
HAL Id: hal-02931767
https://hal.science/hal-02931767

Submitted on 7 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Industrial Roadmap for Continuous Delivery of
Software for Safety-critical Systems

Marc Zeller, Daniel Ratiu, Martin Rothfelder, Frank Buschmann

To cite this version:
Marc Zeller, Daniel Ratiu, Martin Rothfelder, Frank Buschmann. An Industrial Roadmap for Con-
tinuous Delivery of Software for Safety-critical Systems. 39th International Conference on Computer
Safety, Reliability and Security (SAFECOMP), Position Paper, Sep 2020, Lisbon, Portugal. �hal-
02931767�

https://hal.science/hal-02931767
https://hal.archives-ouvertes.fr


An Industrial Roadmap for Continuous Delivery of
Software for Safety-critical Systems

Marc Zeller, Daniel Ratiu, Martin Rothfelder, Frank Buschmann
Siemens AG, Corporate Technology

81739 Munich, Germany
{forename.surname}@siemens.com

Abstract—Traditionally, promoted by the internet companies,
continuous delivery is more and more appealing to industries
which develop systems with safety-critical functions. Since safety-
critical systems must meet regulatory requirements and require
specific (re-)certification processes in addition to the normal
development steps, enabling continuous delivery of software in
safety-critical systems requires to solve specific challenges. In this
paper, we describe relevant challenges for realizing continuous
delivery in software-intensive safety-critical systems, and sketch
a roadmap how to implement such a continuous delivery pipeline
using an incremental approach.

Index Terms—safety, agile, DevOps, continuous delivery

I. INTRODUCTION

DevOps mixes the development and operations phases of
a software product by promoting high frequency software
releases which enable continuous innovation based on feed-
back from operations. DevOps uses continuous integration
and test automation to build a pipeline from development to
test and then to production (so-called continuous delivery).
While companies are already implementing agile practices
and continuous delivery in ”non-critical” software develop-
ment, safety-critical software is nowadays still developed using
classical waterfall or V-model-based development processes.
Safety-critical systems must meet regulatory requirements and
shall comply to safety standards (such as IEC 61508). This
requires (re-)certification processes for safety compliance after
each change of the system.

However, also in the area of safety-critical systems, the need
for accelerating the delivery of software is essential to reduce
the time-to-market for new features and to respond faster to
changing customer/market demands or technical concerns like
deploying security patches. Hence, there is an increasing need
to build continuous delivery pipelines also for software in
safety-critical systems.

Working Hypothesis: As working hypothesis for this
paper, we assume that an initial version of the system is
certified and deployed in the field. We further assume that
the updated functionality is exclusively realized in software.

R-Scrum [1] and SafeScrum [2] are existing approaches to
develop safety-critical systems using agile methods, but do
not show how to build a continuous delivery pipeline. Also
[3] only presents challenges how to enable agile development
of safety-critical systems in large organizations. First ideas
to realize a continuous delivery pipeline for safety-critical
software are outlined in [4] and [5]. In contrast to existing

work, the objectives of this paper are twofold: (1) to describe
relevant challenges within the safety engineering life-cycle
for performing fast and incremental software changes/update
in safety-critical systems, and (2) to sketch a roadmap to
speed-up the development of safety-critical software-intensive
systems from in industrial point of view using an incremental
approach.

II. BACKGROUND: GENERIC SAFETY ENGINEERING
LIFE-CYCLE

The engineering of safety-critical systems includes various
aspects as described in safety standards. The goal of safety en-
gineering is to identify failures that cause hazardous situations
and to provide a sound argumentation that the system is suffi-
ciently safe. This argumentation is based on evidence gathered
during the system engineering and assessment process.

