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Abstract
The Resonance Frequency and Damping Analysis (RFDA) is now a

common experimental technique to measure the elastic moduli of ma-
terials vs. temperature. Nevertheless, the elastic moduli are calculated
assuming that the frequency measured is the natural one, not impacted
by any damping. In oxide glasses, a significant damping occurs be-
low the glass transition temperature, and it may impact the frequency
measured, the elastic moduli calculated, as well as the estimated glass
transition temperature. We show here, using the equations of linear
viscoelasticity, how we can know if the frequency measured is signif-
icantly lowered by damping, and how we can estimate the natural
frequency to calculate the correct elastic moduli, only from the data
provided by the RFDA: the frequency measured and the damping.

1 Introduction

The measurement of elastic moduli of glasses is a first and easy measurement
to obtain information regarding their structure [1]. Measured vs. tempera-
ture, it will provide a glass transition temperature, and it allows to track the
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relaxation mechanisms of glasses [2, 3, 4]. Among all the methods to mea-
sure the elastic moduli of glasses, the Resonance Frequency and Damping
Analysis (RFDA) has become very popular, because commercial equipments
have been developed, as well as standards, and because it is relatively easy
to perform measurements at high temperature. The RFDA method, as en-
dorsed in its name, allows the measurement of a resonance frequency of a
material sample and the associated damping. Consequently, the frequency
measured is not the natural undamped frequency, but a damped frequency.
In a recent study, Wang et al. [5] have used various viscoelastic models
to investigate RFDA measurements and to determine the viscosity and the
non-exponentiality of glass relaxation from the resonance frequency and the
damping. It was a pioneer investigation to show that viscoelastic analysis is
adapted to the interpretation of the damping. In their investigation, they
assume that the measured frequency is very close to the natural, undamped,
frequency, and they have investigated glasses where the damping was continu-
ously increasing. Since the damping peak occurs close to the glass transition,
where the elastic moduli is supposed to drastically decrease, we could won-
der if the frequency drop observed at the glass transition is not only due
to the elastic moduli drop but at least partially to the damping, inducing a
wrong estimation of the glass transition temperature (Tg) from the slope of
the elastic moduli vs. temperature. Additionally, from our experience, some
glass samples, especially soda-lime silica glasses, exhibit multiple damping
peaks vs. temperature with clear frequency (f) decrease associated with this
damping (i.e.: df/dT show peaks at the same temperatures than damping).
As the elastic moduli are calculated assuming that the frequencies measured
are not impacted by any damping, this calculation is wrong as soon as the
frequencies are too much lowered by damping. The questions we want to
solve here are: How do we know if the measured frequency is damped or
close to be natural? And how can we recalculate the natural frequency if we
measure a damped frequency?

2 Theoretical background

2.1 Natural (undamped) and damped frequencies

For simplicity, to illustrate the problem with simple equations, we use the
Euler-Bernoulli beam theory, for a homogenous isotropic sample, in the
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framework of pure linear elasticity. For a free beam of length L, cross sec-
tion S and a second moment of area IG, the natural frequency fi of the ith

bending mode is given by:

fi =
k2i
2π

√
IG

d S L4

√
E (1)

where E is the Young modulus, and d the density. ki is the ith solu-
tion of the equation cos ki cosh ki = 1. So, k21 ∼ 22.3733, k22 ∼ 61.6728,
k23 ∼ 120.9032... In other words, f2/f1 = 2.7565 and f3/f1 = 5.4039. Conse-
quently, the angular frequency ωi is given by:

ωi = 2π fi = k2i β
√
E (2)

where β is a factor that only depends on the sample geometry and the
density of the material. More generally, without the assumption of the Euler-
Bernoulli beam theory, µ being the shear elastic modulus:

ωi = γE−i
√
E, for the bending modes

ωi = γµ−i
√
µ, for the torsion modes

(3)

γE−i and γµ−i are factor for the ith mode, that depend on the sample
geometry, density, and slightly on the Poisson’s ratio.

