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The Anderson Hamiltonian on a two-dimensional manifold

Antoine MOUZARD

Abstract

We define the Anderson Hamiltonian H on a two-dimensional manifold using high order para-
controlled calculus. It is a self-adjoint operator with pure point spectrum. We prove estimates
on its eigenvalues which imply a Weyl law for H. Finally, we give a version of Brezis-Gallouét
inequality which implies existence and uniqueness for the cubic nonlinear Schrédinger equation
with multiplicative noise.
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Introduction

The study of singular stochastic Partial Differential Equations (PDEs) has rapidly grown over the
last decade. Following the theory of Lyons’ rough paths and Gubinelli’s controlled paths devel-
oped for singular stochastic ordinary differential equations, new tools have appeared to describe
solutions of such PDEs that share the same philosophy. One first constructs a random space of
functions/distributions from the noise through a renormalisation step; this is purely probabilistic.
One then solves the PDE with classical methods on this random space; this is purely deterministic.
The litterature is also growing and two different approaches have emerged. The first is based on a
local description of distributions which satisfies a precise algebraic structure in order to reassemble
into global objects; this is the theory of regularity structures as devised by Hairer in [18]. The
second approach works directly with global objects and uses tools from harmonic analysis to study
products; this is the paracontrolled calculus designed by Gubinelli, Imkeller and Perkowski in [16].
In both cases, the equation dictates via a fixed point a space of solutions built from the rough
source term of the PDE. There exists interesting relations between the local and the global points
of views, see for example the works [7, 8, 22]. As far as the renormalisation step is concerned,
one has to give a meaning to a number of ill-defined functionnals of the noise; this is how singular
products are dealed with. If the list of such terms is given by the equation, their construction can
be performed independantly of the resolution of the PDE.

To work on manifolds, one has to adapt these methods. For the local approach, Dahlqvist, Diehl
and Driver have adapted regularity structures using local charts to study the parabolic Anderson
model on Riemann surfaces, see [11]. For the global approach, Bailleul, Bernicot and Frey in
[4, 5] used harmonic analysis tools built from the heat semigroup instead of Fourier analysis and



developed paracontrolled calculus on manifolds. As in the initial work [16] of Gubinelli, Imkeller
and Perkwoski, this was only a first order calculus and it constrained the roughness one could deal
with. Bailleul and Bernicot then generalised it to a high order paracontrolled calculus in [6] and
extended the range of regularity one can consider, as far as the analytical step of the problem is
concerned, again working on manifolds.

The Anderson Hamiltonian is given by
H:=A+¢

where £ is a space white noise. It is for example involved in the study of evolution equations such
as the heat equation with random multiplicative noise

Oy = Au + u€

called the Parabolic Anderson model. It first appeared in [2] as a description of a physical phenom-
ena involving quantum-mechanical motion with an effect of mass concentration called Anderson
localization. It also describes random dynamics in random environment, see the book [20] of Konig
for a complete survey in a discrete space setting. In dimension 1, the noise is regular enough for
the multiplication to make sense and the operator has been constructed by Fukushima and Nakao
in [15] without renormalisation using Dirichlet space methods. Dumaz and Labbé recently gave in
[13] a very accurate asymptotic behaviors in one dimension of the Anderson localization. In two
dimensions using paracontrolled calculus, Allez and Chouk were the first to construct the operator
on the torus, see [1]. They introduced the space of strongly paracontrolled distributions to get an
operator from L2 to itself with a renormalisation procedure and proved self-adjointness with pure
point spectrum. They gave bounds on its eigenvalues and a tail estimate for the largest one. They
also studied the large volume limit and gave a bound on the rate of divergence. Then Labbé con-
structed the operator in dimension < 3 in [21] with different boundary coundition using regularity
structures. It relies on a reconstruction theorem in Besov spaces from his work [19] with Hairer. He
also proved self-adjointess with pure point spectrum and gave tail estimate for all the eigenvalues
as well as bounds for the large volume limit. Chouk and van Zuijlen also studied the large volume
limit in two dimensions, see [10]. Finally Gubinelli, Ugurcan and Zachhuber constructed in [17]
the operator in dimension 2 and 3 on the torus using a different approach. With a finer descrip-
tion of the paracontrolled structure, they showed density of the domain in L? before studying the
operator. They also proved self-adjointness with pure point spectrum considering the bilinear form
associated to H and considered evolution PDEs associated to the Anderson Hamiltonian such as
the Schrédinger equation or the wave equation. Zachhuber used this approach in [26] to prove
Strichartz estimate in two dimensions, the problem for d = 3 being the use of a Hopf-Cole type
transformation to construct the domain.

To the best of our knowledge, the present work is the first to deal with the construction of
the Anderson Hamiltonian on a manifold. In particular, the paracontrolled approach with the
heat semigroup deals naturaly with Sobolev spaces on a manifold while we are not aware of any
adaptation of the work [19] of Hairer and Labbé in a manifold setting. We are able to recover
geometric information on the manifold from the spectral properties of the Anderson Hamiltonian
as one can do from the Laplacian. For example, we recover the volume of M via a Weyl law from
the estimates on the spectrum. This raises many interesting associated questions.

In this work, we construct the Anderson Hamiltonian on a two-dimensional manifold using
the high order paracontrolled calculus. We adapt the space-time construction [5, 6] of Bailleul,
Bernicot and Frey to the spatial setting and work with Sobolev spaces; in particular this work
is self-contained. Note that the simpler spatial setting forms a gentle introduction to grasp the
space-time paracontrolled calculus, the only technical difficulty being the use of Sobolev spaces
in addition to the Holder spaces. We emphasize that these tools are of interest on their own in
the study of singular elliptic PDEs on manifolds and somewhat flexible to use. As applications,
it yields existence and uniqueness to the nonlinear Schrodinger equation with multiplicative white
noise using a Brezis-Gallouét type inequality.

In the first section, we introduce the approximation theory based on the heat semigroup and
use it to build the paracontrolled calculus. The second section is devoted to the construction and
study of the Anderson Hamiltonian H on a manifold in two dimensions. We show self-adjointness
with pure point spectrum and provide lower and upper bounds for the eigenvalues. We finally study
the cubic Schrédinger equation in Sections 2.4. Appendix A contains all the technical details of
the approximation theory and Appendix B gives the proof of different continuity estimates for the
paracontrolled calculus.
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1 — Heat semigroup and paracontrolled calculus

On the torus, Fourier analysis yields an approximation of any distributions in D’(T¢). For a
manifold M, the heat semigroup

P = (P)i>0 = (etL)t>0
associated to a nice enough second order differential operator L can be used to regularize dis-
tributions in D’'(M). One can then consider the Calderon decomposition as an analog of the
Paley-Littlewood decomposition with a continuous scaling parameter and

Qi = —tO Py

acting like a localizer on “frequency” of order t=%. After giving the geometric framework, we
introduce the standard families of operators we shall use to define the Besov spaces on M. We
then construct the paraproducts P and P with a number of tools of the high order paracontrolled
calculus needed to study elliptic singular PDEs.

1.1 — Geometric framework

Let (M,d,u) be a complete volume doubling measured Riemannian manifold. We assume M
compact so spatial weight are not needed; everything in this section should work in the unbounded
setting of [5]. All the kernels we consider are with respect to this measure p. Let (V;)1<i<y» be a
family of smooth vector fields identified with first order differential operators on M. Consider the
associated second order operator L given by

Lin.

We assume that L is elliptic. In particular, it implies that the vector fields (V;)1<;<, span smoothly
at every point of M the tangent space and the existence of smooth functions (7;)1<i<,» such that
for any f € CY(M,R) and x € M, we have

Vi) =Y y@)Vilf)(@)Vi().
i=1

It also implies that L is sectorial in L? with kernel the constant functions, it has a bounded H>-
calculus on L? and —L generates a holomorphic semigroup (e~*);~ on L?, see [14]. Given any
collection I = (i1,...,4,) € {1,...,v}", we denote by V; :=V; ...V, the differential operator
of order |I| := n. Under the smoothness and ellipticity conditions, the semigroup has regularity
estimate at any order, that is (t%l Vi)et and et (t%VI) have kernels Ky (z,y) for any ¢ > 0 and
x,y € M that satifies the Gaussian estimates

-1 _

2
Cd(ﬂa‘%y)

and for '’ € M
d(x,x")

Vit
for d(x,2’) < v/t and a constant ¢ > 0. The range of application contains the case of a bounded
domain with its Laplacian associated with periodic or Dirichlet boundary conditions if the bound-
ary is sufficiently regular, see again [14]. Note that the Laplacian can indeed be written in the
Hérmander form, see Strook’s book [24] for example. The operator L : H? C L? — L? is not
invertible since its kernel contains constant function however it is invertible up to a smooth error

term. Indeed, setting
1
L=t ::/ e thdt,
0

we have L o L™! = Id up to the regularizing operator e~ %.

, —1 _dy)?
’Kt<xay) - Kt(x 7y)‘ S M(B(.’IJ, \/i)) € t



1.2 — Approximation theory

All computations below make sense for a choice of large enough integers b and ¢ that are fixed in
any application, we also assume b even. Given z,y € M and ¢t € (0,1], we define the Gaussian

kernel .
d 2\~
gt(x7y) = (x;y) )

1
1 (B(e D) (1 e

with ¢ > 0 a constant. We do not emphasize the dependance on the postive constant ¢ and abuse
notation by writing the same letter G; for two functions corresponding to two different values of
the constant. We have for any s,t € (0, 1]

/ Gi(2,9)Gs (4, 2)dy < Gy, 2).
M

A choice of constant ¢ large enough ensure that

sup sup/ Gi(z,y)dy < oo.
te(0,1]zeM J M

This implies that any linear operator with a kernel pointwisely bounded by G, is bounded in L? (M)
for every p € [1,00]. The family (Gt);e(0,1) is our reference kernel for Gaussian operator; this is the
letter ‘G’ in the following definition.

Definition. We define G as the set of families (Py)ie0,1) of linear operator on M with kernels
pointwisely bounded by

|KPt(x7y)| S gt(xay)
gien any x,y € M.

