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Weyl law for the Anderson Hamiltonian on a
two-dimensional manifold

Antoine MOUZARD

Abstract

We define the Anderson Hamiltonian H on a two-dimensional manifold using high order para-
controlled calculus. It is a self-adjoint operator with pure point spectrum. We get lower and upper
bounds on its eigenvalues which imply an almost sure Weyl-type law for H.
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Introduction

The study of singular stochastic Partial Differential Equations (PDEs) has rapidly grown over the last
decade. Following the theory of Lyons’ rough paths and Gubinelli’s controlled paths developed for singular
stochastic ordinary differential equations, new tools have appeared to describe solutions of such PDEs
that share the same philosophy. One first constructs a random space of functions/distributions from the
noise through a renormalisation step; this is purely probabilistic. One then solves the PDE with classical
methods on this random space; this is purely deterministic. The litterature is also growing and two different
approaches have emerged. The first is based on a local description of distributions which satisfies a precise
algebraic structure in order to reassemble into global objects; this is the theory of regularity structures
as devised by Hairer in [19]. The second approach works directly with global objects and uses tools from
harmonic analysis to study products; this is the paracontrolled calculus designed by Gubinelli, Imkeller and
Perkowski in [17]. In both cases, the equation dictates via a fixed point a space of solutions built from the
rough source term of the PDE. There exists interesting relations between the local and the global points
of views, see for example the works [7, 8, 23]. As far as the renormalisation step is concerned, one has to
give a meaning to a number of ill-defined functionnals of the noise; this is how singular products are dealed
with. If the list of such terms is given by the equation, their construction can be performed independantly
of the resolution of the PDE.

To work on manifolds, one has to adapt these methods. For the local approach, Dahlqvist, Diehl and
Driver have adapted regularity structures using local charts to study the parabolic Anderson model on
Riemann surfaces, see [12|. For the global approach, Bailleul, Bernicot and Frey in [4, 5] used harmonic
analysis tools built from the heat semigroup instead of Fourier analysis and developed paracontrolled
calculus on manifolds. As in the initial work [17] of Gubinelli, Imkeller and Perkwoski, this was only a first
order calculus and it constrained the roughness one could deal with. Bailleul and Bernicot then generalised



it to a high order paracontrolled calculus in [6] and extended the range of regularity one can consider, as
far as the analytical step of the problem is concerned, again working on manifolds.

The Anderson Hamiltonian is given by
H.=A+¢

where £ is a space white noise. It is for example involved in the study of evolution equations such as the
heat equation with random multiplicative noise

oru = Au + ué

called the Parabolic Anderson model. It first appeared in [2] as a description of a physical phenomena
involving quantum-mechanical motion with an effect of mass concentration called Anderson localization. It
also describes random dynamics in random environment, see the book [21] of Kénig for a complete survey
in a discrete space setting. In dimension 1, the noise is regular enough for the multiplication to make sense
and the operator has been constructed by Fukushima and Nakao in [16] without renormalisation using
Dirichlet space methods. Dumaz and Labbé recently gave in [14] a very accurate asymptotic behaviors
in one dimension of the Anderson localization. In two dimensions using paracontrolled calculus, Allez
and Chouk were the first to construct the operator on the torus, see [1]. They introduced the space of
strongly paracontrolled distributions to get an operator from L? to itself with a renormalisation procedure
and proved self-adjointness with pure point spectrum. They gave bounds on its eigenvalues and a tail
estimate for the largest one. They also studied the large volume limit and gave a bound on the rate
of divergence. Then Labbé constructed the operator in dimension < 3 in [22] with different boundary
coundition using regularity structures. It relies on a reconstruction theorem in Besov spaces from his work
[20] with Hairer. He also proved self-adjointess with pure point spectrum and gave tail estimate for all
the eigenvalues as well as bounds for the large volume limit. Chouk and van Zuijlen also studied the large
volume limit in two dimensions, see [11]. Finally Gubinelli, Ugurcan and Zachhuber constructed in [18]
the operator in dimension 2 and 3 on the torus using a different approach. With a finer description of
the paracontrolled structure, they showed density of the domain in L? before studying the operator. They
also proved self-adjointness with pure point spectrum considering the bilinear form associated to H and
considered evolution PDEs associated to the Anderson Hamiltonian such as the Schrédinger equation or
the wave equation. Zachhuber used this approach in [27] to prove Strichartz estimate in two dimensions,
the problem for d = 3 being the use of a Hopf-Cole type transformation to construct the domain.

To the best of our knowledge, the present work is the first to deal with the construction of the Anderson
Hamiltonian on a manifold. In particular, the paracontrolled approach with the heat semigroup deals
naturaly with Sobolev spaces on a manifold while we are not aware of any adaptation of the work [20] of
Hairer and Labbé in a manifold setting. We are able to recover geometric information on the manifold from
the spectral properties of the Anderson Hamiltonian as one can do from the Laplacian. For example, we
recover the volume of M via a Weyl law from the estimates on the spectrum. This raises many interesting
associated questions. As far as PDEs are concerned, it also appears in a number of singular SPDEs of
interest. For example, the Schrodinger equation has been studied on manifolds by Burq, Gérard and
Tzvetkov in [10] where they prove Strichartz inequalities. Similar questions for the stochastic version of the
equation are natural to ask on manifold, see the work [27] from Zachhuber for the two-dimensional torus.

In this work, we construct the Anderson Hamiltonian on a two-dimensional manifold using the high
order paracontrolled calculus. We adapt the space-time construction [5, 6] of Bailleul, Bernicot and Frey
to the spatial setting and work with Sobolev spaces; in particular this work is self-contained and can serve
as an introduction to the work [6] on the high order paracontrolled calculus. The simpler spatial setting
forms a gentle introduction to grasp the space-time paracontrolled calculus, the only technical difficulty
being the use of Sobolev spaces in addition to the Holder spaces. We emphasize that these tools are of
interest on their own in the study of singular elliptic PDEs on manifolds and somewhat flexible to use. As
application, it yields existence and uniqueness to the nonlinear Schrédinger equation with multiplicative
white noise on a two-dimensional manifold using a Brezis-Gallouét type inequality. In particular, this work
removes the need of the "strongly paracontrolled distributions" introduced by Allez and Chouk and used
by Gubinelli, Ugurcan and Zachhuber with a second order expansion rather than an ad-hoc modification
of the first order expansion.

In the first section, we introduce the approximation theory based on the heat semigroup and use it
to build the paracontrolled calculus. The second section is devoted to the construction and study of the
Anderson Hamiltonian H on a manifold in two dimensions. We show self-adjointness with pure point
spectrum and provide lower and upper bounds for the eigenvalues. We finally study the cubic Schrédinger
equation in Sections 2.4. Appendix A contains all the technical details of the approximation theory and
Appendix B gives the proof of different continuity estimates for the paracontrolled calculus.

The main ingredients for this work are the following. We adapt the work of Bailleul and Bernicot [5]
and give the tools of the spatial high order paracontrolled calculus. These are of interest in themselves
to solve other elliptic problems, on manifold or not, and are very flexible. As Gubinelli, Ugurcan and
Zachhuber in [18], our method relies on the almost duality property between the resonant term and the
paraproduct. Finally, we introduce a truncated paraproduct P° to describe product on adapted scales with
its companion P? that describes associated mild formulation.
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1 — Heat semigroup and paracontrolled calculus

On the torus, Fourier analysis yields an approximation of any distributions in D’(T?). For a manifold M,
the heat semigroup
P = (P)t>0 := (etL)t>0

associated to a nice enough second order differential operator L can be used to regularize distributions in
D'(M). One can then consider the Calderén decomposition as an analog of the Paley-Littlewood decom-
position with a continuous scaling parameter and

Qt = —tatPt

acting like a localizer on “frequency” of order t=3. After giving the geometric framework, we introduce
the standard families of operators we shall use to define the Besov spaces on M. We then construct the
paraproducts P and P with a number of tools of the high order paracontrolled calculus needed to study
elliptic singular PDEs.

1.1 — Geometric framework

Let (M,d, i) be a complete volume doubling measured Riemannian manifold. We assume M compact so
spatial weight are not needed; everything in this section should work in the unbounded setting of [5]. All
the kernels we consider are with respect to this measure p. Let (Vi)i<i<o be a family of smooth vector
fields identified with first order differential operators on M. Consider the associated second order operator

L given by
Loy
i=1

We assume that L is elliptic. In particular, it implies that the vector fields (V;)1<i<» span smoothly at
every point of M the tangent space and the existence of smooth functions (v;)1<i<, such that for any
f € CY(M,R) and = € M, we have

Vi(z) = Z%(ﬂf)Vi(f)(w)Vi(x)-

It also implies that L is sectorial in L? with kernel the constant functions, it has a bounded H*-calculus
on L? and —L generates a holomorphic semigroup (e *%);~¢ on L?, see [15]. Given any collection I =
(t1,...,in) € {1,...,v}", we denote by V; :=V;, ...V, the differential operator of order |I| := n. Under
the smoothness and ellipticity conditions, the semigroup has regularity estimate at any order, that is

[1] [1]
(t%V])eftL and eftL(t%V[) have kernels Ky(z,y) for any ¢ > 0 and z,y € M that satify the Gaussian

estimates
d(z,y)?
T

|Ki(2,9)| S (B, VD) e
and for '’ € M

, d(z, ) Sl _dw)?
|Ki(z,y) — Ki(2',y)| S ——=2u(B(z, V1)) e ‘
Vit

for d(z,2") < v/t and a constant ¢ > 0. The range of application contains the case of a bounded domain
with its Laplacian associated with periodic or Dirichlet boundary conditions if the boundary is sufficiently
regular, see again [15]. Note that the Laplacian can indeed be written in the Hormander form, see Strook’s
book [25] for example. The operator L : H? C L? — L? is not invertible since its kernel contains constant
function however it is invertible up to a smooth error term. Indeed, setting

1
L™= / e hdt,
0

we have L o L™ = Id up to the regularizing operator e~ ~.



1.2 — Approximation theory

All computations below make sense for a choice of large enough integers b and ¢ that are fixed in any
application, we also assume b even. Given z,y € M and ¢t € (0, 1], we define the Gaussian kernel

1 2\
(1 L CY)) >
p (B(x, V1)) t
with ¢ > 0 a constant. We do not emphasize the dependance on the postive constant ¢ and abuse notation

by writing the same letter G; for two functions corresponding to two different values of the constant. We
have for any s,t € (0,1]

gt(w7 y) =

Gi(2,9)Gs (v, 2)dy S Grys(x, 2).
M

A choice of constant ¢ large enough ensure that

sup sup/ Gi(z,y)dy < oco.
te(0,1] zeM J M

This implies that any linear operator with a kernel pointwisely bounded by G, is bounded in LP(M) for

every p € [1,00]. The family (Gt)iec(0,1] is our reference kernel for Gaussian operator; this is the letter ‘G’
in the following definition.

Definition. We define G as the set of families (Py)iec0,1) of linear operator on M with kernels pointwisely
bounded by
|Kp,(z,y)] < Ge(2,y)

given any x,y € M.

