
HAL Id: hal-02931775
https://hal.science/hal-02931775

Submitted on 10 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On building a CNN-based multi-view smart camera for
real-time object detection

Jonathan Bonnard, K. Abdelouahab, Maxime Pelcat, F. Berry

To cite this version:
Jonathan Bonnard, K. Abdelouahab, Maxime Pelcat, F. Berry. On building a CNN-based multi-view
smart camera for real-time object detection. Microprocessors and Microsystems: Embedded Hardware
Design , 2020, 77, pp.103177. �10.1016/j.micpro.2020.103177�. �hal-02931775�

https://hal.science/hal-02931775
https://hal.archives-ouvertes.fr

On Building a CNN-based Multi-view Smart Camera
for Real-time Object Detection

Jonathan Bonnard1, Kamel Abdelouahab2, Maxime Pelcat1,3, François Berry1

Abstract

Multi-view image sensing is currently gaining momentum, fostered by new
applications such as autonomous vehicles and self-propelled robots. In this
paper, we prototype and evaluate a multi-view smart vision system for object
recognition. The system exploits an optimized Multi-View Convolutional Neural
Network (MVCNN) in which the processing is distributed among several sensors
(heads) and a camera body.

The main challenge for designing such a system comes from the computa-
tionally expensive workload of real-time MVCNNs which is difficult to support
with embedded processing and high frame rates. This paper focuses on the
decisions to be taken for distributing an MVCNN on the camera heads, each
camera head embedding a Field-Programmable Gate Array (FPGA) for pro-
cessing images on the stream. In particular, we show that the first layer of the
AlexNet network can be processed at the nearest of the sensors, by performing
a Direct Hardware Mapping (DHM) using a dataflow model of computation.

The feature maps produced by the first layers are merged and processed
by a camera central processing node that executes the remaining layers. The
proposed system exploits state-of-the-art deep learning optimization methods,
such as parameter removing and data quantization. We demonstrate that accu-
racy drops caused by these optimizations can be compensated by the multi-view
nature of the captured information.

Experimental results conducted with the AlexNet CNN show that the pro-
posed partitioning and resulting optimizations can fit the first layer of the multi-
view network in low-end FPGAs . Among all the tested configurations, we pro-
pose 2 setups with an equivalent accuracy compared to the original network on
the ModelNet40 dataset. The first one is composed of 4 cameras based on a
Cyclone III E120 FPGA to embed the least expensive version in terms of logic
resources while the second version requires 2 cameras based on a Cyclone 10
GX220 FPGA. This distributed computing with workload reduction is demon-
strated to be a practical solution when building a real-time multi-view smart

ISources files available online: https://github.com/DreamIP/mvcnn
1UCA - Institut Pascal, UMR CNRS 6602, Clermont-Ferrand, France
2Sma-RTy SAS - Clermont-Ferrand, France
3Univ Rennes, INSA Rennes, IETR, UMR CNRS 6164, Rennes France

Preprint submitted to Microprocessors and Microsystems January 7, 2020

camera processing several frames per second.

Keywords: CNN, FPGA, MVCNN, Smart Camera, Real-Time

1. Introduction

Multi-view vision systems can address several challenges in computer vision
such as 3D reconstruction, depth map sensing and object classification [1, 2, 3].
Significant progress have been made in the domain of object recognition by us-
ing deep learning algorithms, and more specifically, Convolutional Neural Net-5

works (CNNs) that constitute the state of the art algorithms since Krizhevsky et
al. [4] achieved a top-5 test error below 20% in the 2012 ImageNet competition.
Several major contributions to deep learning have introduced significant changes
with respect to the first AlexNet model, proposing deeper networks [5, 6, 7] to
improve recognition rate and architectures that are more suited for the computa-10

tional power of embedded systems [8, 9]. In addition, Multi-View Convolutional
Neural Networks (MVCNNs) have recently emerged, motivated by the fact that
additional features extracted from multiple point of views of an object (e.g.
depth maps or 3D points coordinates) provide more representative data on a
scene than a single view flat image. In a multi-view context, previous publica-15

tions demonstrate that state of the art CNNs become more accurate in terms
of object classification when exposed to multiple views [10, 11, 12, 13, 14, 15].

In both single-view and multi-view CNNs, training and inference tasks are
typically performed by Graphics Processing Units (GPUs) which are faster by20

several orders of magnitude when compared to conventional CPUs for the same
level of programming complexity (eg. using the CUDA or OpenCL program-
ming languages). In the mean time, Field-Programmable Gate Arrays (FPGAs)
are garnering increasing attention for accelerating machine learning algorithms.
Indeed, the massively parallel structure of FPGAs, their low power consumption25

and their low and controllable processing latency, are making them top candi-
dates for CNN inference, even in a context of cloud computing [16]. However,
the main challenge of FPGA-based CNN inference comes from the millions of
weights that need to be stored in on-chip memory (e.g. 6.8M weights for the
GoogLeNet CNN). To tackle with this challenge, researchers have introduced30

different approximate computing methods including the quantization of convo-
lutional weights [17], the reduction of operand bit-width down to 2 bits[18],
the introduction of accelerators based on SIMD architectures [19], some hard-
ware/software hybrid solutions built from OpenCL [20, 21, 22], or full hardware
solutions using high level synthesis [23]. These studies have shown that FPGAs35

are competitive platforms for CNN inference and can be optimized to simplify
their implementations with reduced hardware resource utilization. Still, the
Direct Hardware Mapping (DHM) of a CNN to an FPGA [24], i.e. the one-to-
one translation of neurons to hardware without time multiplexing, of an entire
state-of-the-art CNN onto an FPGA, remains impossible even on the largest40

2

FPGA devices, although it is the most performing use of the FPGA structure,
optimizing data locality to the limit. As a consequence, when targeting DHM,
methods are needed to split processing between multiple systems and fit the
sub-networks into several sub-systems [25]. On the particular problem of phys-
ical object recognition from multiple camera-captured views, this method can45

be particularly appropriate, as the processing of different sources of data can be
delegated to different front-end sub-networks, accelerated close to their respec-
tive sensors.

In this context, the present study aims at applying multi-view deep learning,50

as introduced in [10], within an environment composed of a set of synchronized
smart cameras based on Field-Programmable Gate Array (FPGA) and a back-
end sub-system which can be either an FPGA, a CPU or a GPU, as depicted in
figure 1. The main contribution of the paper is a design method for multi-view
vision systems that jointly optimizes the multi-system porting of the computa-55

tional workload, and the accuracy of the implemented vision task. The resulting
multi-view camera combines front-end near-sensor processing of the first CNN
layer(s) and a back-end processing of the remaining CNN layers. A real pro-
totype of the camera smart heads is built and assessed. Using the advanced
diversity offered by multiple views, we demonstrate that the built CNN, in spite60

of a front-end/back-end decomposition and network optimizations and degra-
dation, is equivalent to a monocular CNN, but is also able to deliver real-time
performance for our camera setup4 thanks to the DHM of convolutions and to
workload reduction.