We consider two such families of operators (ng))te(o,l] and (Pt(b))te(o,l] defined as

tL be—tL
o = Wl a i = qf
with Po(b) = Id. In particular, there exist a polynomial p; of degree (b — 1) such that Pt(b) =
py (tL) et and p,(0) = 1. The family (P;)te(0,1] regularizes distributions while the family (Q¢):e(0,1]
is a kind of localizer on ‘frequency’ of order t~% as one can see with the parabolic scaling of the
Gaussian kernel. In the flat framework of the torus, this can be explicitly written using Fourier
theory. These tools also enjoy cancellation properties as Fourier projectors however it is not as
precise since the operators involved here are not locally supported. For example, the following
simple computation show that the composition

b
(OEPNO ts (2b)
Qo Qg ) o <W> Qits
is small for s < ¢ or t < s but not equal to 0. The importance of the parameter b appears here as
a ‘degree’ of cancellation. One can also see that in the fact that for any polynomial function p of
degree less than 2b, we have Pt(b)p =pand ng)p =0 for any ¢ € (0,1]. We now define the standard
family of Gaussian operators with cancellation that we shall use in this work.

Definition. Let a € [[0,2b]. We define the standard collection of operators with cancellation of order
a as the set StGC® of families

IE4] J (c)>

t 2 Vi)(tL)2 P,

<( 1)(EL)* By te(0,1]

with I, such that a = |I| + j and ¢ € [1,b]. These operators are uniformly bounded in LP(M)
for every p € [1,00] as functions of the parameter t € (0,1]. In particular, a standard family of
operator Q € StGC? can be seen as a bounded map t — Qy from (0,1] to the space of bounded linear
operator on LP(M). We also set

StGClO2 . — J stece.

0<a<2b



Since the first order differential operators V; do not a priori commute with each other, they do
not commute with L and we introduce the notation

(Vig(L)* = o(L)V;

for any function ¢ such that ¢(L) is defined in order to state the following cancellation property.
This is not related to any notion of duality in general. In particular, L is not supposed self-adjoint
here.

Proposition 11. Given a,a’ € [0,2b], let Q' € StGC* and Q? € StGC®. Then for any s,t € (0,1],
the composition QL o Q?* has a kernel pointwisely bounded by

’

s\ % t\ T
KQ%OQ?. (xay)‘ S/ (E) ]ls<t + <S> ﬂsZt gt—!—s(I,y)
ts 2
S <W> Girs(2,9)

with a = min(a,a’).

Proof: Lett € (0,1]. We have
Ql =3V, L'P and Q2=t7Vy L) P
with ¢, € [1,b], a = |I| +j and o' = |I'| 4+ j'. For any ¢,s € (0, 1], the composition is given by

i+’

Qi o Qfo — S%t%’VIL 5 PS(C)Pt(C/)VI/

Qti ata’ i+’ !
= %(?HS) v L PPV
(t+s) 2
and this yields
KQ;oQ?' (l',y) 5 T atal gt+s(x;y)
(t+5)%

’

w‘ﬁ

() 1 (0)

The last estimate follows from a direct computation.

]lsZt }gt-&-s (LE, y)

O

Operators with cancellation but not in this standard form also appear in the description of
solutions to PDEs. This is the role of the set GC® of the following definition.

Definition. Let a € [0,2b]. We define the subset GC* C G as families (Qt)teo,1 of operators
with the following cancellation property. For any s,t € (0,1] and standard family S € StGC with
a' € [a,2b], the operator Qs o S? has a kernel pointwisely bounded by

ts

W) QHS(x,y).

‘KQSOS; (.’E, y)| 5 <

The set StGC can be used to define Besov spaces on a manifold. For any f € LP(M) with
p € [1,00[ or f € C(M), we have the following reproducing Calder6én formula

1
e p®) @ At o)
r=tmpr = [ QP rF+ PO

We interpret it as an analog to the Paley-Littlewood decomposition of f on a manifold but with a
continuous parameter. Indeed, the measure % gives unit mass to the dyadic intervals [2_(”‘1), 277]

with the operator ng) as a kind of multiplier roughly localized at frequencies of size t=2. This
motivates the following definition.

Definition. Given any p,q € [1,00] and a € (—2b,2b), we define the Besov space By (M) as the
set of distribution f € D'(M) such that

Wl =N lavan + 2, 172 00l

Ja| <k<2b

La(t—1ar) < OO



Remark: As far as reqularity is concerned, a limitation appears with this definition of By, since
we can only work with reqularity exponent o € (—2b,2b). This is only technical and b can be taken
as large as needed.

The Hoélder spaces C* := B, , and Sobolev spaces H® := Bf, are of particular interest with

I fllee :=lle™"flle + sup sup t%[|Qifl|Le
QeStGCk t€(0,1]

|| <k<2b
and
—L —a 2 dt
[ flle :=lle” " fllz2 + sup t IIQthIsz
QeStGCF
la|<k<2b

This is indeed a generalisation of the classical Holder spaces as stated in the following proposition.
We shall denote C'* the classical spaces of Holder functions with the norm

[f(z) = f(y)l

[fllce == Il fllze + sup
THy d(x’y)a

for 0 < @ < 1. Note that for any integer regularity exponent, C® # C® since C! is the space of
Lipschitz functions. The proof of the following proposition is left to the reader, it works exactly as
Proposition 5 in [5].

Proposition. For any a € (0,1), we have C* = C* and the norms |- ||ce and |- ||ce are equivalent.

We have an analog result for Sobolev spaces however one has to be careful in the case of a
manifold with boundary. The semigroup is obtained with Dirichlet conditions hence the associated
Sobolev spaces are the analog of the classical H spaces. We keep the notation H* but the reader
should keep that in mind.

Given a distribution f € C* and Q € StGC®, we have by definition a bound for |Q:f|lo only
for |a] < k. If f is a distribution and not a function, the quantity diverges and we still have the
estimate for all k; this will be important to keep an accurate track of the regularity. The same
holds for negative Sobolev spaces.

Proposition 1.2. Let —2b < o < 0 and P € StGC* with k € [0,b]. For f € C*, we have

_a 1
sup 72| Pefllre S o fllce-
t€(0,1] -«

For f € H*, we have
_a 1
It 2 1P fllz2 2 e—ran) S m”f”%m

Proof: Since P € StGC* with k € [0,2b], there exist I = (iy,...,i,),j € N and ¢ € [1,b] such
that k = |I] + j and
P = (V) (tL)E P

If |o| < k, the result holds by definition of C*. If |a| > k, we have

Pf = (t7 Vi)t %(/Q”f +P(C)f)

t

:/1 ()2(5'5V,)(3L) < p) f%+Rtf
t

S

1 H
-/ (t) 0 F % 4 R
, \s s

with Qs := (s%l Vi)(sL)™= PV € stGCH* and R, = (t% VI)(tL)%Pl(C). The term R;f is bounded
because of the smoothing operator Pl(c). Since ¢ > 1, @ belongs at least to StGC**! hence if

J+c




|a| < k+ 1 we have

1 k
—a Y t\? ds
CHRS <0 [ (5) 101
t

L\ ds
<lfle [ (2)
: \s S

< [ flle-

k—a

and this yields the result using that & < 0 < k hence k — o > 0. If |o| > k + 1, using the same
integral representation for () and an induction completes the proof of the L*>°-estimate. For the
L?-estimate, we interpolate between L' and L as in Appendix A to get

1 k
_a t\? ds
= () 1Qufl2 22
. \s s

2
< — a.
< Il

1t 2| Pefll 2l e -rar) <

L2(t—1dt)

O

One can see that the bound diverges as a goes to 0 if the operator does not encode any
cancellation, that is k¥ = 0. In the case o = 0, we have | P;f||r~ < || f]lz~ hence the L>-bound
holds. However the L2-bound is not satisfied since || P, f||z> < ||f]|z2 only implies

1 1
dt dt
[ 1S <z [ G =oc.
0 0

This will explain an important difference for paraproducts on negative Hélder and Sobolev spaces
as one can see with Propositions 1.3 and 1.4.

1.3 — Intertwined paraproducts

We use the standard family of Gaussian operators to study the product of distributions as one
can do using the Paley-Littlewood decomposition in the flat case; this lead to the definition of the
paraproduct P and the resonant term [ that describe products. Then we introduce the paraproduct
P intertwined with P to describe solutions of elliptic PDEs.

1.3.1 — Paraproduct and resonant term

One can define the product of a distributions f € D'(M) with a smooth function g € D(M). If
however the distribution f belongs to a Holder space C* with a < 0, one might hope to do better.
It is indeed the case as we can see with the next theorem which is nothing more than Young’s
integration condition.

Theorem. The multiplication (f,g) — fg extends in a unique bilinear operator from C* x CP to
CM if and only if a+ > 0.

We are however interested in the case a + f < 0 when dealing with singular stochastic PDEs,
as we are interested to stochastic ODEs where Young’s condition is not verified. Following [16],
Bailleul, Bernicot and Frey in [4, 5, 6] have defined two bilinear operators Pyg and I(f, g) such
that we have the formal decomposition of the product of two distributions as

fg=Prg+N(f,g9) +Pyf

where the paraproducts Pyg and Py f are well-defined for any distibutions f, g € D'(M). Of course,
this means that M(f, g) does have a meaning for f € C* and g € C” if and only if a + 3 > 0; this is
the resonant term. We want this decomposition to keep an accurate track of the regularity of each
terms. More precisely, Prg and M(f, g) should belong to C**# if a < 0 while P, f to the less regular
space C“ as it is the case for the torus. We construct in this work such paraproduct and resonant
term for space distributions on our manifold M, we mainly follow [5] in the simpler spatial setting.



Let f,g € D'(M). Formaly, we have

fg=lim P (P Pg)

dt

1
= /0 (@@ POg)+ PP(Q - PVg) + PV (V1 QM9) | T

b b b
R0 (Vg plY5).
The last term being smooth, it does not bother us. Remark that the choice of the constant “1” is
arbitrary and it might be useful to change it, as one can see with the construction of the Anderson
Hamiltonian. The family P(®) does not encode any cancellation while Q®) encodes cancellation
of order 2b so each terms in the integral have one operator with a lot of cancellations and two

with none. Since we do not have nice estimates for these terms, we want to transfer some of the
cancellation from Q® to the P(®) in each term. To do so, we use the Leibnitz rule

Vi(fg) = Vi(f)g + fVi(g).

For example, we have
1 1
- dt - dt
/0 P (v Vs M) & = /0 PO (V)R V- M) <

- / RY (Vavoel s - (vivipg) <

0
so if we denote by (c1, ¢, c3) the cancellation of the three operators in the integral, we have
(0,2b,0) = (1,2b—1,0) + (0,2b — 1,1).