We consider two such families of operators (Qib))te(m] and (Pt(b))te((),l] defined as

b, —tL
= UL g R = Q)
with Po(b) = Id. In particular, there exist a polynomial ps of degree (b — 1) such that Pt(b) = pp (tL) e
and py(0) = 1. The family (P;)ic(o,1) regularizes distributions while the family (Q¢):c(0,1) is a kind of
localizer on ‘frequency’ of order 7% as one can see with the parabolic scaling of the Gaussian kernel. In
the flat framework of the torus, this can be explicitly written using Fourier theory. These tools also enjoy
cancellation properties as Fourier projectors however it is not as precise since the operators involved here
are not locally supported. For example, the following simple computation show that the composition

b
OINONN ts (2b)
Qt OQS — <(t+8)2> t+s
is small for s < t or t < s but not equal to 0. The importance of the parameter b appears here as a ‘degree’
of cancellation. One can also see that in the fact that for any polynomial function p of degree less than
2b, we have Pt(b)p = p and Qﬁb)p = 0 for any t € (0,1]. We now define the standard family of Gaussian
operators with cancellation that we shall use in this work.

Definition. Let a € [0,2b]. We define the standard collection of operators with cancellation of order a as
the set StGC® of families

((t% VI)(tL)%P;C))

te(0,1]

with I,j such that a = |I| + j and ¢ € [1,b]. These operators are uniformly bounded in L (M) for every
p € [1,00] as functions of the parameter t € (0,1]. In particular, a standard family of operator Q € StGC®
can be seen as a bounded map t — Q¢ from (0,1] to the space of bounded linear operator on LP(M). We
also set

stGc** .= | ] stGc.

0<a<2b

Since the first order differential operators V; do not a priori commute with each other, they do not
commute with L and we introduce the notation

(Vig(L))* == ¢(L)Vr

for any function ¢ such that ¢(L) is defined in order to state the following cancellation property. This is
not related to any notion of duality in general. In particular, L is not supposed self-adjoint here.



Proposition 11. Given a,da’ € [0,2b], let Q' € StGC* and Q* € StGC®. Then for any s,t € (0,1], the
composition QL o Q?* has a kernel pointwisely bounded by

o

s\ % t\ 2
KQ%OQ?‘(“%?J)‘ N (;) “lecr + (;) s>t | Gevs(,y)
ts 2
< | —
~ ((t+ 8)2) gt"rs(x?y)

with @ = min(a, a’).

Proof: Lettc (0,1]. We have
Ql =t3V;I/P and Q?=t%V, L7 P
with ¢,¢’ € [1,b], a =|I| +j and @’ = |I'| + j'. For any t,s € (0, 1], the composition is given by
it

QloQ* =s5tTV, L= PPy,

’

SR

a+ i+’

%t a’ o
z t+s) 2 VL2 POPV,

a+ta’ (
(t+5)"5

and this yields

a’
2

vl

s2t
T atal Givs(z,y)

KQéoQ%’ (z,y) <
(t+s)2

+

o

< { (;)% Toce + (é) N ILsZt}gt+5(x,y).

The last estimate follows from a direct computation.

O

Operators with cancellation but not in this standard form also appear in the description of solutions to
PDESs. This is the role of the set GC® of the following definition.

Definition. Let a € [0,2b]. We define the subset GC* C G as families (Qt)ie(o,1) of operators with the

following cancellation property. For any s,t € (0,1] and standard family S € StGC* with a’ € [a,20b], the
operator Qs o S; has a kernel pointwisely bounded by

ts

}KQsoSt‘ (ﬂc,y)| < <m> : gt+s($:y)-

The set StGC can be used to define Besov spaces on a manifold. For any f € L¥(M) with p € [1,00] or
f € C(M), we have the following reproducing Calderén formula

1
. dt

f= thm Pt(b)f = / ng)f— + Pl(b)f.
—0 0 t

We interpret it as an analog to the Paley-Littlewood decomposition of f on a mar_lifold but with a continuous
parameter. Indeed, the measure % gives unit mass to the dyadic intervals [27<1+1)7 27'] with the operator

ng) as a kind of multiplier roughly localized at frequencies of size t~2. This motivates the following
definition.

Definition. Given any p,q € [1,00] and o € (—2b,2b), we define the Besov space By ,(M) as the set of
distribution f € D'(M) such that

1 lsg., = ||e"7] FQuf e

+ sup
LP(M)  QestGck
a|<k<2b

La(t—1dt)



Remark: As far as regularity is concerned, a limitation appears with this definition of By, since we
can only work with regularity exponent o € (—2b,2b). This is only technical and b can be taken as large as
needed.

The Hélder spaces C* := By, - and Sobolev spaces H® := B, are of particular interest with

— —_a
[ fllea == lle™ " flles + sup  sup ¢ 2[Q¢f|lee
QEStGCk te(0,1]
|a|<k<2b

and

1
, s
_ _ de 2
Ifllzee :=lle™" fllz2 + sup (/ t C“||Qtf||ig,7) :
QEStGCk 0
la|<k<2b

This is indeed a generalisation of the classical Holder spaces as stated in the following proposition. We
shall denote C® the classical spaces of Holder functions with the norm

- 1)~ 1)
Il fllce ==l fllLes +il;£ d(z,y)e

for 0 < a < 1. Note that for any integer regularity exponent, C* # C® since C' is the space of Lipschitz
functions. The proof of the following proposition is left to the reader, it works exactly as Proposition 5 in

Proposition. For any o € (0,1), we have C* = C* and the norms || - ||ce and || - ||ce are equivalent.

We have an analog result for Sobolev spaces however one has to be careful in the case of a manifold
with boundary. The semigroup is obtained with Dirichlet conditions hence the associated Sobolev spaces
are the analog of the classical Hgy spaces. We keep the notation H® but the reader should keep that in
mind.

Given a distribution f € C* and Q € StGC*, we have by definition a bound for ||Q; f||eo only for |a| < k.
If f is a distribution and not a function, the quantity diverges and we still have the estimate for all k; this
will be important to keep an accurate track of the regularity. The same holds for negative Sobolev spaces.

Proposition 1.2. Let —2b < a < 0 and P € StGC* with k € [0,b]. For f € C*, we have

_a 1
sup 72 ||Pfllree S oI fllee
t€(0,1] —a

For f € H*, we have
_a 1
It 2N PefllzzllL2e-1an S m”f”%a.

Proof : Since P € StGC* with k € [0,20], there exist I = (i1,...,i,),j € N and ¢ € [1,b] such that
k=|I|+j and

13 i p©
P, =2 Vy)(tL)2 P,
If |a| < k, the result holds by definition of C*. If |a| > k, we have

Pif = (£7 Vi)eL)E ( / 1 Q7 PfC’f)

1 £ ite
- / (E) 2 (s‘*i'vz)(sL)%Pﬁ”f% +Rif
t

S

:/ (3) Q. f % 1 Ry
+ S S
jte

with Qs = (S%%)(SL)TPS(U € StGC**¢ and R; := (t%VI)(tL)%Pl(C). The term R:f is bounded
because of the smoothing operator Pfc). Since ¢ > 1, @ belongs at least to StGC**! hence if || < k + 1
we have

1 k
_a _a t\?2 ds
CHPl <o [ (—) 1Qu o &2
: \S s

Lt %ds
<lsles [ (1) 7%
t

2
< lfles 1=




and this yields the result using that o < 0 < k hence k — a > 0. If || > k + 1, using the same integral
representation for @ and an induction completes the proof of the L>°-estimate. For the L2-estimate, we
interpolate between L' and L* as in Appendix A to get

o L/t E ds
cF[(8) et
. \s s

2
|l

IA

£ 2 1P fll 2l p2e-1a0)

L2(t—1d¢t)

O

One can see that the bound diverges as «a goes to 0 if the operator does not encode any cancellation,
that is kK = 0. In the case @ = 0, we have ||Pif||re < ||f|lLe hence the L*°-bound holds. However the
L?-bound is not satisfied since ||P;f||z2 < ||f]lz2 only implies

1 1
dt dt
[umsi S <imis [5F = oo
0 0

This will explain an important difference for paraproducts on negative Holder and Sobolev spaces as one
can see with Propositions 1.3 and 1.4.

1.3 — Intertwined paraproducts

We use the standard family of Gaussian operators to study the product of distributions as one can do using
the Paley-Littlewood decomposition in the flat case; this lead to the definition of the paraproduct P and
the resonant term [1 that describe products. Then we introduce the paraproduct P intertwined with P to
describe solutions of elliptic PDEs.

1.3.1 — Paraproduct and resonant term

One can define the product of a distributions f € D’'(M) with a smooth function g € D(M). If however
the distribution f belongs to a Hélder space C* with a < 0, one might hope to do better. It is indeed the
case as we can see with the next theorem which is nothing more than Young’s integration condition.

Theorem. The multiplication (f,g) — fg extends in a unique bilinear operator from C® X C? to COMP if
and only if a4+ > 0.

We are however interested in the case o+ 5 < 0 when dealing with singular stochastic PDEs, as we are
interested to stochastic ODEs where Young’s condition is not verified. Following [17], Bailleul, Bernicot
and Frey in [4, 5, 6] have defined two bilinear operators Pyg and M(f, g) such that we have the formal
decomposition of the product of two distributions as

fag=Prg+N(f,g9) +Pyf

where the paraproducts Pyg and P, f are well-defined for any distibutions f,g € D'(M). Of course, this
means that M(f, g) does have a meaning for f € C* and g € C? if and only if a4 8 > 0; this is the resonant
term. We want this decomposition to keep an accurate track of the regularity of each terms. More precisely,
Psg and M(f, g) should belong to CoHP if o < 0 while Pgf to the less regular space C as it is the case for
the torus. We construct in this work such paraproduct and resonant term for space distributions on our
manifold M, we mainly follow [5] in the simpler spatial setting.

Let f,g € D'(M). Formaly, we have
fg=1lim P (P f - Pg)
t—0

! dt
- /0 (@ (V5 PPg)+ PP QP F-PPg) + PO (PP - Q9)} S

+ PO (P f-Pg).

The last term being smooth, it does not bother us. Remark that the choice of the constant “1” is arbitrary
and it might be useful to change it, as one can see with the construction of the Anderson Hamiltonian.
The family P® does not encode any cancellation while Q(b) encodes cancellation of order 2b so each terms
in the integral have one operator with a lot of cancellations and two with none. Since we do not have nice
estimates for these terms, we want to transfer some of the cancellation from Q® to the P in each term.
To do so, we use the Leibnitz rule

Vi(fg) = Vi(f)g + fVi(g).



For example, we have

! - d ! - d
| RO (vt p0a) § = [ PO W) (Viv)t s Rg) G

-/ RO (V)@ s (Vv pg) &

0
so if we denote by (c1, ¢z, c3) the cancellation of the three operators in the integral, we have
(0,20,0) = (1,2b—1,0) + (0,2b — 1,1).

This shows that we will not be able to have cancellation for all three operators at the same time but at least
two. This is where the notation Q® comes into play and multiple uses of this trick allows to decompose the

product as )
TERSES bQ/O Qi (@21 @) S

acA, QestGea
where Q = (Q1, Q2, Q3), StGC* = StGC™ x StGC*2 x StGC3,

Ap = {(al,ag,ag) e N® ;a1 +az+a3=2b and ai,a2 or az = b}

and bq € R is a real coefficient associated to Q. In particular, only one of the a; in a € % can be less
than 2 and this gives us three terms Pyg, P, f and M(f,g) such that

fg="Psg+N(f,9) +Pyf + P (be)f ‘ Pl(b)g) .

