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Abstract

The purpose of this paper is to bridge kinetic plasma descriptions
and low frequency single fluid models. More specifically, the asymp-
totics leading to Magneto-Hydro-Dynamic (MHD) regimes starting
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from the Vlasov-Maxwell system are investigated. The analogy with
the derivation, from the Vlasov-Poisson system, of a fluid represen-
tation for the ions coupled to the Boltzmann relation for electrons is
also outlined. The aim is to identify asymptotic parameters explain-
ing the transitions from one microscopic description to a macroscopic
low frequency model. These investigations provide ground work for
the derivation of multi-scale numerical methods, model coupling or
physics based preconditioning.

Keywords: Plasma, Debye length, MHD, drift limit, fluid limit, Quasi-
neutrality, Vlasov-Maxwell, Asymptotic-Preserving scheme.

1 Introduction

The aim of this paper is to propose a continuation of the work initiated in
[19, 20, 18] focusing on the derivation of asymptotic preserving schemes for
kinetic plasma descriptions in the quasi-neutral limit. The purpose of these
numerical methods is to provide a quasi-neutral description of the plasma
with no constraints on the simulation parameters related to the Debye length
but with the ability to perform local up-scalings with non neutral plasma
descriptions. This brings a gain in the computational efficiency, since the
discretization parameters can be set according to the physics of interest rather
than the small scales (namely the Debye length) described by the model.

The methodology introduced in these former achievements is aimed to be
generalized here to more singular limits. In this series of former works, the
limit models remain kinetic and the scales of interest are related to the elec-
tron dynamics. For instance, the quasi-neutral limit of the Vlasov-Maxwell
system investigated in [18] can be interpreted as a kinetic description of the
Electron-Magneto-Hydro-Dynamic (E-MHD) [27, 47, 7], accounting for the
electron inertia, the massive ions being assumed at rest or slowly evolving.
In the present paper, the objective is to go beyond the kinetic E-MHD with
the aim to bridge the Vlasov-Maxwell system and Magneto-Hydro-Dynamic
(MHD) models. In MHD systems, the scales of interest are defined by the
overall plasma dynamic which is governed by the ions, the fast scales associ-
ated to the electron inertia being filtered out from the equations.

The present work is therefore devoted to the derivation of a model hier-
archy bridging either the Vlasov-Maxwell system and MHD models for mag-



netized plasmas or, the Vlasov-Poisson and the electron adiabatic response
also referred to as Boltzmann relation (see [36, 49, 48] for seminal works and
[14] for numerical investigations), for electrostatic frameworks. A wide range
of applications of the present investigations can be named, specifically low
variance Particle-In-Cell methods or more generally numerical discretization
of kinetic models implementing a Micro-Macro decomposition of the distri-
bution function. We refer for instance to [9, 11, 24, 37]) for Micro-Macro
methods, and to [22] for the moment Guided method; fluid-preconditioned
fully implicit methods [4, 5, 6] and Asymptotic-Preserving numerical meth-
ods [33, 16]. In these methods, macroscopic models are operated to either
filter out the numerical noise of PIC methods (moment guided, Micro-Macro
particle methods) or speed up the convergence of non linear implicit solvers
(fully implicit PIC methods). The efficiency of these methods is closely re-
lated to that of the reduced models and its adequacy with the kinetic plasma
description. Another application can be envisioned with the hybrid coupling
of Particle-In-Cell methods and MHD descriptions [44, 12] and more gener-
ally coupling strategies such as the Current-Coupling-Scheme (CCS) and the
Pressure-Coupling-Scheme (PCS) (see [42] [51] and the references therein).
The aim here is to clarify how the asymptotic parameters interact with
each other and define reduced models, but also, to relate these parameters
to meaningful physical quantities. The MHD regime is sometimes derived
by letting €, the vacuum permittivity, go to zero (see for instance [32, 50])
which is referred to as the full Maxwell to the low frequency pre-Maxwell’s
equations asymptotic in [26, see section 2.3.3]. It is also common to let the
electron to ion mass ratio go to zero to explain the vanishing of the electron
inertia [26, 35] in deriving either MHD modelling or the Boltzmann relation.
Although the right asymptotic models are recovered by this means, these
assumptions do not account for changes in the system characteristics that
may explain for a regime transition: the electron to ion mass ratio remains
constant and the same property holds true for the vacuum permittivity.
The outlines of the paper are the following. The plasma kinetic descrip-
tion is introduced in Sec. 2 together with the Maxwell system driving the
evolution of the electromagnetic field. A dimensionless form of the system
is stated in order to develop an asymptotic analysis and the derivation of
reduced models. A hierarchy of quasi-neutral model is proposed in Sec. 3 for
the Vlasov-Maxwell system. It encompasses fully kinetic, hybrid as well as
single fluid (MHD) plasma descriptions. The electrostatic framework is inves-
tigated in Sec. 4. The electrostatic limit of the Maxwell system is performed.



A hierarchy of models, similar to that of the electromagnetic framework is
derived. Finally, a synthesis of these asymptotic analysis is proposed in Sec. 5
devoted to conclusions.

2 The Vlasov-Maxwell system in a dimen-
sionless form

2.1 Objectives

In this section, the purpose is to unravel a series of asymptotic limits bridging
the gap between the Vlasov-Maxwell system and a Magneto-Hydro-Dynamic
(MHD) model. The difficulty is therefore to identify parameters explaining
the transition from one description to the other and to relate these param-
eters to specific characteristics of the system. The tools mobilized to meet
this aim are based on the asymptotic analysis of the Vlasov-Maxwell system.
Since the low frequency plasma modelling is related to a fluid plasma descrip-
tion, the kinetic model is upgraded with collision operators. Therefore, the
most refined modelling consists of a Vlasov equation for the electrons and
the ions, augmented with a collision operator and coupled to the Maxwell
system. Even if the physical model is non collisional or weakly collisional,
the transition towards a fluid limit is accounted for by a collisional process,
thanks to a BGK operator. This choice of collision operator is questionable
from a strict modelling view point, nonetheless, the purpose here is to eas-
ily derive the fluid limit at a limited computational cost. In this respect
the BGK collision operator is a good candidate. First, the whole collisional
processes are considered, including both inner and inter species collisions.
Nonetheless, only the minimal collisional process will be accounted for to
derive a MHD regime from the kinetic model. This point will be outlined in
the following sections. The introduction of non dimensional quantities will
naturally reveal dimensionless parameters in the equations. Letting some of
these parameters go to zero shapes the hierarchy of models derived for the
Vlasov-Maxwell system and bridging the gap with MHD models.