This shows that we will not be able to have cancellation for all three operators at the same time
but at least two. This is where the notation @® comes into play and multiple uses of this trick
allows to decompose the product as

! dt
_ le (N2p 3, L
fg= Z Z bQ/o Qy (Qtf th) n
acA, QestGC2
where Q = (Q1, @2, Q3), StGC* = StGC™ x StGC* x StGC*,
Ay = {(al,ag,ag) eN®: a1 +as+a3=2b and ay,as or az = b}

and bq € R is a real coefficient associated to Q. In particular, only one of the a; in a € 4, can be
less than 2 and this gives us three terms Pfg, Py f and M(f, g) such that

f9=Prg+N(f.9)+Pyf + P (P f-Plg).

Definition. Given two distributions f, g € D'(M), we define the paraproduct and the resonant term
as
Po= Y Y ke[ Qi (@iralg Y
f9- Q o t t t P
acAyiaz<t QestGea

and

! le 2 3 di
o= ¥ 2 b Q@) T

acAp;az,az>f QESIGC?

In particular, P;g is a linear combination of

1
d
| @ rra) T

and M(f,g) of
! 3 1 2 dt
/0 Py (Qthtg)7



with Q', Q2 € StGC? and P € StGCI%Y. We insist that in the following P will denote an operator

with possibly no cancellations while () will denote an operator with cancellations of order at least
b

5

These operators enjoy the same continuity estimates as their Fourier counterparts from which
one can recover Young’s condition. We gives the proof here as it is a good way to get used to the
approximation theory.

Proposition 1.3. Let o, 3 € (—2b,2b) be regularity exponents.
. If a >0, then (f,g) — Prg is continuous from C* x CP to CP.
. If a <0, then (f,g) — Prg is continuous from C* x CP to CoFP.
. Ifa+ B >0, then (f,g) — N(f,g) is continuous from C* x C? to Co+B,

Proof: Let us first consider the case @ < 0 and let @ € StGC" with r > |a + 3|. Recall that Psg
is a linear combination of terms of the form

1
| arvs-aio) ¢
0

with Q', Q? € StGC? and P € StGCI%Y. Since a < 0, 1.2 gives

1
a+ d
[ @i (nr-aio) | < /O((tfs)g) Il lgllest ™5 &

a+B
S5 7 | fllexllglles

for any s € (0,1) hence P;g € Co+5.

For o > 0, we consider @ € StGC" with r > |3|. In this case, we have |P,f| < ||f|lce for all
€ (0,1) so

1
dt
[ e (s @) | < e ol
0

hence P ;g € CP.
For the resonant term, let Q € StGC” with r > |a + §|. We have

\/ Q.77 (@1 @20) F| S Ileslalles ([ d’f+/: () e d)

a+8

S5 7 1 flleallflles
using that a + 8 > 0 hence M(f,g) € C**A.
U

We also have estimates for the Sobolev spaces whose proofs are given in Proposition B.1 from
Appendix B.

Proposition 1.4. Let o, 8 € (—2b,2b) be reqularity exponents.
. If a >0, then (f,g) — Psg is continuous from C* x HP to HP and from H® x CP to HP.
. If a <0, then (f,g) — Psg is continuous from C* x HP to HOP and from H* x CP to HOFP.
. Ifa+ B >0, then (f,g) = N(f,g) is continuous from H* x C8 to H 7.

In particular, this implies that (f, g) — Pyg is continuous from L? x C? to HP~9 for all § > 0.
For Sobolev spaces, there is a small loss of regularity and one does not recover the space H” while
this does not happen for Holder spaces. This comes from the remark following Proposition 1.2.

As in the works [17, 26] of Gubinelli, Ugurcan and Zachhuber, one last property of P and
M in terms of Sobolev spaces is that P is almost the adjoint of 1 when L is self-adjoint in the
sense that the difference is more regular. A careful track of the previous computation show
that for all a € {(0,b,b),(b,0,b),(b,b,0)} and Q € StGC*, we have bqg = 0 except for Q =
(P, Qb2 /2y (/D p®) 12y o1 (/2 /), p<b ) where bq = 1. Define the correc-
tor for almost duality as
A(a,b,c) := <a, (s, c)> — <F’ab7 c>.

Proposition 1.5. Assume L self-adjoint. Let o, B,y € (—2b,2b) such that 3+~ < 1 and a+B+v > 0.
If a < 1, then (a,b,c) — A(a,b,c) extends in a unique trilinear operator from H* x C# x H7 to R.



Proof: A(a,b,c) is a linear combination of

[ {{wre(@iv-0i0)) - (e (pra- ate). )}

0

with P!, P2 € StGCY and Q',Q2,Q% Q* € StGC2. We first consider P!, P2 € StGC”. By
construction of the paraproduct and the resonant term, we have P! = P2 = P®) —=: P and
1= Q% =Q°=Q*=Q"? =: Q hence we consider

dt

/01 {<Q,Pt(th : th)> — <Qt<Pta ) th)’c>}7'

Since L is self-adjoint, P; and @Q; are too and we have

/ (@b @)Y - / (P Qi)Y

= 1 Pia - Qib, Qe @
0 t
dt

= /01 <Qt(Pta'th),C> t

hence the difference is equal to 0. Let us now consider the terms with P!, P? € $tGCHY and bound
each of them independently. Since a + 8+ v > 0, we have

1
dt /0 Ptl. (ng ) ch)

! le 2 3 dt
(a. P (@3- Qi) )T | S llallses 7
< llallse= blles el

t

0 HB+

with 8+ v < 1 and using « € (0,1) we have

! dt ! dt
/ < ?.(PtQG"Q?b)’C>7 5 H/ Q?O(PtQ(J,.Q?b)tH HCH”H“’
0 0 Hot+B

S llallwe[bllesllell 2

which completes the proof since a + 8 4+ v > 0.

1.3.2 — Intertwined paraproducts

The description of solution to elliptic PDEs involving L using paracontrolled calculus necessitate
to study how L and P interacte with each other. Following Bailleul, Bernicot and Frey in [5], we
want to define a new paraproduct P intertwined with the paraproduct through

LP;g=PsLyg.
Since L is not invertible, we use L™! an inverse up to a smooth error term. Hence a more conceivable
intertwining relation is ~
LPyg=PsLg— e L (PsLg).
Definition. Given any distributions f,g € D' (M), we define ﬁfg as
5fg = L_leLg

for which we have the explicit formula

Prg= > > b /1 0 (fo : @?9) @

0 t
acaax<f QESLGC?

where QF := QL(tL)™ and Q3 := Q3(tL).

It is immediate that C~23 belongs to StGC*™2. The cancellation property of @1 is given by the
following lemma. Remark that it is not in standard form anymore, this is where the GC class comes
into play.

Lemma 1.6. Let Q € StGC2. Then Q. := Q.(tL)™" defines a family that belongs to GC2 2 for b
large enough.

10



Proof: Since Q ¢ StGC%, there exist I = (i1,...,i,),7 € N and ¢ € [1,b] such that g =1+
and _

Q. = (t7V;)(tL)3 PL°.
This immediatly follows from

Q.(tL)~ = (t2Vy)(tL)* (tL)~ P

1]

2 Vi) (L)'= P9(1d — eb).

O

This lemma immediatly yields the following proposition, that is P has the same structure as P
hence the same continuity estimates.

Proposition 1.7. For any distribution f,g € D' (M), Igfg is given as a linear combination of terms

of the form )
| @i (qtr-Gia) T

where @1 € GCg_Q,Q2 e StGCl% gnd @3 € StGC* 2. Thus for any regularity exponent o, 5 €
(—2b,2b), we have the following continuity results.

« Ifa >0, then (f,g9) — Isfg is continuous from C* x CP to CP.
« Ifa <0, then (f,g9) — ﬁfg is continuous from C* x CP to Cot5.
We also have the same associated Sobolev estimates.
« Ifa>0, then (f,g) — ﬁfg is continuous from C* x HP to HP and from H* x CP to HP.
Ifa <0, then (f,g9) — ﬁfg is continuous from C* x HP to H8 and from H® x C8 to H+H.

1.4 — Correctors and commutators

The study of elliptic PDEs with singular product involves resonant term given a function u para-
controlled by a noise dependent function X € C%, that is

u = ﬁ,X—i—uu

with ' € C® and u¥ € C?* a smoother remainder. If o < 1, the product u( is singular for ¢ € C*2
however we have the formal decomposition

N(u,¢) = N(PuwX,¢) + N, ) = w'N(X,¢) + C(u', X, ¢) + N(u?, ()
with the corrector C introduced by Gubinelli, Imkeller and Perkowski in [16] defined as
C(al, az, b) = ﬂ(ﬁalaz, b) — all'l(ag, b)

If % < a < 1, then the product M(uf,() is well-defined. Thus we are able to give a meaning
to the product u{ for u paracontrolled by X once we have a proper continuity estimate for C
and a meaning to the product X(; this is the controlled rough path philosophy. This last task
is only a probabilistic one and does not impact the analytical resolution of the equation, this is
the renormalisation step. We state here a continuity estimate for C while its proof is given in
Proposition B.4 in Appendix B.

Proposition 1.8. Let a; € (0,1) and az, 8 € R. If
as+8<0 and o +as+ 08>0,

then (ay,as,b) + C(ai,as,b) extends in a unique continuous operator from C*t x C%2 x CP to
Ca1+a2+ﬁ'

We also have the following proposition to work with Sobolev spaces.
Proposition 1.9. Let oy € (0,1) and oz, 3 € R. If
as+8<0 and o +as+ 48>0,

then (a1, a2,b) — C(a1,a9,b) extends in a unique continuous operator from H®' x C*2 x CP to
’Ha1+0t2+ﬁ_
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Remark: Note that the first paramater oy has to be smaller than 1. This is due to the fact that
for any function f € C* with o > 0, one has

(@) = fW)] < [ fllewd(a,y)*"

with a factor no greater than 1 even if o is. This means that we are not able to benefit from
reqularity greater than 1 with only a first order Taylor expansion. To work with a function of
regularity ay € (1,2), one have to consider the refined corrector defined in the flat one dimensional
case by

c® (al,ag, b) () := I_I(Isalag, b) (z) — al(x)l_l(ag, b) (z) —a) (a:)l_l(ls(gc,.)ag, b) (z)

that we interpret as a first order refined corrector for x € T. There is an analog refined corrector
on a manifold M, see [6]. However, this will not be needed in this work.

We need the corrector C to study ill-defined product, this is the condition as + 5 < 0. However,
we also have to investigate well-defined product to get more accurate descriptions. For this purpose,
we introduce the commutator

D(a1, as,b) := NM(Pq,as,b) — Py, M(az, b).