These frequencies are the natural frequencies, undamped, and as soon as
damping occur, the displacement of a given point of the beam, in the bending
direction, can be written as (if no over-damping), assuming each point of the
beam has a single degree of freedom [6]:

u(t) =
∑
i

u0i sin (ωdi t+ ϕi) exp (−αi t) (4)

ωdi is the damped angular frequency (ωdi < ωi), αi the exponential decay
parameter of the ith mode, ϕi a phase lag. The RFDA method provides the
ωdi and the αi, but not ωi. Consequently if ωdi is significantly lower than ωi,
the Young modulus can not be determined using Eq.2 or 3. The questions
here are: how do we know that the difference between ωdi & ωi is significant
(since ωi is unknown)? And how can we determine ωi to find E? And all of
this, only with the data provided by the RFDA?
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2.2 Viscoelastic model

For simplicity, let us consider first an ideal linear viscoelastic material, with
a temperature independent natural frequency. This material has a single
relaxation process, temperature dependent. The relaxation time τ of this
process decreases when the temperature (T ) increases. So relaxing (dissipat-
ing) events occur at a typical frequency 1/τ , increasing when T increases.
The damped frequency will drastically decreases when 1/τ approaches the
natural frequency, and the damping increases. Glasses never shows Debye
relaxation [? ], sometimes multi-modal, so that the damped frequency (fd)
will decrease when the natural frequency matches the inverse of the average
relaxation time of one of these distributions, producing a damping peak per
distribution. Consequently, dfd/dT shows peaks at the same temperature
than damping.

In oxide glasses, we usually expect to see, from experience made by Dy-
namical Mechanical Analysis (DMA), some damping peaks before the glass
transition [8, 9], namely the β & γ-relaxation [10] and a large damping when
approaching the glass transition, the α-relaxation [10]. The peaks before Tg
are basically due to ionic mobilities (alkali, alkali earth): at least one peak per
ion and one peak due to a mixed ion effect (γ-relaxation); and are also due
to water (β-relaxation) [10]. The peak at Tg is due to the relaxation of the
glassy network [10]. Usually the peaks before Tg are convoluted. Because the
relaxation time of a glass at Tg is around 100 s, and because samples used
in RFDA have resonance frequencies larger than kHz, the peaks are sup-
posed to be shifted to larger temperature, compared to DMA (DMA probing
frequency lower than 100 Hz), but are still supposed to be present. From
our experience of RFDA, on various oxide glasses, we usually observe, as ex-
pected, one broad damping peak before Tg associated sometimes with a small
measured frequency (the damped frequency fd) drop, and a high broad peak
starting before Tg, associated with a drastic frequency drop and this is also
what is observed by Duang et al. [2, 3]. A typical example will be shown later
with a soda-lime silica glass. The small frequency drop associated with a low
temperature damping peak is also observed in silicon nitride and carbide [11].

The viscoelastic behavior on inorganic glasses can be modelled using a
generalised Maxwell model [12], also known as the Wiechert model [13], that
is able to describe the dynamic response of inorganic glasses at low and
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high frequencies [14, 15], even if its physical meaning can be debated [15].
Let us consider a viscoelastic material using the Wiechert model, to obtain
multiple damping peaks, and let us assume that most of the damping is due
do viscoelastic dissipation (because it can also be partially due to the wire
supporting the sample, the air...). We consider that the Wiechert model has
no pure elastic branch, so that its relaxation modulus is (Prony serie):

ER(t) = E
N∑
j=1

ρj exp

(
− t

τj

)
(5)

τj are the relaxation times, and ρj ≥ 0 the weight of the jth relaxing

process.
∑N

j ρj = 1. EL is the Laplace-Carson transform of ER(t)/E, said
”normalised relaxance”:

EL(s) =
N∑
j=1

ρj
τj s

1 + τj s
(6)

s the Laplace variable. The relationship between ωdi, αi and ωi is given
by [16, 17]:

ωi =

√
−s2i
EL(si)

where Re(si) = −αi, Im(si) = ±ωdi (7)

If si and EL(si) are known, it is easy to find ωi. On the other side, when
ωi and EL(si) are known, it is more difficult to find analytical expression for
si, and thus αi, ωdi. To our knowledge, for N ≥ 4 no analytical solution has
been found. But for N = 3, an analytical solution can be found for si using
computing software, such as Mathematica1. We use here this solution for
N = 3 to calculate si and then αi and ωdi.