65

The paper is organized as follows :

• Section 2 gives an overview of previous studies in multi-view object recog-
nition with CNNs. In a second part, the two main FPGA-oriented com-
putation paradigms of CNNs are introduced, which both are exploited for
building the multi-view camera system70

• Section 3 details the proposed multi-view vision system design method,

• Section 4 describes the conducted optimizations of AlexNet architecture
in this multi-view context,

• Section 5 reports the performance of the proposed method on the built
prototype system.75

3

(a) Single view camera setup with real-time inference

(b) Proposition : Multi-view camera setup with equivalent
real-time inference

Figure 1: Figure (a) depicts a single-view camera capturing a scene and a back-end
performing the full computation of a mono-view CNN for object recognition. In Figure (b),

the proposed evolution introduces 4 synchronized smart camera heads as part of a
multi-view smart camera, providing different points of view while pre-processing CNN data
in a distributed way. A front-end network is severed from the main CNN and sliced between

the camera heads. Using standard labelling, Conv designates convolutional layers, ReLU
designates non-linear functions, Pool designates data dimensional reduction and FC refers to

the fully connected, non-convolutional layers used for classification.

2. Related works

2.1. Multi-View Object Recognition with CNN

While classical inference CNNs work on a single view (figure 2), methods
have recently been proposed to process 3D data representing objects with syn-
thetic 3D meshes [13], depth maps [26], point clouds [27] and multiple views.80

In particular, multi-view networks are gaining an increasing research interest,
particularly for classifying and retrieving 3D shapes5.

The first study related to multi-view CNN shape recognition was conducted
by Su et al. [10]. It relies on a graph depicted in figure 3. In this scheme,
several virtual cameras surround an object to get different view points and each85

4In this work, we are aiming at a real-time performance of 30 Frames Per Second (FPS)
with up to 4 views.

5In this paper, the ”multi-view” term refers to views from different points of view, not
from multiple scales

4

Conv1 ReLU1 Pool1Architecture …Conv2 ReLU2 Pool2
Fully

connected

Parameters

"class"

C1
N1
K1
W1
H1

= 3
= 96
= 11
= 227
= 227

C2
N2
K2
W2
H2

= 96
= 256
= 5
= 27
= 27

Figure 2: Conventional architecture of the AlexNet CNN. The first layer is composed of N1
convolutions acting on the 3 color planes (C1) of the input frame with a kernel size of K1

to extract different features. ReLU decides whether the input of a neuron (feature maps) is
relevant or not for the current detection. Then, the pooling layer downsizes the feature map
to let the next layers detect larger features in the original image.

Fully
connected

Conv1 ReLU1 Pool1 Conv2 Pool5

View
Pooling

"class"

Conv1 ReLU1 Pool1 Conv2 Pool5

Conv1 ReLU1 Pool1 Conv2 Pool5

…

…

…

…

View 0

View 1

View N-1

Figure 3: The multi-view setup introduced by Su et al.

view is coupled to the convolutional part of a CNN where deep feature maps
are regrouped into a single one by a view pooling layer. View pooling operates
similarly to a usual max pooling, keeping the maximum value out of a set of
inputs, with the difference that the maximum value is no longer that of the
direct local neighborhood of a N ×N window of activations, but the maximum90

pixel to pixel value of each view. The following (fully connected) layers perform
a classification equivalently to a single view CNN and estimate the class of the
object. The gain in classification rate reaches 4.8% with 12 cameras compared
to a VGG-M CNN using a single view.

Feng et al. [11] have demonstrated that each view perspective in a multi-95

view CNN contributes differently to the shape descriptor. As a result, authors
advocate to classify perspectives according to their degree of importance in the
description of the object to be classified. While the authors’ proposed network
adds some computational overhead due to the grouping module, this architec-
ture is more accurate by 3.2% compared to the multi-view CNN mentioned100

above. Kanezaki et al. [15] propose a solution for estimating the pose of an
object based on a multi-view framework similar to the previous studies. Pose
estimation is performed in an unsupervised manner and classification is per-
formed at the same time. This training method considers the view points as
variables optimized during the training sequence. This work reaches the same105

performance level as a 80 view MVCNN while requiring only a few different
point of views of an object.
These studies have demonstrated that multi-view architectures can bring per-
formance improvement over traditional networks for recognizing objects. This

5

performance is however obtained at the cost of more computational resources,110

as the convolution section of a network is duplicated as many times as there are
views in the system or views are batched into the memory of a single inference
system (GPU, CPU or FPGA accelerator) with the consequence of increasing
inference time. The camera setup we propose in the current study follows a
different multi-view inference strategy. The design of embedded smart cameras115

very quickly shows the limits of current computational technologies in terms of
convolutional network computation capabilities, especially when this inference
is performed on low-end FPGAs. These limits force the designer to optimize the
CNN architecture, for instance by decreasing the number of features, but these
optimizations impact classification quality. Building on the work mentioned120

above, i.e. on capturing an object from several viewpoints in order to increase
the rate of classification, we propose a method to jointly optimize the number
of features, convolution kernels and the quantification of data, and to map one
or more front-end layers on a CNN into FPGAs using a dataflow representation
of the network.125

In order to fit object classification into the built multi-view smart camera,
the study has consisted in separating a front-end and a back-end network and
optimizing the resources needed by front-end networks implemented near their
respective sensors. The CNN features that have been deeply modified are:130

• the number of feature maps within all layers that has been drastically
reduced,

• the size of the kernels in the front-end convolutional layer that has been
strongly reduced.

These two operations have a negative impact on classifier performance.135

Nonetheless, this study demonstrates that the multiple views acquired by our
camera system compensate most of the detection degradation due to network
optimizations. The novelty of this work comes from the Multi-view camera op-
timization that manages, by combining state-of-the-art methods, to fit real-time
deep learning in an FPGA-based multi-view camera. As a result, workload can140

be balanced between the front-end and the back-end in order to accelerate the
computation.

2.2. CNN inference on FPGAs

As highlighted in [28], convolution layers are the most computationally in-
tensive parts of a CNN. Indeed, the execution of these layers requires many145

Multiply Accumulate (MAC) operations. The number of MACs occurring on a
convolution layer is expressed in eq.1,

W = W ×H ×N × C ×K ×K (MAC) (1)

where N is the number of output feature maps, (W,H) the width and height of
output feature maps, C the number of input feature maps and K ×K the size
of the convolution kernels.150

6

Figure 4: A simplified view of a CNN accelerator architecture on FPGA. A CPU or a spe-
cialized finite state machine schedules the overall layer computations of a CNN with a set of
specialized Processing Elements (PEs) performing layers’ computation. A direct memory ac-
cess (DMA) engine fetches input feature maps and convolution weights into PEs while another
DMA stores output features into an external memory bank.

Several studies leverage on the FPGA computational power to accelerate the
execution of convolution layers [29]. In particular, two computational paradigms
exist [30]:

• On one side of the spectrum, computation engines (figure 4) are widely
present in the literature [31, 32, 16], and support a large variety of CNN155

workloads. Computation engines are based on a fixed architecture that
typically takes the form of a systolic array of Processing Elements (PEs).
In the case of convolution layers, each operation corresponds to a sequence
of micro-instructions executed by the hardware accelerator. The limita-
tions of such architectures come from 2 factors: the number of avail-160

able PEs that execute convolutions, and the external memory latency to
fetch/store pixels, convolutional weights, and processed data as pointed
out in [33]. However, these processing engines have a good flexibility and
support a large variety of CNN models.

• On the other side of the spectrum, dataflow architectures with Direct165

Hardware Mapping (DHM) [34, 35, 24] map one distinct hardware block
for each layer of the target CNN. The blocks are then pipelined for them
to process data in a streaming fashion. As a consequence, dataflow CNN
accelerators deliver an overall better performance at the price of a lower

7

flexibility. As will be detailed in the next section, the multi-view system of170

the current study leverages a dataflow architecture, and aims to rationalize
use of the resources available in a pool of smart camera heads based on
low-end FPGAs, so as to achieve real-time performance (30 FPS) for the
object recognition task.