2.2 The Vlasov-BGK-Maxwell system

The most refined description of the plasma is constituted by two Vlasov
equations, f; and f. being the ion and electron distribution functions

&ﬂ+vW@ﬂ+%{E+va)Vﬁf:@, (1)

Ouf+v-Vafo——=(BE+vxB)-Vof. = Q.. (2)

e

In these equations, q is the elementary charge, m,, is the mass of the species
a (a = e for the electrons and i for the ions). The BGK collision operator
Q, are given by [31]

Qa = Qaa + Qaﬁ ) ( )
e 3
Qaa = Vaa (Mna,ua,Ta - fOé) ) QO‘B = Vap (MnQ’EB’TB - fa) ’

Voo and v,3 being the like-particle and inter species collision frequencies
which can be defined as [15, 45]

n, V2 ne /M

Vii:K - Si— Vie = K - s 4a,
Y (ksTy)3 VI " (ksTi)? m o)

e 2 ; 1
Vee = KO n L Vej = KO - 3 — (4b)

(kpT.)2 /me’

where

m:o<q2fmm% (4c)

4dmeq

C' denoting a constant with a magnitude equal to one, In(A) the Coulomb
logarithm and the ions being assumed mono-charged.
The Maxwellians M,, 4, 7, and M are defined as

naﬂmTﬁ
% ua(,) = of
Na U = Na ’t ke T (0 4) B ’ 5
M a Uas, Lo n (l’ ) <2WkBTa(x,t)) eXp( QkBTa(zat) ) ( a)
Dy
- Mg E ma|ﬂﬁ(x>t) B U|2>
M, o7 =na(m,t) | ————— )  exp|— = , (5b
A (z,1) <27T]{ZBT5(SL’,t)) Xp < 2kpTs(x,t) (5b)

D, denoting the dimension of the velocity space, kg is the Boltzmann con-
stant. The Maxwellian parameters are n,, u, and T, the density, mean
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velocity and temperature associated to the distribution function f, and de-
fined as

N = fadv , Nolyg = / v fodv,

Qy

with v the specific heat ratio whose value depends on the dimensionality of
the velocity space D, through

T-1=—~. (7)
The collision operators verify the following conservation properties

1

/Qaa My v dv = 07 (8&)
0]
1 1

/Qaﬁ Mo |V dv+/Q5am5 v | dv=0. (8b)
cl o?

The temperature and the mean velocity (ug, T'5) in the inter-species colli-
sion operator expression (5b) should be chosen with care in order to guarantee
the total momentum and energy conservation. Indeed the following identities

/ Qaﬁ mav dv = VapMaTy (ﬂﬁ - uoc) ) (9&)

P gy — vy (Bemken (75— 1) + L gl* — Juql?
Qag My 9 UV = Vap 9 NoRkpB ( B a) + Qmana (‘uﬁ| ‘ua‘ )
(9b)

hold true for the operators defined by (5). The trivial choice (Tig,T5) =
(ug, T) does ensure the plasma total momentum conservation, provided that
VeiMeNe = Viem;n,;. However in this case, the plasma total energy is not con-
served. We refer to [28] for a seminal work, as well as [35] and the references
therein for recent advances, on the choice of these parameters compliant with
the desired properties (8b) of the inter-species collision operators therefore
providing the conservation of the plasma momentum and energy.



The electromagnetic field (E, B) evolution is driven by the Maxwell sys-
tem:

1

—28tE — Vm X B = —,u()J, (10)

c

0B+V,x E=0, (11)

v, E=2 (12)
€0

V, - B=0, (13)

where c is the speed of light, po the vacuum permeability and ¢y the vacuum
permittivity verifying poeoc? = 1. The Maxwell sources are the particle
currents and densities

= q(ni — ne), (14a)
q(niu; — neue) (14b)

The definition of the collision frequencies as stated by Egs.(4) relates
different time scales. Indeed, because of their different masses, ions and
electrons are not equally affected by collisions. This properties are more
clearly emphasized working with dimensionless variables as proposed in the
next section.

2.3 Scaling of the Vlasov-Maxwell system

The equations are written with dimensionless quantities in order to easily
identify different regimes. The scaling is introduced under a priori assump-
tions that the electronic and ionic temperatures, densities and mean velocities
are comparable with a magnitude denoted Ty, ng and ug. These scales define
the typical Debye length as well as the electron plasma period

EokBT(] Me€o
)\D = B 5 Tpe = 5 .
qa-ng q-To

We denote by xy and ¢, the characteristic space and time scales of the phe-
nomena observed, which yields to the velocity of interest ©g = zo/tg. The
magnitude of the thermal velocity for the species a is denoted v, with
V0,0 = kpTy/mq. Due to the different masses, the thermal velocity of the
electron is not that of the ions. The reference thermal velocity vy will be
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defined by the ion one v = kpTy/m;, hence vy, = vo/e and vg; = vy,
where €2 = m,./m;. Finally, the scale of the electromagnetic field is de-
noted (Ey, By), the particle current scale being defined as Jy = gnoug. The
dimensionless variables are defined according to

T t v n J
(L‘*:—7 t*:—’ U*:—’ f*:%’ ’n,*:—7 J*:
T Lo V0,0 no/(Vo,a)P? ng qnolg
FE B
EF"=—, B"=—,
Ey By

the collision frequencies verifying

1 Me
Vee,0 = Vei0 = sz'z'p, Vie,o = €V4i0 5 E=\/—"- (15)

On the fastest time scales, the electron distribution function relaxes towards a
Maxwellian. On the same time scale, the electron mean velocity and temper-
ature relax towards those of the ions. The relaxation of the ionic distribution
function towards the local equilibrium is slower, by a factor =t = \/m;/me..
Finally, the ions are almost unaffected by the collisions against the electrons.
The relaxation of the ionic distribution function towards that of the electrons
define the largest time scale, by a factor e~! compared to the the relaxation
towards the thermodynamical equilibrium.

