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Abstract—This paper is based on a research project aiming
at improving learning arithmetic operations at school using pen-
based tablets. Given an arithmetic operation instruction, the goal
is to analyze a child’s handwritten answer. This comes down to
find if any mistakes are made and their nature. An adapted
representation and similarity search are needed for this analysis.
In this paper, we propose to use a valued graph representation
for handwritten arithmetical operations. To produce the analysis,
we compute a similarity search with the corresponding expected
answer using Graph Edit Distance (GED). To make up for
the uncertainty of the noisy handwritten input recognition, we
produce several segmented graph hypotheses for a single answer.
Using the GED, we are able to correlate each hypothesis to
the instruction graph. It enables to highlight multiple kinds of
mistakes a child can make. The GED computation being a NP-
complete problem, we propose to use sub-graph isomorphism: we
partially match the instruction on each hypothesis in polynomial
time to cut part of the tree search. Experiments were conducted
on an in-house dataset composed of 400 handwritten arithmetical
additions written by children on pen-based tablet. The time
required for the GED computation is evaluated. We are able
to match the complete operation in reasonable time on larger
graphs while finding most of the time the best corresponding
hypothesis.

Index Terms—arithmetical operation analysis, graph matching,
sub-graph isomorphism, graph edit distance

I. INTRODUCTION

In the intelligent tutoring domain, several systems were
proposed to provide an analysis of a student’s answer for
programming exercise [1] or for mathematics using keyboard
interfaces [2], [3]. With the recent improvement of pen-tablet
devices, such system can be enhanced to transfer solving math-
ematical problems from the devices to paper back and forth.
The input process displayed in Figure 1 is straightforward:
a child is given an operation instruction, and he is expected
to solve it using a pen and a tablet as he would do it on
paper. The resulting on-line handwritten input is a set of
sequences of points in the 2D space. The answer expected
from the child can be deduced from the instruction. The goal
of the analysis system is to produce adapted feedback for
the child. The feedback will depend on the nature of their
mistakes. It is necessary to both recognize what was written
and find any dissimilarities between the child’s answer and
the expected answer. Given the learning context, mistakes can
be either misaligned symbols, a wrong instruction recopy, a
forgetting of operators, calculus mistakes, unneeded symbols,

Fig. 1: Input of our system. An operation instruction is given
to the child who wrote his answer on a pen-tablet device.
An expected answer is generated based on the operation
instruction. The dissimilarities we are looking for are circled.

an excess of carry over ... Other dissimilarities that will
hinder the recognition are noisy input from the device and
the malleability of handwriting.

We use a graph-based representation commonly used to
represent mathematical expression [4]. By using such repre-
sentation for both the input and the expected answer, it is
possible to compute the Graph Edit Distance. It is a popular
and general graph similarity computation [5] that searches
the best vertices and edges correspondence between a pair
of graphs. Two contributions are presented in this paper.
We propose a way to compute and match several graph
segmentation hypotheses to an instruction graph to select the
most promising hypothesis. We propose a partial matching
based on sub-graph isomorphism for our context of application
to compute a better approximate matching and accelerate the
complete Graph Edit Distance computation.

The paper is structured as follows. In Section II, we discuss
the current state-of-the art on graph matching. We then define
our graph representation and construction in Section III. In
this, we present the transformation from raw input to a set of
hypothesis graphs then we describe the process of matching
multiple hypotheses with the expected answer graph. The
results on an in-house Handwritten Arithmetical Operation
(HAO) dataset are detailed in Section IV. We discuss future
improvements in Section V.



Fig. 2: Overview of our system. From the input, segmented
hypothesis graphs are produced as well as an expected answer
graph. The latter is matched to all hypothesis to find the best
hypothesis to compute the GED. One result vertex is detected
as missing and two result vertices have an incorrect label.

II. PROBLEM CONTEXT

Handwritten mathematical expression (HME) recognition
has been a widely researched subject [4] using end-to-end
neural network or sequential solutions to transform the hand-
written input into a valid mathematical expression. The rec-
ognized HME is usually represented by a graph with each
vertex corresponding to a symbol and each edges representing
a mathematical relationship. Figure 2 presents the workflow
of our analysis system. The online handwritten strokes are
transformed to a set of fuzzy visibility graphs [6] correspond-
ing each to a different segmentation hypothesis. An adapted
similarity search is necessary to select the most promising
hypothesis and put into correspondence the expected answer.
For this purpose we provide a quick lookup on methods
tackling the task of Graph Edit Distance (GED) computation.

