfer agent (CTA) [156-159]. Single-electron transfer from CTA or CTA-terminated 

polymer to the excited photocatalyst afforded radical-cation which split into CTA radical and 
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active cationic center (Scheme 22). The generated cation can be reversibly engaged in the 

degenerative chain transfer by RAFT-type mechanism.
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Scheme 21. Examples of photocatalysts that promote photocontrolled cationic polymerization.
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Scheme 22. The mechanism of photocontrolled cationic polymerization.

A similar system involving photoinitiator combined with CTA enabled interconversion 

between the cationic and radical polymerization mechanisms (Scheme 23) thus promoting 

copolymerization of IBVE with methyl acrylate (MA) [160,161]. This new type of initiation 

afforded multiblock copolymers composed of poly(IBVE) and poly(MA) sequences in a highly 

controlled manner. 
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Scheme 23. Controlled interconversion of polymerization mechanisms.
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Electrocontrolled VE cationic polymerization protocols are also available. A new cationic 

RAFT-type mechanism involved dithiocarbamate as CTA in the presence of electron-carrier or 

mediator (TEMPO, DDQ); by reversible transfer at the electrode, CTA is oxidized to produce 

carbocation [162,163]. With this method, different vinyl ethers (BVE, IPVE, EVE and CEVE) were 

successfully polymerized in a highly controlled manner (PDI 1.11–1.24). In the absence of 

electroredox agent, the process was poorly controlled and afforded polymers of broad 

polydispersity.

3.4. Free-radical polymerization 
A rare example of polymerization of vinyl ethers by a radical mechanism was reported by 

Sugihara et al. Polymerization of several vinyl ethers was triggered by azo-initiators (e.g. 2,2’-

azobis(2-methylpropionate)); the scope included IBVE, DEAVE, and hydroxy-functionalized 

HEVE, HBVE, CHMVE and DEGV [164-166]. The presence of RAFT agent (cyanomethyl 

methyl(phenyl)carbamodithioate, CMPCD) conveyed living behavior to the system and enabled 

block-copolymerization of poly(VE) macromonomers with vinyl acetate or N-vinylpyrrolidone 

(PDI < 1.38). Yet, HEVE homopolymers obtained by radical polymerization were found to be 

poorly isotactic ([m] = 51%). 

OR
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Li additive (e.g. LiOH)
water

azo-initiator
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Scheme 24. Controlled radical polymerization of vinyl ethers.

The same group developed an advanced protocol enabling controlled radical polymerization 

of MOVE and IBVE (Scheme 24) [167]. Polymerization reactions, conducted at 60–70 °C in the 

presence of water and LiOH for stabilization of the radical centers and activation of the double 

bonds in monomers, respectively, afforded corresponding polymers in high yields. Utilization of 

RAFT agents (e.g. cyanomethyl methyl(phenyl)carbamodithioate) resulted in controlled 

preparation of poly(MOVE) homopolymers and poly(MOVE)-b-poly(Vac) block copolymers with 

PDI 1.20–1.52.
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4. Copolymerization of vinyl ethers with various monomers

Control of monomer sequence in copolymerization reactions is the holy grail of 

macromolecular engineering. Contributions of sequential vs. statistic copolymerization for 

different polymerization mechanisms (living cationic, coordination/insertion polymerization, 

ring-opening polymerization) have been explored by using appropriate initiating or catalytic 

systems.

4.1. Ethylene and alkenes. The late transition metal-based coordination/insertion 
catalysts favor statistical copolymers

Homopolymerization of vinyl ethers by coordination/insertion mechanisms has been 

extensively studied [92,163,168-174]. Many contributions over the past decade dealt with the 

synthesis of functional polyolefins by catalytic copolymerization of alkenes (ethylene, 

propylene, etc.) with polar monomers (e.g. VEs, Scheme 25). 

R'OR

R' = H, Me etc

+
[cat]

R'
x

OR n

Scheme 25. Copolymerization of vinyl ethers with alkenes.

Nozaki et al. and Carrow et al. developed palladium catalysts (Scheme 26, A‒C and D, 

respectively) for copolymerization of ethylene with BVE [170,175-178]. The copolymerization 

reactions proceeded under moderate conditions (Pethylene = 10–40 bar, Tpol = 80‒100 °C) 

affording PE-co-BVE copolymers (Mn 8,000–39,000 g·mol1, PDI 1.6–4.1) containing 0.1‒7.7 

mol% of randomly incorporated VE. Comparable results, in terms of molecular weight 

characteristics and BVE incorporation, were reported by Chen et al. for palladium- and nickel-

based catalytic systems D–F [3,9,179].
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Scheme 26. Examples of catalysts used for copolymerization of vinyl ethers with alkenes.