The dimensionless ionic and electronic Vlasov equations can be rewritten
as (keeping the same notations for dimensionless variables):

£3tfi+v~mei+n(E+§vx B)-V,fi =

£
%(Vii (Mni,ui,Ti - fz) + EVie (Mni,ue,Te - fz) ) )
(16)
0.+ 0Vl ~ B+ Lo x B) Vo, =
%(Vee (Mne,ue,Te - fe) + Vei (ﬂne,ui,Ti - fe) ) )
(17)



together with the dimensionless Maxwell system writting

OE

Azn(aza — pV, x B) = —QQ%J, (18a)
BOB+V, x E=0, (18b)
NV, - E =n; —ne, (18c¢)
V., -B=0, (18d)
J = nju; — nelle . (18e)

This system is written thanks to the following dimensionless parameters

Me . . .
(2 = < the ratio of the electronic and ionic masses ,
my;
AD
A = — the scaled Debye length ,
Zo
U .. . kBTO L
M = — the ionic Mach number, with vy = the ionic speed of sound,
Vg m;

U
&= 22 the ratio of the typical velocity to the ionic speed of sound,
Vo

9
o = —2 the ratio of the typical velocity to the speed of light ,
c

E
n= qu OTO the ratio of the electric and plasma internal energies,
BLo
JoB
g = OE O the induced electric field relative to the total electric field ,
0
[ k7! = s 0tp the number of ion-ion collisions during the typical time.
(19)
The dimensionless Maxwellians are defined by
Dy
- 1 2 |Meug(x,t) — v|?
Ne,U = Ne,U = ne(x,t AT - ’
(20a)
R [Mua (@, ) = vf?
S 2 U (X —v
Mn- n = Mn n A t 7 N — e .
st T = Mussa e = (1) <27rTa(:)s,t)> o < 2T, (. 1) )
(20b)

Some comments can be stated regarding the meaning of these parameters
and the scaling relations.



The typical mean velocity and temperature are assumed to be the same
for the electrons and the ions. Accordingly, the relaxation of the electron
mean velocity and temperature towards that of the ions may be assumed
to marginally contribute to the evolution of the system. This assumption is
therefore consistent with the investigation of resistive-less plasma modellings
and the neglect of the inter-species collisions.

The parameter ¢ is intended to provide a measure of how the electronic
and ionic dynamics are resolved. The choice £ = 1 means that the system
is assumed to evolve at a speed comparable to the ionic thermal velocity
vg, while e = 1 performs a rescaling of this typical velocity to the electron
microscopic velocity. Setting & = M relates the typical speed of the system
to the ionic mean velocity ug. Actually, the Mach number measures the gap
between the microscopic (thermal) and macroscopic velocity scales.

The scaling relation 7 = 1 is generally assumed in single fluid plasma
representation. The plasma internal energy is then on a par with the electric
energy. This equilibrium is fundamental in the derivation of the Boltzmann
relation. The identity M = £ is also common in single-fluid plasma models.
This amounts to assume that the induced electric field scales as the product
of the plasma mean velocity and the typical magnetic field: Ey = ugBy. In
other words, the magnetic field is essentially transported with the plasma
flow. This later assumption is in line with the Alfven’s frozen theorem [41,
26, 13, 43] characteristic of ideal MHD models: the magnetic field is frozen
into the plasma and transported by its flow.

The derivation of reduced models consists in identifying small dimension-
less parameters and let them go to zero. The smallness of the scaled Debye
length refers to a typical space scale much larger than the physical Debye
length. This means that the charge separations, occurring on space scales
comparable to the Debye length, are assumed unimportant to explain the
evolution of the system. Sending the scaled Debye length to zero performs a
low frequency filtering into the equation deriving thus a quasi-neutral model.
In the context of the derivation of numerical methods, the typical length
relates to the mesh size. This outlines the advantage of reduced models:
the low frequency filtering operated by vanishing small parameters permits
to derive numerical methods with discretization parameters (mesh size and
time step) unconstrained by the small scales filtered out from the original
equations.
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3 A hierarchy of quasi-neutral models bridg-
ing the Vlasov-Maxwell system and the Hall-
MHD regime

3.1 Handling the fluid and quasi-neutral limits
3.1.1 A hierarchy of fluid and kinetic quasi-neutral models

The aim here is to reduce the number of free dimensionless parameters, de-
riving by this means different reduced models well suited for the description
of low frequency phenomena. As depicted in Fig. 1, the starting point of this
hierarchy of models implements the minimal upgrades of the Vlasov-Maxwell
system to recover a MHD regime. Precisely, only the inter-species collisions
are taken into account in the initial model in order for the distribution func-
tion to relax towards the local equilibrium. This yields

gatfz +v- vmfz + W(E + §U X B) : vvfz = %Vii (Mm,umTi - fl) ) (21&)
§e0ife +v-Vafe—n(E+ gv X B)-V,f.= %Vee (Mo wer. — fe) 5 (21b)

for the evolution of the ions and electrons coupled to the dimensionless
Maxwell system defined by Egs. (18).

From the scaling relations stated by Eq. (15), discarding the inter-species
collisions make sense for the ions. Due to their large mass, the ions are almost
unaffected by encounters with electrons. For the electrons, this assumption is
not in line with the scaling of the like and inter-species collision frequencies.
However, the purpose here is to propose a physically meaningful framework
to clarify the foundation of a numerical method bridging the gap between a
kinetic description of a weakly (or non) collisional magnetized plasma with
a MHD regime. The interspecies collisions give rise to the resistivity in the
macroscopic system which is not the targeted class of modelling for this work.