Proposition 110. Let a; € (0,1) and az, 3 > 0. Then (a1, az,b) — D(a1,as2,b) extends in a unique
continuous operator from C* x C®? x CP to Co1T2+8 and from H* x C*2 x CP to HM T2 +h,

Again, one can bypass the condition «a; € (0,1) using refined commutators. Note that in their
initial work [16], Gubinelli, Imkeller and Perkowski call C a commutator whereas with the point of
view of high order paracontrolled calculus of [6], the operator D is closer to be a commutator than
C. We need one final commutator that swaps paraproducts defined by

S(al,ag, b) = Pbﬁalag — Pa1 Pb(lg.

Proposition 1.11. Let a1,as € R and 8 < 0. Then (a1, as2,b) — S(ai,az,b) extends in a unique
continuous operator from C* x C®? x CP to Co1T2+B and from H* x C* x CP to HM +o2+5,

2 — The Anderson Hamiltonian

In this section, we define and study the Anderson Hamiltonian
H:=L+¢

where —L is the Laplace-Beltrami operator on a compact two-dimensional manifold M without
boundary or with a smooth boundary and Dirichlet conditions. To apply the construction of the
first section, one needs to have an Hormander representation for L. This is possible in this case
with a number of vector fields possibly greater than the dimension, see for example Section 4.2.1
from Stroock’s book [24]. The random potential £ is a spatial white noise and belongs almost
surely to C%~2 for any a < 1. For a generic function u € L2, the product u¢ is ill-defined hence one
needs to find a proper domain for the operator. A natural method would be to take the closure
of the subspace of smooth functions with the domain norm ||u|/p2 + ||Hul||r2. However this yields
a trivial domain since Hu has the same regularity as the noise, because of the product u¢ if w is
smooth, thus it does not belong to L2?. Following the recent study of singular SPDEs, one can
construct a random domain D= depending on an enhancement = of the noise obtained through a
renormalisation procedure. One can use the paraproduct to decompose the product for u € H* as

ué = Py & + Peu+ N(u, §).

In this expression, the roughest term is P,& € C*~2 while Peu + M(u, £) formaly belongs to H?*2.
For a function u in the domain, we want to cancel out the roughest part of the product using the
Laplacian term Lu, hence we want

Lu=P,¢+f

with vf € H2*~2, This suggests the paracontrolled expansion

u=P,X +ut

12



with
X =L

and uf € H?*. We insist that we want functions in the domain to encode exactly what is needed
to have a cancellation between the Laplacian and the product. In particular, H is not treated at
all like a perturbation of the Laplacian.

At this point, two natural questions arise. Is the subspace of such paracontrolled functions
dense in L? and can one make sense of the singular product?

1) For the first question, one can introduce a parameter s > 0, in the spirit of what Gubinelli,
Ugurcan and Zachhuber did in [17], and consider the modified paracontrolled expansion

uzﬁiX—Fuﬁ

with the truncated paraproduct P* defined below. For s = $(Z) small enough, the map
D% (u) == u — 5;X is invertible as a perturbation of the identity and one can show that the
subspace of such paracontrolled functions is indeed dense. The parameter s will also be a
very useful tool to investigate the different properties of H. Indeed, the Anderson operator
will be given as

Hu = Lu® + F= (u)

with Fz ¢ : D(H) C L? — L? an explicit operator and as s goes to 0, u! gets closer to u
while Fg ¢ diverges. These different representations of H will yield a family of bounds on the
eigenvalues (An(Z)) ., of H of the form

m(Z,8)A\, —m(Z,38) < A\ (B) <mT(E,8) A\, +m(E, )

with (A,)n>1 the eigenvalues of L. In partiular, m™(Z,s) and m™*(Z, s) converge to 1 while
m(Z, s) diverges almost surely as s goes to 0.

2) For the second question, one introduces the corrector C with
M(u, €) = ul(X,€) + C(u, X, ) + N, &)

for u paracontrolled by X. One has to define the product M(X,¢) independently of the
operator, this is the renormalisation step. To do so, we use the Wick product and set

MY, €) = lim (N(X., &) ~ E[N(X.,€)] )

with &, a regularisation of the noise. In some sense explained in Proposition 2.8, the operator
H is the limit of the renormalised operators

H.=L+¢& —c.

with c. := E[I'I(XE, fe)] a smooth function diverging almost surely as € goes to 0. Note that
on the torus, the noise is invariant by translation and c. is constant.

The approach sketched above yields an operator H : D(H) C L? — H?*~2 with D(H) the space
of paracontrolled functions. In two dimensions, 2ac — 2 < 0 hence one needs to refine the definition
of the domain to get an unbounded operator in L?. To this purpose, Allez and Chouk introduced in
[1] the subspace of D(H) of strongly paracontrolled functions still dense in L?. This was also used
by Gubinelli, Ugurcan and Zachhuber in [17] and adapted to the dimension 3 using a Hopf-Cole
type transformation. We present here a different approach based on a higher order expansion. In
particular, the domain of H will consist of functions u such that

where X; € C®, X, € C?* are noise-dependent functions and uf € H2. Note that since we want
to get bounds in =, quantitative estimates are needed and we keep track of the different explicit
constants that appear, in particular how small s needs to be with respect to the noise. If one is
only interest in qualitative results, details of almost all computations can be skipped.

We shall first construct in Section 2.1 the enhanced noise = from £ by a renormalisation proce-
dure and prove exponential moments for its norm. The domain Dz of H is constructed in Section
2.2 and proved to be dense using a truncated paraproduct P®. We show in particular in Proposi-
tion 2.6 that the natural norms of D= are equivalent to the norm operator; this will give the upper
bound for the eigenvalues. Section 2.2 is ended with the computation of the Holder regularity of
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the elements of the domain. After showing that the operator is closed, we show in Section 2.3 that
H is the limit of the operators H. in some sense which yields the symmetry of H. We then control
in Proposition 2.9 the H#' norm of uf from the associated bilinear form applied to w; this will give
the lower bound for the eigenvalues. This gives self-adjointness and pure point spectrum using the
Babuska-Lax-Milgram theorem and we conclude the section with a bound on the convergence of
the eigenvalues of H, to H. Section 2.4 treats the Schrédinger equation.

As in the work of Allez and Chouk [1], Labbé [21] and of Gubinelli, Ugurcan and Zachhuber
[17], we construct a dense random subspace of L? though a renormalisation step to get a self-
adjoint operator with pure point spectrum. Our approach is different since we perform a second
order expansion using paracontrolled calculus based on the heat semigroup on the manifold M.
We refine the upper bounds on the eigenvalues obtained in [1] on the torus while also providing
lower bounds. We get upper bounds for P(A\,(Z) < A) for A to 400 and —oo. For A to —oo, a
bound was first given in [21] for a bounded domain with different boundary conditions. We have
a more explicit dependence on n while a less precise bound with respect to A. To the best of our
knowledge, no bounds for A to 400 were known. We also prove that the eigenfunctions of H belong
to C1~ while the works [1, 21, 17] only gave Sobolev regularity. For the Schrédinger equation, we
get on a manifold the same result as Gubinelli, Ugurcan and Zachhuber get on the torus, see [17].
As in their work, our construction of the Hamilton Anderson on M could be used to study other
evolution PDEs. All these results are new in our geometrical framework.

2.1 — Renormalisation

As explained in the introduction, an element of the domain of H should behave like the linear part
X := L7'¢ hence the product ué does not make sense in two dimensions. Using the corrector, we
are able to define the product u{ for u paracontrolled by X once the product X¢ is defined. To do
0, a naive approach would be to regularize the noise where £, = ¥(eL)¢ is a regularisation of the
noise and take € to 0. The only condition we take is ® such that (®(cL)). belongs to the class G,
for example ®(eL) = €L works. Since the product is ill-defined, the quantity M(X.,¢.) diverges
as € goes to 0 with X, := L™'¢.. The now usual way is to substract another diverging quantity c.
such that the limit
M(X, ) == lim (n(XE,ga) _ cE)
e—0

exists and take this as the definition of the product. This is the Wick renormalisation and the
purpose of the following theorem with the renormalised Anderson Hamiltonian

H..=L+¢& —c..

Theorem 24. Let o < 1 and
e, = ]E[I'I(Xg, gg)} .

Then there exists a random distribution N(X, &) that belongs almost surely to C**~2 and such that

tim E[[[1(X,€) — (X, &) — 0)[[oaa 2] =0

foranyp>1.

Proof: Since the noise is Gaussian, we only need to control second order moment using hyper-
contractivity. The resonant term MN(X,,&.) is a linear combination of terms of the form

1 de
1. 1:/0 Py (Q%Xs : Qt2§€) T

with P € StGC* and Q' Q% ¢ StGC2. We also define the renormalised quantity
Je =1, — E[L].

Let u € (0,1),z € M and Q € StGC" with r > |2« — 2|. The expectation E [|Q, () (x)[?] is given
by the integral over M? x [0,1]? of

Kq,re (0,9)Ka, ps (0,2 E[ QX () Q36 () QX () Q26.(2)]
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against the measure ;(dy)u(dz)(ts)1dtds. Using the Wick formula, we have

E[QIX.(y) Q3 (1)Q1X- (=) Q%€ (2)] = E [} X-() Q3 (v)] E [QLX.(2)Q2-(2)]

+E[Q) Xe(1)Q: Xe (2)] E [Q7€:(1)Q76:(2)] + E [Qy Xe (1) Q36 (2)] E [QiX:(2) Q7 (y)]
=1)+2)+06)

and this yields
E [|Qu()(@)]*] = 1M (@) + 1P (x) + 1) (x).

The first term corresponds exactly to the extracted diverging quantity since

dt

1 2
1 -z| [ our (@x.-¢i6) §] ~Elou)’

and we have
B [1Qu () @] = E [{Qu(1)@) - BIQu (1))} | = 10) + 10,

Using that (¥(cL)). belongs to G, £ is an isometry from L? to square-integrable random variables
and lemma 1.6, we have

13 (z) + 18 () 5/ o KQUP;(%?J)KQuP;(%Z)<gze+t+s(ya'),gze+t+s(2a')>2M(dy)ﬂ(dz)t5dtd5
M2 J[0,1)2

S / 0.1] Kq,ps(2,y)Kq,ps(7,2)G2e 1145(Y, 2)?p(dy) pu(dz)tsdtds
M2 J[0,1]2

5 / ,/[ ] “ t(x’ y)g w 5($7 Z)925+t+5(y7 Z)Q,U(dy)/l(dZ)tSdtds
M2 J[0,1]2

,S / / (25 +t+ S)_%gqut (xa y)gu+s (xa Z)g25+t+s (ya Z)u(dy)ﬂ(dz)tSdtds
M2 J[0,1]2

4
2

g/ (2 +t+8) "2 (c+utt+s) Ttsdids
[0,1]2

<(e4u)*d

hence the family (H(Xe,gs) — c€)€>0 is bounded in C?*~2 for any o < 1 since d = 2. These
computations also show that the associated linear combination of

dt

J = /01 {P; (QiX - Qi) —E [P (Q1X - Q7¢)] } t

yields a well-defined random distribution of C2*~2 for o < 1 that we denote IM(X,¢). The same
type of computations show the convergence and completes the proof.