2.3 Simulation of RFDA measurement

We will investigate how ωdi and αi evolve with temperature for a given Young
modulus E and a given evolution of the τj. The arbitrary chosen E(T ) and
τj(T ) are plotted on Figure 1. ρi are chosen as ρ1 = 0.1, ρ2 = 0.2, ρ3 = 0.7,
to qualitatively reproduce the 3 (α− β− γ) typical damping peaks observed
in alkali-oxide glasses [8], but ρ1 and ρ2 are chosen 10 times larger than

1https://www.wolfram.com/mathematica
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their expected values to produce large β − γ relaxations to make the Fig-
ures more readable (increase the hight of the corresponding damping peaks).
The Young modulus of glasses under cooling is usually opposite to the vol-
ume/enthalpy change. In the supercooled liquid range (T < Tg) the volume
decreases rapidly under cooling whereas E increases rapidly (dE/dT = −a,
a > 0). When Tg is reach, the volume/enthalpy keeps decreasing but with a
lower rate, whereas E increases with a lower rate (a(T < Tg) < a(T > Tg))
[14, 18]. a(T ) has a temperature dependence very similar to the heat ca-
pacity, so that the temperature dependence of E can be predicted using the
TNM model [4]. Consequently, under heating at constant heating rate, the
Young modulus decreases softly up to Tg and then drops rapidly (this transi-
tion is not observed for few glasses, such as fused silica, as an example). The
temperature dependence of E used here is chosen to reproduce this typical
behavior of inorganic glasses under heating at constant heating rate. The
relaxation time τj follows arrhenian decays (VFT [19, 20, 21] laws have not
be chosen because they diverge, but the arrhenian law is known to be suffi-
cient to described the β and γ relaxations [22]). Again, the parameters for
the temperature dependence of the τj have be chosen to qualitatively repro-
duce the α − β − γ relaxations. For simplicity, we choose the solutions of
the Euler-Bernoulli beam theory, with β = 1/k21 in Eq.2, and at T = 0K:
ω1 = 1 rad.s−1 (ω2 = 2.7565 rad.s−1, ω3 = 5.4039 rad.s−1), so that the
normalised Young modulus at 0K is 1.

The corresponding ωdi and αi are calculated using Eq.7 and plotted on
Figure 2. As expected, the ωi show trend similar to E, since ωi ∝

√
E, and

normalised ωi are perfectly identical. αi show roughly 3 peaks at the temper-
ature where τj ∼ 1/ωi (”roughly” because the peaks are convoluted). The
position of the peaks shifts with i, as expected from experiments on glasses:
this shift is used to estimate the activation energy of each τj [2]. On the
other side, the ωdi will undergo significant drop every times a damping peak
occurs. The drops do not occur at the same temperature for each mode, be-
cause each mode ”probes” at its own frequency: the equalities 1/τj = ωi are
not reach as the same temperatures. E is also noted E∞ in rheology, because
if its measurement could be made at an infinite frequency, no damping would
impact on its measurement, since no relaxation time is ever null: the drops
would be virtually shifted to infinite temperature.

What we would have measured for such theoretical material, from the
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RFDA, are the ωdi and the αi and nothing else. Consequently, using Eq.2,
we would have obtained 3 different ”Young moduli”, one per mode measured
(if 3 modes are measured). We would have known that they are not real
Young moduli, since they depend on the mode. This is the first way to know
if the frequencies measured are significantly impacted by the damping: if
the Young moduli calculated for each mode are identical, the frequencies are
closed to the ideal undamped frequencies. Obviously, the best is to have
the first mode, and the highest possible mode to have a very large range of
frequencies. Now, if we notice that the Young moduli calculated are different
from one mode to an other, how can we estimated the ”real” Young modulus?

2.4 How to determine the natural frequencies form
RFDA measurement?

The undamped frequencies (ωi) could be calculated from Eq.7, since si are
known (ωdi and αi are known), but we need to find EL(si) or more specifically
the τj and the ρj. The damping ratio ζ and the Q−1 factor are defined as:

Q−1i = 2 ζ =
2αi
ωi

(8)

Obviously, since ωi are not known, we have to assume in this equation
that:

Q−1i ∼
2αi
ωdi

(9)

It is often assumed (but it is not exact [23]), that Q−1 is equal to the loss
factor:

Q−1i ∼
E ′′(ωi)

E ′(ωi)
(10)

E ′′ is the loss modulus, and E ′ the storage modulus. For our Wiechert
model:
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E ′(ωi) = E

N∑
j=1

ρj
τ 2j ω

2
i

1 + τ 2j ω
2
i

E ′′(ωi) = E
N∑
j=1

ρj
τj ωi

1 + τ 2j ω
2
i

(11)

Note that E is also noted E∞ because E ′(ω → ∞) = E. Again, ωi are
not known, so we have to assume:

2αi
ωdi
∼ E ′′(ωdi)

