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RESUME. La digestion anaérobie est un processus naturel de production de biogaz & partir de
déchets organiques, en absence d'oxygéne. Ce gaz peut étre utilisé comme source d’énergie,
d’ou l'intérét croissant aux procédés permettant I'optimisation de la production du biogaz. Ce travail
présente un modele mathématique correspondant a un processus de production de biogaz en deux
phases, stimulant I'activité de la biomasse pour produire le maximum de méthane et d’hydrogéne.
Les deux phases du processus se déroulent dans deux bioréacteurs différents et sont décrites par
deux systemes avec un nombre égal d’équations. Nous nous proposons de faire I'analyse mathéma-
tique de ces systémes. Pour cela, nous déterminons les points d’équilibre et donnons les conditions
de leur existence et de leur stabilité locale. Les résultats obtenus sont illustrés par des simulations et
des diagrammes opératoires permettant de bien comprendre le processus.

ABSTRACT. The Anaerobic Digestion (AD) is a natural process of biogas production from organic
wastes. This gas can be used as a source of energy, hence the growing interest in processes al-
lowing the optimization of biogas production. This work deals with the mathematical analysis of a
continuous process model of AD in a cascade of two different bioreactors. The aim is to stimulate the
activity of biomass, in order to produce a maximum rate of methane and hydrogen. The reactions are
described by two systems with an equal number of equations in both bioreactors. We determine the
equilibrium points of these systems and we give necessary and sufficient conditions for their existence
and stability. Our results are illustrated by numerical simulations and operatory diagrams for the well
understanding of the process.

MOTS-CLES : Digestion Anaérobie, Biogaz, Point d’équilibre, Stabilité locale, Diagrammes opéra-
toires
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1. Introduction

The Anaerobic Digestion is a biotechnological process of organic material degradation
with H, production as a non-accumulating intermediate product. This multi-step process
presents an interest to the scientific and industrial community since hydrogen can be used
as a substrate for several reactions, in addition to its consumption by hydrogenotrophic
methanogens to produce CHy and COs. The produced biogas can be used as a source of
energy. However, this biodegradation is a slow reaction, that’s why a process based on
connected bioreactors has been suggested in [2,3].

The AD process has been described in the literature by different models, see for example
[1] and [4] where the complete anaerobic digestion model (ADM1) is presented. This
model is very complex and uses many groups of microorganisms, involved in a complex
production process of methane and carbon dioxide. The ADM1 model is based on many
equations with a large number of variables and parameters. A lot of simplified models
exist in the literature, see for example [5] and [6] and the references therein. In [2] and
[3], the authors present a mathematical model of the AD process taking place in two con-
nected bioreactors, operating in continuous mode (the input flow is equal to the output
flow) in order to optimize the production of hydrogen and methane.

The main objective of this study is to analyze the mathematical model of [3], that de-
scribes an AD process in a cascade of two bioreactors, with production of hydrogen and
three intermediate products (acetate, propionate and butyrate) in the first bioreactor (BR;)
and of methane in the second one (BR5).

2. The mathematical models

In the bioreactor BRy, the fast growing acidogens and Hs-producing microorganisms
are developed in a volume V;. These products are involved in the production of acetate,
propionate, butyrate and Ho (acidogenesis). Meanwhile, the slow growing acetogens
and methanogens are developed in the second-stage methanogenic bioreactor BRo, with
working volume V5 and in which the produced propionate and butyrate are turned to
acetate (acetogenesis) and finally to CH4 and CO5y (methanogenesis), [3], as shown in
Figurel.

Reaction in BR;

£¢7 | |
Xer XpBut Reaction in BR,
Xac

output of BR;

input of BR,

Figure 1. The reactions in both bioreactors BR, and BR..
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The reactions in BR; are described by a system of six differential equations in which
the biomass with concentration X consumes the effluent substrate (Sy), which is trans-
formed after hydrolysis in S, in order to produce Hs and three intermediate products:
the propionate (Pr1), the butyrate (But;) and the acetate (Acy).

The model is written as follows:

So = —-D1Sp — ﬂXlsQ + D1YpSén

S1 = —D1S1 + X150 — %fl)Xl

X1 = (u(S1) = D)X,

Pry =480 x, _ D pr 24
1= 5 4 1Pr

B1:Lt1 = %Xl — DlButl

A.C1 = %‘?,XH — D1A01.

where Sé" is the inlet substrate’s concentration in BRy, D; is the dilution rate in BR1, Y,
a =1, Prqy, Buty, Acy, are yield coefficients. p1(.) is the growth function of acidogenic
bacteria.