The popular GED computation used in the literature is
mainly based on a tree search. A vertex in the tree corresponds
to a partial edition of the graph and a leaf corresponds to a
complete edit path transforming a graph G1 into a graph G2.
The A* algorithm was the first used to complete this task but
as a best-first search it is both computationally and memory

expansive, and thus unusable on large graphs.
Systems for the inexact computation of the GED can often

be computed faster by limiting the number of partial solutions
[7], by using heuristic for efficient computation [8] or by using
deep learning to learn an embedding function to map graph to
vector for specific similarity measures [9]. They are efficient
and useful for indexing or classification in large databases, but
an approximation of the matching could result in an incorrect
matching and provide wrong feedback to the child.

A comparison of several algorithms on the exact computa-
tion of the GED is proposed in [5]. The standard A* Best-
First Search is evaluated as well as the Depth-First Search
(DF-GED) algorithm, presented in [10]. They also compare
an improvement using sub-graph isomorphism (CSI-GED)
generalised for non-uniform edit costs [11]. Another compared
method uses Binary Linear Programming [12] and the CPLEX
mathematical solver. A lower bound can be computed either
with Hungarian algorithm [13] or by solving a Quadratic As-
signment Problem [14]. The paper comparing these algorithms
concludes that it is now possible to compute the GED up to
16 vertices in reasonable time before frequently reaching time
out. More recently a Beam-Stack Search was proposed in [15]
but it only works for uniform edit costs which provide less
expressiveness for graphs.

Given these methods, we propose to tackle our problem
by using the DF-GED. The algorithm works for non-uniform
edit costs which are adapted for arithmetical graphs as we
can attribute more refined costs for edges with different
mathematical relationships.

III. ANALYSIS OF ARITHMETICAL OPERATION

In this section we present our contribution. We first specify
the graph representation and segmentation. Then we present
the proposed hypothesis selection through pre-matching and
approximate matching before computing the GED on the most
promising hypothesis.

A. Hypothesis graphs segmentation

Definition 1. An attributed handwritten operation graph is a
tuple G = (V, E, µ, ξ) where V is the set of vertices and E is
the set of edges such that ∀e = (i, j) ∈ E, i ∈ V and j ∈ V .
µ : V → Lv is the vertex labeling function that associates the
label µ(v) to v ∈ V and where Lv = [0..9,+,−] is the set
of possible labels for the vertices. ξ : E → Le is the edge
labeling function that associates a label ξ(e) to e ∈ E where
Le = [Right, Left, Above,Below] is the set of labels for the
edges.

The graph is sequentially constructed using three different
classifiers namely for the strokes segmentation into symbols,
the symbols classification and the classification of relation-
ships between symbols. We propose to generate several seg-
mentation hypotheses to not induce early segmentation mis-
takes. A threshold τ is defined to induce several segmentation
hypotheses using the probabilities output of the segmentation
classifier. The segmentation classifier is similar to the one used
in [16]; the Random Forest classifier output is a segmentation



rate for each pair of strokes. Using the threshold τ , we produce
two different graphs if the segmentation probability is in
between [0.5−τ ; 0.5+τ ]. The impact of τ on the segmentation
will be evaluated in Section IV.

The relationship classifier presented in our previous work is
also a Random Forest classifier using features computed from
fuzzy landscapes [6]. For the symbol classification, we use
a more general deep neural network inspired by VGG [17].
An iterative construction of the set of hypothesis graphs is
straightforward and proposed in Algorithm 1.

Algorithm 1 Construction of the set of hypothesis graphs G
INPUT: S (set of strokes)
V = {}, E = {}, G = {}
for all s1, s2 ∈ S do

merge = SEGMENTATION(s1, s2) [16]
if (0.5− τ ≤ merge ≤ 0.5 + τ) then

V += (s1, s2) + (s1) + (s2)
else if merge > 0.5 + τ then

V += (s1, s2)
else

V += (s1) + (s2)
end if
// create above a new vertex if stroke is not found, else
merge with corresponding vertex

end for
for all v ∈ V do
Lv = µ(v)

end for
for all v1, v2 ∈ V do
E+ = ξ(v1, v2) [6]

end for
// for all unique set of vertices V’ which covers all strokes,
make a graph
for all unique set of vertices V ′ do
G += (V ′, EV ′)

end for
return G

B. Partial and complete matching

Given the operation instruction, we can generate an expected
answer graph GEA. This graph is computed using the algorith-
mic rules for each type of arithmetic operation. Given the set
of hypothesis graphs G and the expected answer graph GEA,
we can compute the Graph Edit Distance to select the most
promising hypothesis and find dissimilarities.