3.1.2 Handling the fluid limit

To identify easily a fluid regime, the distribution function is decomposed into
a Maxwellian M,,, .. 7, and a deviation from this Maxwellian x g, according
to

fo = Mg vt + EGa s (22a)
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Kinetic Hierarchy /lasov-BGK-Maxwell Fluid Hierarchy
o\ — )0/ X_;o

Kinetic Electron-MHD ‘ ’ Euler-Maxwell

(ke), (Me) — 0 ¢ ¢ a A= 0

’ Hybrid Hall-MHD ‘ Electron-MHD

K *)0\\ )/(Mg) -0
Hall-MHD

¢ M0

] Massless Hall-MHD ‘

Figure 1: Fluid and kinetic (quasi-neutral) model hierarchies derived from
the Vlasov-BGK-Maxwell system.

the deviation verifying

1 1
( |v|2 ga>:/ |v|2 Ggadv =0, (22b)
v v\ Ju

With this decomposition, the Vlasov-Boltzmann equations (21) can be recast
into a hydrodynamic set of equations with kinetic corrections, depending on
the moment of the deviation g,, yielding

§

Mﬁtni + V.- (nu;) =0 (23a)
M
— kV, - (v®uvg) ,
(23b)
ia Wi+ V- (Wi + pi)u;) — nmiE - u; = v, wvg‘ (23¢)
M t 7 x 7 1 1 77 1 1 M T 2 7 )
with )
Wi = (M)2§7%|Uz|2 + ]i 1 pi = ni1;, (23d)
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for the ions, and an equivalent system for the electrons,

§

Matne + V.- (neue) =0 (24a)
M
(M€)2 <%at(neue) + VSL‘ . (neue ® ue)) + pre + e (E + %ue X B) =
— kV. - (V®uvge) ,
(24b)
£8W+V ((We + pe)ue) + NeE e = ———V, - wvg (24c)
M t e x e e e 77 e e M€ x 2 e )
with .
W, = (M5)2§ne|ue|2 + p_e T Pe= nT, . (24d)

These two systems are coupled to a set of equations (the Maxwell system (18))
driving the changes in the electromagnetic field, as well as an equation for
the evolution of the deviations g. and g;. The construction of these equations
will be omitted in the present work, we refer for instance to [11, 9, 14] for
examples of their derivation.

3.1.3 On the quasi-neutral limit

Omitting the collisions, the fastest velocity in this system is the propagation
of waves at the speed of light described by the Maxwell system. The Debye
length as well as the plasma period also define small space and time scales
for large plasma densities. The quasi-neutral limit is defined by the following
scaling relations:

(@A) >0, a~A. (25)

This amounts to assume that the scaled Debye length is small compared
to the typical length and that the system evolves at a speed lower than the
speed of light. By this means, the small scales related to these parameters are
filtered out of the equations. The last hypothesis o ~ ) is essential to recover
the low frequency Ampere’s law, derived by neglecting the displacement cur-
rent. This equation being common to Magneto-Hydro-Dynamic models, the
quasi-neutral limit encompasses these two assumptions. With the vanish-
ing of this generalised dimensionless Debye length (A, a) — 0, the Maxwell
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system degenerates into

M
5Vx X B = ?J, (26&)
BOB+V,x E=0, (26b)
N = Ne, (26¢)
V. - B=0. (26d)

From Gauss’s law, the property of the electronic density to match that of
the ions is recovered, which genuinely enforces quasi-neutrality of the plasma.
The electric field has no contribution in both these degenerate Gauss and the
Ampere equations. The remaining occurrence of the electric field is limited
to the Faraday equation (26b). Therefore, this set of equations is not well
suited for the computation of the electric field. Indeed, the electrostatic
component of the electric field can be arbitrarily chosen in Eqs. (26): the
electric field satisfying this system may be augmented by any gradient of a
scalar potential (see also [16] for further details).

In the quasi-neutral limit, the electric field is provided by the particle
current J rather than the displacement current (OF /0t originally present in
Ampere’s law). To close the system, the dependence of J with respect to £
shall be explained to restore uniqueness of the electric field. This is related
to the model describing the plasma.

3.2 A hierarchy of kinetic models for quasi-neutral plas-
mas

3.2.1 A kinetic formulation of the Electron-MHD

The aim here is to follow the microscopic dynamic of the electrons. The
velocity of interest is the kinetic velocity of the electrons. This amounts to
set g = vp/e or equivalently {e = 1, yielding

1
atfi +€ ('U : v:c.fz + 77(E + 552} X B) : vaz) = ;Vii (Mm,umTi - fZ) 5 (27&)

1
Opfe +v-Vyfe— U(E + Bu x B) Vo fe= &V‘fe (Mne,ue,Te - f6> ) (27b)

The collisions are assumed to be ineffective on the characteristic time scale:
ke > 1 which amounts to neglect the collision operator in Eqgs. (27), in
particular for the ions, owing to ¢ < 1.
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Performing the quasi-neutral limit (A = a) — 0, the system at hand here
is recast into (see [18])

Ofi+e(-Vaofi+n(E+ebvxB)-V,f;)=0, (28)
Ofetv-Vofe—n(E+ v xB)-V,f.=0, (29)
BV, x B = (Me)J, (30)
BOB+V,xE=0, (31)
ne=mn; =n, (32)

V., -B=0.