E ′(ωdi)
=

∑N
j=1 ρj

τj ωdi

1+τ2j ω2
di∑N

j=1 ρj
τ2j ω2

di

1+τ2j ω2
di

(12)

With our model, we can test all the approximations made here. Q−1i =
2αi/ωi, approximated Q−1i = 2αi/ωdi, E

′′(ωi)/E
′(ωi) and E ′′(ωdi)/E

′(ωdi) are
plotted on Figure 3, for the first and third mode (not the second, for sake of
clarity). The results for the other modes are similar. First, the equality sup-
posed in Eq.10 is not perfectly correct, as expected. Then, E ′′(ωdi)/E

′(ωdi)
is a rather good approximation of 2αi/ωdi: it slightly overestimates 2αi/ωdi
but has identical temperature positions for extremum. Consequently, we
can assume that the Eq.12 is quite correct, and so the approximated Q−1

(calculated with the damped frequency) can be fitted, as suggested by this
equation, by finding the adequate value of τj (their temperature dependen-
cies) and ρj. We do not need to know E (or ωi) to fit the approximated Q−1.
The τj(T ) and ρj found can be injected in Eq.7 to find ωi.

2.5 Maxwell model

In Eq.6, if N = 1, we obtain the Maxwell model, that injected in Eq.7
provides the simple and famous relationship:

ωi =
√
α2
i + ω2

di (13)

And using Eq.9:

ωi = ωdi

√(
Q−1i

2

)2

+ 1 (14)
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We may be tempted to use this simple equation, even when multiple
damping peaks occur, because we do not need any data fitting to determine
ωi from αi & ωdi. This equation is applied to our data, using α1 and ωd1
to calculate ω1. This attempt is plotted on Figure 2 and drastically differs
from its expected value, ω1. Indeed, as indicated by Eq.14, the Maxwell
model provides a significant correction of ωdi only if Q−1i is high (1% differ-
ence between ωdi and ωi if Q−1i > 0.3), and then rapidly overestimates the
correction.

3 Experimental procedure

The experimental measurements have be performed using the impulse excita-
tion technique with the apparatus RFDA HT1050 from IMCE 2. The exper-
imental procedure, the measurement uncertainties and the method to deter-
mine the damping, with this apparatus, have been described by Roebben et
al. [24]. The sample is supported by thin wires (0.1 mm in diameter) made of
PtRh10%, placed at nodes of a given vibration mode, and impacted close to
an anti-node of the same vibration mode. The sample is in a furnace, and the
acoustic signal is recorded through a microphone, placed outside the furnace
(described in [24]) at a top of an alumina rode used as a guide for the acoustic
wave. The signal is recorded by the computer and a software interpolates the
recorded data through Eq.4 optimising iteratively the parameters u0i, ωdi, ϕi
and αi at each temperature. As an output, the software provide the ωdi and
αi. Using the resonance frequencies measured, the software also provides the
elastic moduli according to ASTM C 1259-94, but we have recalculated the
elastic moduli using Finite Element Analysis, with the software Cast3M 3.

4 Results and analysis

We have selected two samples to test our model, with opposite behavior:
one where the damping does not induce significant frequency drop (soda-
lime silica glass), and one where multiple damping peaks induce multiple
frequency drops (phosphate glass).

2https://www.imce.eu/
3http://www-cast3m.cea.fr/
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4.1 Soda-lime silica glass sample

The first sample is a soda-lime silica glass: the window glass Planilux from
Saint Gobain. The sample geometry is 75.32± 0.02× 20.24± 0.02× 2.88±
0.02 mm3 heated up at 10 K/min, with a density at room temperature of
2.50 ± 0.01 g.cm−3. The supporting PtRh wire were placed at the nodes of
the first torsion mode. With this configuration, we succeed to obtain the 5
first resonance frequencies, 3 corresponding to bending, 2 to torsion. From
ultrasound velocity measurement, we have [25, 26], at room temperature
E = 71.5 ± 0.5 GPa, ν = 0.21 ± 0.01 and µ = 29.5 ± 0.5 GPa. Finite
Element Analysis have been performed using these values, in order to cal-
culate the resonance frequencies of this sample, using 3D simulation, with
all identical cubic elements with 8 nodes, with a total of 486416 nodes, and
to calculate the γµ−i = fi/

√
29.5 and γE−i = fi/

√
71.5. The experimental

frequencies at room temperature, the γ−i and the corresponding elastic mod-
ulus deduced are given in Table 1.