Definition. Given two distributions f,g € D'(M), we define the paraproduct and the resonant term as

1
Prgi= Z Z bQ/(; Q:* (Q?fQ?g) %

acApsaz< % QestGea

and

LTRSS SN DI A CARODES

acAy;az,a3>5 QESLGCH

In particular, Psg is a linear combination of
1
. dit
[ ar s ag
0
and M(f,g) of
b e A1 2 di
Py (Qtf'th) T
0
with Q',Q? € StGC? and P € StGCI*?. We insist that in the following P will denote an operator with

possibly no cancellations while ) will denote an operator with cancellations of order at least g.

These operators enjoy the same continuity estimates as their Fourier counterparts from which one can
recover Young’s condition. We gives the proof here as it is a good way to get used to the approximation
theory.

Proposition 1.3. Let o, 3 € (—2b,2b) be reqularity exponents.
. Ifa >0, then (f,g) — Psg is continuous from C* x C? to C”.
. Ifa <0, then (f,g) — Psg is continuous from C* x C? to C*T7.
. Ifa+ B3>0, then (f,9) — N(f,g) is continuous from C* x C? to C*+P.

Proof : Let us first consider the case o < 0 and let Q € StGC™ with 7 > |a + 3|. Recall that Pfg is a
linear combination of terms of the form

1
[t -t ¢
0

with Q',Q? € StGC3 and P € StGC?. Since o < 0, 1.2 gives

T

! le d ! 2 ats d
[ earwsaa s [ (i) leslales 5 <

atp
Ss 2 I flleallgllcs



for any s € (0,1) hence Pyg € C**7.
For a > 0, we consider @ € StGC" with r > |A3]. In this case, we have |P, f| < || f||c« for all t € (0,1) so

dt

1
| @i (- Qi) | < sF1 e lales

hence Pyg € C”.
For the resonant term, let @ € StGC” with r > |a + 3]. We have

! . dt S atsdt Ys\5 etsdt
| err@is-@io) E s Wlesllalles ([ 355+ [ (3)7 05 )
0 0 s

atB
Ss 2 | fllexlIflles

using that a + 8 > 0 hence MN(f, g) € C>7.

O

We also have estimates for the Sobolev spaces whose proofs are given in Proposition B.1 from Appendix
B.

Proposition 1.4. Let a, 8 € (—2b,2b) be regularity exponents.
. Ifa >0, then (f,g) — Psg is continuous from C* x H? to H® and from H* x C? to HP.
. Ifa <0, then (f,g) — Ptg is continuous from C* x H? to H*? and from H* x C# to HO5.
. Ifa+ B >0, then (f,9) — N(f,g) is continuous from H* x CP to H*+7.

In particular, this implies that (f,g) — Pyg is continuous from L? x C® to #?~% for all § > 0. For
Sobolev spaces, there is a small loss of regularity and one does not recover the space H” while this does
not happen for Hélder spaces. This comes from the remark following Proposition 1.2.

As in the works [18, 27] of Gubinelli, Ugurcan and Zachhuber, one last property of P and I in terms
of Sobolev spaces is that P is almost the adjoint of 1 when L is self-adjoint in the sense that the difference
is more regular. A careful track of the previous computation show that for all a € {(0, b,0), (,0,b), (b,b,0)}
and Q € StGC?*, we have bq = 0 except for Q = (Pt(b)7 §b/2), ib/Q)), (Qib/m, Pt(b)7 §b/2)) or (ng/m, ng/z), Pt(b))
where bq = 1. Define the corrector for almost duality as

A(a,b,c) := (a,MN(b,c)) — (Pab,c).

Proposition 1.5. Assume L self-adjoint. Let o, 8,7 € (—2b,2b) such that B+~v <1 and a+ B+~ > 0. If
a < 1, then (a,b,c) — A(a,b,c) extends in a unique trilinear operator from H® x CP xH toR.

Proof: A(a,b,c) is a linear combination of
1
. . dt
[ {(ar@-at) - (@i (Pha-ait).c)} T
0
with P', P? € StGC%Y and Q', Q% Q% Q" StGC%. We first consider P!, P? € StGC°. By construction

of the paraproduct and the resonant term, we have P! = P? = P® = Pand Q' = Q* = Q* = Q* =
Q(b/Q) =: () hence we consider

/01 {{a,Pi(@ib-Qie) ) — (Qu(Pra- th)7c>}%

Since L is self-adjoint, P, and @Q: are too and we have

/01 <a, Pi(Qib- QtC)>% = /01 <Pta, Qb - th>%
=] {ra-amac)?

= /01 <Qt(Pta'th)7C>%

hence the difference is equal to 0. Let us now consider the terms with P, P2 € $tGC™*! and bound each
of them independently. Since o + 3+ v > 0, we have

1 . dt Y ote dt
[ (or @i @2) Y| < talhes | [ 2 @20 020) Y |
0 0 HB+

S llallse [[blles [lell 2




with 84+ < 1 and using « € (0, 1) we have

[ (@t ain.e) ¥ < |

0

L serp2 4,y dt
Q3 (Pta'th)T llellze
0 Hot+B
S llallwelblles el

which completes the proof since o + 8+ v > 0.

1.3.2 — Intertwined paraproducts

The description of solution to elliptic PDEs involving L using paracontrolled calculus necessitate to study
how L and P interacte with each other. Following Bailleul, Bernicot and Frey in [5], we want to define a
new paraproduct P intertwined with the paraproduct through

LP tg=PysLg.
Since L is not invertible, we use L™' an inverse up to a smooth error term. Hence a more conceivable
intertwining relation is _
LP;g=PsLg—e " (PsLg).
Definition. Given any distributions f,g € D' (M), we define Isfg as
Isfg = Lilprg
for which we have the explicit formula

Po= Y Y o[ G (et i) Y

aEdb;a2<% QeEStGCa 0
where Q} == Q}(tL) ™" and Q} = Q}(tL).

It is immediate that @‘5 belongs to StGC* "2, The cancellation property of @1 is given by the following
lemma. Remark that it is not in standard form anymore, this is where the GC class comes into play.

Lemma 1.6. Let Q € StGC3. Then @t = Q(tL)™" defines a family that belongs to GC3 2 for b large
enough.

Proof: Since Qe StGC%, there exist I = (i1,...,in),J € N and ¢ € [1, 5] such that g = |I|+ 7 and

_ g 4 plo)
Qe = (= Vi)(tL)2 P
This immediatly follows from
[1] j
Qu(tL) ™t = (2 Vi)(tL) 2 (L) P
. 52 ple) L
=tz V(L) = PP®1d —e").

O

This lemma immediatly yields the following proposition, that is P has the same structure as P hence
the same continuity estimates.

Proposition 1.7. For any distribution f,g € D'(M), Psg is given as a linear combination of terms of the

form
1
~1le ~ dt
| @ (eir-aio)
0
A1 b2 2 [0,b] A3 bio .
where @ € GC277,Q* € StGC and Q° € StGC27=. Thus for any regularity exponent «, 8 € (—2b,2b),
we have the following continuity results.
« Ifa >0, then (f,g9) — ﬁfg is continuous from C* x C? to CP.
. Ifa <0, then (f,g9) — Isfg is continuous from C* x C? to 7.
We also have the same associated Sobolev estimates.
. If a >0, then (f,g9) — Isfg is continuous from C* x H? to H? and from H* x C® to HP.
« Ifa <0, then (f,g) — Isfg is continuous from C* x H? to HOT? and from H* x CP to HP.
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1.4 — Correctors and commutators

The study of elliptic PDEs with singular product involves resonant term given a function u paracontrolled
by a noise dependent function X € C%, that is

u:ﬁu/)(-l—uIj

with ' € C* and v* € C** a smoother remainder. If o < 1, the product u( is singular for ¢ € C*~2 however
we have the formal decomposition

M(u, ¢) = N(Pw X, ¢) + N, Q) = w/N(X, Q) + C(u', X, Q) + N, )
with the corrector C introduced by Gubinelli, Imkeller and Perkowski in [17] defined as
C(a1,az2,b) := I_I(Isalag,b) —a1MN(az,b).

If % < a < 1, then the product I'I(uﬁ, () is well-defined. Thus we are able to give a meaning to the product
u( for u paracontrolled by X once we have a proper continuity estimate for C and a meaning to the product
X(; this is the controlled rough path philosophy. This last task is only a probabilistic one and does not
impact the analytical resolution of the equation, this is the renormalisation step. We state here a continuity
estimate for C while its proof is given in Proposition B.4 in Appendix B.

Proposition 1.8. Let a1 € (0,1) and aq, B € R. If
as+B<0 and a1 +az+pB>0,

then (a1, az,b) — C(a1,az,b) extends in a unique continuous operator from C®t x C®2 x CP to co1+ez+h,
We also have the following proposition to work with Sobolev spaces.

Proposition 1.9. Let a1 € (0,1) and as, B € R. If
az+68<0 and a1+a2+p6>0,

then (a1,a2,b) — C(a1, az,b) extends in a unique continuous operator from H*' x C*? x CP to Horte2tB,

Remark: Note that the first paramater i has to be smaller than 1. This is due to the fact that for any
function f € C* with a > 0, one has

f(z) = f()] < [Ifllexd(z,y)*"!

with a factor no greater than 1 even if « is. This means that we are not able to benefit from regularity
greater than 1 with only a first order Taylor expansion. To work with a function of regqularity a1 € (1,2),
one have to consider the refined corrector defined in the flat one dimensional case by

c® (a1,az2,b)(z) := ﬂ(ﬁalag, b)(z) — a1 (z)N(az,b)(z) — a} (x)l'l(ﬁ(z,.)ag, b)(z)

that we interpret as a first order refined corrector for x € T. There is an analog refined corrector on a
manifold M, see [6]. However, this will not be needed in this work.

We need the corrector C to study ill-defined product, this is the condition a2 4+ 8 < 0. However, we also
have to investigate well-defined product to get more accurate descriptions. For this purpose, we introduce
the commutator _

D(a1,az,b) := M(Pa,az,b) — Pa, N(az, b).

Proposition 110. Let a1 € (0,1) and az,8 > 0. Then (a1,az2,b) — D(a1,az2,b) extends in a unique
continuous operator from C®' x C®2 x C? to C*172H8 gnd from H™ x C*2 x CP to HM1 T2 P,

Again, one can bypass the condition a1 € (0,1) using refined commutators. Note that in their initial
work [17], Gubinelli, Imkeller and Perkowski call C a commutator whereas with the point of view of high
order paracontrolled calculus of [6], the operator D is closer to be a commutator than C. We need one final
commutator that swaps paraproducts defined by

S(a1,az2,b) := Pbﬁal az — Pq, Pyaz.

Proposition 111. Let a1,z € R and B < 0. Then (a1,az2,b) — S(ai,as,b) extends in a unique continuous
operator from C*' x C%2 x CP to C*' 2P and from H™' x C¥2 x CP to HX1 T2 +h,
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2 — The Anderson Hamiltonian

In this section, we define and study the Anderson Hamiltonian
H:=L+¢

where —L is the Laplace-Beltrami operator on a compact two-dimensional manifold M without boundary
or with a smooth boundary and Dirichlet conditions. To apply the construction of the first section, one
needs to have an Hormander representation for L. This is possible in this case with a number of vector
fields possibly greater than the dimension, see for example Section 4.2.1 from Stroock’s book [25]. The
random potential £ is a spatial white noise and belongs almost surely to C*~2 for any o < 1. For a generic
function u € L?, the product u¢ is ill-defined hence one needs to find a proper domain for the operator. A
natural method would be to take the closure of the subspace of smooth functions with the domain norm
llullz2 + ||Hul|z2. However this yields a trivial domain since Hu has the same regularity as the noise,
because of the product ué if u is smooth, thus it does not belong to L?. Following the recent study of
singular SPDEs, one can construct a random domain D= depending on an enhancement = of the noise
obtained through a renormalisation procedure. One can use the paraproduct to decompose the product for
u € H as
u€ = Py& + Peu+ Ny, §).