Copolymerization of ethylene with BVE or divinyl formal (DVF) was studied by Mecking et 

al.; the authors used a neutral palladium system G [172]. Thus, copolymerization of ethylene 

with BVE afforded PE-co-BVE copolymers with similar characteristics (Mn 1,300–1,900 g·mol1, 

PDI 1.3–1.7, incorporated BVE (2.1–6.9 mol%). Copolymerization of ethylene with DVF afforded 

linear polymers (Mn 1,300–4,700 g·mol1, PDI 1.2–2.3) containing five-and six-membered cyclic 

acetal units with the total DVF content reaching 12.9 mol% (Scheme 27). 
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Scheme 27. Copolymerization of ethylene with divinyl formal.

4.2. Other combined copolymerization techniques
A straightforward access to di- and multiblock copolymers can be gained by sequential 

addition of different monomers to the same living polymerization system. For example, ABA-

triblock copolymers of adamantyl vinyl ether with NBVE were produced by cationic 

polymerization with a difunctional initiating system 1,4-bis(1-acetoxy)butane/Et1,5AlCl1,5/ethyl 

acetate [180], while introducing cyclohexanedimethanol divinyl ether to this system afforded 

star-diblock copolymers featuring improved rubber elastic properties. A similar sequential 

protocol afforded tri- and pentablock copolymers of NBVE, CEVE and tert-butyldimethylsilyl 

ethylene glycol vinyl ether (SiEGVE) [181]. Diblock copolymers of IBVE and -methylstyrene 

were also produced by sequential approach with initiation by HBr/FeCl3/nBu4NBr [182]. 

Copolymerization of IPVE with 1-methoxy-2-methylpropylene oxide (MOMPO) was 

accomplished using a specific initiating system composed of CF3SO3H and nBu4NI [183] (Scheme 

28). The ring-opening copolymerization resulted in IPVE-co-MOMPO product with unimodal 

molecular weight distribution (Mn = 6,500 g·mol1, PDI = 1.73) subsequently hydrolyzed under 

acidic conditions to a low molecular weight product (Mn = 1,700 g·mol1, PDI = 1.7). 

Noteworthy, the IPVE-IPVE junctions appeared to be resistant to acidic hydrolysis. 
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Incorporation of the ring-opened MOMPO unit into IPVE chain by alkoxy-group transfer was 

confirmed by 1H, 13C, and 2D NMR spectroscopic studies. 

OiPr
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O
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OiPr

Copolymerization
n

Scheme 28. Copolymerization of IPVE with MOMPO. Reaction conditions: [IPVE] = 0.80 M, [MOMPO]0 = 0.20 M, 
[CF3SO3H]0 = 4.0 mM, [nBu4NI]0 = 4.2 mM, in dichloromethane at -40 °C.

Cyclic acetals were also copolymerized by ring opening reactions with CEVE and IBVE; the 

SnCl4-promoted process yielded multiblock-like copolymers [184]. Propagating species were 

provided by both VE- and cyclic acetal-derived end groups. The distribution of comonomers 

within the chains was defined by the nature of cyclic acetal and VE. 
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Scheme 29. Ring-opening copolymerization of vinyl ethers and cyclic acetals. 

The use of acetals as initiators in living cationic polymerization afforded block and graft 

copolymers containing poly(p-methylstyrene) and poly(VE) segments [185]. IBVE and p-

methylstyrene, conventionally incompatible with each other, were successfully copolymerized 

in the presence of TiCl4/SnCl4 initiating system and macroinitiators having acetal moieties. 

Linear macroinitiators with acetal moieties at chain termini provided block copolymers (Scheme 

30, top), whereas macroinitiators with acetal moieties at side chains facilitated formation of 

graft copolymers (Scheme 30, bottom). The macroinitiators were prepared by quenching the 

living cationic polymerization of IBVE with methanol or by promoting the living cationic 

copolymerization of IBVE with 2-(2,2-dimethoxy)ethoxyethyl vinyl ether. 
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Scheme 30. Block and graft copolymer preparation using macroinitiators. 