We assume that the growth function i (.) satisfies the following condition:

(H1) 11(0) =0and forall Sq >0, pj(S1)>0.

Hypothesis (H;) means that without substrate there is no growth and that the growth rate
of the biomass X increases with the concentration of the substrate S;. We denote by \;
the solution of the equation p;(S1) = Dy, if it exists. Otherwise, A1 = +o0.

In the other hand, the methane is produced in the second bioreactor BRo, on the base
of the acetate, propionate and butyrate produced in BR;. The following system of six
differential equations describes the consumption of the propionate, butyrate and acetate
substrates (Pry , Buty and Acs , respectively) by the corresponding bacteria with con-
centration X p, Xp,: and X 4. respectively. The model is written as follows:

Pry = Da(Pry — Pra) — “5{P22) Xp,
Xpr = (upr(Pr2) — Do) Xpy
B' — Do(B - B _ MBut(BUtQ)X
1.1t2 2 (But: utz) Vouts But 2.2]
XBut = (LBut(But2) — D2) X put

Acz = Da(Acr — Acy) + HEEET Xp, o gt Buia) Xy, 2lAC2) X

Aco
X.Ac = (/lAc(ACQ) — DQ)XAC.

where Prq, But; and Ac; are the inlet substrates concentrations in BRo, from BR;, Do
is the dilution rate in BRo, Yj, for § = Pry, Buts, Acy are yield coefficients and pp,(.),
tput(.) and pac(.) are the specific growth function of X p,. X g+ and X 4. on Pra , Buts
and Acs , respectively.

We assume that:

(Hz) ppr(0) =0andforall S >0, pyp.(S) > 0.
(Hs) pput(0) =0andforall S >0, y,,(S)
(H4) pac(0) =0andforall S >0,u.(S)>0.

> 0.
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For A = Pr, But, Ac, we denote by A4 the solution of the equation p4(S) = Do, if
it exists. Otherwise, A4 = +oo.

3. Analysis of the models

In this section, we first give two preliminary results, then we determine the equilib-
rium points of each mathematical model in the bioreactors BR; and BR,, as well as the
conditions of their existence and stability.

Proposition 3.1 For any nonnegative initial conditions, the solutions of [2.1] remain
nonnegative and are bounded. Moreover, the set

0 = {(S()7 Sl, Xl, P’I’l, But1, ACl) (S Ri : Ylso(t) + Y151 (t) + %Xl(t) + %(Yprl Prq (t) +
YBut1 But, (t) + YAc1 Acy (t)) = Y1YpSén}

is invariant and attractive.

This result can be proven by standard arguments. For model [2.2], we have:

Proposition 3.2 For any nonnegative initial condition, the solutions of [2.2] remain non-
negative and are bounded. Moreover, the set

Oy = {(P’I"Q, Xpr, Buty, Xgut, ACQ, XAC) S Rg : 2P7"2(t) + 2But2(t) + ACQ(t) +
Xpr(t) + Xput(t) + Xaclt) _ 2Pr, + 2But, —‘rACl}

Yprgy YButs Yac,
1s invariant and attractive.

3.1. Equilibria of the mathematical model in BR;

The study of the equilibria of model [2.1] proves the existence of three equilibria: a
washout equilibrium which always exists and two positive equilibria. The description of
the equilibria is given in the following result:

Proposition 3.3 The system [2.1] admits at most three equilibrium points, given by:

— The washout equilibrium Ey = (YpSi™, 0,0,0,0,0)

.. S ax « X5 Xn Xn .
— The positive equilibria Ev; = (S§;, A1, X715, Vorm Yo Voo ), fori = 1,2, where

Sg; are the solutions of m/lsg — Sy (,6’Y1(YPS(§" — A1)+ Dl) + D1Yp58n = 0, when
they exist and X;; = Y1 (Yp S — A1 — S§;), fori = 1,2.