In this expression, the roughest term is P& € C*~2 while Peu + M(u, €) formaly belongs to #>*~2. For a

function u in the domain, we want to cancel out the roughest part of the product using the Laplacian term
Lu, hence we want

Lu = P & + 0
with vf € H?*~2. This suggests the paracontrolled expansion
u= ﬁuX + uf
with
X =L

and uf € H?*. We insist that we want functions in the domain to encode exactly what is needed to
have a cancellation between the Laplacian and the product. In particular, H is not treated at all like a
perturbation of the Laplacian.

At this point, two natural questions arise. Is the subspace of such paracontrolled functions dense in L?
and can one make sense of the singular product?

1) For the first question, one can introduce a parameter s > 0, in the spirit of what Gubinelli, Ugurcan
and Zachhuber did in [18], and consider the modified paracontrolled expansion
uw=P5X +uf

with the truncated paraproduct P® defined below. For s = s(Z) small enough, the map ®°(u) :=
U — 5ZX is invertible as a perturbation of the identity and one can show that the subspace of such
paracontrolled functions is indeed dense. The parameter s will also be a very useful tool to investigate
the different properties of H. Indeed, the Anderson operator will be given as

Hu = Lu} 4 Fz o (u)

with Fz, : D(H) C L?> — L? an explicit operator and as s goes to 0, uf gets closer to u while
F= s diverges. These different representations of H will yield a family of bounds on the eigenvalues
(A"(E))nx of H of the form

m ™ (Z,8)An —m(E, s) < A (8) <mT(E,5)An +m(E, s)

with (An)n>1 the eigenvalues of L. In partiular, m™ (2, s) and m™(Z, s) converge to 1 while m(Z, s)
diverges almost surely as s goes to 0. A particular choice for s implies the simpler bounds

Ao =m5(E) € Aa(E) < (1+ )M +m3 ()
for any 0 € (0, 1) which is expected but was not present in the initial work of Allez and Chouk [1] or
the work of Labbé [22]. These bounds are sharp enough to imply the Weyl law

-1 Vol(M)
Jim A [{n > 0; A, <A} = e

and give bounds for the tails of the eigenvalues.

2) For the second question, one introduces the corrector C with
N(u, &) = uN(X,€) + Clu, X, ) + N(u,€)

for u paracontrolled by X. One has to define the product MN(X, ¢) independently of the operator, this
is the renormalisation step. To do so, we use the Wick product and set

Nex.g) = lim (N(X, &) ~E[NCX, )] )
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with & a regularisation of the noise. In some sense explained in Proposition 2.8, the operator H is
the limit of the renormalised operators

He:=L+& —ce

with c. := IE[I'I(X57 55)} a smooth function diverging almost surely as € goes to 0. Note that on the
torus, the noise is invariant by translation and c. is constant.

The approach sketched above yields an operator H : D(H) C L? — H?*~? with D(H) the space of
paracontrolled functions. In two dimensions, 2ac — 2 < 0 hence one needs to refine the definition of the
domain to get an unbounded operator in L?. To this purpose, Allez and Chouk introduced in [1] the
subspace of D(H) of strongly paracontrolled functions still dense in L?. This was also used by Gubinelli,
Ugurcan and Zachhuber in [18] and adapted to the dimension 3 using a Hopf-Cole type transformation.
We present here a different approach based on a higher order expansion. In particular, the domain of H
will consist of functions u such that ~ ~

u=PuX1 + Py X2+ u*
where X1 € C%, Xy € C?* are noise-dependent functions and u* € H2. Note that since we want to get
bounds in =, quantitative estimates are needed and we keep track of the different explicit constants that
appear, in particular how small s needs to be with respect to the noise. If one is only interest in qualitative
results, details of almost all computations can be skipped.

We shall first construct in Section 2.1 the enhanced noise = from £ by a renormalisation procedure and
prove exponential moments for its norm. The domain Dz of H is constructed in Section 2.2 and proved
to be dense using a truncated paraproduct P°. We show in particular in Proposition 2.6 that the natural
norms of D= are equivalent to the norm operator; this will give the upper bound for the eigenvalues. Section
2.2 is ended with the computation of the Holder regularity of the elements of the domain. After showing
that the operator is closed, we show in Section 2.3 that H is the limit of the operators H. in some sense
which yields the symmetry of H. We then control in Proposition 2.9 the H! norm of ! from the associated
bilinear form applied to u; this will give the lower bound for the eigenvalues. This gives self-adjointness and
pure point spectrum using the Babuska-Lax-Milgram theorem and we conclude the section with a bound
on the convergence of the eigenvalues of H. to H. Section 2.4 treats the Schrédinger equation.

As in the work of Allez and Chouk [1], Labbé [22] and of Gubinelli, Ugurcan and Zachhuber [18],
we construct a dense random subspace of L? though a renormalisation step to get a self-adjoint operator
with pure point spectrum. Our approach is different since we perform a second order expansion using
paracontrolled calculus based on the heat semigroup on the manifold M. We refine the upper bounds on
the eigenvalues obtained in [1] on the torus while also providing lower bounds. We get upper bounds for
P(An(E) < A) for A to 400 and —oo. For A to —oo, a bound was first given in [22] for a bounded domain
with different boundary conditions. We have a more explicit dependence on n while a less precise bound
with respect to A. To the best of our knowledge, no bounds for A to 400 were known. We also prove that
the eigenfunctions of H belong to C'~ while the works [1, 22, 18] only gave Sobolev regularity. For the
Schrédinger equation, we get on a manifold the same result as Gubinelli, Ugurcan and Zachhuber get on
the torus, see [18]. As in their work, our construction of the Hamilton Anderson on M could be used to
study other evolution PDEs. All these results are new in our geometrical framework.

2.1 — Renormalisation

As explained in the introduction, an element of the domain of H should behave like the linear part X :=
L™1¢ hence the product u¢ does not make sense in two dimensions. Using the corrector, we are able to
define the product u€ for u paracontrolled by X once the product X¢ is defined. To do so, a naive approach
would be to regularize the noise where £, = WU (eL)¢ is a regularisation of the noise and take € to 0. The
only condition we take is ® such that (®(cL)). belongs to the class G, for example ®(cL) = e~ works.
Since the product is ill-defined, the quantity M(X.,&.) diverges as € goes to 0 with X, := L7'¢.. The now
usual way is to substract another diverging quantity c. such that the limit

Nex.g) = lim (X, ) — e )

exists and take this as the definition of the product. This is the Wick renormalisation and the purpose of
the following theorem with the renormalised Anderson Hamiltonian

H. =L+¢& —ce.

Theorem21. Let a < 1 and
ce = IE[I'I(XE, gs)] .

Then there exists a random distribution N(X,€) that belongs almost surely to C**~2 and such that
lim E[[N(X,€) = (M(Xe, &) = e2)[[fan— | = 0

for any p > 1.
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Proof: Since the noise is Gaussian, we only need to control second order moment using hypercontrac-
tivity. The resonant term M(X.,&.) is a linear combination of terms of the form

b e A1 2,y di
I = P (Qth ‘Qt§€) n
0
with P € StGC®Y and Q*, Q% € StGC%. We also define the renormalised quantity

J. :=I. — E[L].

Let u € (0,1),z € M and Q € StGC” with r > [2a — 2|. The expectation E [|Q. (I:)(z)|?] is given by the
integral over M? x [0,1]? of

Kaq,pp(@,9)Kq, s (2,2 | QI Xo (1) Q€ (1) QL X- (2)Q26:(2)|
against the measure u(dy)u(dz)(ts) tdtds. Using the Wick formula, we have

E[QIX.(1)Q7 (1) QX (:)Q6: ()] = E [QIX. () Q3¢ (1)) E [QX. (=) Q3¢ (2)]

+E[Qi X:(y)Q:X:(2)] E [Q7€:(1)Q3-(2)] +E [Qi Xe(y)Q26:(2)] E [Qs X< (2)Q7¢- (v)]
=1)+(2)+3)

and this yields
E [|Qu (L) (@)]*] = IV (2) + I# () + I ().
The first term corresponds exactly to the extracted diverging quantity since

e[ [ aur @ix. ate) Y] = Elaun)’
and we have
E [|Qu(J:)(@)] =E [{Qu(le) (z) — E[Qu (Is)J(w)}Q] =17 (2) + I (2).

Using that (¥(eL)). belongs to G, £ is an isometry from L? to square-integrable random variables and
lemma 1.6, we have

1P (@) + 19 (2) < / Ko, pe(z,y)Kq,ps (€, 2)(Goet 145 (Y, -), Gactrrs(2, ')>2M(dy)u(dz)t5dtd5

M2 Jo,1]2

< [ e s (a2 d p(d)isdias
M 0,1

S [ )L GG Gaeress 2 ) pde s
M2 Jo,1

S L R I CE I
M 0,1

5/ (26+t+3)7%(5+u+t+s)7%tsdtds
[0,1]2

S(e+u)?

hence the family (M(X:,&:) —c.)__, is bounded in C**7? for any « < 1 since d = 2. These computations
also show that the associated linear combination of

J = / {2 (@ix Qk) -E [P (@ix @29 } S
0

yields a well-defined random distribution of C?**~2 for a < 1 that we denote M(X,&). The same type of
computations show the convergence and completes the proof.

O
The enhanced noise is defined as
2= (¢ N(X,¢)) € x°

where X® := C*72 x C>**72. One has to keep in mind that the notation M(X,¢) is only suggestive. In
particular for almost every w, one has

M(X,€)(w) # N(X(w),¢w))

since the product is almost surely ill-defined. We also denote the regularized enhanced noise Z. :=
(557 Nn(Xe, &) — Cg) with the norm

IE = Ecllxe == 1€ = &ellea-2 + [|T(X, €) = M(Xe, &) + cel| g2a—»

which goes to 0 as € goes to 0. Using that the noise is Gaussian and almost surely in C~'=* for all x > 0,
we have exponential moment for the norm of the enhanced noise.
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Proposition 2.2. There exists h > 0 such that

2
E [ehuﬁuca,2+hun(x,s>ncza4} < 0.

Proof: 1lette (0,1) and @ € StGC” with r > |a — 2|. Using the Gaussian hypercontractivity, we have
B[IQiel,] = [ EllQi @) utda)
g M
<p-f [ B0 @]
M

hence we only need to bound the second moment, which is bounded by

P
2

p(dz)

1
E [|Q:4*(2)] = |Kq, (¢,)|72 § —m—7r-
[ t ] t L N(B(LE,\/E))
Using that B2p 2 | Py BY 2, we have
2 h?
E[eh|\§|\ca—2:| Zil H5||ca 2]
p>0
h?
—7WMA > LR,
p=0 p: P>Po P! Bap.2p
Po
h? P(2 —1
I D L

p=0 pP>Ppo

for po > ﬁ hence the result for h small enough. For the bound on MN(X, &), the computations are the
same without the square since it belongs to the second Wiener chaos hence Gaussian hypercontractivity
gives

[MiS]

E[lQNX, 9 (2)] < (p— 1)” E[IQN(X,&)[*()]

2.2 — Domain of the Hamiltonian

We first motivate the definition of the domain. Let a € ( 1) such that 5 belongs almost surely to C*~2.