3. Technical Choices when Building the Camera175

As shown in the figure 5, the inference model of a single view CNN (2) is
described as the composition of two functions H and FC. H represents the
entire convolutional section of the CNN extracting the features from the image
of a camera. FC is the fully connected layer performing classification.

Figure 5: Generic CNN model of inference with accelerator with a single camera

NETsv = FC ◦H(input(camera)) (2)

The multi-view architecture model of Su et al [36] assumes that several V180

views are concurrently processed by the convolution and pooling parts of the
MVCNN (figure 3). Next, a view-pooling layer gathers data from all views and
forwards them to the rest of the CNN for classification. This model can be
written as :

NETMVCNN = FC ◦G ◦Hv(input(camerav)), 1 < v < V (3)

where Hv represents the entire convolution section of a CNN which is duplicated185

in respect to the number of views v and G refers to the view-pooling layer
introduced in the previous section.

This model provides better classification accuracy when compared to a single-
view setup as the number of available view points increases. However, MVCNNs
are prohibitive and inefficient for embedded systems since the whole convolu-190

tional part of the network has to be processed independently for each view before
the classification stage.

The method presented in this paper is a modified version of this model.
First, it introduces a splitting parameter m that divides a network into two
sub-networks: A front-end (Fm) that implements the first CNN layers on the195

camera head and a back-end (HM−m+1) that executes the remaining layers.
This can be formalized as:

NETsv = FC ◦HM−m+1 ◦ Fm (4)

8

In a context of multi-view system, the previous model can be extended by200

duplicating the front-end sub-network across V smart-camera heads. In this
case, the view-pooling function (G) merges the features from the front-end and
feeds the back-end, as written in equation 5:

NETMVCNN = FC ◦HM−m+1 ◦G ◦ Fm
v with 1 < v < V (5)

205

With the formalism introduced in Eq.5, the front-end layers are added with-
out any additional latency cost, as they are processed in parallel with the previ-
ously evoked DHM strategy. Conversely, back-end layers are shared by all views
and do not cost more than the respective layers in a single-view CNN. Note
that the value of the parameter m greatly impacts the computational workload210

of a given multi-view CNN. Indeed, the smaller this parameter is, the less layers
will be replicated and, consequently, the lower the computational workload will
be. However, low-end FPGA devices such as the ones employed in the camera
heads still can not map the front-end network, sometimes not even the first
layer when m = 1 [37]. In this case, the cost of layer F 1 in terms of multipliers215

is given by Equation(6).

Costhw(F 1) = N1 × C1 ×K2
1 (Multipliers) (6)

To tackle this problem, a possible solution is to reduce the number of pa-
rameters of the front-end and back-end. The derived degraded sub-networks,220

respectively F̂m and ĤM−m+1, result in an accuracy drop that aims to be com-
pensated with multi-view nature of the input data. The degraded model can be
written as:

NETMVCNN = FC ◦ ĤM−m+1 ◦G ◦ F̂m
v with 1 < v < V (7)

225

As a proof of concept, a prototype of multi-view camera is built based on
the same architecture as a state of the art AlexNet CNN as depicted in figure
6. Then, the number of the CNN parameters is gradually decreased in order to
fit front end networks into near-sensor FPGAs. This works only considers the
first layer of this CNN as a front-end (m = 1). By decreasing the number of230

operations by a factor d in the front-end part of the camera, it becomes possible
to embed all its operations following a dataflow DHM partitioning method, as
shown in 8.

Costhw(F̂ 1) = d×N1 × C1 ×K2
1 � Costhw(F 1),∀d ∈]0; 1[(8)

235

In the next sub-sections, we detail the introduced optimizations and the
corresponding hardware architecture.

9

Figure 6: CNN model distributed between multiple smart cameras with dataflow model of
computation and an accelerator back-end

3.1. Near-sensor Hardware Acceleration through Direct Hardware Mapping

DHM takes advantage of the data-path nature of CNNs feed forward propa-
gation and leverages a representation of the CNN with a dataflow model of com-240

putation. In this paradigm, the CNN is modelled as a dataflow graph wherein
the nodes correspond to processing actors and the edges correspond to com-
munication channels. Each actor follows a purely data-driven execution model
where execution is triggered only by the availability of input operands [38]. The
resulting dataflow accelerators infer one distinct hardware block for each actor245

of the CNN as illustrated in Figure 7. By taking this paradigm to the extreme,
the Direct Hardware Mapping (DHM) method consists of physically mapping
the whole graph of actors onto the target device [24] and delivers new outputs
on each clock cycle. As a result, each of the operations involved in a CNN layer
becomes a computing unit with its specific hardware instance on the FPGA.250

In the case of convolution layers, DHM fully unrolls the processing of MAC
operations producing N results per clock cycle6. To deliver this throughput,
a dataflow accelerator physically maps the amount of multipliers described in
equation 6.

As pointed-out in [24], dataflow architectures with direct hardware mapping255

catch all the parallelism patterns exhibited by CNNs, resulting in a high com-
putational throughput. Moreover, DHM exempts from the main constraints
limiting the performance of embedded CNN accelerators as weights and in-
termediate data do not require to be fetched and stored in external memory.
However, the major downside of DHM is related to the scalability of the ac-260

celerator. Indeed, a CNN mapping can rapidly be bounded by the available
resources present in a given FPGA. In particular, DHM can not implement
layers or networks that involve more multiplications than the number of multi-

6Thus, the dataflow accelerator requires U ×W clock cycles to process the full layer

10

Figure 7: An example of the first layer directly mapped into N ×C×K×K multipliers. The
pipeline delivers data after 2×Tclk

pliers available on a given FPGA. This is in contrast with the time-multiplexed
computation engines, which favour scalability and flexibility over customization265

and computational throughput.
For the reasons evoked above, this work considers the two computation

paradigms represented by the accelerated part Ĥ and the dataflow part F̂ in the
model (7) . The first CNN layer F̂ 1, which mapping tends to have the lowest
resource requirements (Table 1), can be implemented in a DHM fashion using270

dataflow and reduced data representations7. By contrast, the deep layers Ĥ,
which tend to be more computationally intensive, can be implemented either on
an FPGA device or an embedded GPU by means of a computation engine, as
discussed in the previous section.

Alexnet(convolutional Layers) L1 L2 L3 L4 L5

Multipliers (8bits) 35K 614K 885K 1327K 885K

Logic Elements (LEs) 800K N.C N.C N.C N.C

Table 1: Amount of multipliers and logic elements required for each layer of AlexNet CNN in
a dataflow model of computation using 8-bit inputs, weights and output data.

3.2. Data quantization275

The other limiting factor of CNN inference on FPGA comes from the data
quantization used in state of the art networks. Considering the large number of

7Only the first layer could be synthesized with the Intel Quartus software. The other layers
synthesis requested more than the 160GB of RAM resources available on our server

11

operations to perform and the amount of data to fetch and store into memory
on each layer of a deep neural network, previous studies led to optimizations
on data and weight quantization. This feature has been widely discussed in280

the literature, proposing to downsize the simple precision floating point (FP32)
data representation to half precision floating point (FP16) [22], 8 bits float-
ing points [16] and even 8 bits integer [39, 40] representations with low impact
on classification accuracy, denoting a strong resistance to quantization noise of
CNN.285

This aspect is important on FPGA devices given the limited number of float-
ing point Digital Signal Processing (DSP) blocks. Conversely, the number of
hardwired 8-bit multipliers is significantly higher (each FP32 DSP block can
implement up to three concurrent fixed point multiplications) and can be ex-290

panded further using the logic fabric of a FPGAs, especially through the direct
hardware mapping strategy evoked above. In order to fit the first layer F̂ 1 of
our CNN into the camera heads, this work exploits an 8-bit quantization of the
convolution weights and output data. In addition to processing gains, such pa-
rameter size reduction impacts the computational energy consumption [41, 42]295

as the amount of data to transfer from a layer to its neighbour (or to external
memory) is reduced.