The first step in the safety engineering life-cycle is the
item definition, in which the item (along with its purpose
and functionality) considered by the safety engineering process
is defined, and dependencies between the item and its envi-
ronment are described. Based on a clear system definition, a
Hazard Analysis & Risk Assessment (HARA) is performed.
This analysis tries to identify potential hazards that can be
caused by the system and to asses the associated risks. This
step requires a very clear understanding about the context of
the system and the potential interactions between the system
and environment. The HARA is performed by domain experts.
As the next step, a system architecture is defined and a safety
concept is derived. The safety concept is defined as the spec-
ification of the safety requirements, their allocation to system
elements, and their interactions necessary to achieve safety
goals. Moreover, the potential causes and the cause-effect-
relationships must be evaluated. Therefore, different safety
analysis techniques are used that evaluate the risk that arises
from potential failures that have been identified as causes for
hazards. As the system development continues, the system
architecture is refined in the form of a software architecture.
In the same way, as the system is incrementally refined over
the different development phases, the safety analyses of the
refined development artifacts refine the safety concept accord-
ingly. Afterwards, the specified system is realized and verified
against the specification. The verification techniques (such as
source code verification, unit testing, integration testing, etc.)
are defined or recommended by safety standards. At the end



of the development a so-called safety case is compiled to
argue that the system is safe. This safety argumentation spans
over heterogeneous artifacts (e.g. hazards, requirements, code,
safety analyses, tests, etc.) that need to be glued together in
a consistent manner. During the entire development, experts
from different engineering disciplines must work together.
The resulting artifacts, processes, and tools are subject to
independent reviews and independent safety assessments
which eliminate eventual judgement biases of single experts.
This is always a time-consuming process in parallel to the
actual development. During operation, safety-critical systems
must be monitored for potentially unsafe behavior. On the
occurrence of unsafe behavior, analyses shall be performed to
see if an action is required. Moreover, any change needs to be
analyzed, answering the question whether the unsafe behavior
is in expected bounds or the system needs to be fixed either
due to a software bug (less likely) or due to a incomplete
system level requirement. This analysis is referred to as the
Change Impact Analysis (CIA).

III. CHALLENGES IN ENABLING CONTINUOUS DELIVERY
FOR SAFETY-CRITICAL SYSTEMS

While continuous monitoring and measurement (often
called supervision in the safety domain) is a standard de-
sign feature of safety-critical systems, continuous delivery is
challenging in safety-related applications with strict regulatory
requirements and safety guidelines. Since safety is a system-
level property, the continuous delivery process must be lifted
from software to system level and people from different
engineering disciplines must be included in the continuous
delivery pipeline. Moreover, additional development steps are
required in safety-critical systems, such as the HARA, the
safety analysis of the architecture, the safety augmentation,
and the certification (see Fig. 1). These steps are required by
all safety standards and must be performed within the delivery
delivery pipeline. Thereby, the following challenges related to

Fig. 1. Continuous delivery pipeline with additions for safety-critical systems
development

the safety engineering activities need to be addressed:
a) Hazard Analysis & Risk Assessment: Today, the

HARA is a manual process which requires the assessment of
potential system hazards typically documented in spreadsheets.
To enable continuous delivery for safety-critical systems, we
need to speed-up the HARA process. This means, that we

need automation for both the identification of hazards and
the assessment of the risk associated to hazards. Moreover,
it must be possible to identify new hazards and to adapt the
risk associated with known hazards of the system.

b) Safety Analysis: The safety analysis techniques used
today in industrial practice, such as Fault Tree Analysis (FTA)
and Failure Mode and Effect Analysis (FMEA), are performed
manually by experts on system level. To enable continuous
delivery, we need to speed-up the safety analysis process by
increasing the level of automation. The changes of the software
and their influence on the system safety must be reflected in
the analysis automatically. Failure modes specific to highly
integrated software-intensive systems such as failures due to
feature interactions, emerging features, or not-wanted inter-
actions must be integrated in the safety analysis. Moreover,
the safety analyses must be linked to the system (or software)
design so that changes to the system (or software) architecture
can be synchronized with the safety analysis models.