Concurrent cationic vinyl-addition, ring-opening, and carbonyl-addition mechanisms were 

described for terpolymerization of IPVE, oxetane, and methyl ethyl ketone (MEK) [186]. Given 

each of the monomers is capable of providing propagating chain ends, formation of statistical 

multiblock polymers was the result of this polymerization reaction. During the reaction, the 

non-homopolymerizable ketone monomer reacted with the oxetane-derived oxonium ion 

giving rise to carbocation capable of reacting with VE only (Scheme 31). 
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Scheme 31. Terpolymerization of VE, Oxetane and MEK.

Discovery of such cross-reactivity led to successful copolymerization of vinyl ethers (IPVE, 

EVE) with various oxiranes (IBO, ISPO, BDO, DMBO, BO) in the presence of TfOH or B(C6F5)3 

initiators [187,188] to afford linear random or alternating-rich copolymers exhibiting a range of 

molecular weight characteristics (Mn 300–43,200 g·mol1, PDI 1.53–4.49).

Vinyl-addition polymerization of VE and simultaneous ring-opening polymerization of ε-

caprolactone under hafnium-mediated control afforded graft copolymers [189,190]. 

Copolymerization of the conventionally incompatible monomers occurred by virtue of 

orthogonal propagating reactions and transient merging, yielding the poly(VE) main chain and 

several poly(caprolactone) side chains. The growing alkoxide ends attached to the Hf-metal 

center promoted both cationic vinyl-addition and ring-opening polymerizations. Exchange 

reactions between the terminal alkoxy groups of polyester chains and the VE-derived alkoxy 

groups, combined with the repetitive mode of propagation, provided graft copolymer 

composed of a poly(VE) chain with several inserted polyester chains (Scheme 32). 
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Scheme 32. The alkoxy group exchange mechanism and graft copolymer construction.
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An approach based on successive living cationic polymerization of MOVE, EOVE or EOEOVE, 

followed by ring-opening polymerization of L-lactide, enabled precision synthesis of block 

copolymers exhibiting well-defined organization of poly(VE) and poly(lactide) blocks [191]. 

Yagci et al applied the photoinduced Ph3CBr/Mn2(CO)10/[Ph2I]+[Br]--mediated initiation to 

prepare a Ph3C-capped poly(IBVE) macroinitiator by living cationic polymerization. Subsequent 

thermally promoted radical polymerization of acrylates or styrene yielded diblock copolymers 

[192]. 

An alkoxyamine-based TEMPO/SnBr4 initiating system promoted cationic polymerization of 

IBVE producing a TEMPO-terminated macroinitiator. Used at the next step to initiate radical 

polymerization of styrene, this macroinitiator afforded well-defined copolymer of narrow 

polydispersity (PDI 1.2) [193].

A combination of living cationic polymerization with RAFT in a three-step protocol afforded 

diblock brush-like copolymers of MEEVE and N-isopropylacrylamide featuring 

thermoresponsive properties [194].

Tetraflouroethylene (TFE) was for the first time copolymerized with IBVE by conventional 

radical and RAFT (RAFT/MADIX) methods [195] using O-ethyl-S-(1-methyloxycarbonyl)ethyl 

xanthate as a chain transfer agent and benzoyl peroxide as an initiator. As expected, 

copolymers obtained by radical copolymerization were heavier (Mn 4,400–11,000 g·mol1) and 

of broader polydispersity (PDI > 2) than copolymers obtained by controlled processes (Mn 

1,200–2,000 g·mol1, PDI 1.08–1.11) (Scheme 33). 

Photoorganocatalyzed reversible-deactivation radical alternating copolymerization of CTFE 

and vinyl ethers (EVE, BVE, IBVE, CEVE, SiBVE and SiEGVE) was recently reported [[196]].  

Utilization of functionalized 10-phenylphenothiazine as photoinitiator in combination with RAFT 

agents (xanthates) allowed synthesis of various alternated copolymers under mild conditions 

(LED irradiation, room temperature, 1 bar pressure) and in controlled manner (Mn 2,000–

45,300 g·mol1, PDI 1.12–1.32).
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Scheme 33. Copolymerization of TFE with IBVE by conventional and RAFT/MADIX approaches. 
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Living homopolymerization of fluorinated vinyl ethers (FVE, with F9, F12 and F13 groups in the 

side chains) and their copolymerization with IBVE or MOVE were achieved in fluorinated 

solvents under regular conditions (IBEA/Et1.5AlCl1.5/1,4-dioxane, 0 °C) [197]. The thermally 

reversed micellization and sol-gel transition properties of the resulting di- and tri-block 

copolymers were investigated.