Let X € C* be a n01se—dependent function and consider u = Pu/X + u' a function paracontrolled by X
with «’ € H® and u* € H?®. Then

Hu = Lu+ &u
= L(PwX +u') + Pu& + Peu+ N(P, X +u,€)
= PuLX +Pug + (Lut + Peu+ uw/N(X, €) + C(, X, €) + N(w,€) ).
Taking v’ = u and —LX = &, the first two terms cancel each other and we get
Hu = Lu* + Peu + ul(X, €) + C(u, X, €) + N(u*, &) € H>** 2.

This yields an unbounded operator in L? with values in %2*~2. Since 2a—2 < 0, Hu does not belong to L?

hence we do not have an operator from L? to itself and this makes harder to study the spectral properties

of H. To get around this, Allez and Chouk introduced in [1] the subspace of functions u paracontrolled

by L™1¢ such that Hu does belong to L? called strongly paracontrolled functions. This approach was

also used by Gubinelli, Ugurcan and Zachhuber in [18] however we proceed differently and use higher

order expansions. Let X7 := X and Xo € CQO‘ be another noise-dependent function. Given us € H* and
fe ’HSO‘, we consider u = P wX1 + PuQXg + ! and we have

Hu =Py, LX2 + ull(X1,8) + C(u, X1,&) + Pu,M(X2,€) + D(u2, X2,§)
+ PuPe X1+ S(u, X2,8) + PePuy Xa + Peu + Luf + N(u,€).
Taking uz = u and —LX» = N(X1,&) + P X1 cancels the terms of Sobolev regularity 2a — 2 and we get
Hu = I'I(u, I"I(Xl,f)) + Prexy,ou + Clu, X1, 8) + Pul(X2,£) 4+ D(u, X2, )
+S(u, X2,€) + PePuXo + Peuf + Luf + N(u*, €)
hence Hu € H?*~2 ¢ L?. This motivates the following definition for the domain Dz of H with
—LX;:=¢ and — LX5:=T(X1,£)+PeXi.
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Definition. We define the set D= of functions paracontrolled by = as
D= = {u € L2; uf = — ﬁqu — ﬁqu S "Hz}.

The domain D= is the random subspace of functions v € L? paracontrolled by X; and X. up to a
remainder u* € H? given by the explicit formula

uf = ®(u) == u—P,X; — P, Xo.
With this notation, we have Dz = ®~(#H?) and since X; 4+ X2 € C%, we actually have D= C H? for every
B < . However, we have no idea at this point if this domain is trivial or dense in L? and an inverse to ®
would be useful. However, it is not necessarily invertible so we introduce a parameter s > 0 and consider
D= — H?

> - -
’ u = u— Pin — P‘;XQ

where P? is defined as

Pro= Y > ba Q(Qir-Gla) T

acofy;az <% Qesteea

The important property is that while still encoding the important information of the paraproduct ﬁ, the
truncated paraproduct P® is small as an operator for s small; this is quantified as follows and proved in
Proposition B.2 in Appendix B.

Proposition 2.3. Let v € (0,1) be a reqularity exponent and X € C”. For any B € [0,7), we have
y=8
~ s 2
lu = PoXllL2qs S WHXHCW

Since X; and X2 depends continuously on =, this implies the existence of m > 0 such that

a—pB
S 4

IPS X1 + P5Xollys <m

[Ellxe (1 + 1E]l2e) lull 2

thus the operator u — P%,(X; + X») is continuous from L? to H? for 8 € [0,a) and arbitrary small as s
goes to 0. Hence we get that
oM — HP
is invertible for s = s(E, 8) small enough as a perturbation of the identity. Since P, X; — P;X; is a smooth
function for any s > 0, the domain is still given by
Dz = 0~ (W) = (&%) (1)
and we have a decomposition given by ®° for any u € D=, that is
u=PiX1 4 P X5 + ®°(u).
In particular, we emphasize that the domain does not depend on s while the decomposition we consider
for element of the domain might. We denote
2 = ||Exe
to keep track of the quantitative dependance with respect to the enhanced noise = and lighten the notation.
We use the letter = as a reminder of the noise dependance. For any 0 < 8 < «, we define

v (2)"

such that for s < sg(Z), the operator ®° : H? — H” is invertible and we denote T its inverse. We choose to
drop the parameter s in the notation to lighten the computations however the reader should keep in mind
that the map I" depends on s. It is implicitly characterized by the relation

Tuf = Pl s X1 + Py Xo + uf

for any u* € #?. Our choice of P* is motivated by the preservation of the intertwining relation
P°=L"'oP°oL
with P* defined as P*. The map I will be a crucial tool to study the domain Dz, in particular to show

density in L?. Continuity estimates for ®° and I' are given in the next proposition. Note that in the
following, this bound of the form |la — b|| < ¢ will be used as ||a|| < ||b]| + ¢ or ||b|| < ||a]| + ¢

Proposition 2.4. Let 8 € [0,c) and s € (0,1). We have

s m a=g
197 (w) —ullys < ——5s T a(l+a)lull 2.

-8B

If moreover s < sg(E), this implies

T I35 < =B [
1—-"s 17 z(l+x)
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Proof: The bounds on ®* follows directly from proposotion 2.3. Moreover since

m a=f
1 1 <1
- /BS z(1+x)
for s < s5(Z), the map ®° : H° — H” is invertible and we have
1
T l5gs < ;) [ ll345-
1—"5s 1 z(l+a)

O

Let us insist that ||uf||,s is always controlled by ||ul|;;s while s need to be small depending for ||ul|;s
to be controlled by |[u?|/;;s. We also define the map I'- associated to the regularized noise Z. as

Fowf =Py X\ + P X537 + !

with
—LX =& and  — LX{) =X, &) — o +Pe X

It satisfies the same bound as I' with ||Z.||x« and the following approximation lemma holds. We do not
need to explicit the constant, it depends polynomialy on the noise = and diverges as s goes to sg(E).

Lemma2.5. For any 0 < 8 < o and 0 < s < sg(E), we have
I1d =TT | 208 Szs.8 1S — el e
In particular, this implies the norm convergence of I'e to I' with the bound

ID = Pellygs s Sz0 12— Zelle

Proof: Given any u € H?, we have u = I'T ' (u) =T(u— Ps X, — ﬁZXg). Using proposition 2.4, we get
lu =TT (u) s = |0 (u — PLX1 — PLXo) — D(u— PLX{Y — PLX)|,,

- Hr(ﬁz (X = X1) + P (X — XQ)) Hm

< e [Pe(xf — x0) +Po(xf — xs)|
a—pB—ms 1 z(l+x) Mo
a—p
s 4 (1+x -
< UFD) =& flvellule

a—ﬁ—msanBx(l—i—x

using the proposition 2.3 and that Xi<s> — X, is ¢-linear in 2, — = for ¢ € {1,2}. The second statement
follows from

HFE - FH’H5~>’H5 = || (Id - Fre_l) FEH’Hﬁﬁ’HB < ||Id - FFE||H/3~>’)-L5HFE”HB~>H5
with the bound uniform in ¢ for s < s5(Z¢)

a—p
oa—,@—msaTiﬁa:(l—l—x).

[Tell2s 208 <

This allows to prove density of the domain.

Corollary. The domain D= is dense in H® for any B € [0,a).

Proof : Given f € H? I'(g.) € D= where g. = I f € H? thus we can conclude with the lemma 2.5
that

tim ||~ D(ge) 2 = 0.
The density of H? in ## then yields the result.
O

Taking into account in the previous computation the smooth term e~% coming from the intertwining
relation, we are able to define H as an unbounded operator in L? with domain D= as follows.
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Definition. We define the Anderson Hamiltonian H : D= — L? as
Hu = Lu* 4 Peu® + N(u?, €) + R(u)
with u* = ®(u) and R : D= — L? given by
R(u) = N(u, N(X1,€)) + Pnex, o u + Clu, X1, €) + Pull(X2,€) + D(u, X2, )
+S(u, X2,€) + PePuXa — e ¥ (PuX1 + PuX2).
The parameter s does not appear in the definition of H, it is a tool to study the properties of the
operator. Indeed, one has different representations of Hu as
Hu = Luf + Peul 4+ N(u!, &) + R(u) + ¥° (u)
where u# := ®°(u) and
() i= (L 4+ Pe - +1(-,8)) (Pu = PL) (X1 + Xa).

The different representations of H through the parameter s > 0 will be useful to get different bounds. For
example, we can compare the graph norm of H given as

2 2 2
lullzr = llullzz + [[Hul|%2
and the natural norms of the domain
lullpz = llullzz + 9% (u) |3
with the following proposition. For s € (0,1) and § > 0, we introduce the constant

m3(E, s) ::k(s%ﬁm(lJr:r )Jrs Tl 2142%)+ 6 (1+s%m(1+x))x4(l+:c8))

where the “2” refers to H? and for a constant k > 0 large enough depending only on M and L. In particular,
it depends polynomialy on the enhanced noise and diverges as s or ¢ goes to 0.

Proposition 2.6. Let u € D= and s > 0. For any § > 0, we have
(1= O)lulllzez < [|Hullz2 +m3(E, s)|ul L2

and
[Hullz2 < (14 6)|[uf]l22 +m3 (E, s)|ull L2

with uf = ®°(u).

Proof: For any s > 0, we have
Hu = Lu® + Peu? + N(ul, €) + R(u) + ¥°(u).
Then Luf € L? and for B = 2(2 + ), we have
IR(@)ll2 S 2(1+2®)||ullys
1 ()2 S 5°% 2(1+2?)Jul 2
1Pl + M, E)ll2 < l€llca—2llufll, 4 -

One can bound the H” norm of v using Proposition 2.4 with

lullags < lud

m a—8
s 3 z(1+z)llull L

-p

and since 8 < 1, one has

a—2
1Eud = Hullpe S (s°7 21 +0%) + 5" 22(1+2%) ) ull 2 + (1 + @)l 3.

Since 0 < 8 < 2, we have for any t > 0

_ dt
il 5 < H/tL vry3 38

Sth|lud e+t 2 (1 +sTa(1+ ) lull 2.

t‘(miﬂ

with k the constant from the previous inequality and § > 0. This yields

e

4

4
3 Hs

Take

|Luf — Hullp2 S m3(E, 5)|[ull 12 + 8l[uf]|22-

and completes the proof.
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O

Finally, we can compute the Holder regularity of the domain. In particular, this will implies the a-Holder
regularity of the eigenfunctions of H.

Proposition. We have
D= C ce.

Proof: The Besov embedding in two dimensions implies
H> Bl o =C" > L™
and ®°: L*° — L is also invertible hence

D= = (%) ' (H?) c L™

]

Given any u € Dz, we get
ullca S luflzee | X1 + Xallco + [[uf e
Sz lullzee + (w52

and the proof is complete.

2.3 — Self-adjointness and spectral properties

We show that H is a closed self-adjoint operator on its dense domain D= C L2. This relies on approximation
results and the Babugka-Lax-Milgram theorem. The spectrum is pure point and the eigenvalues verify a
min-max principle that allows to get estimates depending on the eigenvalues of L.

Proposition 2.7. The operator H is closed on its domain Ds=.

Proof: 1Let (un)n>0 C D= be a sequence such that
Up — u In L? and Hu, — v in 2

Proposition 2.6 gives that (@(un)) is a Cauchy sequence in H? hence converges to u¥ € H2. Since

n>0
®: L? — L? is continuous, we have ®(u) = u* hence u € Dz. Finally, we have

[Hu —vllp2 < [Hu — Hun|l2 + [[Hupn — 0|12
Sz llub = vz + = unllpz + [ Hun — vl 2
hence Hu = v and H is closed on D=.