3.3. Camera heads and their FPGA

Our multi-view system prototype (Fig. 8) is divided into two parts with a300

front-end system composed of multiple smart cameras heads and a back-end
system as depicted in the figure 1b of section 2. The back-end is used as the
central system, sending commands to the camera heads through a data-link, in
our case a gigabit Ethernet communication layer. The back-end sends simulta-
neous trigger commands to the camera heads, each embedding an Intel Cyclone305

III FPGA. Each head processing system translates the command (setting image
size, frame rate, etc.) to its attached global shutter CMOS sensor. Next, the
FPGA converts the raw data to an RGB image which is down-scaled to match
with the input of the CNN.

Each of the smart cameras heads executes the front-end layer F̂ 1 of the CNN310

with a dataflow DHM strategy. This means that the first layer is processed at
the image sensor clock rate, delivering feature data at the same rate. The fea-
ture maps resulting from head embedded processing are streamed through raw
Ethernet packets to the back-end system in charge of computing the remaining
layers of the CNN. Next sections detail the method employed to deploy the315

CNN on the multi-view smart camera, as well as experimental results.

4. Proposed method to optimize CNN inference in the camera

In this section, the challenges encountered when building a multi-view smart
camera with dataflow DHM are explained, as well as a proposed method to

12

Figure 8: A setup example. The front-end camera heads (Cyclone III) and a test back-end
connected through an Ethernet switch

tackle them. The proposed method iteratively reduces the number of chan-320

nels and parameters. Indeed, network compression is widely advocated in the
literature to speed-up the inference stage [43, 44]. As slimming networks af-
fects classification performance, this study investigates the trade-off between
network degradation and the multiplication of camera heads to maintain the
original accuracy.325

4.1. Dataset and training methodology

The training step of a specific CNN architecture for 3D shape retrieval or
multi-view recognition requires a special database of CAD objects or a set of 2D
images with attached intrinsic and extrinsic parameters of the camera capturing
the object. For our study, we leverage the ModelNet40 dataset [26] that gathers330

12k shapes from 40 different classes of objects in a mesh format. This format
provides a set of points describing the volume of each object in the 3D space. The
surface of each object can be rendered using either voxels, a Phong shading[45]
or a ray tracing[46] algorithm to smooth the object shape and to give a more
realistic visual perception. In this work, we used a balanced version of this335

dataset where each category has an equal number of object and views. The
dataset comprises 3200 objects for training and 800 for validation. 12 virtual
cameras are equally distributed around the Z-axis (one every 30 degrees) of
the object with a pitch of 30 degrees (Figure 9). All of the CNN architecture
variations presented in this paper are trained from scratch for 60 epochs using340

the Pytorch framework [47]. The initial learning rate for the Adam solver is set
to 10−4 and the weight decay regularization parameter is set to 10−4. For each
30 epochs, the learning rate is divided by 2.

4.2. Direct network compression

As highlighted in eq. 6, reducing the computational complexity of a convo-345

lutional layer involves modifying the on of two variables N , K or both, which
respectively represent the number of generated features and the size of convo-
lution kernels. As a first step, we reduced the number of features in the first

13

Figure 9: A 12-camera setup to render object files of the dataset

Figure 10: 2D views from the simulation of 4 cameras

layer of the CNN by lowering the parameter N1 of the front-end8 F 1 by a fac-
tor d (d ∈ [34 ; 2

3 ; 1
2]). In parallel, the back-end of the network is set in two350

modes. The first one, namely H has the same number of parameters as the
original AlexNet architecture with (N2, N3, N4, N5) = (256, 384, 384, 256) con-
volution kernels. The second, ĤM has half the parameters with respectively
(128, 192, 192, 128) output feature maps. In this second network architecture,
we make the assumption that the combination of multiple viewpoints of the ob-355

ject will have a compensating effect on classification accuracy. More precisely,
each feature extracts more informative features from the occluded parts of an
object, so that the number of parameters Ni (i ∈ [2; 3; 4; 5]) can be reduced
compared to the single view CNN.

360

For each new architecture, the network is trained on a subset of the Mod-
elNet40 dataset, then the classification results on the validation subset are
reported. We also report the accuracy of the trained networks on the Ima-
geNet dataset for the least (ĤM) and the most (HM) computationally expen-
sive back-end architectures. This intends to outline the accuracy gap between365

architectures on different datasets. Figure 11(a) shows the network response to
parameter reduction while maintaining a constant kernel size (K1 = 11). The
configurations for the first layer of the network are given on the x-axis according

8From now, F 1 represents the first layer of the original CNN and F̂ 1 refers to the first
layer of the modified CNN.

14

48 64 72 96
Number of features in 1st layer (N1)

79.0

79.5

80.0

80.5

81.0

81.5

82.0

82.5

83.0

A
cc

u
ra

cy
(%

)

HM ◦ F̂ 1(N1, K1 = 11) on ModelNet40

ĤM ◦ F̂ 1(N1, K1 = 11) on ModelNet40

HM ◦ F̂ 1(N1, K1 = 11) on ImageNet

ĤM ◦ F̂ 1(N1, K1 = 11) on ImageNet

(a)

48 64 72 96
Number of features in 1st layer (N1)

100

200

300

400

500

600

700

800

K
L

E
s

Cyclone 3E max resources

Cyclone 10GX max resources

Dataflow mapping of layer 1 (K1=11)

(b)

Figure 11: (a) The classification accuracy of 2 back-end networks (layers 2 to 5) and 4 different
front-end setups (N1). (b) The FPGA synthesis resources of the 4 front-end setups with a
dataflow implementation.

to the combination of ĤM (half back-end) and HM (full back-end). As shown in
this figure, the maximum difference of performance between both architecture370

reaches 1.85% in terms of classification accuracy on the ModelNet40 dataset and
3.9% on ImageNet. The classification accuracy gap for the lightened architec-
ture can be explained by the fact that a classifier requires much more parameters
to solve ImageNet (1000 classes) than ModelNet40 (40 classes). As a conclusion,
we decide to stop compressing the number of features of the network front-end375

F̂ 1 to N1 = 48 and the back-end to Ĥ to (N2, N3, N4, N5) = (128, 192, 192, 128).
In terms of resource utilization, figure 11(b) reports the number of logic

resources mapped by the synthesizer for the front-end F̂ 1 with a variable number
of feature maps (N1) and constant kernel size (K1 = 11)9. As expected, the
amount of resources grows linearly with the number of features, resulting in380

400K logic elements mapped for the lightest architecture (F̂ 1(N1 = 48,K1 =
11)) and 800K for (F 1(N1 = 96,K1 = 11)). This resource utilization clearly
exceeds the amount of logic elements made available on the targeted FPGAs
(reported in dashed lines in the previous figure), which demonstrates that this
layer should be further optimized by tuning the front-end convolution kernel385

size in order to map F̂ 1 into the smart camera heads.