The average elastic moduli found are in the expected range (E = 72.1±
0.3 GPa, µ = 29.5±0.2 GPa), but varie from one mode to another, but these
small differences between mode can be just due the sample size uncertainty.
The corresponding Poisson’s ratio is 0.22± 0.01, in the expected range. The
measured frequencies vs. temperature are plotted on Figure 4.

As we can see on this Figure, the normalised measured frequencies of same
deformation modes do not depend on the frequencies. They especially drop
exactly the same way, at the same time, above 800 K, showing that this drop
is not due to the damping (frequency-dependent) but to a decrease of the
elastic moduli. Note that the torsion frequencies do not exactly decrease in
the same way as the bending frequencies. This is expected: shear and Young
moduli do not have the same temperature dependence, since the Poisson’s
ratio is itself temperature dependent [14, 18]. The difference between the
torsion and bending frequency corresponds to a roughly linear increase of
the Poisson’s ratio of 0.015 between 300 and 920 K (see inset of Figure 4).

Here, the correction to determine ω from ωd seems needless, since every
frequency provides the same elastic moduli, within experimental uncertainty,
at every temperature. Nevertheless, to show that our model does not ”over-
correct” the experimental data, we will apply our model on these data. The
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measured α are shown on Figure 5. Because of the wire position, the damping
of the first and third bending mode, as well as the second torsion mode
are noisy, because the wires limit the amplitude of these modes. But this
configuration is the best one to obtain that much resonance frequencies with
significant amplitudes. We assume that the viscoelastic model associated
with this glass is a Wiechert model with N = 4 cells, and we fit the measured
α using Eq.12:

α(T ) =
ωd(T )

2

∑N
j=1 ρj

τj(T ) ωd(T )

1+τj(T )2 ωd(T )2∑N
j=1 ρj

τj(T )2 ωd(T )2

1+τ2j ωd(T )2

(15)

where, with Eaj the activation energy of the relaxation process j:

τj(T ) = τ0j exp

(
Eaj
RT

)
(16)

The α measured for the bending and torsion are fitted with the same
parameters, even if they are no supposed to be identical, because the last one
involves almost pure shear viscoelastic processes, whereas the other involved
also bulk viscoelastic processes. The fitting parameters are given in Table
2. With these fitting parameters, we calculate the relaxance and si at any
temperature to identify the undamped frequency ωi from Eq.7, for each mode,
and we calculate the corresponding elastic moduli. They are shown on Figure
4. As one can see, the difference between the moduli calculated with damped
frequencies and undamped frequencies is very low, as expected. However, one
can also see that at T > 500K, the damped frequencies show a very small
drop associated with the corresponding damping: this is highlighted by the
correction made, because we see that only above 500 K the damped and
undamped frequencies do not overlap. Our model just corrects this very
small effect of damping.

4.2 Phosphate glass

The second sample is a NaCa(PO3)3 glass. The sample geometry is 35.74±
0.02× 13.91± 0.02× 4.96± 0.02 mm3 heated up at 5 K/min, with a density
at room temperature of 2.60 ± 0.01 g.cm−3. The supporting platinum wire
were placed at the nodes of the first torsion mode. For this sample we have
measured two frequencies corresponding to the first bending and to the first
torsion mode (16653 and 23836 Hz respectively at room temperature). All
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other frequency modes have too weak signals. The two modes measured
are very similar in their temperature dependence, we focus on the torsion
mode here. The data are plotted on Figure 6. As we can see, the frequency
measured undergoes ”oscillations”, decreasing every time a damping peak
occurs. 9 damping peaks can be distinguished between 475 and 750K. We
will not try to discuss here the physical origin of this peak: This large number
of peaks could be assigned hydroxide ions mobilities and their interactions
with Na+ & Ca2+, but they obviously do not correspond to 9 different glass
transitions. Even if we do not have the frequencies of the other torsion modes,
we clearly know that the frequency measured is a damped frequency. We can
not calculate an elastic modulus with it, directly, and we can not define a
glass transition from this data. Consequently, we will use our method to
calculate the undamped frequency. We assume that the viscoelastic model
associated with this glass is a Wiechert model with N = 9 cells, and we fit
the measured α using Eq.15.

Our best fitting is shown on Figure 6, and the fitting parameters are given
in Table 3. Some parameters clearly indicate that the Arrhenius law is not
the best to fit the data (some τ0 do not have any physical sense ), but again,
the VFT will diverge.