O
The enhanced noise is defined as
== (6,N(X,6) € A°

where X := C*~2 x C2%~2. One has to keep in mind that the notation M(X, &) is only suggestive.
In particular for almost every w, one has

N(X, ) (@) # N(X (W), §(w))

since the product is almost surely ill-defined. We also denote the regularized enhanced noise
B, = (56, Mn(x.,¢&)— cg) with the norm

HE - 56”?(0‘ = ”5 - feHC“—Q + HH(X7 5) - n(XE,fE) + CEHCQckz

which goes to 0 as € goes to 0. Using that the noise is Gaussian and almost surely in C~'=* for all
Kk > 0, we have exponential moment for the norm of the enhanced noise.

Proposition 2.2. There exists h > 0 such that

E eh“fﬂza—z+h‘|n(va)H02a—2} < co.
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Proof: Tett c (0,1) and Q € StGC" with r > |a — 2|. Using the Gaussian hypercontractivity,
we have

B[10:¢l7,] = | BlQeP@)udo)
<(-1! [ BlQePw] uds)
M
hence we only need to bound the second moment, which is bounded by

L2 (2)] = z, )% <;'
Ell@eef @) = IKaue iz S g7

l
Using that BE 2P <y B2 we have

2p, 2p 00,007
E {eh‘|5‘|ia—2} — Z E[ll¢)? ]
p>0 p
_Z E[I€1%-.] + *E (38 2+1]
P>po p 827) 2p
2p - 1P
< Z E[Jl¢l|..] ™ + Z ———— Vol(M)
P>po

for py > % hence the result for h small enough. For the bound on M(X,¢), the computations
are the same without the square since it belongs to the second Wiener chaos hence Gaussian
hypercontractivity gives

E[|Q:N(X, )" (z)] < (p— 1)? E[|Q:N(X, )[*(2)]

(NS

2.2 — Domain of the Hamiltonian

We first motivate the definition of the domain. Let o € (%, 1) such that £ belongs almost surely

to C*2. Let X € C® be a noise-dependent function and consider u = Igu/X + u* a function
paracontrolled by X with v/ € H® and u* € H?*. Then

Hu=Lu+&u
= L(PuwX +uf) + Pul + Peu+ NPy X +ub,€)
= PwLX +Py& + (Lt + Peu+ u/N(X,€) + C(, X,€) + N(uh,€) ).
Taking v’ = v and —LX = &, the first two terms cancel each other and we get
Hu = Lu* + Peu + ul(X, €) + C(u, X, &) + N(u?, &) € H* 2.

This yields an unbounded operator in L? with values in H?*~2. Since 2a — 2 < 0, Hu does not
belong to L? hence we do not have an operator from L? to itself and this makes harder to study
the spectral properties of H. To get around this, Allez and Chouk introduced in [1] the subspace of
functions u paracontrolled by L~1¢ such that Hu does belong to L? called strongly paracontrolled
functions. This approach was also used by Gubinelli, Ugurcan and Zachhuber in [17] however we
proceed differently and use higher order expansions. Let X := X and X» € C23‘ be another noise-
dependent function. Given us € H® and ub € H3* we consider u = P, X1 + Pu,X2 + ul and we
have

Hu = PuzLX2 + un(th) + C(ualeg) + Pu2n(X2a§) + D(u2aX27£)
+ PuPe X1 + S(u, X2,8) + PePuy Xo + Peuf + Luf + M(uf€).

Taking up = w and —LX, = MN(X71,§) + P X; cancels the terms of Sobolev regularity 2« — 2 and
we get

Hu = n(u7 I_I(Xl,f)) + PI‘I(Xl,é)u + C(U7X1a§) + Pun(X27§) + D(u7X2a§)
+S(u, Xa,&) 4+ PePu Xy + Peuf + Luf + N(uf, €)
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hence Hu € H3*~2 C L?. This motivates the following definition for the domain D= of H with

—LX;:=¢ and —LX5:=T(X1,§)+PcX.

Definition. We define the set D= of functions paracontrolled by = as

D= .= {u € L2; ut = — 5UX1 — 5UX2 € 7—[2}.

The domain D= is the random subspace of functions v € L? paracontrolled by X; and X5 up
to a remainder uf € H? given by the explicit formula

uf = ®(u) :=u— P X; — P X,.

With this notation, we have Dz = ®~1(#?) and since X; + X, € C%, we actually have D= C H”?
for every 8 < a. However, we have no idea at this point if this domain is trivial or dense in L2
and an inverse to ® would be useful. However, it is not necessarily invertible so we introduce a
parameter s > 0 and consider

where P* is defined as

~7g = Z Z bQ/ ~t1. (Q?f@fg) %

s
ac.ay; b QeStGea 0
bia2<3

The important property is that while still encoding the important information of the paraproduct
P, the truncated paraproduct P® is small as an operator for s small; this is quantified as follows
and proved in Proposition B.2 in Appendix B.

Proposition 2.3. Let vy € (0,1) be a reqularity exponent and X € CY. For any 3 € [0,7), we have

=8

~ s
[ PuXL2me S

4
Y-8

[ XTle

Since X; and X5 depends continuously on Z, this implies the existence of m > 0 such that

a—8

S 4

IPSX1 + P5Xallys <m
a—pf

1Bl xa (L + [l xe) ull 22

thus the operator u ﬁZ(X 1+ X3) is continuous from L? to H? for B € [0, a) and arbitrary small
as s goes to 0. Hence we get that
o°:HP = HP

is invertible for s = s(Z, 5) small enough as a perturbation of the identity. Since P, X; — P:X; is a
smooth function for any s > 0, the domain is still given by

D= = &7 (H?) = (%) (1)
and we have a decomposition given by ®° for any u € D=, that is

u=P5X| + P53 X, + ®°(u).

In particular, we emphasize that the domain does not depend on s while the decomposition
we consider for element of the domain might. We denote

= [|Z]| xe

to keep track of the quantitative dependance with respect to the enhanced noise = and lighten the
notation. We use the letter x as a reminder of the noise dependance. For any 0 < 8 < «, we define
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such that for s < sg(Z), the operator ®* : H® — HP is invertible and we denote I its inverse. We
choose to drop the parameter s in the notation to lighten the computations however the reader
should keep in mind that the map I' depends on s. It is implicitly characterized by the relation

Tuf = P2 X1 + PSs Xo + ut
for any u* € HP. Our choice of P is motivated by the preservation of the intertwining relation
P*=L7'oP'oL

with P® defined as P*. The map I" will be a crucial tool to study the domain D=, in particular to

show density in L2. Continuity estimates for ®° and I' are given in the next proposition. Note that
in the following, this bound of the form ||a — b|| < ¢ will be used as ||a]| < ||b]| + ¢ or ||b]] < ||a] +c.

Proposition 2.4. Let 3 € [0,a) and s € (0,1). We have

a—

B
s T (14 2)||ul e

m
D% (u) — <
9% () = ullpr <

B

If moreover s < sg(2), this implies

1

T I35 < ) 1345

_ (XL—BS#I( +x)

Proof: The bounds on ®° follows directly from proposotion 2.3. Moreover since

arfﬂsazﬂx(l +xz)<1
for s < sg(Z), the map ®* : H”? — HF is invertible and we have
Pt < et i L]
1— g5 a(l+a)

O

Let us insist that ||uf s is always controlled by ||u4s while s need to be small depending for
l|lu||2s to be controlled by ||uf||;s. We also define the map T'. associated to the regularized noise
= as - ~

FE'U/’i = Pis—.‘aqul(E) + P?Equég) + U/u
with
~LXF:=¢ and - LX) :=N(XP, &) — . + P X1,
It satisfies the same bound as I' with ||Z¢||x« and the following approximation lemma holds. We

do not need to explicit the constant, it depends polynomialy on the noise = and diverges as s goes
to sg(2).
Lemma 2.5. For any 0 < < a and 0 < s < sg(2), we have

IHd = TP |2 e Sz, 12 — Eellao.

In particular, this implies the norm convergence of I's to T' with the bound

IT — Tellps s <Evst 12 — Ec||xe
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Proof: Given any u € #?, we have u = T~ (u) = I'(u — P$ X; — P£ X,). Using proposition 2.4,
we get

”u N FF;I(U)”HB _ ||I‘(u _ ﬁle _ '|55X2) _ F( _ ﬁsX(E) — ﬁs Xée)) H?—Lﬁ

et )
04—5 ’~s (e) Bs (x (o)
< ! P (X — X1) + P (XS — Xy H
a—B—ms“ T a(l+ 1) (% ) (% ) HO
5
s 1 (14+x) _
< = IE = Bellxallull L2

a—pF—-—ms 1 z(l+x)

using the proposition 2.3 and that Xi(g)

statement follows from

— X, is é-linear in 2. — = for ¢ € {1,2}. The second

ITe = Tllgs s = | (1d =TT Tellygo s < 11d = PTe|lpge pqn Tl 2o 0
with the bound uniform in ¢ for s < sg(=.)

a—p
a—B-msTa(l+z)

T s sps <

This allows to prove density of the domain.

Corollary. The domain D= is dense in HP for any B € [0, a).

Proof: Given f € H?, T'(g.) € D= where g. = I'-1 f € H? thus we can conclude with the lemma
2.5 that

lim || f = T'(ge )32 = 0.
e—=0
The density of H? in H? then yields the result.
O

Taking into account in the previous computation the smooth term e~% coming from the in-

tertwining relation, we are able to define H as an unbounded operator in L? with domain D= as
follows.

Definition. We define the Anderson Hamiltonian H : D= — L? as
Hu = Lu* + Peu® + MU, €) + R(u)
with u* = ®(u) and R : D=z — L? given by
R(u) := N(u, N(X1,£)) + Prex, o u + Clu, X1,€) 4+ Py (X5, €) + D(u, X5, €)

+S(u, X9, &) + PePy Xy — e 5 (P, X1 + P, Xo).