First, note that the formal time derivative of the Faraday equation (31)
together with the curl of Ampere’s law yields

Ve xV,x E=—(Me)o,J, (33)

which outlines that the electric field is known up to the gradient of a potential
in this system. In [21, 18] the ill-posed nature of this equation is corrected by
explaining the relation between the current density and the electric field. The
conservation of the ionic and electronic momentum, as stated by Eqgs. (23b)
and (24b), yields

(M) =~ (MP V(8. ~8) ~ V.- (P~ P)
+n(e’n; + ne) E +nB(Me) (°nu; + neue) x B,
(34a)
with, for any species a (a = e for electrons and i for the ions),
Sa = Nalia @ Us, Py =pald+ k(v ®@vg,) . (34b)

Inserting the identity (34a), together with n = n; = n., into Eq. (33) gives

n(l4+e*)E+V, x V, x E=—(Me)n (*u; + u.) x B
+(Me)* V- (Si =S0) + Vo - (PR = P.) .
(35)
This equation is well posed in the quasi-neutral limit (n > 0) and can be used

for the computation of the electric field. It is written under the assumption
B =1 as well as n = 1 which amounts to consider the thermal energy on a par
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with the electric one. This yields the following definition of the quasi-neutral
model

Ofi+te(w -Vofi+ (E+evxB) V,f;) =0, (36a)

Ofe+v-Vofe—(E+vxB)-V,fe=0, (36b)

n(l+&*)E+V, xV, x E=—(Me)n (*u; +u.) x B (360)
+(Me)’V, - (S; —=Se) + V.- (2P, = P.) |

OB+ VYV, x E=0, (36d)

V, - B=0.

Note that the electric field provided by Eq. (36¢) enforces a divergence
free particle current, or more precisely 9,(V - J) = 0. This yields, thanks to
the continuity equation: )

#_,

ot?
This proves the consistency of this model with the quasi-neutrality assump-
tion (matching of the electronic and ionic densities) as soon as the initial
data are compliant with this regime. Note that, working a time semi-
discretization, the vanishing of the charge density, rather than its time double
derivative, may be recovered (see [18]). Note also that the evolution of the
ions only brings a marginal correction, proportional to €2, to the electron
dynamics. On this time scale, the ions may be considered at rest.

The characteristics of this model are similar to the so-called Electron
MHD: the time scale of interest is that of the electrons, the ions merely cre-
ating a motionless background for the fast electron flows [34]. In particular,
this modelling accounts for the inertia of electrons. A noticeable difference
with the Electron-MHD (see Sec. 3.4) lies in the kinetic description of the
plasma. An Asymptotic-Preserving method is proposed in [18] to bridge this
quasi-neutral model and the Vlasov-Maxwell system. The properties of this
quasi-neutral plasma description are investigated in [50] by means of a linear
stability analysis.

3.2.2 A hybrid formulation of the Hall-MHD

Hybrid modelling [52, 54, 51] refers to a class of plasma models where the ions
are described by a kinetic equation while the fluid limit is assumed for the
electrons. This is in line with the scaling relations of the collision frequencies
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stated by Egs. (15). The relaxation of the electronic distribution function
towards the local equilibrium is indeed faster than for the ions. The aim of
this modelling is to filter out of the equations the fast scales carried by the
electron dynamics. Therefore, a zero inertia regime is also assumed for the
electrons together with the fluid limit and the quasi-neutrality of the plasma.

The typical velocity selected here is the microscopic (thermal) velocity of
the ions. This translates into the identity ¢ = 1 resulting in the following
system for the plasma:

1
atfi +v- vmfz + U(E + ?U X B) ! vvfl = EVZ'Z‘ (Mni,uini - fl) ) (37&)
1 15} B 1
O fe+ - (U -Vafe—n(E + %U x B) - va@) = &Vee (Mne7ue7Te —fe) -

(37b)

The fluid limit for the electrons is selected assuming (¢x) < 1 meaning
that the number of electron collisions during the typical time is large. The
quasi-neutrality of the plasma amounts to set A = a < 1. To overcome the
degeneracy of the Maxwell system in the quasi-neutral limit, the electronic
momentum is harnessed to provide the so-called generalised Ohm’s law. The
electronic system can be recast into

1
(M8>2 (Mat(neue) + vm : (neue ® ue)) + vmpe + n <neE + (5M>ue X B) =
— (k(Me))V, - oe,
1 Kk 2 )
MatWe + v:c : ((We _l'pe)ue) + nneE cUe = _mvx : ((ME) O¢ * Ue + ,uevxTe> ;

where the viscous stress tensor o, as well as the thermal conductivity p. are
defined in Sec. A.3 and, owing to the quasi-neutrality assumption, n, = n; =
n.

The dynamic described by these equations is stiff, this is due to the
smallness of (£e) in this regime: the thermal velocity of the ions (defined
as the typical velocity) is small compared to that of the electrons. Therefore,
the electrons are in a low Mach regime. Assuming (Me) < 1 gives rise to
the following equilibria

V.(nT.) + nn(E + (BM)u, x B) —0, (382)
v, T, —0. (38D)
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The classical massless approximation for the electrons is recovered with
the generalised Ohm’s law and a homogeneous electronic temperature. The
definition of the mean velocity wu. is derived from the particle current density
J = n(u; — u.) together with Ampere’s law (30), yielding

_EVIXB

Ue = Uj — Fr—— (39)

The hybrid plasma modelling writes (assuming n = 5 = 1)
Ofi+v-Vofi+(E4+vxB)-V,fi=0, (40a)
E:—MuxB+va;BxB—Tev;n, (40D)
%—f+vxxE:0, V. B=0, (40¢)

with
n:/fidv, nu:/vfidv. (40d)

The derivation of a similar model is proposed in [1] with numerical investi-
gations in [17].

3.3 A fluid hierarchy of quasi-neutral models

3.4 The Electron MHD-system

This model is obtain by letting x — 0 in Eqgs. (21). This yields the following
set of equations for the electrons

§

M&gne -+ Vm . (neue) =0 (41&)
§ 1 M
(Mﬁt(neue) + V.- (neu, ® ue)) + WBE (Vmpe +nn.(E + : ue X B)
(41Db)
%&We +V, - ((VVe + pe)ue) +nn.E -u,=0. (41c)

A similar system is derived for the ions however with e = 1 and 7 replaced by
—1. These two sets of conservation laws are coupled to the Maxwell system
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(18). Performing the quasi-neutral limit in this system (A = «) — 0 and
focusing on the electronic dynamics with £ = 1 yields the quasi-neutral
bi-fluid Euler-Maxwell system. This model is similar to that of Sec. 3.2.1
but with a fluid description for the plasma. Following the same terminology,
this model is referred to as Electron-MHD system (also used in [34] though
different terminology may be used by other authors). It is implemented and
investigated numerically in the framework of Asymptotic-Preserving methods
in [21].