O

In some sense, the operator H should be the limit of the renormalised H. as € goes to 0. Since
D(H.) = H2, one can not compare directly the operators. However given any u € L?, we have

u=(Fo®)(u) = ;13% (Pe 0 @) (u).
Thus for v € D=, the approximation u. := (FE o <I>S)(u) belongs to 2 and one can consider the difference

|Hu — Heue|| > = ||(HT — HeTe)u?|| 2

with uf := ®°(u). The following proposition gives a bound for this quantity which yields the convergence
as € goes to 0 for s is small enough. We do not need to explicit the constant, it depends polynomialy on
the enhanced noise Z and diverges as s goes to so(Z).

Proposition 2.8. Let u € D= and s > 0 small enough. Then
|Hu — Heucllge Sz [0 3212 — Ze e

with ug = ®°(u) and u. := Fgug. In particular, this implies that H.T'. converges to HI' in norm as € goes
to 0 as operators from H? to L?.
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Proof: We have
Houe = Lul 4 Pe_uf + N(u, €) + Re(u.)

+ W2 (ue)
where R. and ¥{ are defined as R and ¥*® with =. instead of =. For 8 = %

(2 + a), we have
[ B(u)=Re(ue)llz2 < [R(u — ue)l[p2 + [[(R = Re)(ue)||z2
Sa(l+2%)lu— uellygs + (1 + 2)||E — Ecllaw [luells

2 —_ —_
S (80 + 2T = Tellsagn + (14 )T llgo 00 |E = Zellve ) 1 5

and the same reasoning gives
W7 (u) = T2 (w22 Soz [IE — Eeflxa.
Thus one completes the proof with the bound ||I" — I'c||ys_,4s from Lemma 2.5.

The symmetry of H immediately follows.

Corollary. The operator H is symmetric.

Proof: Let u,v € D= and consider uf := ®°(u) and v* := &°(v) for s < so(E). Since H, is a symmetric
operator, we have
(Hu,v) = 1irr(1)<H5P8uu7F5vu) = 1in})(F€uu, H.T0") = (u, Hv)
e—> e—

using that H.I': converges to HI' and I'c to I' in norm convergence.

O

The next proposition states that the quadratic form associated to H is bounded from below by the #*
norm of u*. This weak coercivity property will give below self-adjointness with the Babuska-Lax-Milgram
theorem. ThlS was already used in the work [18] of Gubinelli, Ugurcan and Zachhuuber, where the proof
of self-adjointness relies on the reasoning of almost duality encoded in the operator A. For s € (0,1) and
é > 0, introduce the constant

a—4

a—p a—
mj(E, s) == k{x(l +2%)+s 1 221+ + STQa:(l +2°)+s5 2 x

+5_%(:v(1+m )+s Py (1+m))1ﬁﬂ (1+s4x(1+x))}

where 8 = ( + a) and for a constant k > 0 large enough depending only on M and L while the “1” refers
to H!. In partlcular it depends polynomialy on the enhanced noise and diverges as s or d goes to 0.

Proposition 29. Letu € D= and s > 0. For any § > 0, we have
(1= 0)(Vul, Vul) < (u, Hu) + mj(E, s)|ul72

and
(1= 8)(Vaul, Val) < (u, Heu) + m3(E, s)||ull7

where uf, = ®°(u).

Proof: For u € D=, we have
Hu = Lu! + Peul + N(ut, €) + R(u) + U (u)

with u? = ®°(u) € #2. Thus

(u, Lu®) = (P5 X1, Lul) + (P5 Xo, Lul) + (uf, Lul)

= (PyLX1,ut) + (PLLX2,ul) + (Vaul, Vul)
and this yields
(u,Hu) = —(P5&,ul) + (P LX2,ul) + (Vauk, Vul) + (u, Peul + N(ul, €)) + (u, R(u) + ¥*(u))
A(u, & ul) + (PSLXo,ul) + (Vul, Val) + (u, Peul) + (u, R(u) + ¥°(u)) + ((Pu — P5)E, ul)

where A(u, &, uf) = (Pu&, uf) — (u, M, €)). For B:= (2 + a), we have

[(u, R())| S lull 2[Rl 2 S @ (1 + ) [l g2 |ull e

|<“> P§u§>| S ||“HHBHP£Us||02ﬁ*2 S wHUIIHﬁHuusHHB,
[(PuLXs,ub)| S IPuLXalls20-2 |ubllzs S 2°|ull g2 flub]l s
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Using Proposition 1.5, we have
A, & ud)| S [l€llea—ullss 0hlls S @llullzsllubllg-
Finally, we have
; s a=2
[Cus O (@))] S Nl 2 19 ()l 2 S 577 @l +27)[fullz
(P = P& ud)] < (Pu — PEN L2l S 57 o]l | 2

with Proposition B.3 in Appendix B. Since u € D=, we have

m

-8

lellags < Mol + =621+ ) full 2
hence there exists k¥ > 0 such that
<Vu§, Vu§> <(u, Hu) + k(m(l +2°) + s¥x2(1 +2°) + SQTJx(l +2%) + saT_‘Lx) [lw||72
+ (22 + 57T 2 (14 2) [ s

Since 0 < B < 1, we have for any t > 0

_ dt
uusuHﬁNH/ ('Lye i 3L

o 2
Sl +t’ﬁ(1+8”<1+¢”>) Il

—tL
+ He ug

B HB

Given any § > 0, we set

5

t =
K (x(l +22)+s

azf z2(1+ x))
where k' > 0 the constant from the previous inequality and this yields
(1= 08)(Vaul, Vul) < (u, Hu) + m(Z, s)||ul 12
The same computations show
(1= 0)(Vaud, Vul) < (u, Heu) + m(Ee, s)|[ull 7.
Since ||Ze — E||« goes to 0 as € goes to 0, the result holds uniformly in € with m}(Z, s).

O

This implies that H is almost surely bounded below by the random variable —m} (E,s) for any § > 0
and s > 0. Using the Babuska-Lax-Milgram theorem, one gets an invertible operator via the solution of

(H+kz)u=v
for ks > mj(=,s) and v € L.
Proposition 2:10. Let 6 € (0,1) and s > 0. Then for any constant k= > m}(Z, s), the operators H + ks and
H: + k= are invertible. Moreover the operators
(H + k‘E)71 :L? 5 Ds
(He + k=)' L* = H?

are bounded.

Proof : We want to use the theorem of Babuska-Lax-Milgram, see [3]. This is a generalization of the
Lax-Milgram theorem with a weaker condition of coercivity. Since k= > m} (8, s), Proposition 2.9 gives

(k:~—m5 _,5))||u||L2 < {(H + k=)u,u)

for u € D=. Considering the norm
lulbe = llullZe + l[uf]f3e

on D=, this yields a weakly coercive operator using Proposition 2.6 in the sense that

lullpz <= I(H + k=)ullp = sup ((H + k=)u,v)

[loll L2 =1
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for any w € D=. Moreover, the bilinear map

B: D=xIL?* — R
(w,v) = {((H+k=)u,v)

is continuous since Proposition 2.6 implies
|B(u, v)| < [|(H + k=)ullp2([v]lL2 Sz [lulloz vl
for u € Dz and v € L?. The last condition we need is that for any v € L?\{0}, we have

sup |B(u,v)| > 0.

llull pg =1
Let assume that there exists v € L? such that B(u,v) = 0 for all u € Dz. Then
Vu € Dz, (u,v)pz,pz = 0.

hence v = 0 as an element of D%. By density of D= in L?, this implies v = 0 in L? hence the property we
want. By the theorem of Babugka-Lax-Milgram, for any f € L? there exists a unique v € D= such that

Vo e L?, B(u,v) = (f,v).

Moreover, we have ||u||pz <=z ||f||.2 hence the result for (H +k=)"". The same argument works for H. + ks
since proposition 2.9 also holds for H. with bounds uniform in €.

O

Using that a closed symmetric operator on a Hilbert space is self-adjoint if it has at least one real value
in its resolvent set, this immediatly implies that H and H. are self-adjoint, see [24]. Moreover, the resolvant
is a compact operator from L? to itself since D= C H? for any 3 € [0, a) hence the following result.

Corollary 2:11. The operators H and H. are self-adjoint with discret spectrum ()‘”(E))nx and ()\n(EE))n>1
which are nondecreasing diverging sequences without accumulation points. Moreover, we have B

L* = P Ker(H — \u(2))
n>1
with each kernel being of finite dimension. We finally have the min-max principle

An(E) = inf sup (Hu,u)

D weDi|ul2=1
where D is any n-dimensional subspace of D= that can also be given as

M (E) = sup inf (Hu, u).
V1, Up_1 EL? wEVect(v1,..., v 1)+
llullf2=1

A natural question now is to estimate the size of the eigenvalues of H and try to get back geometric
informations on the manifold M as one can do from the Laplacian. Let A be an eigenvalue of H and u € D=
such that

Hu = \u.

Then there exists u* € H? such that u = T'u® thus
HTwu? = AT,
This yields
HTW! = Mt + A\(T - Id) !

hence one can relate the spectrum of H to the one of HI' and the parameter s measures the error since
(I —Id)u* = Pp: X1 + Pp: Xa.

And since HT is a perturbation of L, one can relate the spectrum of HI' to the spectrum of L, as stated
in the following proposition using the min-max result. We denote by (An)n>1 the non-decreasing positive
sequence of the eigenvalues of L, since it corresponds to the case Z = 0. For s € (0,1) and ¢ > 0, introduce
the constant
+ /= m «
my (E,s) = (1+ 5)(1 + Esﬂr(l +:c))

If s < so(=), we also introduce

1

In particular, the constants depend polynomialy on the enhanced noise = and converge to 1 as ¢ and s goes
to 0. Moreover, my (2, s) diverges as s goes to so(E). Write a,b < ¢ to mean that we have both a < ¢ and
b<e.
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Proposition 212. Let s € (0,1) and § > 0. Given any n € Z", we have
(D), M (Be) S mf (2,8 + 14+ ZsTa(l+2) +mb(E,9).

If moreover s < so(E), we have

M (E), A (Be) > my (B, s)An — ms(E, 5).

Proof: Let uﬁ, ...,ul, € H? be an orthonormal family of eigenfunctions of L associated to A1,..., An
and consider

U; 1= Fug € D=
for 1 < ¢ < n. Since I is invertible, the family (u1,. .., u,) is free thus the min-max representation of A, (=)
yields

A (2) < sup (Hu, u).
u€Vect(uy,...,un)
llull 2 =1

Given any normalised u € Vect(u1,...,un), we have

(Hu,u) < |[Hullg> < (14 6)||ullla2 +m3(E, )
for u! = ®*(u) using Proposition 2.6. Moreover
il < (14 A ]z2 < (L4 A) (14 s Ta(1 + )
hence the upper bound
An(Z) <mf(Z,8)An +1+ %s%m(l +z)+mi(E,s).