Comb-like poly(VE) polymers with fluorinated side chains were studied to determine their 

macromolecular organization and interrelated physicochemical and thermal characteristics 

[198]. 

In a search for alternative biosourced polymers, several ribose-derived vinyloxy monomers 

were copolymerized with diethyl fumarate and diethyl maleate and alkoxy monomers [199]. 

Detailed kinetic investigations confirmed higher reactivity of the sugar-derived VEs as 

compared to that of alkyl VEs in the free radical-mediated donor-acceptor copolymerization 

with butadienoates. 

A highly active Ir-Pd catalyst facilitated copolymerization of styrene with 2,2,2-triflouroethyl 

vinyl ether (TFEVE) under Xe irradiation [199]. The isolated copolymer was clearly a co-polymer; 

the reaction carried out in the dark produced a mixture of homopolymers (Scheme 34). Turning 

on the lamp in the course of the reaction altered the type of synthesized polymers. 
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Scheme 34. Homopolymerization and copolymerization of styrene and TFEVE in the presence of Ir-Pd catalyst 
under different light conditions. 

The tunable nature of VEs allowed involving them into copolymerization reactions with 

acrylates or with vinyl ethers proceeding by totally different mechanisms. The identity of final 

products varied depending on the type of Lewis acid used and the presence of the coinitiator 

[200]. Weak and bulky Lewis acids promoted the alternating radical RAFT copolymerization of 

IBVE with acrylates, while strong Lewis acids led to the controlled living copolymerization 

(Scheme 35). 
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Functional aliphatic copolymers of cyclic ketene acetals (CKAs) with VEs were synthesized by 

a simple free-radical approach (Scheme 36) [201]; it provided access to functionalized 

fluorescent probe copolymers, amphiphilic copolymers grafted with poly(ethylene glycol) side 

chains, antibacterial films and crosslinked bioelastomers. Interestingly, di(ethylene glycol) 

divinyl ether was successfully integrated into CKA chain yielding a linear copolymer instead of a 

crosslinked homopolymer. The isolated copolymers revealed potential for tissue engineering 

applications. 
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Scheme 36. Copolymerization of CKAs and VEs via free-radical mechanism.

Another promising access to linear diblock copolymers incorporating poly(vinyl ether) and 

poly(styryl) or poly(acryl) fragments is based on a two-step approach [202,203].  Thus, a 

conventional living polymerization is switched to a different mode (cationic or radical) by 

introducing a chain end-capped initiating function at the first step. 

Similar results in the synthesis of poly(vinyl ether)-poly(styrene) diblock copolymers were 

achieved by introducing a hybrid initiator composed of OCH(Me)+X- and AIBN capable of 
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initiating cationic and radical polymerizations, respectively, and trithiocarbonate as RAFT agent 

[204]. 

The inherent reactivity of VEs in polymerization reactions can be developed in relation to 

monomers incapable of homopolymerization. According to this strategy, desired fragments can 

be inserted into the main chain to modify the final properties of the resulting polymers. For 

example, straightforward homopolymerization of biomass-derived isosorbide is impossible. 

However, it readily undergoes cationic copolymerization with IBVE in the presence of Lewis 

acids, giving up to 42 mol% of isosorbide derivative incorporated into the copolymer structure 

(Scheme 37) [205]. Conventional cationic copolymerization promoted a competing process of 

ring-opening polymerization and rearrangement, whereas photo-driven cationic polymerization 

protocol with a RAFT agent facilitated chain propagation against the rearrangement. 
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Scheme 37. Homo- and copolymerization of iso-sorbide derivatives under conventional and photo-driven 

polymerization conditions.