3.4.1 The Hall-MHD regime

The Hall-MHD regime (see [38, 53, 43]) is recovered from the assumptions of
the precedent section but with a typical velocity equal to the plasma mean
flow yielding & = M. The fast electronic dynamics is filtered out from the
equations to provide a low frequency modelling for the plasma driven by the
evolution of the massive ions. The plasma velocity, denoted u is defined as
that of the heavy species u = u;. The other parameters obey the classical
scaling relations of MHD models: n =1 and g = 1.

In the drift regime (Me — 0), the electronic energy reduces to the internal
energy

Ee=pe/(v—1), (42a)

with the electronic momentum and energy verifying
Vipe =—n(E+u. x B), (42b)
€+ Va- ((Ec+pe)uc) = —nE - u, . (42¢)

The generalised Ohm’s law (42b) is harnessed to compute the electric field.
The electronic velocity u, is substituted by u, =u — J/n.

The electric field is computed thanks to the generalized Ohm’s law, giving
rise to

V. x B VeDe

B - 43
— X o (43)

The first term of the right hand side of the equation (43) is the classical
frozen field term, explaining the convection of the magnetic field together
with the plasma . The second and third contributions are the so-called Hall
and diamagnetic terms. Inserting this definition in the Faraday law (26b),
the magnetic induction equation can be constructed, with

F=—-uxB+

B
hB+V, (u®B—B®u) = -V, x <Vx; X B) +V, X <V2pe) . (44)
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Finally the plasma mass density, momentum and total pressure p and
energy W defined by

p=pi+p.=n(l;+ 1), (45a)
W= W,+& — (M)%MU\? + % , (45b)
verify
omn+V,-(nu)=0 (45c¢)
Ou(nut) + Vs - (nu @ ) + %Vmp _ WJ « B (45d)
OW +V, - (W+p)u) +V, - ((56 + pe)VH) =E-J, (45¢)

the Hall velocity vy, which can be interpreted as the electron velocity in the
ion frame, is defined by

VH = —1 . (46)

n

The ideal MHD equations are classically written under a conservative form
using the system total pressure and energy

B? B?
PTOT=P+7, WTOT:W“‘?a (47a)
writing the system as
om+V,-(nu)=0 (47D)
1 1

8, (nu) + V, - (nu ®u——5B® B) —5Vapror =0 (47¢)

OWror + Vg - <(WT0T + pror)u — (B - U)B) = -V, < (Ee +pe)v )
(47d)

va e

@B—VI.<B®(u+VH)—(u+VH)®B>:Vxx( np)' (47¢e)

This set of equations is supplemented with the electronic energy conservation
(42¢).

The ideal MHD equations are recovered from this system assuming an
ideal Ohm’s law where the current density is assumed small compared to
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the ion mean velocity and therefore neglected. However, in this simplified
framework (omitting the unlike particle collisions), there are no mechanisms
preventing the electron mean velocity to depart from that of the ions. Con-
sequently, the generalized Ohm’s law incorporates the Hall velocity in com-
plement to the so called ideal Ohm’s law. The effect of the resistivity should
be consider to derive the ideal MHD regime.

The drift approximation operated for the electrons amounts to vanishing
the electronic Mach numbers (Me). The scale separation introduced by the
small electron to ion mass ratio € is not always sufficient to consider this
limit independently to vanishing ionic Mach numbers M — 0. For low ionic
Mach number a low frequency filtering may be operated performing the limit
of vanishing electronic Mach numbers jointly with the ionic Mach numbers.
This asymptotic defines the Massless MHD regime [3].

4 The electrostatic regime and the Boltzmann
relation

4.1 Electrostatic limit of the Maxwell system

The electrostatic regime is recovered from the dimensionless Maxwell system
(18) by letting a go to zero, independently of A\. This assumption shall be
interpreted as a typical velocity negligible compared to the speed of light.
From Ampere’s law

OE M B\

2— _ —
)\nat+§J 2

V., x B, (48)

the limit & — 0 provides V x B = 0. Nonetheless, the right hand side
of Eq. (48) remains an undetermined form. Therefore the Ampere’s law is
not well suited for the computation of the electric field in the electrostatic
limit. However, subjected to convenient boundary conditions, the property
V. x B = 0 together with V, - B = 0 yields 9, B = 0. Inserting this property
into the Faraday equation (18b) provides an electrostatic electric field: V x
E = 0. Furthermore, the undetermined form in Eq. (48) is divergence free.
Therefore, computing the divergence of Ampere’s law provides

v, -E M
TR gvm J

)\27)
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which is a well posed problem for the electric field under the condition V, x
E = 0. Note that, owing to the continuity equation

dp M

—+—=V,-J=0,

a - &
originating from the conservation of the particle densities (23a) and (24a),
the divergence of Ampere’s law is equivalent to the time derivative of Gauss
law, with

0
a()\znvx-E—p):O.

Therefore, in the electrostatic regime, the Gauss equation is used to compute
the electric field.

4.2 Quasi-neutral models at the electronic scale

This analysis is carried out under the assumption of a vanishing magnetic
field (B = 0). The plasma description considered in the sequel is therefore

LSt v Vuhi b 0B Vofi= (v Maur = ), (490)
§edife+v-Vyofe—nE-V,f. = %(Vee (Mne,ue,Te - fe>) (49b)

coupled to the Gauss equation
~NnA¢ =n; —n,, (49¢)

¢ being the electrostatic potential, with £ = —V¢ and n, = [ fodv. The
quasi-neutrality of the plasma is recovered for vanishing scaled Debye length
A — 0. In this regime, similarly to the electromagnetic case, an equation
needs to be manufactured from the motion of the particles, to compute the
electric field. This is classically obtained thanks to the equation of the elec-
tronic momentum conservation. The electric field is computed in order for
this conservation to be satisfied. In [20] an equivalent approach is proposed.
It consists in using the time derivatives of Gauss law to produce

o 0*

—)\2nﬁA¢ = (n; —ne) . (50)
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In the quasi-neutral limit (A — 0), the electrostatic field is the Lagrangian
multiplier of the quasi-neutrality constraint

82

ﬁ(ni—ne)zo.