Definition 2. The Graph Edit Distance (GED) is a measure
of similarity between two graphs G1 = (V1, E1, µ1, ξ1) and
G2 = (V2, E2, µ2, ξ2). An objective function is used to select
the best edit-path, which is a set of operation oi applied
on G1 to transform the graph into G2. An operation oi
is either a vertex or edge substitution, deletion or inser-
tion. The objective function to minimize f is: f(G1, G2) =

min
(o1...ok)∈T (G1,G2)

∑
i=1

k
c(oi) where T (G1, G2) is the set of all

edit paths o = (o1, ..., ok) that enables transforming G1 to
G2. c(.) is a cost associated to each edit operation oi.

Cost function and matrix Using fuzzy landscapes rep-
resenting each mathematical relationship, we are able to
evaluate relative positioning of pairs of symbols. We com-
pute a membership to each fuzzy landscapes for a given
edge e(i,j). The label Le is a set of tuples (D,VD) where
D ∈ [Right, Left, Above,Below] is an evaluated direction
and VD is its associated value. Given this relative positioning,
we can compute the differences between a pair of edges with
the equation:

R(e(i1,j1), e(i2,j2)) =
∑
d∈D

||V 1d − V 2d|| ∗ 100 (1)

where e(i1,j1) and e(i2,j2) are respectively edges from graphs
G1 and G2.

Using our Eq. 1 to compute the differences between a pair
of valued edges, it is possible to compute a single cost-matrix
which takes into account both labels on vertices and their
edges. This cost matrix dimensions are (n+m) X (m+n) where
n is the number of vertices of a graph G1 and m is the number
of vertices of a graph G2. The matrix is constructed as follows:

c1,1 .. c1,m c1→ε ∞ ∞
.. .. .. ∞ .. ∞
cn,1 .. cn,m ∞ ∞ cn→ε
c1←ε ∞ ∞ 0 0 0
∞ .. ∞ 0 0 0
∞ ∞ cm←ε 0 0 0

where ci,j is a substitution, ci←ε is a deletion and ci→ε is
an insertion. The cost is computed so that both the vertices
labels, the edges values and the adjacent vertices labels are
taken into account to improve the accuracy of the lower-bound
computation, with:

cvi,vj = d(vi, vj)+min
t∈T

∑
e(i,i′),e(j,j′)∈t

R(e(i,i′), e(j,j′))+d(vi′ , vj′)

(2)

d(vi, vj) =

 if µi ∈ [-, +] and µj /∈ [-, +] 50
else if µi! = µj 10
else 0

(3)

d is a function evaluating the cost transformation of a vertex
label to another. T is the set of all combinations of edges
from vertices vi and vj and t is the corresponding list of pair
of edges e(i, i′), e(j, j′).

Depth First-GED (DF-GED) [10] is an efficient computation
of the GED which uses upper and lower bounds with the
Hungarian Algorithm and vertices sorting during the tree
search. However it becomes computationally expensive on
large graphs due to many backtracks in search for a better
edit-path. Moreover with distant pairs of graphs such as bad
segmentation hypotheses it is harder to prune large parts of



the tree search due to a lower bound too inaccurate. To face
this, we propose to do a quick partial matching by searching a
sub-graph isomorphism to match parts of the excepted graph
answer. This way it provides a more accurate lower bound
estimation for hypothesis selection and speeds-up the DF-GED
search by applying it on a reduced tree search.

Definition 3. Given the graph G1 = (V, E, µ, ξ), a sub-graph
G′1 is a tuple G′1 = (V ′1 , E′1, µ1, ξ1) where V ′1 ⊆ V and
E′1 ⊆ E where ∀e′i,j ∈ E′1, i ∈ V ′1 and j ∈ V ′1 . The sub-graph
G′1 is isomorphic to a graph G2 if there exists a sub-graph
G′2 such that d(G′1, G

′
2) = 0.

In Figure 3 we display several ways to split the expected
answer graph into smaller sub-graphs representing significant
parts of the initial graph. The idea is to identify patterns in
graphs that are more likely to be present in both graphs. Such
pattern for arithmetical operations is the instruction recopy
part; it is more likely to be found in the child’s answer.
Moreover, finding sub-graphs where most of the vertices have
directed edges to other parts of the operation will make later
pruning easier.