For the lower bound, we use the min-max representation of A, (Z) under the form

A (B) = sup inf (Hu,u).
V1yenns Up_1E€L2 u€Vect(v1,...,v9 1)+
llull 2 =1

Introducing
F := Vect(um;m > n),

we have that F* is a subspace of L? of finite dimension n — 1 thus there exists a orthogonal family

(v1,...,Un-1) such that Ft = Vect(vi,...,vn—1). Since F is a closed subspace of L? as an intersection of
hyperplans, we have F' = Vect(vi,...,v,—1)" hence
An(B) > i .
(B) 2 inf (Hu,u)
lull 2 =1

Let uw € F with ||ul|,2 = 1. Using Proposition 2.9, we have
(Hu,u) > (1 —8)(Vul, Vul) — mj(Z, s)
> (1 - 6)(ut, Lut) — mi(Z, 5)
> (1= 8)Anllul]|Z2 — m3(E, 5).
Finally using Proposition 2.4 for s < so(Z), we get
(Hu,u) > %An —mi(E,s)

and the proof is complete.

There is a wide range of choices for the constants s € (0,1) and § > 0. For example, one can take

(aita)’

A = m5(E) < An(E) < (1+8)An +m3(E)
for explicit constants mj and m3, where the lower bound holds since § < 1 gives s < so(Z). This implies
the following estimate for the tail of all the eigenvalues. A more precise result of this type was already
obtained in [22] by Labbé in the flat case for A to —oo with a = 1 where he also obtained a lower bound
on the convergence of the form

for any ¢ € (0,1) and get

e N <P (B) < —A) < e 't

for A > 0 large enough and a, > b, > 0 two constants. Here we get upper bounds for A to 400 and —oo.
Corollary 243. For any n € Z% and X\ € R, we have
1 1
1_ me—h(/\—2>\n) 12 < ]P’()\n(E) < )\) < me—h(/\n—/\%”

where m = E{eh“E”?‘f“].
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Proof: TFixéc (0,1) and let A € R. Denote m1 = m}; and ms = m?. ‘We have
P(An(E) < A) <P(An —mi <)

and
P(An(Z) > A) < P((1+8)An +m2 > A)
thus
P(ma < A= (14 06)An) SPA(E) A) SP(ma > A+ ).

There exists two constants a1, a2 > 0 such that
m; <14 [|E][¥a
for ¢ € {1,2}, take for example a1 = 5 and a2 = 12. Hence

P(m; > y) =P([E]xe > (y—1)*)

_ ]P)(ehHEHxa > e )
1
< oM™ g[hIBlxe]
using Markov inequality and this yields
B 1
1= me "ATUFOADT < (), (2) < N) < me” ATV
where m = E[eh”E”A’”].

O

We proved that H. converges to H is some sense as € goes to 0. The following proposition gives the
convergence of H. + k= to H + k= in resolvent sense as € goes to 0. We do not need to explicit the constant,
it depends polynomialy on the enhanced noise Z.

Proposition 214. Let s € (0,1) and 6 > 0. Then for any constant k= > m}(Z, s) and B € [0, ), we have

I(He + k=) ™" = (H + k=) " llp2osms

1

Sz lIE — Eeflxe.

~

In particular, (H. + k=)' converges to (H + k=)' in norm as operator from L? to itself.
Proof: Proposition 2.8 gives
JH.T. — Ty 12 Sso IS — Zelxe.

This implies
[TeTe =TTz 2 =6 (|2 — Zel|xe
where T := H + k= and Tj := H. + k=. This implies
I T =T T |29 Szos [|Ze — Ellaa
thus the proof is complete with
T =T M lpasggs S NTo ' =TT o ggs + ITT T = T |2y

Sz 1d =TT o mpge + TS T =T T 2 g

This allows to get a bound on the convergence of A, (Zc) to An(E) as € goes to 0.

Corollary 245. For all n € N*, we have

In particular, this implies
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Proof: We use the min-max principle for (H + kg)fl and (H. + k5)71 and denote u, and ,u,(f) their
n-th smallest eigeinvalue with multiplicity. Let D, = Vect(v1,...,v,) with v; an eigenfunction associated
to ,uge) for 1 <14 < n. Then for all v € D,, with |[v]| 2 = 1, we have

((H + k=) u,u) = <((H + k=) = (He + k=), u> + ((He + k=) u,u)

< |‘(H+k5)_l — (He + kE)_1||L2_)L2 +IJ”E‘I€)

hence with proposition 2.14 we get
pin — ) Sz || = Eel|xa

Using the same argument with eigeinfunctions associated to (H + k=)™!, we get
lpin — ] Sz ||E = Eellxe.

Thus this gives
1 _ 1
and completes the proof with the upper bound on A, (E).

Sz |2 - Ecflxe

We conclude this section by giving as corollary the Weyl law for the Anderson Hamiltonian H.

Corollary 216. We have

Vol(M)

im A7 {n > 00, < A} =
Ah_}ngo)\ {n > 0; A < A} yp

Proof: The lower and upper bounds on the eigenvalues give

NA+miE) <[{n =00 <A} <N (%@)

hence the proof is complete using the result for the Laplace-Beltrami operator.

2.4 — Stochastic nonlinear Schrodinger equation

The construction of the Anderson Hamiltonian allows the study of associated evolution equations. This
was the motivation for the work [18] of Gubinelli, Ugurcan and Zachhuber and they studied the nonlinear
Schrodinger and wave equations on the torus in two and three dimensions, see the references therein for
other approaches. Our work allows to do the same on a two-dimensional manifold. As an example, we give
results for the cubic nonlinear Schrédinger equation associated to H. See the work [13] of Debussche and
Weber for the equation on the torus where they use a Hopf-Cole type transformation. This was extended
in [26] by Tzvetkov and Visciglia to the fourth order nonlinearity.
Define the positive operator
H":=H+k=

with k= as in Proposition 2.9. Proposition 2.10 yields a characterization of the domain and the form domain
which is defined as follows.

Definition. We define the form domain of H denoted D=(vV H™') as the closure of the domain under the
norm

lull p (v = V/{u, Hu)

Proposition 2.17. For s < 50(Z) and u € L?,
(u € DE(H+)) — (uﬁ =®°(u) € 7-[2).

and we have the bounds

lubllae Sz 1H  ullz Sz.s llubllpe-

Moreover, we have
(veD=(VHT)) = ("(w) =i e ¥')
with the bounds
ekl Szos Nullpy (i) Sz .
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Proof : The first result and the associated bound immediately follow from Propositions 2.4 and 2.6.
There exists s, € (0,1) such that k= > ms(=, s) hence Proposition 2.9 gives

|(Hu, u) — (Vul, Vud)| < kelull 2 + 8| ui]l -
and the result follows.

O

This yields a version of Brezis-Gallouét inequality for the Anderson Hamiltonian. In some sense, it
interpolates the L°°-norm between the energy norm and the logarithm of the domain norm. This was
already obtained in [18] by Gubinelli, Ugurcan and Zachhuber on the torus.

Theorem 218. For any v € D=(H™), we have

||UHD—(H+)
[vllze Sz llp vam [ 1+ 4 log | 1+
P=( H+) HUH'D(\/H+)

For any v € H?, we have

Hv
lvllzee Sz [VHI |2 | 1+ ,]|log <1 + |+”L2>
|V HSvl| L2

In particular, the second inequality holds uniformly in €.

Proof: For any ¢ > 0, we have
_ dt’ _
||v\|Leo<H/ e P3| et .
t
.
From the bounds
k ’ —t'L dt/
|[wne | <ol
0 Loo
and
_ _ dt’ _
ol 5| [ @ne |t el
t Lo
Lar\ 1 dt
<([95) ([ wene ||Loo—) + ol
t
Lar'\ # v e dt)?
([ E) ([ @riwne oite) + ol
t t
1
< ol (1 + [ log (1)1 %),
we get

1
[vllLee < tllvllaz + (1 + [log(t)]Z)]v]l3-

) /Tog(1 , . . . . .
Taking ||v]ly1 <1 and ¢t = W > 0, we get the classical Brezis-Gallouet inequality, that is
M

[ollzee S 14 Vlog (1 + [|v]l32)-

Thus for [|v 7+ < 1, we have

o]z S= o#fle

~

Sz 1+ Vlog (1+ [[vf]32)

<=1+ \/log L+ I1H Ipa+))

using proposition 2.17. Since every estimates also hold for HX with bound uniform in e, we also get the

estimate for H". Applying this result to ——%—— yields the general inequality.
1ol o /2
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This inequality can be used for example to study the cubic nonlinear Schrodinger equation with mul-
tiplicative noise
i0u 4+ Lu + ué = —|ul’u

with initial condition ugp € D=. The construction of the operator H immediatly yields the renormalised
solution u(t,-) := e~ " uq to the linear equation

0w+ Lu+u§ =0

given any ug € D= as done in [18]. Remark that when one regularizes the question, one also has to consider
a suitable sequence of initial data (u((f))5>0, it is often refered to as “well-prepared data” in the litterature.
This can also be used to solve the associated equation with cubic nonlinearity even if we can not apply the
same theorem as Brezis and Gallouét in [9] since we do not have a control on the cubic term from D= to
itself. One could modify the domain taking into account the term MN(X1, X1) in X5 to get a domain stable
by multiplication. However since a direct computation as done by Gubinelli, Ugurcan and Zachhuber in
[18] is enough, it is not necessary. In particular, the proof of the following theorem works exactly as in
their work and is left to the reader.

Theorem 219. Let T > 0 and uo € D=. Then there exists a unique solution v € C([0,T],D(T)) N
C’l([O,T],LQ) to the equation

on [0,T] x M.

0w = Htu—|ul’u
u(0, -) U

Moreover, u is the L*-limit of the solutions u. € C([0,T],#*) NC"([0,T], L?) of solutions to the equations

{ B = Houe = Julu on [0, co[x M,

ue(0,) = ug)
with the initial data
ul = (HD)"HYu € H?
which converges to ug in L?. We also have the convergences
ue(t) = u(t) in L,
HIuc(t) — H u(t) in L?,
Oruc(t) — dwu(t) in L*

for allt €10, T].

Remark: From the solution to
i = Hu — |ulu,

on the torus, one easily gets the solution to the initial equation
0w = Hov — |v]*v

via the change of variable u(t,) = e*=v(t,-) since k= is a constant. One could want to do the same in a

manifold setting and compare the initial regularized equation
10w = Lu + Ecu — |ul’u.

with the renormalised equation
10w = Lv 4+ v — cov — |v|2v

as Tzvetkov and Visciglia’s Theorem 1.1 from [26]. It is not clear what the change of variable should be
on a manifold since cc is a function and not a constant. It should still be possible to find an appropriate
change of variable even though this requires some work.

A — Approximation operators

We describe in this Appendix technical estimates needed in our continuous setting analog of the discrete
Paley-Littlewood decomposition. The following proposition is the analog of the inclusions of ¢? spaces.

Proposition A1, Let p,q1,q2 € [1,00] with g1 < g2. For f € L? and o € R, we have

|3 1Quf L

S [ 2 1Qesley

Laz(t—1dr) ~

qu(t—ldt).
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Proof: We prove |- llnoo(t-1ae) S I - [lLat—1as) for any g € [1,00) and the result follows from duality. To

get this, we use
t a+1
t o ds
o= [0 (1) po e
L s s

for any Q € StGC* and ¢ € (0, 1] which yields

t d t d %
1Quflir 5 [ @uflin < ( /. ||Q5f||‘zpj> .

O
One needs the following bound to keep an accurate track of the constant in different estimates.
LemmaA.2. Letr >0 and a € (—r,7). We have
e u "o du 2r
« < [
/o <1+u2> Y S a2
Proof: Since ) )
1= 14w _ 1 " u
14+ u? 14+ u? 14+ u?
and u > 0, we have
[ () et (oYt [ () s
o 1+ u? u  Jo \1+u2 u 1 1+ wu? u
< 1 1
T rt+a r—ao
hence the bound.
O

The next lemma describes the localisation of the cancellation in our continuous context, including the
dependance on s > 0.