4.3. Deeper optimization : Tuning the kernel size of the first convolutional layer

The other factor of degradation given by Equation (6) is ki. As the hardware
cost for each kernel size grows in K2, we retrain the minimal network ĤM ◦ F̂ 1

9Results reported by the Intel Quartus 19.3 software using 8-bit-inputs multipliers.

15

with different kernel size for the front-end layer. We keep the nominal K1 = 11390

as a reference point and report the training results for K1 ∈ [3; 5; 7; 9]. How-
ever, the size of the features (Equation 9) at the output of this layer should is
maintained constant across all the experiments in a way that the total amount
of computations for the back-end Ĥ remains the same for all configurations of
F̂ 1. Maintaining a constant back-end computational workload also requires to395

decrease the input resolution to Win ∈ [219; 221; 223; 225], as shown in equa-
tion 9 where p and s respectively stand for the padding and stride parameters
of the convolution layer.

Wout =
Win + 2× p−K

s
+ 1 (9)

Figure 12(a) displays the performance variations due to kernel size shrinking.
This time, the dataflow required resources of the layer F̂ 1 with a kernel size of400

K1 = 3 and K1 = 5 are within the range of a smart camera capacity based on a
Cyclone III FPGA, or K1 = 7 for a more recent technology like Cyclone 10GX
devices.

3 5 7 9 11
Kernel Size (K1)

80.0

80.5

81.0

81.5

82.0

82.5

83.0

A
cc

u
ra

cy
(%

)

N1 = 48

N1 = 64

N1 = 72

N1 = 96

(a)

3 5 7 9 11
Kernel size (K1)

0

100

200

300

400

500

600

700

800

K
L

E
s

Cyclone 3E max resources

Cyclone 10GX max resources

Dataflow mapping (N1 = 48)

Dataflow mapping (N1 = 64)

Dataflow mapping (N1 = 72)

Dataflow mapping (N1 = 96)

(b)

Figure 12: (a) Kernel size impact on the accuracy of the minimalist network Ĥ(N = [128,
192, 192, 128]) according to 4 feature configurations for the first layer. (b) Synthesis results
of 5 kernel size for the front-end dataflow implementation.

Equation (10) introduces a Hardware mapping Efficiency metric, HEindex,
that highlights the most efficient CNN in terms of logic utilization and accu-405

racy compared to the reference AlexNet architecture (FC ◦ HM ◦ F 1(N1 =
96,K1 = 11)). The numerator represents the hardware cost difference between
the reference AlexNet network and the tuned networks whereas the denomina-
tor leverages the difference of accuracy, for the first layer mapping. With this
metric, more hardware saves and small accuracy drops translate into a high410

16

HEindex, as shown in Figure 13. This figures shows that the (N1 = 48,K1 = 5)
setup has the highest HEindex, and delivers the best trade-off between accuracy
losses and resource gains. In the next studies on multi-view merging, we keep
all networks with the first layer F̂ 1 below N1 = 48,K1 = 7, namely, all con-
figurations where the first layer can be potentially mapped into the front-end415

FPGA logic.

HEindex =
Costhw(HM , F 1)− Costhw(ĤM , F̂ 1)

Acc(HM , F 1)−Acc(ĤM , F̂ 1)
× Acc(HM , F 1)

Costhw(HM , F 1)
(10)

3 5 7 9 11
Kernel size of the front-end network (K1)

0.0

0.2

0.4

0.6

0.8

1.0

H
E
in
d
ex
/

m
ax

(H
E
in
d
ex

)

N1 = 48

N1 = 64

N1 = 72

N1 = 96

Figure 13: The hardware mapping efficiency index for all trained networks considering the
first layer F̂ 1. All values in the figure are normalized with the best architecture index
(N1 = 48,K1 = 5). Higher HE highlights a better trade-off between hardware Cost and
accuracy loss.

4.4. Boosting CNN performance with multi-view data merging and cost analysis

According to the constraints described in section 3, our multi view system is
composed of several smart camera heads with the unique ability to process one
layer (F̂ 1) of a CNN at sensor speed. From the results of the previous section,420

this kind of architecture can be implemented on relatively small FPGAs at the
cost of performance degradation compared to the baseline CNN. In this section,
we introduce the concept of [10] to boost the network classification accuracy to
reach the same level of performance than a single view AlexNet, considered as
a strong baseline. Unlike MVCNN, our system is constrained by the number of425

hardwired multipliers embedded on the smart camera, thus the function G (i.e
view-pooling) regroups the data from each F̂ 1(θi) where F̂ 1 is the first layer of
the CNN whereas the original MVCNN work suggests to regroup the features
from the last layer of the convolution section of AlexNet. We fine-tuned the pre-
vious single view network with 2 to 6 views as presented in the figure 14(top).430

We keep only the first layer dataflow architectures for which the network ac-
curacy drop is less then 0.5% to discuss about the efficiency of the multi-view

17

system on the ModelNet40 dataset. In equation 11, we introduce a simple met-
ric, the multi-view normalized hardware efficiency index, to outline the most
efficient F̂ 1 architecture in respect to the number of views needed to recover435

from previous damages done to the original network. A low number of camera
with a high count of logic resources difference from the reference architecture F 1

will give the best efficiency index. There are 3 configurations that potentially
fits a smart camera based on a Cyclone III 120KLEs to reach out the AlexNet
accuracy baseline(83%) with only 2 views. The least resource expensive layer440

F̂ 1(N1 = 48,K1 = 3) requires 4 cameras to recover from degradation. The most
efficient solution calls for 2 cameras at the cost of a larger kernel size (K1 = 5)
but the number of features remains the same.

2 3 4 5 6
80

81

82

83

84

85

86

A
cc

u
ra

cy
(%

)

2 3 4 5 6
Number of views

0.0

0.1

0.2

0.3

0.4

M
u

lt
i

V
ie

w
N

H
E

in
d

ex

Baseline Acc.

Max acceptable Acc.

Min acceptable Acc.

(N1 = 48, K1 = 3)

(N1 = 64, K1 = 3)

(N1 = 72, K1 = 3)

(N1 = 96, K1 = 3)

(N1 = 48, K1 = 5)

(N1 = 64, K1 = 5)

(N1 = 72, K1 = 5)

(N1 = 48, K1 = 7)

(N1 = 96, K1 = 5)

Figure 14: The upper figure shows the multi-view accuracy of all 9 setups from 2 to 6 views.
The lower and upper bounds represent the limits at which we consider the system to be
equivalent to the original AlexNet network. At the bottom, the multi-view network hardware
efficiency (at equivalent accuracy) highlights the setups with the lowest resource cost and the
lowest number of camera. (The higher the better)

18

MVNHE|Acc'AccAlexNet
=

Costhw(HM , F 1)− Costhw(ĤM , F̂ 1)

Costhw(HM , F 1)× V (11)

5. Experimental Results on Camera Performances and discussion on
the back-end system445

We chose 2 front-end FPGAs to map 2 different layer configurations:
Cfg1 (N1 = 48,K1 = 3) and Cfg2 (N1 = 48,K1 = 5). The first one is a

Cyclone III with 120 KLEs using Cfg1 while the second is a Cyclone 10GX with
220 KLEs for the other configuration. Both configurations are translated from
the Pytorch model to VHDL using the DELiRium DHM tool10450

All convolutions are directly mapped intoN1×K1×K1 8 bits hardware multi-
pliers while the weights are stored in registers. The synthesis results are shown in
Table 2. As a result of previous optimization, the layer with (N1 = 48,K1 = 3)
fits the target FPGA and requires 59% of logic elements for the 4 cameras setup
using Cfg1 on Cyclone III FPGA. The second, Cfg2, requires approximately455

twice the resources of Cfg1. However, as shown if figure 11, it demands half the
cost in terms of camera needed to recover from the degradation. Both setups
are able to run at sensor clock rate.