c) Safety Tests: Since the predictable behavior of a
system in the presence of faults is crucial to its safe operation,
testing of safety-critical systems addresses questions such as:
Are fault reactions correctly and effectively implemented? Is
the timing of these reactions sufficient? Consequently, safety-
critical systems require the testing of safety mechanisms
that consider the fault models of the system components.
Typically, tasks related to the testing of safety mechanisms
are manually done by experts. In the context of a continuous
delivery pipeline, the synthesis of tests for the specified failure
mitigation mechanisms must be automated. Moreover, we need
the possibility to inject faults into the productive system under
test in virtual/real production environment without side-effects
and to automatically execute the generated tests.

d) Safety Argumentation: Today, a safety case that de-
scribes the argumentation and references all the work products
created during the safety life-cycle is manually captured in
documents. Often, these work products are spread across
various tools. The disparate information sources result in high
accidental complexity and keeping the artifacts consistent is
time-intensive and error-prone. Checking that the safety argu-
mentation is complete and consistent with the configuration
of the system, which is planned to be released, is expensive
and mostly a manual process done through reviews. In order to
build a continuous delivery pipeline for safety-critical systems,
the creation and maintenance of the safety argumentation must
be automated. Therefore, detailed traceability between safety
arguments and evidences created during the development must
be provided.

e) Orchestration of Different Engineering Disciplines:
Since safety is a system-level property, the assessment of
safety-critical software in terms of safety must be conducted
on system level. Therefore, not only software engineers must
be involved in the continuous delivery process, but also
experts from other engineering disciplines as well as safety
experts. Moreover, external assessors must be incorporated
into the agile development process. In this way, at the end
of each sprint/iteration, not only correct software but also the



necessary assets and documentation for the independent safety
assessment and certification can be delivered.

f) Change Impact Analysis (CIA): CIA spans across
heterogeneous artefacts at different abstraction levels and is
today performed manually. Since safety experts need to have
detailed knowledge about the system components and their
interactions, the CIA is a time-consuming and error-prone
activity. In context of continuous delivery, the impact of
changes to the systems’ safety must be automatically analyzed
and prove that the change request has no influence in terms
of safety. Therefore, we need to be able to determine, which
activities of the safety engineering (such as the HARA or the
safety analyses) must be updated.

IV. ROADMAP TOWARDS CONTINUOUS DELIVERY FOR
SAFETY-CRITICAL SOFTWARE

To automate the delivery process of safety-critical, software-
intensive systems, we have to create a ”continuous (re-
)certification machine” that reduces certification efforts of
an update. Therefore, we need to automate the activities of
the safety engineering life-cycle and solve the challenges
described in Sec. III.

In this section, we present a set of research questions guided
by three different use case scenarios (Scenario 1 being the
easiest, Scenario 3 the most difficult to implement).

Scenario 1: Bug-fixing in code: In this scenario, the change
within the safety-critical system is represented by a bug-fix in
the code. This can be for instance a bug-fix related to a security
issue, which does not changes the functions of the system.
After the bug is fixed, additional steps must be performed.
First, the conformance of the code to the existing requirements
must be ensured. Therefore, the existing tests need to be
executed and passed successfully. To ensure the confidence
required by the assigned Safety Integrity Level (SIL), the test
coverage must be checked and if required, new tests must
be defined and executed. Moreover, it must be ensured that
the code complies with the coding guidelines (e.g. MISRA-C
guidelines) and that the system is robust (e.g. by performing
static analyses as required by safety standards). Finally, to
determine the consequences of bug-fixing on the system safety,
a code review of the updated system must be performed. In
order to realize such a bug-fixing scenario in the context of
continuous delivery, the above-mentioned steps need to be
executed tool-supported and if possible automatically. In the
context of test automation, a lot of prior work exists. However,
today the evaluation of the consequences of bug-fixing in terms
of a safety is performed manually. Therefore, the following
research questions must be answered:

(1) How to prove that the artifacts of the safety engineering
life-cycle do not need to be updated as a consequence of a bug-
fix? We need to realize a deep integration between various arte-
facts (or models) which are relevant for the safety engineering
[6]. A first step in this direction is to establish semantically
rich and fine-grained traceability across development artifacts.