Proof By solving the following algebraic system

—D1So — BX1SO + D1Yp58n =0
—D1S1 + X185, — U X, =0
(u1(S1) = D1)X1 =0

7“;51))(1 —~DiPri=0

[3.3]

8150 ) — Dy But; =0

YButy

7“%5{??}(1 — D1A01 = O

The third equation of [3.3] implies that X1 = 0 or u1(S1) = D;.
If X1 = 0then Sy = YpS(i)” and S1 = Pry = But; = Acy = 0. Thus, the washout
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equilibrium Eq = (YpSE",0,0,0,0,0) always exists.
Otherwise, X1 > 0 and u1(S1) = D1. The sum of the first and the second equation of
[3.3] gives

in X1

DI(YPS() - S() - )\1 - 7) = 0
1

We obtain that X1 = Y1(YpSE"* — So — A\1). Replacing X1 in the first equation leads to
the following second order equation

BY155 — So (BY1(YpSY® — M) + D1) + D1YpSi" =0 [3.4]

If the discriminant of [3.4] is negative, then there is no real solutions to [3.4]. So, the
system [2.2] has no positive equilibria.

Otherwise, [3.4] admits one or two different solutions. If the solutions are nonnegative,
system [2.2] admits one or two positive equilibria.

The conditions of existence of equilibrium points of [2.1] are given with respect to the
control parameters which are the inflowing substrate S&" and the dilution D;. The local
stability conditions are obtained by linearization and calculation of the Jacobian matrix at
the equilibrium points.

Proposition 3.4 The conditions of existence and stability of equilibria of [2.1] are given
in Table 1:

Equilibria Existence conditions Stability conditions
Ey always exists always stable
B A >0 and Si"* > %P(Al + %) if it exists
Eis A >0 and Si"* > }%O‘l + BDYll) unstable

Table 1. Existence and stability conditions of equilibria of model [2.1]

with A = (BYl (YpSE™ — \1) + D1)2 — 48Y1Yp D1 Si" is the discriminant of [3.4].

Furthermore, if A = 0, the equilibrium E1; is equal to the equilibrium E15. It exists if
in 1 D

SO > ﬁ()\l + BY1 ).

Proof

— Existence conditions:
If A > 0, S§; and S§ are the solutions of equation [3.4]. So, they verify:

* Qi DIYP i % « . Dl
501502 = 3Y, St and  Sg + Sgo = YpSE — A1 + BA
Then, Sg, and S, are positive if, and only if, Si" > Y—lp()\l — ,8D§}1 ).
Since X1; = Y1 (YpS§™ — Soi — M), for i = 1,2, we obtain:
X11X12:%>\1 and Xll +X12:Y1(YPSO _Al_ﬂi}/lvl)
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Thus, X1, and X5 are positive if, and only if, Sgn > YlP (M + D1 ¥ )- If this condition is

verified, it implies that Si"* > ()\1 ) hence S§; and 502 are positive.

In the case A = 0, equation [3 4 ] admlts a unique solution So = w + 2?11&’
thereby, X = Y (m 2/5Y ) which is positive if Si" 113()\1 + %) which
means that Sg"* > ()\1 ) hence S§ is positive.

— Stability condmons.
Let J be the Jacobian matrix of [2.1] at an equilibrium (Sy, S1, X1, Pr1, Buty, Acy). J

A
is a block diagonal matrix given by J := with
B|C
—-Dy — BXl 0 _ﬁSO
A = ﬁXl _Dl _ ”13(;191>X1 ,BSO _ Hl}([fl) ,
0 wh(S1) X1 u1(S1) —
11 (51) (51)
0 FooX 5 -Di 0 0
- ACH) #1(81) -
B:=| 0 YlButl X3 Vo and C' : 0 —D; 0
1(51) s
0 Ny, s 0 o -D

The eigenvalues of J are therefore the eigenvalues of A and C. As C'is a diagonal ma-
trix, then it admits three eigenvalues equal to —D1 < 0. So, to determine the stability
conditions of each equilibrium, the eigenvalues of the matrix A must be determined.

! 0 7556”
At Eg = (YpSE,0,0,0,0,0), the matrix Ag = 0 —-D; Bsi admits three

0 0 —D,
eigenvalues equal to —D; < 0. Hence, Ey is locally asymptotically stable.

At By = (S§;, M, X5, Vors s Yo Vo ), for i = 1,2, the matrix A writes

—D1 - BXT; 0 —BS5;
A = BX7T: —-D; — ”/%?)Xfi BSs; — ?,—11 . The characteristic polyno-
0 i (M) XT; 0

mial of A; is given by:
Pi(§) = det(A; — £l3)
—(D1+€) (€ +&(Dy + BXG; + B0 x7) + QU X3 (D) + B(XT, - V1S3,
14 14 1 14 03
where I3 is the 3 X 3 identity matrix. The polynomial of degree two in P;(€) admits two
roots &1 and &y such that

(A A
&1+E :*(D1+5Xfi+m}(,11)Xﬂ) nd &&= }(,1 )

Xlz(D1+B(X11 YlSO?))