The parameter s does not appear in the definition of H, it is a tool to study the properties of
the operator. Indeed, one has different representations of Hu as

Hu = Luf + Peuf + N(uf, &) + R(u) + ¥°(u)
where uf := ®*(u) and
() = (L+Pe - +1(,6)) (Pu = P3) (X1 + Xo).

The different representations of H through the parameter s > 0 will be useful to get different
bounds. For example, we can compare the graph norm of H given as

lully = llulZe + | Hull72
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and the natural norms of the domain
[ullpe = lullZz + 19°(u)|3

with the following proposition. For s € (0,1) and ¢ > 0, we introduce the constant
m3(Z,s) =k (SQT_Qx(l + %) + s#xQ(l +2*)+6 3 (1+siz(l+))a*(1+ xs))

where the “2” refers to #? and for a constant k£ > 0 large enough depending only on M and L. In
particular, it depends polynomialy on the enhanced noise and diverges as s or § goes to 0.

Proposition 2.6. Let v € D= and s > 0. For any § > 0, we have
(1= 8)[lukllse < | Hullrz +m3(E, s)|lull 2

and
[Hullzz < (14 6)|ullze +m3(E, s)|lul L2

with uf = ®°(u).

Proof: For any s > 0, we have
Hu = Lu? + Peul, + N(u?, €) + R(u) + ¥*(u).

Then Luf € L? and for 3 = 1(2 + a), we have

IR()[ L2 < w(1 +2?)llulle
a—2
193 (@)l 2 S 577 2(1+2)|full 2
IPeuf + N(uf, €)= < [1€llca-2lltll,,a-

One can bound the #” norm of u using Proposition 2.4 with

a

-8
s T x(l+x)||ul| L2

m
lullzes < il + — 5
and since 8 < 1, one has

Lt = Hullz S (57" 2(1 4+ 2%) + "5 22(1 + o))

full g + (1 + 22
Since 0 < 8 < 2, we have for any t > 0

ar’

t
bl 5 | [ @D

S el + 173 (14 %001 4))

f:(kxuiw)g

with k£ the constant from the previous inequality and § > 0. This yields

el

Take

1Lk — Hullg2 < m3(E, s)llul 2 + 6]|ul 52

and completes the proof.

O

Finally, we can compute the Holder regularity of the domain. In particular, this will implies
the a-Holder regularity of the eigenfunctions of H.

Proposition. We have
D= C C*.
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Proof: The Besov embedding in two dimensions implies
H* =Bl =C' <L~
and ®°: L>° — L is also invertible hence
sy~ 1 2 0o
D= = ((I) ) (H ) C L.
Given any u € Dz, we get

lullee S llullpe | X1 + Xalleo + [[ufle

Sz lullze + ufl

and the proof is complete.

2.3 — Self-adjointness and spectral properties

We show that H is a closed self-adjoint operator on its dense domain D= C L2. This relies on
approximation results and the Babuska-Lax-Milgram theorem. The spectrum is pure point and the
eigenvalues verify a min-max principle that allows to get estimates depending on the eigenvalues
of L.

Proposition 2.7. The operator H is closed on its domain Dz=.

Proof: Let (un)nZO C D= be a sequence such that
up, —u in L? and Hu, — v in L%

Proposition 2.6 gives that ((I)(“”))n>o is a Cauchy sequence in H2 hence converges to uf € H2.

Since ® : L? — L? is continuous, we have ®(u) = uf hence u € D=. Finally, we have

[Hu —vl|L2 < [[Hu = Hup|| L2 + [|[Hup — v]| 2

Sz lluf = w¥llaz + llu = unllre + [|Hun — vl 22

hence Hu = v and H is closed on D=.

d

In some sense, the operator H should be the limit of the renormalised H. as € goes to 0. Since
D(H.) = H?, one can not compare directly the operators. However given any u € L?, we have

u=(To®")(u) = lim (Fe 0 ®°)(u).
Thus for u € Dz, the approximation u. := (FE o @S)(u) belongs to H? and one can consider the
difference

|Hu — Houel|> = ||(HT — H.T2)uf|| 2

with u? := ®°(u). The following proposition gives a bound for this quantity which yields the
convergence as € goes to 0 for s is small enough. We do not need to explicit the constant, it
depends polynomialy on the enhanced noise = and diverges as s goes to so(Z).

Proposition 2.8. Let u € D= and s > 0 small enough. Then
|Hu— Heue |2 Szs lufll22]|E — 2 xa

~E,s

with uf = ®°(u) and u. = T.ul. In particular, this implies that H.T. converges to HT' in norm
as € goes to 0 as operators from H? to L.
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Proof: We have
HE’LLE = LUE + P‘EEUE + ﬂ(ug,ﬁ) + Rs(us) + \I/:(UE)

where R, and U? are defined as R and ¥*® with =, instead of Z. For § = %(% + ), we have
[ R(u)—Re(ue)| 2 < [|R(w — ue)lr2 + (R — Re)(ue)]| 2
Sa(l+2%)Ju = ucllys + (1 +2)[|Z — el e [Juclps

S (20 + 20 = Tellsgo g0 + (1 + D)IIellago 300 IE = Zellve ) ke
and the same reasoning gives

W7 (u) — W2 (u)]| L2 Ssz 1T — Ecllae

TR

Thus one completes the proof with the bound ||I' — I'. ||y %s from Lemma 2.5.

The symmetry of H immediately follows.

Corollary. The operator H is symmetric.

Proof : Let u,v € D= and consider v := ®*(u) and v¥ := ®*(v) for s < s9(Z). Since H. is a
symmetric operator, we have

(Hu,v) = lir%<H€F€uﬁ,F€vﬁ> = lim(Tewf, H.T o%) = (u, Hv)
E—

e—0
using that H.I'. converges to HI" and I'. to I' in norm convergence.

O

The next proposition states that the quadratic form associated to H is bounded from below
by the H' norm of uf. This weak coercivity property will give below self-adjointness with the
Babuska-Lax-Milgram theorem. This was already used in the work [17] of Gubinelli, Ugurcan and
Zachhuuber, where the proof of self-adjointness relies on the reasoning of almost duality encoded
in the operator A. For s € (0,1) and § > 0, introduce the constant

4

mi(2,s) := k{:z:(l + %) + saTilgzZ(l +23) + SQTﬁx(l +22)+s7 2
_B_
T (ac(l %)+ s T 22(1 + x)) o (1 +stx(l+ x))}

where 3 = %( % + «) and for a constant k > 0 large enough depending only on M and L while the
“1” refers to H!. In particular, it depends polynomialy on the enhanced noise and diverges as s or
d goes to 0.

Proposition 2.9. Let w € D= and s > 0. For any § > 0, we have
(1= 6)(Vul, Vul) < (u, Hu) + mj(E, s)||ul7-

and
(1= 8)(Vul, Vul) < (u, Hou) +mj(Z, s)|ul|7-

where uf = ®°(u).

Proof: For u € Dz, we have
Hu = Lu® + Pgug + N(uf, &) + R(u) + U (u)
with uf = ®%(u) € H2. Thus

(u, Luf) = (PX1, Luf) + (P5Xa, Luf) + (uf, Lul)
(PSLX1,ul) + (PSLX5,ul) + (Vul, Vaul)
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and this yields
(w,Hu) = —(P5&,ul) + (PSLXo,ul) + (Vul, Vul) + (u, Peul + M(ul, €)) + (u, R(u) + U (u )>
—A(u, &, ut) + (PLLXo, ul) + (Vul, Vul) + (u, Peul) + (u, R(u) + ¥*(u)) + (P, — P%)
where A(u, &, u?) = (P& ut) — (u,N(u?,€)). For B:= 3(2 + a), we have
[(u, R(w))| S llull 2| R(w)]| 2 S w(1+ @) |Jull 22 [lull3s,
|(u, Peul)| < [lullpgs |Peullceo—2 S @llullas ubllas,
[(PuL X2, ub)| S IPulXallpze2llufllae S @®||ull L2 [[u | 2e -

Using Proposition 1.5, we have
A, & ub)] S [lEllea2lullaslubllze S @llullas lublle-
Finally, we have
[ (w0 ()] £ flull = 9° ()22 S 7% (1 4 2%) ull3s
[((Pu = PL)Eud)| < (Pu — PE ollud |12 S 5% wlull o [[u | 2

with Proposition B.3 in Appendix B. Since u € D=, we have

[[ullzs < flug z(1+z)|ullL>

m aZﬁ
s
=B
hence there exists k£ > 0 such that
(Vul, Vuﬁ) <(u,Hu) + k;(x(l + %) + s¥x2(1 +23) + SQT_ZJZ(l +2?) + SOT_41‘> |2 2
+ k(w1 +0%) + 5" 221+ 2) ) ublyeo-

Since 0 < 8 < 1, we have for any t > 0

_ dt’
||U ||'Hf’ H/ tL t'L g =

N 2
S +t"3(1+8”<1+x>) fullz

e

Given any § > 0, we set

1
-3

J
k! (w(l +22) 4+ s T 22(1 + x))

t:

where &’ > 0 the constant from the previous inequality and this yields
(1= 6)(Vul, Vul) < (u, Hu) +mj(Z, s)||ul 12
The same computations show
(1= 8){(Vul, Vul) < (u, Heu) +mj(Ze, 5)|[ul 72

Since ||E: — E||o goes to 0 as & goes to 0, the result holds uniformly in e with m}(Z, s).

This implies that H is almost surely bounded below by the random variable —m}(Z, s) for any
0 > 0 and s > 0. Using the Babuska-Lax-Milgram theorem, one gets an invertible operator via the

solution of
(H+kz)u=v

for k= > m}(E,s) and v € L%

Proposition 2.10. Let § € (0,1) and s > 0. Then for any constant k= > m3(E,s), the operators

H + k= and H. + k= are invertible. Moreover the operators
(H+ks)"':L* = D=
(Ho+ks) " 1> > H?

are bounded.
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Proof: We want to use the theorem of Babugka-Lax-Milgram, see [3]. This is a generalization of
the Lax-Milgram theorem with a weaker condition of coercivity. Since k= > m}; (E, s), Proposition
2.9 gives

(ke = m(E. ) [ull2 < ((H + k=), u)

for u € D=. Considering the norm
2 2 2
lulle = llullZe + llud]3e
on D=, this yields a weakly coercive operator using Proposition 2.6 in the sense that

lullpe Sz I(H + ke)ullz = sup ((H + ke)u,v)

lvllL2=1
for any u € D=. Moreover, the bilinear map

B: D=xL?> — R
(u,v) <(H+ k‘g)u,v>

is continuous since Proposition 2.6 implies
[B(u, v)| < |(H + k=)ull 22 |vllz2 Sz llullps o] 22
for u € D=z and v € L2. The last condition we need is that for any v € L2\{0}, we have

sup |B(u,v)| > 0.