LemmaA.3. Let r >0 and a € (—r, 7). Given any q € [1,00], we have

[ ()

o [ (@tap) 10F

for any s >0 and B8 € (o, 7).

2r _
Lq(ufldu) S m HU af(u)”LQ(u—ldu) .

We also have

2 _
< r sﬁa

— 2 _ 2
La(u—1du) r @

W f )|

L3 (u—1du)

Proof: For q = oo, we have
! tu  \" .. dt a ! tu  \" o dt
[ () rof <iemson [ (i) o

(" (20} ).

2r a|g—a
)

b o[ ([ () 2ot
([ () =) [ oo

2r v dt
< PRGOS

r2 — o2

IN

which yields the result. For ¢ = 1, we have

Il () 0%
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The result then follows for any ¢ € (1, 00) by interpolation. For the dependance with respect to s, we also
interpolate between ¢ = 1 and ¢ = co and conclud with

/05 (ﬁ)*m% < 4 F @) / (ﬁ)t‘*%
< PN F ()| e /0 ((t—f—iuu)Q)rta%

2r _ _
et M LR (O] 12

e [ ([ () et

2r S e dt
ﬁé t \f(t)\j

r2

2r o [ dt
s [l
0

r2 — q?

<

[ (atae) 107

and

1
—a
/”
0

IN

IA

Finally, we have the following estimate for integrals.
Lemma A.4. Given any o > 0 and ¢ € [1, 0], we have

_a (™ dt
i [ rwg

gf(u)HLq(ufldu)‘

2, _
< —lu
La(u—1du) o

Proof: we proceed again by interpolation proving the estimate for ¢ = oo and ¢ = 1. Using that o > 0,
we have

“ dt - “ Edt 2 o —a
[ rog ] < i trons [T < 2t o

t
u 1 1 1
Lo [([ ) uay <2 [ etnof

and

1
_a
/"2
0

B — Paracontrolled calculus

We give in this Appendix proofs of estimates needed in paracontrolled calculus. We shall first prove the
estimates for the paraproduct P and resonant operator 1 in Sobolev spaces. It works as for Hélder spaces
with L? estimates instead of L°°.

Proposition BA. Let o, 3 € (—2b,2b) be regularity exponent.
. Ifa >0, then (f,g) — Psg is continuous from C* x H? to H® and from H* x C? to HP.
. Ifa <0, then (f,g) — Psg is continuous from C* x H? to H*? and from H* x C# to HOTP.
. Ifa+ B >0, then (f,9) — N(f,g) is continuous from H* x CP to H*+P.

Proof: Lect f e H® and g € C° with o < 0. We want to compute the regularity H*+? of P ;g hence let
Q € StGC" with r > |a+ B|. Recall that Pyg is a linear combination of terms of the form

1
[ ar s ao
0

with Q', Q> € StGC? and P € StGCY. Given s € (0, 1], we have
L/ots \? ) dt
< s Pf. ab
| “/ (p) 1pr-Gials

1 r
ts 2 8 dt
< — t2 || P, —.
Nllgl\ca/o <(t+5)2> 1Pefllez

29

1
[ e (s Q)T
0




This yields

a+p3

| [Caeir st Y

_L

L2Z(s—1ds)

ats ts \2.8 dt
< ) —_— t2 || P, -
~ Hg”CﬁHS /0 ((t+ S)Q) I tf”Li t
S lglles |5~ % 1P 1122

S N fllwellglles

where we used that @ < 0 since P can encode no cancellation and this complete the proof for the third
estimate. The proofs for the other estimates on P g are similar and we only give the details for the resonant
term. Let Q € StGC” with r > |a + (| and recall that IN(f, g) is a linear combination of terms

L. dt
[ rr@ir-ai)
0
with Q*, Q* € StGC3 and P € StGC*Y), Given s € (0, 1], we have

/ @t @iy &+ [ (2)" It @l

and the result follows again from the lemmas using that a4+ 8 > 0.

L2(s—1ds)

L2(s—1ds)

/QSPt Qlf-Qlg) &

The dependance of P* with respect to s in given in the following proposition.

Proposition B.2. Let s € (0,1) and a regularity exponent 8 € (0,1). Given g € C?, we have

ﬁfw

Ilf = Pfg||L2—>H’Y ~ 5

for any v € [0, B).

Proof: Given f € L? and v € [0, B), we want to bound the H” norm of ps 7g hence let Q € StGC" with
r > |y|. Recall that IS} g is a linear combination of terms of the form

S ~ 1\ dt
[@r(nr @) ¢
0
with Q! € GC2~2,Q2 € StGC? and P € StGCI®Y. Given u € (0, 1], we have
S/ tu \2 . dt
< e Pf. at
S () i

Sl tu \? dt
< [ 2 P, s
~ H9HC5/0 ((tJru)z) t H tfHL2

[ e rrato) ¢
0

This yields

[ @i (rs-ato) ¢
0

L3l L2 (u—1du)
R tu 3 8 dt
S lales [ | (W) LIy PR
dr  Bl=n, _ BB
< lloller 3= g7 e

4r B =~ 2
Slglles 553" g M s

dlles 57T
e LT

for any 8’ € (v,8) and P € StGC* using that r > 1. For k > 1, one can take 5’ = 3 and get

_a
2

&5
ST

/ QuQ!* (Pf Q) <

2
Lz L2(u—1ldu)
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For k = 0, we have

Ptf th)

L.z'n LQ(ufldu) ~1- ﬂ

hence taking 8’ = 12 yields

B
s 4

S WHQHCBWHL?-

| et rs-qia) ¢,
0

L2(u—1du)

Proposition B.3. Let s € (0,1) and a regqularity exponent 8 < 2. Given g € Ch, we have

~ s-2
(Pr = PF)gllzz S s 2 (I Fllz2llgllce

for any f € L.
Proof: Given f € L?, we want to bound the H? norm of (P; — ﬁ})g hence let Q € StGC" with r > 2.
It is a linear combination of terms )
~le ~ dt
[ @ (rr @) ¢

with Q' € GCZ 2, Q% € StGC? and P € StGC!. Given u € (0,1], we have
! tu O\ 2 ) dt
< _ . il
L2 N/s <(t+U)2> IPef - Qoo 5

1 r
tu 2 pdt
S lflleslglles | (m) d

/ QuQi* (Pif - Qig) ¢

using that ||P:f||r2 < || f]lz2. This yields

| [ @i (et ¢

2
Lz L2(u—1du)

1 r
_ tu 2 pdt
S lglles | | (—(Hu)g) =7
< B

B=2
s 2 |Iflizzllglles

L2(u—1du)

and the proof is complete.

Proposition B.4. Let a1 € (0,1) and oz, B € R. If
az+06<0 and oa1+az2+ B >0,

then (a1, az,b) — C(ai,az,b) extends in a unique bilinear operator from C** x C2 x CP to C*1T2F8 gnd
from H x Co2 x CP to Hor Ho2th,

Proof: We first consider (a1,as,b) € C* x C*2 x CP. We want to compute the regularity of
C(ai,az,b) = N (P, az,b) — aiMN(az,b)

using a family @ of StGC” with r > |a1 + a2 + 8|. Recall that a term (a,b) can be written as a linear
combination of terms of the form

Yote dt
| rirQia-@in,
0

while 5ba is a linear combination of terms of the form

b, ~, \dt
/0 ¥ (P2o- Gla)
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with Q', Q?, Q4 € StGC2 Q3 € GC372 and P!, P? € StGCIoY . For P? ¢ StGCMY | we already have the
correct regularity since

[ [ aurt (@12 (P Qlan) -qio) 2%

1,1 5 5
ut 2 ts 2 ajtas Bdsdt
< « « b 2 t277
Slaledelalols [ [ () (c25) s 5 1

ajtas+p
pl

S llafla: llazllaz [[blls w
using that a1 € (0,1). We consider P? € StGC® for the remainder of the proof. For all x € M, we have
Clar, a2,b) () = N (Payaz,b) (2) — a1(x) - N(az, b))
=N (ﬁalaz —a1(z) - az, b) (z)

~ (Flsar(“(x)az,b) (2),

since I is bilinear and a;(z) is a scalar and Pia; = a1 up to smooth terms. Thus we only have to consider
a linear combination of terms of the form

/01 /01 P (Qtl ~2' ((me - a1(:v)) . @3&2) . Q%b) (z) %%

4d8

using that / QS = Id up to smooth terms. This gives (QuC(a1,az,b))(z) as a linear combination

of terms of the form

[ Koo ypie (@12 (P2~ (@) - Q) - 20 ) ot
— [ Koo (e (@205 (Par = ar(a") - Qloa) - @20) () 2 Ftaa (')

+ //0“ Kq,(z,2")Kpie(2',2") (a1 (") — al(x’)) (Qiaz - Q7b) (x”)%u(dm’)y(dx”)

1
4 [ [ Koo ') (i) — (o)) (Qhaa - Q3) (o) G (e ()
=A+B+C.

The term A is bounded using cancellations properties. We have

. ~ ds dt
A= [ KQ,‘,Pg-(:c,xﬂ(Q%  (Prar - () - Qlas) ~Q?b) @) 2 L)
a1 az Bdsdt
< 2 g2tz ——
a1l ozl 11 (/ | (2 ) (s+0)%sF 580
st 5 oy Q 8 ds dt
2 2 t2 -
// <t+u > ((s+t)2) (s+1) s t)
aytas+8
< Nt o lazllas ] w557,
using that ay € (0, 1),P2 € StGC° and (a1 + o +8)>0
For the term B, we have
o 2+ dt "
181 S el sl 81 [ [ K Ko a5 e ol
U aj4ag+B dt
<l lazllas 155 / -
0

ajtas+p
< llarllay lazllaz bl w™ 2,

using again that a; € (0,1) and (a1 + a2 + 8) >0
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Finally for C, we also use cancellation properties to get

anth
£ %V(di‘l)l/(dl‘”)

ai(z) —ar(z')|t

1
Cl 5 |\a1na1||a2||a2||b||ﬁ{ [ Kouwa)Kpe@'a)
z' ! Ju t

! ’ ron / |, 228 dt / 7z
+/ / Kq,(z,2" )Kpie(a',x )’al(x)—al(ac )tz TV(dJZ Yv(dz")

! oy, 0248 di
Slallalasleattls{ [ [ Koua)Kpe o yate o) o5 ot i’

1 as+B
+/ / KQU(ZL',l'l)KPflo(13/,13//)d($/,13//)a1t E %I/(dl‘/)l/(dl’//)}

a1 1 ag+B dt 1 tu 2 artants dt
< o s ||b 2 tm 2 — — t 2 -
Slarllesllaallaltls{us [0 %0 [ () 3

alt+ag+pB
< llarllay lazllas [[blls w2,

using that ay € (0,1) and (a2 + 8) < 0. In the end, we have

ajtas+p
|QuClar,az,b)|| 5 llas o lasllas bl ™2
oo

uniformly in u € (0, 1], so the proof is complete for C. The adaptation of the proof to the case a1 € H' is

left

(1
2]

13l
4]

(5]
(6]
(7]
18]
(9]

[10]

11]
12]
13]
14]
115]

[16]

to the reader and follows from the estimates of the Appendix A.

O
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