&1 and & are negative if and only if Dy + B(XT;, —Y155,) > 0 which is equivalent to

Sgi < TESLEN 4 D since X, = Yl(YpSO —SE = A1),

Now, for A > 0, as

§* — BY1(YPS{"—A1)+D1—VA < YpSim =X
01 = 2Y1 8 2

+ 2Y ,8’ therefore, 11 is stable when it
exists.
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« _ BYI(YpSI"AD+DiAVA | YpSI—M | D :
Sty = 5,5 > 5 + 3 L therefore, F15 is unstable.

3.2. Equilibria of the mathematical model in BR,

The equilibria of model [2.2] are the solutions of the following algebraic system:

D2 (Pr1 — Pra) — HP;}S-D;Q)XPT =0
(,LLPT(PTZ) - DQ)XPT =0
Dy (Buty — Butsa) — %HB;;Q)XBut =0

(,LLBut(BUt2) - DQ)XBut =0
Dy(Aci — Aca) + ppr(Pra) 5 4 ppup(Buts) o %ﬁf)){m -0

[3.5]

Ypry YButy

(,LLAC(ACQ) - D2)XAC =0

Proposition 3.5 System [2.2] admits at most seventeen equilibrium points defined in Ta-
ble 2.
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’ Equilibria H Pro ‘ Xpr ‘ Buts ‘ XBut Acs Xac

Foo 0 0 0 0 0 0

Foy; a1X7; 0 a2 X7; 0 as X1 0

Fi; a1.X7; 0 a2 X7; 0 AMMe Yac, Ac;

Fai a1 Xi; 0 ABut | YBut, But; a3 X{; + But; 0

Fs; a1 X7; 0 ABut | YBut, But; e Yae, (Aci + But;)

Fu; Apr | Yy Pri | a2 X7 0 asXi; + Pr; 0

Fy; Apr Ypr Pri | a2X{; 0 Adec Yac, (Ac; + Pry)

Fe: Apr | YproPri | Aput | Yout,Buts | asXii + Prs + But; 0

Fr; APr Ypr Pri | ABut | YButy But; e Yac, (Ac; + Pr; + But;)
Table 2. Equilibrium points of [2.2]

with

1 1 1
al:ﬁrl’@:m’%:YAcl

P?“Z' = (IlXﬁ» — )\pr 5 B’U,ti = CLQXfi — )\But s ACi = G;gXi‘i — )\Ac-

Proof The second equation of [3.5] gives X p, = 0 or else pp,(Prs) = Ds.
If Xp, = 0, then the first equation of [3.5] gives Pro = Pry.
On the other hand, we know that according to the Proposition 3.3, we have Pri = 0

or PT’M =

1

alzﬁrl.

P
X1i
Pry’

fori = 1,2 Then Pry = 0 or Proy = a1 X5, , for i = 1,2, with

Otherwise, we have X p, > 0 and Pro = A\p, with Ap,. is a solution of p,.(Pra) = Da.
Then, the first equation of [3.5] gives Xp, = Yp.,(Pr1 — \p,). We replace Pry by
its value to get Xp,; = Ypr,(a1 X5, — Apy), fori = 1,2. Let Pr; = a1X;; — Apr-
Therefore, Xpr; = Ypr, Pr;, fori=1,2.
The case where Pri = 0 is to be rejected, otherwise X p, becomes negative.

In conclusion, for i

(a1X7;,0) or (Prag, Xpri) = (Apr, Ypr, Pry).
Using the third and the fourth equation of [3.5], we show in the same way that, for i =

1,2, (BUt27XBut) = (0,0) or (Butgi,XBut) = (GQX
1 wi

()\Buta YButzB{Ltz’), with az =

Now, the sixth equation of [3.5] gives X a. = 0 or else pia.(Acz) = Da.
If X ac = 0, the fifth equation of [3.5] becomes

Note that:

Do (A01 — ACQ) +

YButl

ppr(Pra)
YP’I"Q

XPT‘ +

*
1¢

tBut(Buts)
YBut2

Xput = 0.

1,2, we can have (Pro,Xp,) = (0,0) or (Pro;, Xp,) =

0) or else (Butg;, X pyt,i) =
and But; = ax X7, — ABut.