HUH'Dgzl
Let assume that there exists v € L? such that B(u,v) = 0 for all u € Dz. Then
Yu € DE, (u,v)Dapg =0.

hence v = 0 as an element of Di. By density of Dz in L?, this implies v = 0 in L? hence the
property we want. By the theorem of Babugka-Lax-Milgram, for any f € L? there exists a unique
u € D= such that

Yo e L2, B(u,v) = (f,v).

Moreover, we have |[ul|p. <z ||f||z> hence the result for (H + k=)~!. The same argument works

~

for H. 4 k= since proposition 2.9 also holds for H. with bounds uniform in e.

O

Using that a closed symmetric operator on a Hilbert space is self-adjoint if it has at least one
real value in its resolvent set, this immediatly implies that H and H. are self-adjoint, see [23].
Moreover, the resolvant is a compact operator from L? to itself since D= C H? for any 8 € [0, a)
hence the following result.

Corollary 211. The operators H and H. are self-adjoint with discret spectrum ()\n(E))n>1 and
()\n(EE))n>1 which are nondecreasing diverging sequences without accumulation points. Moreover,

we have

L? = P Ker(H — \,(2))

n>1

with each kernel being of finite dimension. We finally have the min-max principle

An(E) = inf sup  (Hu,u)
ueD;llull Lz=1

where D is any n-dimensional subspace of D= that can also be given as

Mn(E) = sup inf (Hu, u).
V1yereyUn_1EL2 u€EVect(v1,...,0p—1)+
lull 2 =1

A natural question now is to estimate the size of the eigenvalues of H and try to get back
geometric informations on the manifold M as one can do from the Laplacian. Let A be an eigenvalue
of H and u € Dz such that

Hu = \u.
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Then there exists u! € H? such that v = I'u? thus
HTuf = AT,
This yields
HTu! = Mt + /\(F — Id)ujj

hence one can relate the spectrum of H to the one of HI' and the parameter s measures the error
since ~ ~
(T —Id)u! = P§ . X1 + Py, Xo.

And since HT is a perturbation of L, one can relate the spectrum of HI' to the spectrum of L,
as stated in the following proposition using the min-max result. We denote by (A,)n>1 the non-
decreasing positive sequence of the eigenvalues of L, since it corresponds to the case = = 0. For
s € (0,1) and ¢ > 0, introduce the constant

m(E,s) = (1+0) (1 + %s%m(l + a:)).

If s < s0(E), we also introduce

1
1—2s%z(1+a)

my (2,s) := (1 -9)

In particular, the constants depend polynomialy on the enhanced noise = and converge to 1 as
and s goes to 0. Moreover, my (=, s) diverges as s goes to so(Z). Write a,b < ¢ to mean that we
have both a < cand b < c.
Proposition 212. Let s € (0,1) and § > 0. Given any n € Z*, we have
— —_ —_ m o —
M(E), An(Be) <mf(E,8)An + 1+ P z(1+x) +mi(E,s).
If moreover s < so(2), we have

M(E); A (Ee) = my (B, 5)A\, — m%(E7 s).

Proof : Let uﬁ, ...,uf € H? be an orthonormal family of eigenfunctions of L associated to
Al,..., A, and consider
Ui 1= I‘ug € D=
for 1 < ¢ < n. Since I is invertible, the family (u1,...,uy,) is free thus the min-max representation
of A\, (2) yields
A (B) < sup (Hu, u).
u€eVect(uy,...,up)
lull 2=1
Given any normalised u € Vect(uy,...,u,), we have

(Hu,u) < |[Hullz2 < (1+ 8)||ul [z +m3(E, 5)
for uf = ®*(u) using Proposition 2.6. Moreover
; t Mes
il < (14 Aa)ldlls < (14 a) (14 ZsTa(l +)
hence the upper bound
M(E) <mi(E s)A, +1+ m5%95(1 +2) + m3(E, s).
«

For the lower bound, we use the min-max representation of A, (Z) under the form

A (2) = sup inf (Hu,u).
V1yeesn_1EL2 UEVect(v1,..,vn_1)+
Tull o =1

Introducing
F := Vect(up;m > n),
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we have that F'* is a subspace of L? of finite dimension n — 1 thus there exists a orthogonal

family (v, ...,v,_1) such that F'+ = Vect(vy,...,v,_1). Since F is a closed subspace of L? as an
intersection of hyperplans, we have F' = Vect(vy,...,v,_1)" hence
M(2) > iInf (H .
n(8) 2 inf (Hu,u)
lull 2 =1

Let u € F with ||ul|2 = 1. Using Proposition 2.9, we have

(Hu,u) > (1 —6)(Vul, Vi) —mk(g,s)
> (1= 0)(uf, Luf) — mi(E, s)
> (1= 8)Anl|ul]| 72 — m3(Z, 5).

Finally using Proposition 2.4 for s < so(Z), we get

1-96
n—m};(&s)

H > _
() > T s

and the proof is complete.

O

There is a wide range of choices for the constants s € (0,1) and § > 0. For example, one can

take
ad
~ (et ra)

A —mg < An(Z) < (L+ 8N, + 1+ 68 +m3

IS

for any ¢ € (0,1) and get

for explicit constants mj and m%, where the lower bound holds since 6§ < 1 gives s < $o(Z). This
implies the following estimate for the tail of all the eigenvalues. A more precise result of this type
was already obtained in [21] by Labbé in the flat case for A to —oo with @ = 1 where he also
obtained a lower bound on the convergence of the form

e mr <P\ (B) < =A) < e A

for A > 0 large enough and a,, > b, > 0 two constants. Here we get upper bounds for A\ to 400
and —oo.

Corollary 243. For any n € Z+ and A € R, we have

1

1
1 — me MA2A) T < P(), () < A) < meMAnT?

where m = ]E[eh”E”X"}.

Proof: Fix § € (0,1) and let A € R. Denote m; = m} and ms = m3. We have
P(An(5) <A) <P —m1 <))

and
P(An(E) > A) <P((1+6)An +m2 > A)

thus
P(mg < A= (1+0)A,) <SP(MW(E) <) <P(my > =X+ A,).

There exists two constants a, as > 0 such that

Yo
for i € {1,2}, take for example a; = 5 and ay = 12. Hence
1
P(mi > ) = P(|Z]xe > (y— 1))
1
— P(ehHEHXa > ehy i )

< ehv R [hlElee ]
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using Markov inequality and this yields

1 — me~hO=0+)r) %2 < ]P’(An(E) < )\) < me M=V
where m = E[ehHEHxa].
O
We proved that H. converges to H is some sense as € goes to 0. The following proposition gives

the convergence of H. + k= to H 4 kz in resolvent sense as € goes to 0. We do not need to explicit
the constant, it depends polynomialy on the enhanced noise =.

Proposition 2.14. Let s € (0,1) and § > 0. Then for any constant k= > m}(Z,s) and B € [0, a),
we have

I(He + k=) ™" = (H + k=) lr2ome Szp 12— Eellae.

In particular, (H. + k=)~' converges to (H + k=)~1 in norm as operator from L? to itself.

Proof: Proposition 2.8 gives
”Hsrs - HF”H?—>L2 S,E,s ||E - E€||Xa~

This implies
HTEFE - TF”’H2 L2 <_,5 ”‘* - EaHXQ

where T := H + k= and T := H. + k=. This implies
T =T T Y| 2 ge Sas (I — E|xe
thus the proof is complete with
1T =T Moo < IT5t =T T Y[ po g + (TS0 = T2
Seos [Md = PP e spo + [IT2MT0 =TT T | 20

This allows to get a bound on the convergence of A\, (Z;) to A\, (E) as e goes to 0.

Corollary 245. For all n € N*, we have

Proof: We use the min-max principle for (H + k=)~ ! and (H. + k=)~! and denote p,, and usf)
their n-th smallest eigeinvalue with multiplicity. Let D,, = Vect(vy,...,v,) with v; an eigenfunction
associated to MEE) for 1 < ¢ < n. Then for all v € D,, with ||v||z2 = 1, we have

((H +k2) " uw) = (((H + k=)™ = (e =), u) + ((He + he) ")
< ||(H + k)™ = (He + k=) 7| o, o + 1)
hence with proposition 2.14 we get
pn — 1) Sz ||E — Bl
Using the same argument with eigeinfunctions associated to (H. + k=)~ !, we get
lin — 1P| Sz |12 = Eel| e

Thus this gives
1 1
M(E)+ks  M(E) + k=

and completes the proof with the upper bound on A, (Z).

<_|l=_=
DE |2 T Zelxe
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2.4 — Stochastic nonlinear Schrodinger equation

The construction of the Anderson Hamiltonian allows the study of associated evolution equations.
This was the motivation for the work [17] of Gubinelli, Ugurcan and Zachhuber and they studied
the nonlinear Schrédinger and wave equations on the torus in two and three dimensions, see the
references therein for other approaches. Our work allows to do the same on a two-dimensional
manifold. As an example, we give results for the cubic nonlinear Schrédinger equation associated
to H. See the work [12] of Debussche and Weber for the equation on the torus where they use a
Hopf-Cole type transformation. This was extended in [25] by Tzvetkov and Visciglia to the fourth
order nonlinearity.

Define the positive operator
HY:=H+k=

with k= as in Proposition 2.9. Proposition 2.10 yields a characterization of the domain and the
form domain which is defined as follows.

Definition. We define the form domain of H denoted D=(vV H™) as the closure of the domain under
the norm

H“”DE(\/F) =/ (u, Htu)

Proposition 2:16. For s < 50(Z) and u € L2,
—+ B _ FS 2
(ueDE(H )) JEN (us—@ (u) € H )

and we have the bounds
[uf 2z Szs 1H ulle Sz llublloe-
Moreover, we have

(u € Dﬂ\/ﬁ)) — (@S(u) =uf e Hl)

with the bounds
[ubllar Szos llullp. (var) Sz luklla-

Proof: The first result and the associated bound immediately follow from Propositions 2.4 and
2.6. There exists s,0 € (0,1) such that k= > ms(Z, s) hence Proposition 2.9 gives

| (Hu,u) — (Vul, V)| < kellullz2 + 0]ful -

and the result follows.