From the system (24) (with B = 0), formally computing the time derivative
of the density conservation together with the divergence of the momentum
equation, the following identity is recovered

(%)2 a;fge — v, (Vx (nete ® Ue)) — @VJ} . (VxPe + ﬁneE> ;
(51)

P.=pJd+ k(v ®vg.) , with (v® vg.) = /(v ®V)ge dv . (52)

Resuming the scaling relations of Sec. 3.2.1: £ = 1/e and ke > 1, assuming
that the ions are at rest, the evolution of the charge density n; —n. is governed
by Eq. (51) with

?n,

ot?

= —(Me)*V, - <Vm “(Nete ® ue)> -V, <vae + U”eE) . (53)

The evolution of the density is barely independent of the mean flow veloc-
ity but relies on the balance between the pressure and the electric forces.
The equation providing the electric potential ¢ is obtained by inserting this
relation into Eq. (50) and passing to the limit A — 0.

This yields the following quasi-neutral kinetic plasma description

1

at.fe +v- v:c.fe + nvx¢ . vae - €_I<L (Vee (Mne,ue,Te - fe) 5 (54&)

V- (0Vad) = —V, - (vx P, — (Me)®V, - (nou, ® ue)) . (54b)

According the values of &, the collision term in Eq. (54a) may be disregarded,
defining therefore a non collisional kinetic description. Contrariwise, letting
r — 0, a fluid description for the electrons may be derived, with
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1

o7 One + Vg - (neue) =0 (55a)
1
mat(neue) + Vx : (neue & ue) + W (v:cpe - nnevx¢) - 07 (55b)
1
m@We +V, - ((We +pe)ue) — Ve -u. =0. (55¢)

Note that a similar equation to (53), but with P, = p.Id, may be worked
out of the conservation of the electronic density (55a) and momentum (55b).
This outlines that the electronic dynamics, in particular the electronic speed
of sound, is resolved in this model. Comparable models are implemented and
numerically experienced in the context of Asymptotic-Preserving methods in
[10] for fluid plasma description and [40] for kinetic equations.

4.3 Quasi-neutral models at the ionic scale

The typical velocity is chosen to be that of the ions with either £ = 1 for the
kinetic descriptions of the ions and £ = M for macroscopic models.

The hybrid modelling investigated in Sec. 3.2.2 is defined by the scaling
relations £ = 1, (ek) < 1 and n = 1. The equilibria stated by Egs. (38)
yields:

TeVane =n.Veo, (56>

with an homogeneous electronic temperature. This equation is integrated to
provide the so-called Boltzmann relation

Ne = Ng €XP <—}£) , (57)

no being a constant (independent of the space variable x) that should be de-
termined from adequate conditions [30]. Due to the Boltzmann relation, the
quasi-neutral limit is not singular any more. Indeed plugging the Boltzmann
relation (57) into the Gauss equation yields

~MA¢ = n; — ngexp (—%) : (58)

This equation is not degenerate for the computation of the electric poten-
tial for vanishing A. Indeed, the non linear part of the equation provides a
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means of computing ¢ in the quasi-neutral limit. This property is thoroughly
investigated in [23].
The hybrid electrostatic model may be recast into

Ofi 40 Vefi= Vad Vol = (v (Muun 1)), (599)
¢=-T.In <3) : (59b)
o

Letting £ — 0 together with xk/(Me) < 1 and & = M yields the quasi-
neutral fluid model

Bim; + Yy - (niu;) = 0 (60a)
O(nsu;) + Vg - (nju; @ u;) + % (Vapi +n;V,0) =0, (60b)
Wi+ Vo (Wi +pi)us) +nVad-u; =0, (60c)
¢=—T.In (Z—O) . (60d)

In the models (59) and (60) following the evolution of the plasma at the
ionic scale, the fast electronic dynamics introduced by the electron inertia is
filtered out of the equations by performing the low frequency limit (Me) — 0.

5 Conclusions

In this paper, we propose an asymptotic analysis bridging kinetic plasma
descriptions coupled to the Maxwell system and single plasma modelling.
Two frameworks are investigated. The first one is devoted to electromag-
netic fields. The plasma is represented by a hierarchy of models starting
with the bi-kinetic Vlasov-Maxwell system while ending with the single fluid
Hall-Magneto-Hydro-Dynamic model. The second framework is dedicated
to electrostatic fields. In this context, the asymptotic analysis permits to
derive a hierarchy of models bridging the bi-kinetic Vlasov-Poisson system
to a single fluid representation consisting of a fluid system for the ions cou-
pled to the Boltzmann relation for the electrons. The investigations proposed
within this document unravel different asymptotic parameters explaining the
transition from one model to the other. The effort conducted in the present
work consists in relating these asymptotic parameters to characteristics of
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the system. This means that the transition from one model to the other may
be explained by a change in the plasma characteristics or the typical scales
at which the plasma is observed.

This last notion is important in the perspective of designing a numerical
method. Indeed, the discretization of these equations requires the use of
a mesh interval as well as a time step. These two numerical parameters
define the typical space and time scale, therefore a velocity scale as well, the
numerical method is aimed at capturing. This is related to the parameter
¢ used for the asymptotic analysis. Regarding the quasi-neutral modellings
investigated within this document, different choices are operated for this
parameter. The fastest scales are related to the electron thermal velocity
when the fast electron dynamics is intended to be captured by the model.
This is for instance the value selected for Electron-MHD regimes, either in the
fluid or kinetic frameworks. For hybrid or single fluid plasma representations,
the velocity scale is reduced to that of the mean flow of the plasma defined
by the massive ions. The organisation of Sec. 4 is aimed at emphasizing this
feature.