—If Xp, = Xyt = 0, then Aco = Acy. As Acy = 0 or Acy; = X1, ,fori=1,2,
1

according to Proposition 3.3, so Acy = 0 or Ace; = a3 X7, with ag =

Ya c

YAcl :
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—If Xp, =0and Xpy # 0, then Aco = Acy + Xput  Thys,

YButsy

Acy; = asXy; + But;, fori=1,2.

—If Xp, # 0and Xpyt =0, then Aco = Acy + }},(PPT. Thus,
T2

Aco; = angi + ij‘i, fori=12.

—If Xp, #£0and Xgy # 0, then Acy = Acy + % + ZBur Thys,
v

YBut2
ACQi = angi + ]57‘7; + Bl]th fOT‘i = 1, 2.

Otherwise, we have X 4. > 0 and Aco = Aa. with Aa. is a solution of pa.(Acs) = Da.
Then, the fifth equation of [3.5] gives

1 (P But
Xae = Yo, (Aq e+ (AErTT2) (Pr2) | Hpu(Buts) 2)XBW)>
D2 Ypr2 YButz

Note that:
- Iprr = Xput =0, then X 4. = YAC2 (ACl — )‘Ac)- Thus,

Xaci = Yac,(asX{; — Aac) = Yae, Aci, with Ac; = az X1, — Aac, fori=1,2.

—If Xpr = 0 and Xpu # 0, then Xae = Yac,(Act — Aac + $24). Thus,

XAc,i = YAC2 (A_Ci + B'l_f/tz)7 fOTi =1,2.

—If Xpr # 0 and Xpu = 0, then Xae = Yac,(Act — Aac + $52=). Thus,

T2

Xaci=Yac,(Aci + Pr;), fori=1,2.

~If Xpr #0and Xpy: # 0, then X g = Yac,(Acy — Aac + }ZPTZ + %) Thus,

XAc,i = YAcz (A_Ci =+ P_ri + B’I_Lti), fOT‘i =1,2.

We give the conditions for existence and stability of the equilibrium points of system
[2.2], in the Appendix. As previously, the results are obtained by determining the sign of
the real part of the eigenvalues of the Jacobian matrix at each equilibrium.

4. Conclusion

We are interested in this work in an AD process in two connected bioreactors. The
different phases take place successively in the two bioreactors. The biological reactions
in the first one allow the production of hydrogen while methane is produced at the exit of
the second. Our work was devoted to an analytical study of the models of [3], where only
a numerical study was carried out. We have studied the equilibria of the dynamic systems
in each of the bioreactors. The study showed the existence of at most three equilibria
in the first model while in the second, the system can have up to eight different types
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of equilibria. We determined the conditions of existence and stability according to the
control parameters. We proved that, in BR;, the washout equilibrium is always stable and
that two positive equilibria can exist but one of them is stable whenever it exists, while
the second is unstable. In BRy, we showed in particular that the washout equilibrium
is always stable too and two positive equilibria can exist and are stable whenever they
exist. Thus, the system can exhibit a tri-stability behavior, depending on the control
parameters. This careful study permits to give operating diagrams describing the behavior
of the system. It makes it possible to determine what are the conditions on the dilutions
and the inflowing concentrations so that the digestion process in the two bioreactors is that
expected. These results can be used by biologists to optimize production rates of biogas.
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Appendix A

First, we define the following functions:

Yac, YBut
— 0a(Da) = BYIA + Dy + 2872 e\,

Yac, +YBut,

Yae, Ypr
—e(D2) = BY1A + Dy +25ﬁ)\m

Yac, YPr
Dy) = BY1A + D1 + 282t (Apr + Aac)

Yac, YBut, YpPr
— (8 D, ZBYIA+D1+25YAC1 Acy YButy YPry Vi, ()\But+)\PT)

)
)
)
— ¢5(D2) = BYIA+ Dy + 2B 92 B () 4 Mg
)
)
) Ypr; +YpPr YBut; +YBut;
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’ Equilibria H Existence conditions Stability conditions
Foo always exists always stable
Sim < g1(D2) and S§" < f1(D2)
o, always exists S < g2(D2) and SE™ < fo(Da)

Sim < gs(D2) and S§" < f3(D2)
S(i)n < f1(D2) or [ Sén > g1(D2) and Sén > fi (DQ)]