With these fitting parameters, we calculate the relaxance and s at any
temperature to identify the undamped frequency ω from Eq.7. As one might
expect, the right side of this equation has an imaginary part, but very small.
We take the modulus for our calculation. The result is shown on Figure 6.
As we can see, all the small drops of the damped frequency have disappeared
on the calculated undamped frequency, as expected. At ∼ 685K a sharp
decrease of the undamped frequency is observed, associated with some noise,
due to the noise on the α measured. It is consistent with the Young modulus
drop expected at the glass transition temperature, expected to be around
670 − 700K for this glass: our model does not eliminate this drop because
it is not due to damping. If we try to calculate the undamped frequency
using Eq.13-14, the frequency obtained is indistinguishable from the damped
frequency, underlying that this simple model is not suitable.

It is sometimes assumed that [27]:

ωdi ∼ γµ−i
√
E ′(ωdi) (17)
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From Eq.11, substituting E by µ (ER by G, E ′ by G′, E ′′ by G′′... terms
related to Young moduli by terms related to shear moduli):

µ(T ) =

(
γ2

9∑
j=1

ρj
τj(T )2

1 + τj(T )2 ωd(T )2

)−1
(18)

All the terms of the right side of this equation are known by direct mea-
surement or fitting. It provides an other equation, different from Eq.7, to
determine the elastic moduli. As shown on Figure 7, these two methods
(Eq.7 and 18) and are very similar, showing that the approximation of Eq.17
is quite correct.

5 Discussion

Oxide glasses have viscosities larger than 1012 Pa.s below Tg, and conse-
quently a relaxation time larger than hundreds of seconds [28]. Centimetric
RFDA samples, depending on their densities, and on their elastic moduli,
have resonance frequencies larger than kHz. Considering the simple Maxwell
model, we could expect α(T ) = (2τ(T ))−1, and considering Eq.13, if the un-
damped frequency is around kHz, the measured frequency (damped), should
not be even a ppm lower than the undamped frequency, up to Tg. Conse-
quently, we could assume that the RFDA is a suitable method to measure
the elastic moduli of oxide glasses up to Tg and a little bit above, because it
is not significantly impacted by any damping. Nevertheless, in many oxide
glasses low temperature relaxation (β & γ-relaxation) occurs, and it can in-
duce a significant damping, increasing the difference between the undamped
and damped frequencies. From our experience on many oxide glasses, the
effect of low temperature relaxation can be seen through a small drop of the
measured frequency, occurring when the damping associated with this relax-
ation reaches its maximum. Nevertheless, this drop is not always detectable,
depending on the quality of the measurement. A good way to know if the
measured frequency is impacted by damping is to compare the evolution of
two normalised frequencies, corresponding to the harmonics of a given defor-
mation mode (bending mode, torsion mode...), vs. temperature: if they are
identical, they are not impacted by damping, if not, they must be corrected.
The two examples presented here shown that sometimes this correction is
rather needless, sometimes it is a major correction. Unfortunately, measur-
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ing multiple frequencies of multiples deformation modes with good intensities
and good associated measured damping is not very easy, rather empirical,
depending on the sample size and composition, where the sample is impacted
and the position chosen for the wires: a given ith mode can be amplified by
hitting the sample at its antinode, that would correspond or would be very
close to the nodes of other modes and drastically reduce their signals. Ex-
perimentally, when, at room temperature, one succeed in having good signal
for many modes, frequently, the signal of various modes are lost upon heat-
ing. The role of wires and the position where the sample is impacted on the
amplitude of the signal, for all the modes where the wires are not at their
nodes, or the sample hit at their antinode, is unclear. The sample geometry
for the soda-lime-silica glass has be selected after various tests on 21 sample
geometries, because it was the one having the larger number of mode with
good quality signals. We were not able to produce such a long sample with
the phosphate glass.