Bis(η5-cyclopentadienyl)dimethyl zirconium (Cp2ZrMe2) in combination with [PhMe2NH]+ 

[B(C6F5)4]– catalyzed statistical cationic copolymerization of BVE and CEVE [206]. Regardless of 

different monomers ratios used for polymerization, the reaction yielded polymers with similar 

characteristics (Mn 10,000–14,000 g·mol1, PDI 1.5) (Scheme 38). The structure of the 

copolymers was confirmed by NMR spectroscopy. The same group reported preparation of 

block copolymers based on zirconocenium-promoted cationic copolymerization of perfluoro 

ethyl vinyl ether with 2-R-oxazolines (R = Me, Ph) and -caprolactone [207]. 
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Scheme 38. Cationic copolymerization of BVE and CEVE. 
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4.3. Composition- and topology-controlled copolymerization of vinyl ethers 
A number of well-controlled cationic polymerization techniques allowed synthesis of 

copolymers featuring several particular types of topological motifs [208]. Conventional living 

polymerization of monofunctional monomers affords a linear polymer, whereas controlled 

incorporation of difunctional monomers can produce a variety of topologies e.g. star-, beaded- 

or brush-shaped polymers. 

For example, Aoshima et al. succeeded in synthesis of well-defined star-shaped copolymers 

(Scheme 39) from monovinyl and divinyl ethers (respectively, IBVE, MOVE, EOVE, EOEOVE, 

CHVE, PIVE, and DVE, BVP) using cationic initiating systems composed of IBEA, LA and a base 

(LA = Et1.5AlCl1.5, EtAlCl2, SnCl4; base = 1,4-dioxane) [209-212]. The resulting materials exhibited 

a range of stimuli-responsive behaviors (temperature, pH) depending on the nature of 

comonomer functionalities. Introduction of aldehydes (e.g. p-methylbenzaldehyde, 

isophthalaldehyde, (1R)-()-myrtenal) during the EtSO3H/GaCl3/1,4-dioxane-promoted 

polymerization of CEVE, IBVE and linear or cyclic enol ethers allowed sequence-controlled 

preparation of both linear and star-shaped polymers [213,214]. Under mildly acidic conditions, 

these polymers underwent degradation into lower molecular weight polymers.
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Scheme 39. Synthesis of star-shaped (co)polymers.

A non-aqueous inverse suspension copolymerization approach enables formation of 

beaded-like poly(VE) gels with low crosslinking levels [215]. A combination of CEVE or 4-

acetoxybutyl vinyl ether with methoxybutyl vinyl ether and a divinyl ether was induced into 

copolymerization promoted by a cationic initiating system (BF3·Et2O, CH2BrCl, 78 °C). The 

resulting solid gels featured improved swelling characteristics in different solvents. 

Minoda et al. designed new monomers with both vinyl ether and phenyl acetylene 

functionalities [216,217]. Living cationic polymerization (TFA/Et2AlCl/1,4-dioxane) of the vinyl 
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ether functionalities afforded linear poly(VE)s, which were then subjected to polymerization 

involving the acetylene moieties by either Cu-catalyzed oxidative coupling or a Rh-catalyzed 

process, with both catalytic systems promoting formation of brush-shaped polymers. The same 

research group reported a synthesis of hydrophilic glycerol-functionalized poly(VE)s for the use 

in preparation of monodispersed core-shell polymer particles via dispersion polymerization 

with styrene [218].

Syntheses of biosourced vinyl ethers, derived from different plant oils (soybean, linseed, 

camelina), and their homo- and copolymerization by a cationic mechanism (IBEA/Et1.5AlCl1.5 or 

SnCl4/1,4-dioxane) were reported by Chisholm et al. [64,219-222]. Some of the resulting 

materials were tested as alkyd-type surface coatings. 

A number of poly(VE) homo- and copolymers obtained by cationic polymerization of various 

functional group-capped VE monomers were reported by Sakaguchi et al. The products were 

probed for diverse applications including preparation of hydrophilic thermoresponsive 

polyurethanes, development of gas-selective permeable membranes and production of 

transparent polymeric materials for optical lenses [223-231].

Living cationic copolymerization was used by Aoshima et al. to prepare amphiphilic 

copolymers of IBVE and aminoethyl vinyl ether [232,233]; the products featured antibacterial 

and hemolytic activity. Linear diblock copolymers of poly(CHVE-b-MOVE) and poly(CHVE-b-

EOVE), showing enhanced blood-compatibility, were proposed as candidate materials for 

construction of bioinert interfaces [234-236].