Table 2: Front-end synthesis results on a low-end FPGA : The full design includes the sensor
configuration state machine, the image preprocessing, the communication IP and L1 on the
Cyclone III based smart camera head.

(N1, K1) Conv1 Full design(% Total) Bandwidth
MB/s (30 img/s)

(48,3) 70806 LEs + 28740 Registers 59% (Cyclone III) 1.001
(48,5) 146180 LEs + 113920 Registers 109% (Cyclone III) 1.001
(48,5) 39561 ALMs + 112681 Registers 69% (Cyclone 10GX) 1.001

The resulting smart camera is able to accelerate the first layer of this CNN
in real time (i.e 30 fps) with a sensor base clock at 53MHz. Images of the Model-460

Net40 dataset are injected into the cameras heads for testing. Each line coming
from the max-pooling layer (27x48 bytes) are formatted into 27 Ethernet frames
and sent to the back-end. At 30 images per second, the communication consumes
1MBytes/sec of the available gigabit Ethernet bandwidth, which is far below
the capacity of the theoretical Giga Ethernet bandwidth (125MBytes/sec). For465

sake of study completeness, the second to fifth layers and the classifier inference
are ported on three different embedded platform’s for our experiments. First,
we choose a Jetson Nano development boards in CPU and GPU mode because
it supports a straight forward replication of the training and evaluation proce-
dures with native supports of the Ubuntu OS and Pytorch frameworks. The470

last platform is an Intel Cyclone V SoC 77 KLEs programmed with an OpenCL

10http://sma-rty.com/delirium-2/

19

based accelerator (PipeCNN [48]) to reflect at most the real performance of our
future complete prototype of multi-view smart camera.

Table 3 summarizes the inference time of the different setups. As the num-475

ber of MAC operations of the custom CNN back-end Ĥ is much lower(0.205
GMACs) than the the original AlexNet(0.66 GMACs), the processing time is
2× faster on both CPU and GPU mode. More interestingly, it is 75% faster
with PipeCNN on a Cyclone V SoC FPGA where the first configuration Cfg1

catches 4% of the total computational time. This must be put in perspective480

with the actual inference time of the whole AlexNet CNN at equivalent accu-
racy. In the second context Cfg2, the total time to compute the whole CNN
is approximately the same than Cfg1 but the first layer catches 9% of the pro-
cessing time. Remind that we compare our solution against the conventional
AlexNet CNN which first layer in PipeCNN is the second most time intensive485

sequence (69.39 ms) behind the layer 2 (108.34 ms). In a full FPGA accelera-
tor context and considering 4 standard cameras, the system should record all
input images into its memory (4×3×219×219 bytes) and stores them into the
accelerator memory before the sequence of operations starts. Conversely, our
system has already processed the first layer at no additional time cost but the490

pipeline latency to output the first data. After receiving a line of the feature
map from the 4 smart cameras, the central FPGA accelerator gathers the data
in real time via a VHDL description of the function G(view-pooling) right after
the data link, and calls for no more than four 8-bits comparators in a 4 view
setup. Finally, the resulting feature of size 48× 27× 27 bytes (34 Kbytes) can495

be stored into the external memory or can be directly processed by the second
layer.

Table 3: Inference time on ARM Cortex A57, embedded GPU, FPGA (PipeCNN) and Intel
CPU when running the MVCNN optimized for the target camera.

ARM Jetson Nano Cyclone V SoC
Device Cortex-A57 MaxN PipeCNN

1.43 GHz 0.92 GHz 150 MHz

AlexNet CNN 221.6 ms 31.5 ms 367.5 ms

(48,3, Ĥ) CNN(all layers) 119.5 ms (-46%) 13.7 ms (-56%) 91.3 ms (-75%)
Cfg1 CNN(w/o 1st layer) 106.2 ms (-52%) 0.5 ms 88.1 ms (-76%)

(48,5, Ĥ) CNN(all layers) 120.1 ms (-46%) 13.8 ms 96.0 ms (-73%)
Cfg2 CNN(w/o 1st layer) 104.7 ms (-52%) 0.6 ms 87.6 ms (-76%)

6. Conclusion and Future Works

This paper has detailed the design of a multi-view smart camera based on
FPGAs and efficiently distributing the inference of a CNN with a near-sensor500

multi-FPGA accelerator architecture. We demonstrated that it is possible to

20

reduce the number of AlexNet parameters with a recognition rate equivalent to
a baseline AlexNet network on the ModelNet40 dataset. By strongly optimiz-
ing the network, the first layer is fully ported to the camera heads, configuring
each head to output new convolution results at each clock cycle of the image505

sensor. The head output data is transferred to a GPU or an FPGA that carries
out the inference of the optimized network. Experimental results show that
the proposed design method can produce a network with similar accuracy to a
baseline single-view AlexNet with a number of convolutions divided by a factor
of 3 at the price of inserting 4 camera heads in the system. A future work510

will consist in studying the benefits of this algorithm and architecture co-design
method on deep networks consuming natively very few MAC operations such
as MobileNetV1 [8], MobilenetV2 [49] or ShuffleNet [50] in order to embed even
more layers on the camera heads, and to increase the camera performance on
both classification and processing speed. Finally, a full custom camera based on515

FPGA-powered head and body will be prototyped. More precisely, the central
computing node will be based on a full custom FPGA accelerator perfectly syn-
chronizing frame captures and continuing the inference up to the classification
stage.

References520

[1] C. Potthast, A. Breitenmoser, F. Sha, G. S. Sukhatme, Active multi-view
object recognition: A unifying view on online feature selection and view
planning, Robotics and Autonomous Systems 84 (2016) 31–47. doi:10.

1016/j.robot.2016.06.013.
URL http://dx.doi.org/10.1016/j.robot.2016.06.013525

[2] A. Thomas, V. Ferrari, B. Leibe, T. Tuytelaars, B. Schiele, L. Van Gool,
Towards Multi-View Object Class Detectiondoi:10.1109/CVPR.2006.311.

[3] H. P. Chiu, L. P. Kaelbling, T. Lozano-Pérez, Virtual training for multi-
view object class recognition, Proceedings of the IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognitiondoi:10.1109/530

CVPR.2007.383044.

[4] A. Krizhevsky, I. Sutskever, G. E. Hinton, 1 ImageNet Classification
with Deep Convolutional Neural Networks, Advances In Neural Infor-
mation Processing Systemsdoi:http://dx.doi.org/10.1016/j.protcy.
2014.09.007.535

[5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition 07-12-June (2015) 1–9. doi:10.1109/CVPR.2015.7298594.

[6] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-540

scale image recognition, arXiv preprint arXiv:1409 (2014) 1–14. doi:10.