Note that the fitting parameters in Table 2 do not correspond to the ex-
pected equilibrium viscosity of the soda-lime-silica glass (η = η0 exp (Ea/(RT )),
with η0 = 2.91× 10−24 Pa.s and Ea = 571 kJ/mol [26]), but this is not unex-
pected. The damping peaks below Tg correspond to, by definition, processes
that are not under equilibrium, and the damping peak(s) well above Tg (α
relaxation), the major contribution to the viscosity (because its ρj is larger),
to processes under equilibrium. But this latter can not be properly measured,
since the RFDA signal becomes too weak when it occurs (on Figure 5, we
just see the beginning of the α peak). Consequently, a viscosity calculated
from the fitting of the damping can not be exactly an equilibrium viscosity,
and can not be properly calculated since its major contribution is missing.
Wang et al. [5] succeed in determining the viscosity of their glasses from
the damping, but they observe a single large damping peak. It seems that
when β & γ-relaxations occur, the viscosity can not be determined anymore
from the damping. What is more unexpected is the sharp decrease of the
elastic moduli occurring at T > 850 K, whereas ultrasonic measurement at
300 kHz, made by Rouxel and Sangleboeuf [29] indicate a sharp decrease
at T ∼ 820 K. Below Tg there is a good agreement between our measure-
ments and these ones, but the sharp elastic moduli decrease due to the glass
transition occurs later when measured by RFDA. If our measurement were
significantly impacted by damping, we would expect the opposite, since our
frequencies are much lower.
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We could wonder why for the soda-lime-silica glass the damping peak are
convoluted (N = 4 in the Wiechert model, but only two visible peaks on
Figure 5), whereas the damping peaks of the NaCa(PO3)3 glass are nicely
deconvoluted (N = 9 for 9 peaks). Two relaxation processes with different
τ0j & Eaj (Eq.16) will produce convoluted peaks when they will have similar
relaxation time in the temperature range investigated and if this relaxation
time is close to the inverse of the natural angular frequency of the sample.
So, it is not unexpected to observe situations where peaks are convoluted
and other where they are not: for a given glass composition, with RFDA, it
will only depends on the sample geometry.

The correction proposed here is based on linear viscoelasticity. We pro-
pose to fit the damping measured using a viscoelastic model, the Wiechert
model, taking advantage of the fact that, roughly, the damping does not
depend on the undamped frequency that is unknown. To our opinion, the
chosen model does not need to capture all the detail of the glass relaxation, as
soon as it is able to reproduce the damping peaks. As an exemple, below Tg,
the glasses are out of equilibrium: their elastic moduli and relaxation times
are heating-rate dependent [4]. This is not something taken into account
here. All the results presented in this work are thermal history-dependent.
But what we want to emphasize here is that the method to eliminate the
effect of damping does not need to capture this dependence to properly op-
erate. In return we can not expect to extract physically sounded parameters
from the fitting used in the method: we will have to use different fitting pa-
rameters for each heating/cooling rate. All we need to apply our method is a
viscoelastic model that reproduces the damping at a given heating or cooling
rate, even if it does not capture all the physics behind. In other words, all
the fitting parameters found here must only be seen as fitting parameters
and nothing else. Additionally, if our investigation shows that the measured
frequencies do not always allow to determine an elastic moduli, it also shows
that it allows to determine the storage moduli at the damped frequencies
(Eq.17). Consequently, the RFDA is also a method to determine the loss
and storage moduli at relatively high frequencies, compared to DMA, and is
a complementary method to DMA.

It must be noticed that when the wire are placed at the node of a given
deformation mode, the damping of the other modes are increased [24]. With
the configuration we have chosen, where the wire are at the nodes of first
torsion mode, it seems that the damping of the first bending mode is not
impacted, this is the reason why we have chosen this configuration. We
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could expect that, if we fit the damping of the first bending mode with a
Wiechert model, this model will be able to predict the damping of all other
bending mode. But because of the effect of the wires, this fitting will be
quantitatively unsuccessful. However, we can expect a qualitative fitting: a
correct prediction of the temperature of the damping peaks. But, again, it
is rather difficult to obtain good signals for many modes.