4.4. Miscellaneous
Poly(VE)s with azobenzene functionalities in the repeating unit, synthesized by living 

cationic polymerization, were blended with poly(-caprolactone) to provide a material with 

unique anisotropic photomechanical response properties [237]. Cationic polymerization of a 

TEMPO-capped vinyl ether monomer afforded a hydrophilic polymer proposed as a cathode 

active material for rechargeable devices [238]. Linear poly(VE)s are considered for diverse 

applications including production of advanced materials for hydrogen generation [239] and 

chitin nanofiber composites embedded with gold nanoparticles [240].
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5. Stereocontrol in polymerization of vinyl ethers

From a more applied viewpoint, structure of the macromolecules is the crucial parameter 

that determines the properties of polymer materials. Enhancement of the stereoselectivity 

control will eventually allow fine tuning for a broad range of plastic materials with diverse 

thermal, mechanical and other physicochemical properties.

Several pioneering reports described the efforts to maintain stereocontrol of VE 

polymerization. Stereoselective polymerization of IBVE was demonstrated to proceed by 

cationic mechanism at –80–60 °C under control of BF3·(Et2O) initiating system [241]. The 

structure of the resulting solid thermoplastic materials was studied by X-ray diffraction analysis 

showing that the polymers were isotactic by nature [242,243]. Isotactic poly(IBVE)s with similar 

properties were obtained by coordination/insertion mechanism in a TiCl4/R3Al Zigler-Natta-type 

catalytic system [244]; in the presence of titanium-based LAs [245]; phosphoric acid derivatives 

coupled with SnCl4 [246]; and aromatic acetals in conjunction with tin halides [247].

More recent contributions featured isoselective polymerization of IBVE and TBVE achieved 

with both metallocene and post-metallocene systems e.g. CpTiCl3, Cp2MCl2 (M = Ti, Zr, V) or 

phenoxy-imino precatalysts [ON]2MCl2   (M = Ti, Zr, Hf), combined with methylaluminoxane 

(MAO) [248]. However, the level of isotacticity for these systems was quite moderate; in 

particular, the dyads [m] constituted 63–68% and 45–52% for poly(IBVE) and poly(TBVE), 

respectively. Chiral precatalysts (Scheme 40), in combination with MAO or molecular activator 

[Ph3C]+[B(C5F5)4]-, afforded at relatively high polymerization temperatures (–10–30 °C) 

poly(BVE) with a good degree of control in terms of molecular weight distributions (Mn 2,400–

59,400, PDI 1.08–2.01) and improved isotacticity ([m] of 45–90 %) [249-251].
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Scheme 40. Chiral titanium-based precatalysts studied in VE polymerization.

The tBuOH/FeSO4 binary system [252] revealed multi-site behavior in IBVE polymerization 

at 0 °C; the reaction afforded mixtures of isotactic and atactic poly(IBVE) fractions. Subsequent 

fractionation with MEK allowed isolation of the minor isotactic fraction containing up to 82% of 

[m] dyads.



33

A new cationic initiating system featuring chiral anion (Scheme 41) was optimized in order 

to provide a higher degree of stereocontrol in IBVE, IPVE, BVE and EVE polymerization [253]. 

The most promising products, with up to 93 % of isotactic dyads [m], were obtained upon 

polymerization of IBVE at 78 °C in a toluene/hexane mixture. The resulted crystalline materials 

featured high melting points (138–152 °C), valuable thermomechanical properties and 

improved adhesion to polar surfaces. 
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Scheme 41. A chiral ion-pair used in isoselective cationic polymerization of vinyl ethers.

6. Conclusions

The review highlights recent advances in polymerization of VEs, including the means for 

precise structural and functional design of the polymers. The mainstream living polymerization 

protocols, ubiquitously applied to synthesize poly(vinyl ethers), become actively supplemented 

by new methods of controlled synthesis. The rapidly developing area of initiating systems and 

precise control eventually gained over polymerization reactions allows the involvement of 

unconventional VE substrates as monomers and co-monomers thus expanding the variety of 

polymers with desired features and properties. 

The remarkable versatility of VEs makes them highly valuable monomers not only providing 

polymeric materials with unique properties, but also conferring clues to understanding of a 

complicated nature of polymerization processes. At the same time, the easy access to VE from 

available and sustainable raw materials (acetylene or calcium carbide) makes them highly 

relevant to our industrial future.  Of special importance are the efforts to produce calcium 

carbide form biomass and biomass refining wastes, which could associate production of plastics 

with natural photosynthetic cycle.
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