21

1016/j.infsof.2008.09.005.
URL http://arxiv.org/abs/1409.1556

[7] S. Wu, S. Zhong, Y. Liu, ResNet, CVPRdoi:10.1007/

s11042-017-4440-4.545

[8] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, H. Adam, MobileNets: Efficient Convolutional Neural Net-
works for Mobile Vision Applications, arXiv e-print.
URL http://arxiv.org/abs/1704.04861

[9] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally,550

K. Keutzer, SqueezNet: AlexNet accuracy with 50x fewer parameters and
0.5MB Model Size, arXiv e-print arXiv:1602 (2016) 1–5.
URL http://arxiv.org/abs/1602.07360

[10] H. Su, S. Maji, E. Kalogerakis, E. Learned-miller, Multi-view Convolutional
Neural Networks for 3D Shape Recognition, Ieee Iccv (2015) 945–953doi:555

10.1109/ICCV.2015.114.
URL http://vis-www.cs.umass.edu/mvcnn/docs/su15mvcnn.pdf

[11] Y. Feng, Z. Zhang, X. Zhao, R. Ji, Y. Gao, GVCNN: Group-View
Convolutional Neural Networks for 3D Shape Recognition, Cvpr (2018)
264–272doi:10.1109/CVPR.2018.00035.560

URL http://openaccess.thecvf.com/content_cvpr_2018/papers/

Feng_GVCNN_Group-View_Convolutional_CVPR_2018_paper.pdf

[12] B. Shi, S. Member, S. Bai, S. Member, DeepPano : Deep Panoramic Rep-
resentation for 3-D Shape Recognition 22 (12) (2015) 2339–2343.

[13] C. R. Qi, H. Su, M. Niessner, A. Dai, M. Yan, L. J. Guibas, Volumetric565

and Multi-View CNNs for Object Classification on 3D Data (2016) 5648–
5656doi:10.1109/CVPR.2016.609.
URL http://arxiv.org/abs/1604.03265

[14] H. You, PVNet : A Joint Convolutional Network of Point Cloud and Multi-
View for 3D Shape Recognition.570

[15] A. Kanezaki, Y. Matsushita, Y. Nishida, RotationNet: Joint Object Cate-
gorization and Pose Estimation Using Multiviews from Unsupervised View-
pointsdoi:10.1109/CVPR.2018.00526.
URL http://arxiv.org/abs/1603.06208

[16] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,575

S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel, A. Sapek,
G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M. Caulfield, E. S.
Chung, D. Burger, A Configurable Cloud-Scale DNN Processor for Real-
Time AI, 2018 ACM/IEEE 45th Annual International Symposium on Com-
puter Architecture (ISCA) (2018) 1–14doi:10.1109/ISCA.2018.00012.580

URL https://ieeexplore.ieee.org/document/8416814/

22

[17] P. Molchanov, S. Tyree, T. Karras, T. Aila, J. Kautz, Pruning Convolu-
tional Neural Networks for Resource Efficient Learning, arXiv preprintdoi:
10.1051/0004-6361/201527329.
URL http://arxiv.org/abs/1611.06440%5Cnhttp://www.arxiv.org/585

pdf/1611.06440.pdf%5Cnhttps://arxiv.org/abs/1611.06440

[18] A. ProstBoucle, A. Bourge, F. Pétrot, H. Alemdar, N. Caldwell, V. Leroy,
Scalable High-Performance Architecture for Convolutional Ternary Neural
Networks on FPGA, in: Proceedings of the International Conference on
Field Programmable Logic and Applications - FPL ’17, 2017.590

URL https://hal.archives-ouvertes.fr/hal-01563763/

[19] Y. He, M. Peemen, L. Waeijen, E. Diken, M. Fiumara, G. Rauwerda,
H. Corporaal, T. Geng, A Configurable SIMD Architecture with Explicit
Datapath for Intelligent Learning, in: Proceedings of the International
conference on embedded computer systems: architectures, modeling and595

simulation - SAMOS ’16, 2016.
URL http://samos-conference.com/Resources_Samos_Websites/

Proceedings_Repository_SAMOS/2016/Files/Paper_19.pdf

[20] T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner,
D. Neto, J. Wong, P. Yiannacouras, D. P. Singh, From OpenCL to high-600

performance hardware on FPGAS, in: Proceedings of the International
Conference on Field Programmable Logic and Applications - FPL ’16,
IEEE, 2012, pp. 531–534. doi:10.1109/FPL.2012.6339272.
URL http://ieeexplore.ieee.org/document/6339272/

[21] J. Bottleson, S. Kim, J. Andrews, P. Bindu, D. N. Murthy, J. Jin, ClCaffe:605

OpenCL accelerated caffe for convolutional neural networks, in: Proceed-
ings of the IEEE International Parallel and Distributed Processing Sympo-
sium - IPDPS’16, 2016, pp. 50–57. doi:10.1109/IPDPSW.2016.182.

[22] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, G. R. Chiu, An
OpenCL(TM) Deep Learning Accelerator on Arria 10, in: ACM (Ed.),610

Proceedings of the ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays - FPGA ’17, ACM, Monterey, California, USA,
2017, pp. 55–64. doi:10.1145/3020078.3021738.
URL http://arxiv.org/abs/1701.03534

[23] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang, J. Cong,615

Automated Systolic Array Architecture Synthesis for High Throughput
CNN Inference on FPGAs, Proceedings of the 54th Annual Design Au-
tomation Conference 2017 on - DAC ’17 (2017) 1–6doi:10.1145/3061639.
3062207.
URL http://dl.acm.org/citation.cfm?doid=3061639.3062207620

[24] K. Abdelouahab, M. Pelcat, J. Serot, C. Bourrasset, F. Berry, Tactics
to Directly Map CNN Graphs on Embedded FPGAs, IEEE Embedded
Systems Lettersdoi:10.1109/LES.2017.2743247.

23

[25] L. Li, C. Sau, T. Fanni, J. Li, T. Viitanen, F. Christophe, F. Palumbo,
L. Raffo, H. Huttunen, J. Takala, S. S. Bhattacharyya, An integrated hard-625

ware/software design methodology for signal processing systems, Journal
of Systems Architecture 93 (2019) 1–19. doi:10.1016/j.sysarc.2018.

12.010.

[26] Z. Wu, S. Song, 3D ShapeNets : A Deep Representation for Volumetric
Shapes.630

[27] D. Maturana, S. Scherer, VoxNet : A 3D Convolutional Neural Network
for Real-Time Object Recognition (2015) 922–928.

[28] A. Canziani, A. Paszke, E. Culurciello, An Analysis of Deep Neural Network
Models for Practical Applications, arXiv e-print.
URL http://arxiv.org/abs/1605.07678635

[29] K. Abdelouahab, M. Pelcat, F. Berry, J. Sérot, Accelerating CNN inference
on FPGAs: A Survey, Tech. rep., Université Clermont Auvergne (2018).
URL https://hal.archives-ouvertes.fr/view/index/docid/1731136

[30] S. I. Venieris, A. Kouris, C.-S. Bouganis, Toolflows for Mapping Convolu-
tional Neural Networks on FPGAs, ACM Computing Surveys 51 (3) (2018)640

1–39. doi:10.1145/3186332.
URL http://dl.acm.org/citation.cfm?doid=3212709.3186332

[31] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, J. Cong, Optimizing
FPGA-based Accelerator Design for Deep Convolutional Neural Networks,
in: Proceedings of the ACM/SIGDA International Symposium on Field-645

Programmable Gate Arrays - FPGA ’15, FPGA, 2015, pp. 161–170.
doi:10.1145/2684746.2689060.
URL http://dl.acm.org/citation.cfm?id=2689060

[32] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu,
S. Song, Y. Wang, H. Yang, Going Deeper with Embedded FPGA Platform650

for Convolutional Neural Network, in: Proceedings of the ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays - FPGA
’16, ACM, New York, NY, USA, 2016, pp. 26–35. doi:10.1145/2847263.
2847265.
URL http://doi.acm.org/10.1145/2847263.2847265655

[33] V. Sze, Y.-H. Chen, T.-J. Yang, J. Emer, Efficient Processing of Deep
Neural Networks: A Tutorial and Survey, Proceedings of the IEEE 105 (12)
(2017) 2295–2329. doi:10.1109/JPROC.2017.2761740.
URL http://ieeexplore.ieee.org/document/8114708/

[34] S. Venieris, C. Bouganis, FpgaConvNet: A Framework for Mapping Convo-660

lutional Neural Networks on FPGAs, in: Proceedings of the IEEE Annual
International Symposium on Field-Programmable Custom Computing Ma-
chines - FCCM ’16, 2016, pp. 40–47. doi:10.1109/FCCM.2016.22.