(2) Does a bug fix introduce new failure modes at software-
level (e.g. loss of precision of arithmetic computations)? And

how do these software-level failure modes propagate at system-
level? If a bug-fix requires to update safety engineering
artifacts (see 1), we need to determine how to adopt the
safety engineering artifacts such as the system safety analysis
accordingly. To automate this task, we can leverage model-
based safety analysis techniques which are interlinked with
system design artifacts [7], [8] to determine potential new
failure modes on software level and automatically determine
how new software-level failure modes propagate at system-
level [9].

(3) Can the freedom of interference after the bug-fix still
be guaranteed? In order to determine freedom of interference
among safety functions, the features and their interaction or
not-wanted interactions need to be represented by semantically
rich models. Based on these models an automated analysis
must determine whether a certain feature influences other ones
or not.

Scenario 2: Change of software requirement: In this
scenario, the change within the safety-critical system to be
delivered originates from a software requirement change. An
example of changed software requirement is for instance the
replacement of a library with a newer version, the fixing of an
inconsistency in software requirements, or the use of fixed-
point arithmetic to speed-up processing time. The following
steps must be undertaken before any change is implemented
in the code: First, it must be ensured that new software
requirements are a refinement of the system-level requirements
(requirements verification). Second, the completeness and con-
sistency of the software requirements must be checked in the
presence of a change. Furthermore, it must be evaluated, if
new software-level faults could be introduced by the updated
requirements (e.g. loss of precision when arithmetic operations
are performed). The following steps must be done after the
change is implemented: The conformance of the code to
the updated requirements must be ensured. Hence, test cases
must be updated accordingly. Moreover, existing tests must
be executed and passed successfully. To ensure the confidence
required by the assigned SIL, test coverage must be checked
and if needed, new tests must be added. Since a software
requirement was changed, the traceability between the code
and the corresponding software requirements must be re-
established. Finally, a review of the changed code must be
performed in order to determine the consequences of the
new requirement on the system safety. In addition to the
research questions from scenario 1, the following new research
questions must be answered:

(4) Does the change result in new hazards at system-level?
Detailed knowledge about the system, its environment, and
the interfaces between system and environment is required
to automate the HARA process and identify new hazards. A
possible approach could be to simulate the system including
its different sub-systems (software, hardware, etc.) in context
of its environment to identify the effects of component failures
on the behavior of the system.

(5) How to automatically verify the completeness and con-
sistency of changed software requirements? To answer this



question, we need to model requirements at sufficient level
of detail. However, verifying completeness and consistency
of requirements is ongoing research in the requirements en-
gineering community. Assessing completeness is especially
important since incomplete (safety) requirements can lead to
unmitigated hazards.

(6) How to automatically verify the refinement of low-
level software requirements w.r.t. system-level requirements?
In order to ensure the consistency and completeness of soft-
ware requirements, we need to show that the new software
requirements are a refinement of the existing system-level
requirements. In addition to model requirements at sufficient
level of detail, we need to link the requirements between the
abstraction levels. Hence, approaches such as contract-based
design may be applied to automate the verification.

Scenario 3: Change of system-level requirements: In
this scenario, the change within the safety-critical system to
be delivered originates from a change in the system-level
requirements or a new system-level requirement. An example
for such a scenario could be adding a new feature to the
system. The following steps must be done before a change is
implemented in the code: First, new hazards and failure modes
induced by the modified / new system requirement(s) must
be investigated. Second, the completeness and consistency of
the system-level requirements in the presence of the change
must be checked. Moreover, software requirements which
satisfy the changed / new system-level requirements need
to be derived. Thereby, it must be ensured that the new
software requirements are a correct refinement of the system
requirements. Afterwards, the completeness and consistency
of the software requirements in the presence of the change
must be checked. The following steps must be done after the
change is implemented: The conformance of the code to the
updated software requirements must be ensured. Hence, test
cases must be updated accordingly. Moreover, existing tests
must be executed to check if they pass successfully. To ensure
the confidence required by the assigned SIL, the test coverage
must be checked and if needed, new tests must be added.
Since any change in the set of system-level requirements leads
to an adaptation of the software requirements, the traceability
between the code and the corresponding software requirements
must be re-established. Finally, a review of the changed code
must be performed in order to determine the consequences of
the changed / new system-level requirement on the ssystem
safety. Apart from the research questions in scenario 1 & 2,
also the following research question must be answered:

(7) Does the modified/new system requirement(s) lead to
new hazards and failure modes? Similar to (2) and (4), we
must determine new hazards or failure modes which result
from the modified/new system requirement. However, in this
scenario this must be done on a system level, comprising both
software and hardware related failures as well as their potential
hazardous behaviour on system level. In contrast to (2) this
also includes the identification of random failures in hardware.
Therefore, a detailed machine-readable specification of the
system itself (especially the hardware/software interfaces) and

its environment are required.
(8) How to automatically perform checks w.r.t. consistency

and completeness of the changed system-level requirements?
This require semantically rich models to specify the require-
ments at system level as well as refinement links between
abstraction levels. The current practice of “merely tracing”
(textual) requirements is inadequate for automated checks.
Therefore, future research must focus on modeling require-
ments in a formal way at sufficient level of detail and link the
requirements between abstraction levels.

V. SUMMARY AND FUTURE WORK

Safety-critical systems must meet regulatory requirements
and shall comply to safety standards. Moreover, the continuous
delivery process of a new software version must be lifted from
software to system level and people from different engineering
disciplines must be involved. Thus, applying agile develop-
ment and the concepts of continuous delivery in context of
safety-critical, software-intensive systems requires to solve
specific challenges. In this paper, we describe the challenges
which need to be solved in order to realize continuous delivery
of software in safety-critical systems. Moreover, we sketch fu-
ture research directions to overcome the mentioned challenges
using an incremental approach. Thereby, we start with the
”most simple” scenario (bug-fixing in code) and name guiding
future research questions, which must be answered to realize
such a scenario. Further scenarios (change of software or
system requirement) raise additional research questions which
must be answered by future research.

Furthermore, due to the automation of the safety delivery
process, the delivery pipeline itself becomes a subject to
regulatory compliance and the qualification of the tools is
necessary. Moreover, there is a need to integrate assessors
as stakeholders into the continuous delivery process to fully
leverage the benefits in regulated environments. These topics
also require further research.

REFERENCES

[1] B. Fitzgerald, K. Stol, R. O’Sullivan, and D. O’Brien, “Scaling agile
methods to regulated environments: An industry case study,” in 35th
Int. Conf. on Software Engineering, 2013.

[2] G. K. Hanssen, T. Stålhane, and T. Myklebust, SafeScrum®-Agile Devel-
opment of Safety-Critical Software. Springer, 2018.

[3] J.-P. Steghöfer, E. Knauss, J. Horkoff, and R. Wohlrab, “Challenges of
scaled agile for safety-critical systems,” in Product-Focused Software
Process Improvement, 2019, pp. 350–366.

[4] S. Vost and S. Wagner, “Keeping continuous deliveries safe,” in
IEEE/ACM 39th Int. Conf. on Software Engineering Companion, 2017.

[5] F. Warg, H. Blom, J. Borg, and R. Johansson, “Continuous deployment
for dependable systems with continuous assurance cases,” in IEEE
Int. Symposium on Software Reliability Engineering Workshops, 2019.

[6] D. Ratiu, M. Zeller, and L. Kilian, “Safety.Lab: Model-based domain
specific tooling for safety argumentation,” in Computer Safety, Reliability,
and Security, 2015, pp. 72–82.

[7] S. Sharvia, S. Kabir, M. Walker, and Y. Papadopoulos, “Model-based
dependability analysis: State-of-the-art, challenges, and future outlook,”
in Software Quality Assurance, 2016, pp. 251 – 278.

[8] B. Kaiser, P. Liggesmeyer, and O. Mäckel, “A new component concept
for fault trees,” in Proceedings of the 8th Australian Workshop on Safety
Critical Systems and Software, 2003, pp. 37–46.

[9] H. Jahanian, “Failure mode reasoning,” in 4th Int. Conf. on System
Reliability and Safety (ICSRS), 2019, pp. 295–303.