Fo2 always exists Sim < fa(D2) or [ S§™ > go2(D2) and S§™ > f2(Da)]
S5 < f3(D2) or [ Sg" > ga(D2) and S§* > f3(D2)]
iy S&" > f3(Ds2) or S < g1(D2) and SE™ < f1(Ds)
[ S§" > gs(D2) and S§* < f3(D2)] 55" < ga(Da2) and S < fa(Ds)
Fio Sim < gs(D2) and SE™ > fa(D2) | Si™ < fi(Ds) or [ S§™ > g1(D2) and S§™ > f1(Da)]

S5 < fa(Da) or [ S§" > ga(Ds2) and S§* > fa(D2)]

Sit > L%Dﬂ or

Fo [Si™ > g2(Ds) and SE™ < fa(D2)] Sim < g1(D2) and S§" < f1(D2)
5§ > fa(Ds) or 5" < gs(D2) and S < f5(D2)
[S8" > ga(D2) and S§" < fa(D2)]
Fao 55" < ga(D2) and S§" > f2(D2) | Sg" < fi(D2) or[ 85" > g1(D2) and Sg" > f1(D2)]

Sim < ga(De) and SE™ > fa(D2) | Si™ < fs(D2) or [ S§™ > gs5(D2) and S§™ > f5(Da)]
Sin > f2(D2) or

F3 [SE™ > g2(D2) and S < fo(D2)] S < g1(D2) and SE™ < f1(Ds)
Sim > f5(Ds2) or

[S5" > g5(D2) and S§* < f5(D2)]

= ¢0(D3) = BY1A + Di + 2By 35— (Aput + Apr + Aac)

Let’s define too v = 8Y1Yp, fi(Ds) = @ and the functions

@i(D2)? =
2y(c+ pi(D2) — 2Dy)

gZ(DQ): ,i:1,2.

with ¢ = D1 — ﬂYlA

Proposition 5.1 The conditions of existence and stability of equilibria of [2.2] are pre-
sented in Table 3.
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F3a

Sim < ga(D2) and SE™ > fa(D2)
Si™ < gs(D2) and SE™ > f5(D2)

Sim < fi(D2) or [ S§™ > g1(Ds2) and S§™ > f1(Ds) |

Fy

Sén > fl(DQ) or

[S5" > g1(D2) and S¢" < fi(D2)]

Son > fﬁ(DQ) or

[SE™ > go(D2) and S§™ < fs(D2)]

S¢" < g2(D2) and S§" < fa(D2)
Sim < g7(D2) and S§™ < f7(D2)

55" < g1(D2) and S§"* > f1(Ds)
55" < ge(D2) and S§" > fo(D2)

S < f2(D2) or [ S§* > ga(D2) and S&™ > f2(Do)]
Son < f7(D2) or [ S(Z)n > g7(D2) and Sén > f7(D2)]

Son > f1 (DQ) or

[S(i)n > g1 (Dg) and S(’,” < fl(DQ)]

Son > f7(D2) or

[SE™ > g7(D2) and S§™ < f7(D2)]

S(i)n < gg(Dg) and S(’,” < fz(Dg)

Si" < gi(D2) and Si" > f1 (D)
58" < g7(D2) and S§" > f7(D2)

Sot < f2(D2) or [ S(z)n > gg(Dg) and S(l)n > f2(D2)]

Son > fl (DQ) or

[Sén > gl(D2) and S(Z)n < f1(D2)]

Son > fQ (DQ) or

[Sén > gz(Dz) and Sén < f2(D2)]

So" > fs(D2) or

[Sé™ > gs(Dg) and SE™ < fs(D2)]

55" < go(D2) and S < fo(Ds)

Fg2

)
Sén < g1(D2) and S(Z)n > f1(D2)
Sén < QQ(DQ) and S(z)n > f2(D2)

(D (Ds)

Sén < g8 2) and S(Z)n > fg Do

So" < fo(D2) or [ S§" > go(D2) and S5 > fo(D2) ]

Fry

[Si" > go(D2) and SE™ < fo(Do)]

Son > fl (Dz) or

[S6" > g1(D2) and Sy" < f1(D2)]

Son > f2 (Dz) or

[S(i)n > gg(Dg) and S(’,” < fz(Dg)]

S¢" > fo (Dz) or

if it exists

(
< g1 (DQ) and S > f1 (D2
" < g2(D2) and SO > fa(D2
"< gg(DQ) and S > f9(D2

)
)
)
)

if it exists

Table 3. The existence and stability conditions of equilibria of system [2.2].