24

[35] S. Venieris, C. Bouganis, Latency-Driven Design for FPGA-based Convo-
lutional Neural Networks, in: Proceedings of the International Conference665

on Field Programmable Logic and Applications - FPL ’17, 2017.

[36] H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller, Multi-view Convolu-
tional Neural Networks for 3D Shape Recognition, in: Proceedings of the
IEEE International Conference on Computer Vision - ICCV ’15, IEEE,
2015, pp. 945–953. doi:10.1109/ICCV.2015.114.670

URL http://ieeexplore.ieee.org/document/7410471/

[37] K. Abdelouahab, M. Pelcat, F. Berry, The Challenge of Multi-Operand
Adders in CNNs on FPGAs: How not to solve it!, in: Proceedings of the
International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation - SAMOS’18, 2018.675

URL http://arxiv.org/abs/1807.00217

[38] E. A. Lee, T. M. Parks, Dataflow Process Networks, in: Proceedings of the
IEEE, Vol. 83, 1995, pp. 773–801. doi:10.1109/5.381846.

[39] R. Banner, I. Hubara, E. Hoffer, D. Soudry, Scalable methods for 8-bit
training of neural networks, Advances in Neural Information Processing680

Systems 2018-Decem (2018) 5145–5153.

[40] H. Naganuma, R. Yokota, Accelerating Convolutional Neural Networks
Using Low Precision Arithmetic, Sighpc.Ipsj.or.Jp 1–3.
URL http://sighpc.ipsj.or.jp/HPCAsia2018/poster/

post108s2-file1.pdf685

[41] S. Jain, S. Venkataramani, V. Srinivasan, J. Choi, P. Chuang, L. Chang,
Compensated-DNN : Energy Efficient Low-Precision Deep Neural Networks
by Compensating Quantization Errors 1–6.

[42] D. Kim, H. Y. Yim, S. Ha, C. Lee, I. Kang, Convolutional Neural
Network Quantization using Generalized Gamma Distributiondoi:arXiv:690

1810.13329v1.
URL http://arxiv.org/abs/1810.13329

[43] J.-H. Luo, J. Wu, An Entropy-based Pruning Method for CNN Compres-
sion.
URL http://arxiv.org/abs/1706.05791695

[44] Y. Cheng, D. Wang, P. Zhou, T. Zhang, A Survey of Model Compression
and Acceleration for Deep Neural Networks, arXiv preprint.
URL http://arxiv.org/abs/1710.09282

[45] B. T. Phong, Illumination for Computer Generated Pictures, Communica-
tions of the ACM 18 (6) (1975) 311–317. doi:10.1145/360825.360839.700

[46] A. Appel, Some techniques for shading machine renderings of solids (1968)
37doi:10.1145/1468075.1468082.

25

[47] B. Steiner, Z. Devito, S. Chintala, S. Gross, A. Paszke, F. Massa, A. Lerer,
G. Chanan, Z. Lin, E. Yang, A. Desmaison, A. Tejani, A. Kopf, J. Brad-
bury, L. Antiga, M. Raison, N. Gimelshein, S. Chilamkurthy, T. Killeen,705

L. Fang, J. Bai, PyTorch: An Imperative Style, High-Performance Deep
Learning Library, NeuroIPS (NeurIPS).

[48] D. Wang, PipeCNN: An OpenCL-based FPGA Accelerator for Convoluti-
nal Neural Networks, in: Proceedings of the International Conference on
Field-Programmable Technology - FPT ’17, 2017.710

URL https://github.com/doonny/PipeCNN

[49] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, MobileNetV2:
Inverted Residuals and Linear Bottlenecks.
URL http://arxiv.org/abs/1801.04381

[50] N. Ma, X. Zhang, H. T. Zheng, J. Sun, Shufflenet V2: Practical guide-715

lines for efficient cnn architecture design, Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 11218 LNCS (2018) 122–138. doi:

10.1007/978-3-030-01264-9{_}8.

26

Declaration of interests

☑ The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

28

Jonathan Bonnard received the title of embedded system architect at the Uni-
versite Pierre et Marie Curie in 2008, Paris, France. After a 9-year experience
in FPGA and ASIC circuit design at the laboratoire de physique corpusculaire
in Clermont Ferrand (LPC), he started a thesis at the Universite Clermont Au-
vergne in 2017 under the supervision of Pr. Franois Berry and Dr. Maxime
Pelcat. His research has focused on the design of a multi-view smart camera
system based on FPGAs.

29

30

Kamel Abdelouahab is a research and development engineer at Sma-RTy
SAS. He obtained his Ph.D in electronics and system architectures in 2019 from
Universite Clermont Auvergne (Clermont-Ferrand). He also received a master
degree of engineering in electronics from Ecole Nationale Polytechnique (Al-
giers) in 2015. His research interests are related to embedded deep learning,
smart cameras, FPGA-based computer vision systems.

François Berry is full professor at the University of Clermont-Auvergne. He
received his doctoral degree and “Habilitation” to supervise doctoral research
in Electrical Engineering from the University of Blaise Pascal in 1999 and 2011,
respectively. His PhD was on visual servoing and robotics at the Institut Pas-
cal in Clermont-Ferrand. Since September 1999, he is member of the “Image,
Perception Systems and Robotics group” within the Institut Pascal-CNRS. His
research is focused on smart cameras, active vision, embedded vision systems
and hardware/software co-design algorithms. He is in charge of a Masters in
“Embedded System for Image and Sound processing” and is the head of the
DREAM (Research on Embedded Architecture and Multi-sensor) team. He has
authored and co-authored more than 60 journal, conference and workshop pa-
pers. He has also led several research projects (Robea, ANR, Euripides) and
has served as a reviewer and a program committee member. He was co-founder
of the Workshop on Architecture of Smart Camera (WASC); the Scabot (Work-
shop in conjunction with IEEE IROS) and also the startup WISP.

31

Maxime Pelcat is an Associate Professor at the INSA in Rennes. He holds a
joint research appointment at IETR in Rennes and at Institut Pascal in Cler-
mont Ferrand, two CNRS research units. Maxime Pelcat obtained his Ph.D.
in signal processing from INSA Rennes in 2010, thesis resulting from a collab-
oration of Texas Instruments, Nice and INSA Rennes. Previously, after one
year in the Audio and Multimedia department at Fraunhofer Institute IIS in
Erlangen, Germany, he worked as a contractor at France Telecom Research and
Development until 2006. He is an author of 50+ peer reviewed publications
since 2009 in the domains of models of computation, energy efficiency, multime-
dia and telecommunication processing, and programming of parallel embedded
systems. Maxime Pelcat has served as Guest Editor for the Springer Journal of
Signal Processing Systems and is an author of the best paper award at DASIP
2014, the best demo awards at ICME 2015 and EDERC 2014 and of the book
– Physical Layer Multi-Core Prototyping’ Springer, 2012

32