The task of searching for sub-graph isomorphism is NP-
complete. However, by using the Hungarian algorithm, we
can find the best approximate matching between a sub-graph
GEAi

and the graph G. By applying this algorithm, if the
edit path between GEAi

and a sub-graph of G yield an
edit-cost of 0, then an isomorphism is found. This edit path
is saved for the complete graphs. Then the DF-GED can
be computed on the set of vertices between GEA and G
that are yet to be matched. Using this partial matching on
each hypothesis graph, we can complete the partial edit-path
using the Hungarian algorithm on each pair of graphs. The
hypothesis with the lowest approximate matching cost is then
selected to compute the DF-GED given the previous edit-path
found.

Finding an isomorphism for large sub-graphs using the
Hungarian algorithm output, even with refined cost, is unlikely.
Instead it is possible to iterate this process over increasingly
larger sub-graphs. A first sub-graph representing the instruc-
tion numbers (see Figure 3) is selected, then extended by
adding the operators in a second step, and the carryovers in a
third step. Two sub-graphs matching are evaluated in Section
IV.

The complete matching is then processed using DF-GED
given the partial matching found previously. This enables for
both a direct tree search reduction on the number of vertices
as well as a more precise lower-bound estimation thanks to
edges directed on already matched vertices. The Algorithm
2 describes the process of the hypothesis selection before
applying DF-GED.

IV. EXPERIMENTAL RESULTS

Our dataset of handwritten arithmetical operation (HAO)
is composed exclusively of arithmetical additions. Samples
from this dataset are displayed in Figure 4. An operation
is considered incorrect when an expected symbol is missing

Fig. 3: Example of different sub-graphs for the expected
answer graph. We can quickly find a perfect isomorphism
for the small sub-graph GEA1 with the graph hypothesis G.
This sub-graph can be matched on the complete graph. It is
possible iterate over larger sub-graphs to quickly find larger
corresponding sub-graph isomorphism before computing the
GED on the complete partially matched graph.

Algorithm 2 Hypothesis selection through partial matching

INPUT: G (set of hypothesis graphs), GEA (expected
answer graph), G′EA (set of selected sub-graphs), EP (edit
path, initially empty)
best cost = inf, best hyp = φ
for G ∈ G do

best path = {}
for G′EAi

∈ G′EA do
// for each selected sub-graph, we look for a perfect
match using the Hungarian algorithm
Generate matrix C with best path
path = Hungarian(G, GEAi

, C)
if cost(G, GEA, path) == 0 then

best path = path
end if

end for
approx cost = cost(G, GEA, best path) + Hungarian(G,
GEA, C)
if (approx cost<best cost) then

best cost = approx cost
EP = best path
best hyp = G

end if
end for
// the DF-GED is computed on the remaining vertices given
the edit path found for the best hypothesis
return DF-GED(best hyp, GEA, EP)

(number, operator or carry over), when an expected symbol
is matched with an incorrect label or when symbols are in
excess. Strokes in excess due to the noisy input devices are
not counted as mistakes.

The training set of 200 operations was indiscriminately
input by both adults and children and was used to train the
segmentation and relation [6] classifiers presented earlier. For
the symbol classifier, a much larger training set from the
CROHME 2019 competition [4] was used. The test set of 200
operations is exclusively composed of handwritten operation
written by primary school children (age 7 to 9). 110 out of 200



Fig. 4: Samples from the HAO dataset and their respective
generated segmentation hypothesis.

operations contains at least one mistake. No writer is found
in both the training and testing set.

Evaluations are conducted on a machine with an Intel
i5-8250U processor with 8GB of RAM. Running time are
presented on log-scale and a time-out of 100 seconds was set
for the computation on each operation. We have conducted two
experiments. The first evaluates the contribution of the partial
matching over the running time while the second evaluates
both the impact of the segmentation threshold τ on the set of
hypothesis graphs as well as the hypothesis selection running
time.