6 Conclusion

Most of oxide glasses exhibit relaxation processes below the glass transition
range (β & γ-relaxations). During RFDA measurements, these processes
induce a significant damping and this damping can shift the measured fre-
quency to a value significantly lower than the natural frequency of the glass
sample, inducing a wrong estimation of the elastic moduli. Using the other
frequencies of the same deformation mode than the first one measured, we
can control if the frequencies measured are impacted by any damping: if they
are not, their normalised evolutions vs. temperature overlap, and the elas-
tic moduli can be deduced from these frequencies. If they are impacted by
damping, larger frequencies would show drops at larger temperature. Nev-
ertheless, if they are not superimposed, or if the other frequencies are not
correctly measured, one can not determine the elastic moduli. We use here
the equations of linear viscoelasticity to show how we can determine the elas-
tic moduli using the frequencies measured and the damping. Two equations
are used, a first one using the correspondance principle (the Laplace-Carson
transform, Eq.7), and a second one assuming that the moduli calculated
with the measured frequency is the storage moduli (Eq.18). These two equa-
tions provides similar results, removing all apparent elastic moduli drops
due to damping, letting the expected ”real” drop occurring at Tg. For both
equations, we need to fit the damping using a rheological model of linear vis-
coelasticity, with temperature dependent relaxation times. It seems that the
model does not need to capture the complexity of the glass relaxation, but in
return does not provides any physically sounded parameters. The one shown
here is the Wiechert model, but there is no reason why it would not work
with other linear viscoelastic models. To our opinion, for most oxide glasses,
this correction is minor (as exemplified with the soda-lime-silica glass), but
for some samples, as the phosphate glass investigated here, the correction
made on calculated elastic moduli is larger than 14%. Nevertheless, it must
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be underlined that the relaxation time of oxide glass around Tg being close
to hundreds of seconds, it is not expected to observe any significant damp-
ing around Tg when the natural frequency is larger than kHz, but from our
experience, most of them show significant damping. This is the reason why
we must always pay attention to the frequency measured and ensure that it
is not significantly impacted by the damping.
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dence of damping in silica refractories measured via the impulse excita-
tion technique, Ceramics International 44 (2018) 8363 – 8373.
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Figure 1: Young modulus (normalised by its value at 0K, on the right) and
relaxation times (τj) used for the simulation (on the left).
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Figure 2: Left axis: Normalised natural (undamped) frequencies ωi (all su-
perimposed) and damped frequencies ωdi of the ith bending mode (decreasing
curves). They are normalised by their values at 0K. Each bending mode gives
the same normalised natural frequency. Right axis, dashed: corresponding
αi (increasing curves).
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Figure 3: Comparison between ”exact” Q−1i = 2αi/ωi, approximated Q−1i =
2αi/ωdi, E

′′(ωi)/E
′(ωi) and E ′′(ωdi)/E

′(ωdi), for i = 1 & 3.
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Figure 4: Data for the Planilux sample. Normalised measured pulsations
(by the pulsations at room temperature ωRT ) vs temperature (equivalent to
normalised measured frequencies: the frequencies are normalised by the val-
ues in Table 1): Bi: ith bending mode -bottom-, Ti: ith torsion mode -top-,
and normalised calculated undamped frequencies: Bic: ith bending mode,
Tic: ith torsion mode. Inset: corresponding evolution of the Poisson’s ra-
tio, calculated form the first bending and torsion modes. The square root
of the normalised Young Modulus measured by Rouxel and Sangleboeuf is
also given [29]: ultrasonic measurements, using the long beam mode con-
figuration, at 300 kHZ, under nitrogen atmosphere. For this measurement:
E(300K) = 72± 1 GPa.
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Figure 5: α measured for the Planilux sample, for the second bending mode
and the first torsion mode.
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Figure 6: Measured angular frequency (named ωd), calculated undamped
angular frequency (ω) and corresponding α, measured and fitted, for the
first torsion mode of the NaCa(PO3)3 sample.
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Figure 7: Calculated shear elastic modulus µ, directly given by the RFDA
software (1), using ω = γ

√
µ, where ω is the calculated undamped angular
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Table 1: 5 first experimental and FEA frequencies for the Planilux sample
at room temperature, γi (= γµ−i for torsion, γE−i for bending) calculated
from FEA, and deduced elastic moduli E from experimental frequencies of
bending, µ from torsion.

mode i f exp. (±1 Hz) f FEA (Hz) γ−i (s.
√
GPa)−1 E or µ (±0.1 GPa)

bending 1 2799 2795 330 71.9
torsion 1 6243 6220 1153 29.3
bending 2 7681 7653 905 72.2
torsion 2 12907 12830 2378 29.6
bending 3 14921 14839 1755 72.4

Table 2: Fitting parameters for α of the Planilux sample.

j Ea (kJ/mol) −log10(τ0) ρ

1 58 10.4 0.003
2 34 8.5 0.002
3 68 8.8 0.008
4 203 14.3 0.987

Table 3: Fitting parameters for α of the NaCa(PO3)3 sample.

j Ea (kJ/mol) −log10(τ0 (s)) ρ

1 66 12 0.003
2 330 38 0.004
3 235 27 0.010
4 330 34 0.014
5 343 33 0.018
6 586 51 0.028
7 1047 84 0.041
8 1737 133 0.031
9 323 27 0.851
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