The second parameter, already established in precedent works (see [18,
21, 20]), is the generalized scaled Debye length A. It actually encompasses
the scaled Debye length and the ratio of the typical velocity to the speed of
light. Vanishing the generalised Debye length amounts to filter out from the
equations the small scales attached to the charge separation as well as those
related to the propagation of electromagnetic waves at the speed of light.
The quasi-neutral limit is therefore a low frequency limit. Quasi-neutrality
breakdowns may be explained by a refinement of the typical length scale
or, for instance, a decrease of the plasma density. This changes are well
accounted for by the asymptotic parameters set up to perform the analysis.

The vanishing of the electron inertia is related to a low Mach regime
(Me) < 1. In single fluid plasma representation, the fast electron dynamic
is dropped out of the equations to perform a low frequency filtering, the
system being assumed to evolve at a lower speed attached to the massive ions.
Nonetheless, the nature of the flow may be subjected to significant changes
explaining that the particle inertia becomes significant again to account for
the system evolution. This is illustrated in studies of plasma flows in sheaths,
with supersonic particles, while the mean plasma velocity is small compared
to the speed of sound in the plasma bulk [8, 46, 29, 25, 39]. Accounting
for this phenomena is possible selecting the appropriate typical velocity to
resolve or filter the fast electron dynamic.
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Finally the fluid assumption is classically related to a vanishing of the
Knudsen number x < 1 accounting for the relaxation of the distribution
function towards the local thermodynamic equilibrium. The interplay of
these four dimensionless parameters (£, A, Me, k) defines a hierarchy of re-
duced models bridging kinetic plasma descriptions coupled to the Maxwell
system to quasi-neutral plasma representations including kinetic, hybrid and
single fluid modellings. Other reduced models may also be investigated con-
sidering different closures, to give access to a class of models with non scalar
pressure, or fluid models evolving higher order moments. These low frequency
models are widely used to design efficient numerical methods. The benefit
of the asymptotic analysis conducted within this document draws the guide-
lines for the derivation of numerical methods implementing local up-scalings,
therefore widening the use of numerical methods discretizing these reduced
models.
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A Micro-Macro decomposition, computation
of the viscous terms.

A.1 Introduction, definitions, elementary properties

The analysis carried out in this section are developed in the electrostatic
framework and specified for the electrons. The extensions for either electro-
magnetic fields or the ions are straightforward and are therefore omitted for
conciseness.

We first introduce the projector onto the Maxwellian For any smooth
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function ¢, the projector onto the Maxwellian denoted M, with

. L (o Qe )
M. = n.(z,t) (27TTe(x,t))Dv/2 p( T (2.1) ) . (61a)

For any smooth function ¢, the projector onto M., denoted I1,,,, is defined
as (see [2, 9])

0= 401+ L=09)  (- repe
2 [ |v—(Me)u)* D, v — (Me)u|* D, M.
+D_U< oT, _7)<< oT, _7)‘p>]ne |

where (p) = [@dv. For k =1,..., D,, we have the following properties

(Id — pq, ) (O M) = (Id — T pg ) (E - VM) =0, (62a)
(Hd - HMe) (niMe 'Ukaxkne) =0 ; (62b)
— (Me)u, 2
(1d = Ta,) (v = (Me)ue) - Oue v ML) = (= %auk
+ (vk — (Me)uer) (v — (Me)uy) -Qckue)/\/le;

(62c)
v — (Me)u.* D, B
(Hd—HMe) ((2—7;2 —E)Mevkﬁkae =
‘v — (M»s)ue‘2 D, +2

M, ( TE e (vk . (Ma)u&k)akae .
(62d)

Furthermore, if g, satisfies the Micro-Macro decomposition (22), the following
identities holds true

Ian, (ge) = Hm. (Orge) = 0 (62¢)
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A.2 Computation of the deviation to the Maxwellian

The aim here is to characterize g. or more specifically an approximation
to the first order in k. Inserting the micro-macro decomposition into the
Vlasov-Boltzmann equation (49b) yields

EeOMo+v-V  Mo—nE-V M. +k (£€0ige + v - Vige —NE - Vuge) = L. Ge
where
»CMege == _gyeege .
This provides, using properties (62),
Lr.ge = (Id=TTpy,) (v - Vm./\/le)—i—fi(gaatge—i-(l[d—HMe) (U~Vmge—nE~vae)) )

It follows

ge = (La) ™ (14 = Ty,) (v VaMe) + O(r)) (63a)
with
[ Opne  Me (v— (Me)u.)* D,
’Ukﬁkae = (n—e+ Te (v—(Mé)ue)&Bkue—i—( 2T62 —2Te)8kae ’UkMe .

(63b)
From properties (62), we can state the expression of the deviation to the
Maxwellian

- M. 2 Me ( B v — (Me)u,
é-yee k=1 Te 'DU

+ (vk — (Me)uey) (v — (Me)u,) - &%ue)

+ <‘U — (2]\]{;)“6‘2 - D;;; 2) (vk — (Ms)u@k)@kae) +0 (g) .
(64)

‘ 2

ge = axkue,k

A.3 Computation of the viscous terms

The viscous terms are defined by

(V®vge) = —%O’e +0 <g) ,

<@U96> - _%((Mg)%e et a) +O (g) |
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Following the characterization (64) of g. we can write

11 ‘v—(M&t)ue‘
Ue——iy—ee<<—T U®U >;0xluel
D, D,
+Z<(’U®U)M ME uel Z Vi — M&? uek)azluek>> s
=1 k=1

B |v]? ‘U—(M&?)ue‘ D, +2
Ge = i < 5 v M, ST - T <v — (M&t)ue> -V, T, ),

Inserting in these definitions, the following identities

|v]? v — (Me)u.|* D, +2
< . @@@Me( T )(U—<Mg)ue)-me>:o,

1 1 ‘v — (.M&t)ue‘2 D
- —(’U ®’U)Me 8:clue,l
Te Vee << Dv ;

Dy, Dy
_ Z <(v ® U)./\/le(vl — (M&t)u&l) Z (vk — (M&t)ue7k)8xlue7k>> = (Me)oe - ue;
=1 k=1
we obtain
1 2
Oe =~ (neTe) (Vaue + Vou!l — o (Va - u)1d), (65a)
o= 220y (65b)
2Wee
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