We compare the running time of the standard DF-GED
algorithm on the complete graphs to three different partial
matching. We use the small sub-graph instruction (see Figure
3), a larger sub-graph with all vertices above the horizontal
bar and then both sub-graphs. The DF-GED is then applied
on the partially matched graphs. We evaluate the computation
time for an increasing number of vertices. Figure 5 shows the
consistent time improvement between the standard DF-GED
and the reduced tree search of DF-GED thanks to the partial
matching. In practice the DF-GED algorithm goes beyond the
hour computation very fast, while the partial matching has still
difficulties on larger graphs when no sub-graph isomorphism
is found. In this case the system still reaches time-out on large
arithmetical operations. On the set of 200 test operations, using
only the DF-GED 20 operations are matched in less than 5
seconds (considered as reasonable for our use case) against
134 operations using both sub-graphs for partial matching. For
the remaining operations, when no isomorphism is found, we
could search for a partial matching with an edit-cost lesser
than a fixed low threshold to avoid a time out on the complete
GED.

For the second experiment we generate multiple segmenta-
tion hypotheses (Algorithm 1). To evaluate the impact of the
segmentation threshold τ , we report in Table I for increasing
values of τ the average and maximum number of hypothesis
as well as the recall and precision. Our recall represents the
presence of the ground-truth segmented hypothesis in the
set of all generated hypotheses. Our precision corresponds

Fig. 5: Average time execution for different complete matching
for increasing graphs length.

to how often the selected hypothesis, using the best cost of
approximate matching, was the ground-truth hypothesis.

The handwriting from children is complex and the same
feedback could be produced from different segmented graphs.
In the Figure 4, the top operation has a horizontal bar split into
two strokes. Both strokes can be segmented either as a single
symbol or as two separate symbols. In both cases, using the
resulting edit-path we would find no mistakes in the operation
(no symbols missing or wrong labels). However, to be more
fair in our experiments, only one segmentation is considered
correct for each operation (both strokes merged as a single
horizontal bar in this example). As expected, with an increas-
ing number of hypotheses, our recall is increased because the
correct segmentation missed with τ = 0 is generated with a
larger segmentation threshold τ . The precision also increases
as we are able to select the correct segmented hypothesis out
of the set of generated hypotheses. However we are not able
to reach a perfect segmentation and selection, as incorrect
segmentation hypotheses might induce the same edit cost (see
Figure 4).

TABLE I: Evolution of the number of hypotheses given an
increasing segmentation threshold τ , and the corresponding
recall and precision.

τ # of hypotheses Recall Precision
mean max

0 1 1 0.825 0.825
0.05 1.16 4 0.860 0.850
0.10 1.7 32 0.870 0.860
0.15 3.04 272 0.885 0.865
0.20 17.42 2880 0.935 0.900

Finally we evaluated the hypothesis selection over the
increasing value of τ for different sizes of graphs. Figure 6
shows the computation time needed to achieve the hypothesis
selection and the complete matching on the selected hypoth-
esis. Using both partial and approximate matching we can
quickly select the best hypothesis. With a larger value of τ the
average running time is decreasing: when τ = 0 a more distant



Fig. 6: Execution time for hypotheses selection and GED
computation on the selected hypothesis for different sizes of
graphs with a variable segmentation threshold τ .

hypothesis might be selected and induce a costlier DF-GED.
With multiple hypotheses a better suited graph is selected with
a better partial matching and a cheaper computation for the
DF-GED on the remaining graph. However, for operations
with a lot of overlapping strokes, too many hypotheses might
be generated, in which case the system will run out of time.
The solution to avoid an exponential number of hypotheses
would be to have a dynamic τ depending on the number of
generated hypotheses.

V. CONCLUSION AND FUTURE WORKS

We tackle the problematic of the analysis of on-line hand-
written arithmetical operations in the context of children
mathematics teaching. We propose the use of an adapted
valued graph representation and a corresponding expected
answer graph transformation to put into correspondence both
graphs. We produce several graphs hypotheses to cover up
for the uncertainty of the recognition results. We use sub-
graph isomorphism to partially match as much as possible
the instruction to reduce the complexity of the Graph Edit
Distance computation. This partial matching enables us to
both select the best hypothesis with the lowest approximated
matching cost and prune large parts of the depth-first search
tree for the complete matching.

The experiments on an in-house dataset of 400 arithmetical
additions show that from multiple hypotheses, the best one
is selected most of the time in reasonable time. We are able
to compute the matching on large graphs and much faster.
However, the increasing number of hypotheses is a problem
that could be solved either by using a better segmentation
classifier or by adapting the segmentation threshold at the
cost of a lower recall. Given the nature of our process, an
incremental partial matching stroke by stroke while the child
is writing could reduce the number of promising segmentation
hypotheses. This would enable us to compute the Graph Edit
Distance for future experiments on larger operations such as
multiplications and divisions.
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