O
This yields a version of Brezis-Gallouét inequality for the Anderson Hamiltonian. In some sense,
it interpolates the L°°-norm between the energy norm and the logarithm of the domain norm. This

was already obtained in [17] by Gubinelli, Ugurcan and Zachhuber on the torus.

Theorem 247. For any v € D=(H™), we have

lollz= Sz lollpu va, (1 +yflog (1 + ||v||DE<H+))) -

For any v € H?, we have

ol S VAol (14 o (L+ [0l ).

In particular, the second inequality holds uniformly in €.
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Proof: For any ¢ > 0, we have

t /

_yp dt _

o] < H/ (t'L)e " Fo—r |l A+ fle ol p-.
0

||
From the bounds
t , dt/
|[enersl| <ol
0 Lo
and
! o dt!
el 5| [ @ne ol et
t t Lo
1
dt/ B tl 2
<([% ) ([ 1emesai5) + ol
t
dt’ 2 1 ) . t 2
<([ ) ([ oriene o) + o
t t
1
S ol (1 -+ LoB(1)] ).
we get

1
[Vl < tvlle + (1 + [og(t)]2) vl

Taking [|v]: < 1 and ¢ = Y0t

THol s > 0, we get the classical Brezis-Gallouet inequality, that
H

is
[l S 1+ 1og (14 [[v]l32)-
Thus for [[v| /77y < 1, we have
lollze <= llv*]lze

Sz 1+ 4/log (1+ [[vF]l32)

<=1+ \flog (1+ [ H o))

using proposition 2.16. Since every estimates also hold for H with bound uniform in e, we also
get the estimate for H. Applying this result to W yields the general inequality.
H

0

This inequality can be used for example to study the cubic nonlinear Schréodinger equation with
multiplicative noise
i0pu + Lu 4 ué = —|ul*u

with initial condition uyg € D=. The construction of the operator H immediatly yields the renor-
malised solution u(t,-) := e~ ®Huy, to the linear equation

O+ Lu+u =0

given any ug € D=. This is the content of the following theorem. Remark that when one regularizes
the question, one also has to consider a suitable sequence of initial data (u (E))E>o, it is often refered
to as “well-prepared data” in the litterature.

Theorem 248. Let T > 0 and ug € D=. Then there exists a unique solution u € C([QTLD(T)) N
C([0,T], L?) to the equation

: - gt
{ Ww = HTw o T x M

w(0,) = wo

Moreover, v is the L?-limit of the solutions u. € C’([O,T],’HQ) N Cl([O,T},L2) of solutions to the
equations

i0 = Ht
{ 10, E(;)LE on [0, 00[x M,
u5(07 ) = Ug

with the initial data
(E) = (H})~ Vit € H2

which converges to ug in L2.
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One can also solve the associated equation with cubic nonlinearity. One can not apply the same
theorem as Brezis and Gallouét in [9] since we do not have a control on the cubic term from Dz to
itself. One could modify the domain taking into account the term MN(X7, X;) in Xs to get a domain
stable by multiplication. However since a direct computation as done by Gubinelli, Ugurcan and
Zachhuber in [17] is enough, it is not necessary. In particular, the proof of the following theorem
works exactly as in their work and is left to the reader.

Theorem 219. Let T > 0 and uo € D=. Then there exists a unique solution u € C([0,T],D(T)) N
C([0,T), L?) to the equation

{ i = HTu—|ul?u

w0, = o on [0,T] x M.

Moreover, u is the L?-limit of the solutions u. € C([O,T],’Hz) N Cl([O,T],LQ) of solutions to the
equations

{ Oue = Mo Juelue on [0, co[x M,

’LLE(O, ) = u(()s)

with the initial data
ul®) = (H) "HYug € 12

which converges to ug in L?. We also have the convergences
ue(t) = u(t) in L2,
Hu (t) — HYu(t) in L7
Oru(t) — Ou(t) in L?

for all t €]0,T).

Remark: From the solution to
i0u = H u — |ul?u,

on the torus, one easily gets the solution to the initial equation
i0pv = Ho — |v|*v

via the change of variable u(t,-) = et*=uv(t,-) since k= is a constant. One could want to do the same

in a manifold setting and compare the initial reqularized equation
i0pu = Lu + &ou — |ul*u.
with the renormalised equation
10w = Lv + v — cov — |v|*v

as Tzvetkov and Visciglia’s Theorem 1.1 from [25]. It is not clear what the change of variable
should be on a manifold since c. is a function and not a constant. It should still be possible to find
an appropriate change of variable even though this requires some work.

A — Approximation operators
We describe in this Appendix technical estimates needed in our continuous setting analog of the
discrete Paley-Littlewood decomposition. The following proposition is the analog of the inclusions
of P spaces.

Proposition A, Let p,q1,q2 € [1,00] with g1 < qz. For f € LP and o € R, we have

(G 7 P PP [ 38

Lai(t=1dt) *
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Proof: We prove || - oo t-1at) S|l - llaqe-1ar) for any ¢ € [1,00) and the result follows from

duality. To get this, we use
¢ £\ ds
a=2fa(t) o
% S S

for any @ € StGC® and ¢ € (0, 1] which yields

1Qif e < / 1Quflle (/ 1Qu 112, & )

O
One needs the following bound to keep an accurate track of the constant in different estimates.

LemmaA.2. Letr >0 and a € (—r,7). We have

/OO U " du< 2r
— | u® )
o 1+ u? u — r?—a?

Proof: Since
1+ u? 1 u?

:1+u2_1+u2+1—|—u2

and u > 0, we have

/°° u \" du /1 u " du+/°° u " du
— | u— = — | u — ] u*—
0 1+ u? u o \14u? u 1 14+ u? u
1 1
<
T r+a r—a«

hence the bound.

O

The next lemma describes the localisation of the cancellation in our continuous context, includ-
ing the dependance on s > 0.

LemmaA.3. Let r > 0 and o € (—r, 7). Given any q € [1,00], we have

b | (tam) 0

We also have

| [ (@) 0%

for any s >0 and B € (o, 7).

2r
2

L4(u—1du) —r2—a? HUf flu HLq(“_ldu)

2r

— a2

P~ Huiﬁf

2 HL‘I(u_ldu)

La(u—1du) r

Proof: For ¢ = oo, we have

[ () %] < weeson- | ((tj“u))tfj
() ) weieaas

2r iy o
< ()
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which yields the result. For ¢ = 1, we have
' ! tu \",, . dt|du Lyt o \" du dat
—a dt| du _ _odu dt
/0 B /0 <(t+u)2> f(t)t u _/0 (/0 ((t+u)2) u u)'f(t)|t
o0 v\ ,dv vy dt
(/0 (Hvz> v v)/o VOl

2 ! d
e AL

2 — a2

IN

The result then follows for any ¢ € (1, 00) by interpolation. For the dependance with respect to s,
we also interpolate between ¢ = 1 and ¢ = oo and conclud with

<8ﬂa||t/3f(t)||Loo/Os<(tf;)2)rtait

2r _ _
s (1)

<

[ (o iuu>2>rf 0

r

[ (] () oot

2 s d
s | el

and

1
/ uja
0

IN

a2

2r 1 dt
e [ 4B F ()| —.
st [l

IN

Finally, we have the following estimate for integrals.

Lemma A.4. Given any o > 0 and q € [1, 00|, we have

_a [ dt
i [ 0F

2, _a
< a”u 2 f(u)l|La(u—1du)-

La(u—1du)

Proof: We proceed again by interpolation proving the estimate for ¢ = oo and ¢ = 1. Using that
a > 0, we have

[0 <t [T < 2atie o
wnd Yoo, dt | du YOt _adu a2 [t . dt
[t [rof < [ ([ o <2 [ o

B — Paracontrolled calculus

We give in this Appendix proofs of estimates needed in paracontrolled calculus. We shall first prove
the estimates for the paraproduct P and resonant operator Il in Sobolev spaces. It works as for
Holder spaces with L? estimates instead of L.

Proposition BA. Let o, 3 € (—2b,2b) be regularity exponent.
. If a >0, then (f,g) — Psg is continuous from C* x HP to HP and from H* x CP to HP.
. Ifa <0, then (f,g) = Ptg is continuous from C* x HP to HO*P and from H* x CP to H TP,
«If a4 >0, then (f,g) — N(f,g) is continuous from H* x CP to HO*P.
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Proof: Let f € H* and g € C? with o < 0. We want to compute the regularity H*+? of Prg
hence let @ € StGC" with r > |a+ (|. Recall that Pyg is a linear combination of terms of the form

1
. dt
| et §
with Q', Q? € StGC? and P € StGCI%Y. Given s € (0, 1], we have

! d
| e (rir-ata) §

t </1 ti pr Qg” =
2 " Jo \(+s)? ' ! L2

1 T
ts 2 8 dt
< B N T

This yields

_a+8
2

[ eanr a0
0

L3 L2(s—'ds)

_ass 1 ts
w3 [ () e

Sllglles|[s™ 2 1P fllz2
S fllrellglles

where we used that a < 0 since P can encode no cancellation and this complete the proof for
the third estimate. The proofs for the other estimates on Pyg are similar and we only give the
details for the resonant term. Let @ € StGC" with r > |a + (] and recall that MN(f,g) is a linear

combination of terms )
. dt
| re@ir-ai) g

S llglles

L2(s—1ds)

L2(s—1ds)

with Q1, Q% € StGC? and P € StGCI%Y. Given s € (0,1], we have

/ Qi @ialus o+ [ (2) ats @il

and the result follows again from the lemmas using that o + 5 > 0.

/ Q.Pr (QLf - Q2g) &

The dependance of Ps with respect to s in given in the following proposition.

Proposition B.2. Let s € (0,1) and a regularity exponent 3 € (0,1). Given g € C?, we have
" ﬂ*'v
If = PigllLems S 5 ||9||czs

for any v €0,5).

Proof: Given f € L? and v € [0, 3), we want to bound the H” norm of ﬁ}g hence let Q € StGC"

with 7 > |y|. Recall that ﬁ;g is a linear combination of terms of the form
5~ ~5 \ dt
le 2
Pf-Qig) —
/0 ¢ ( o ) t
with Q' € GC272, Q2 € StGC? and P € StGCI%Y. Given u € (0, 1], we have
</S ) na gl &
o \(t+u L

S/ otu \? dt
< 3 D ——— 5 P, 2*
S lalles | ((Hu)z) 1A
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This yields

s
2

/ QuQl* (P Qo)

L3

L2(u—'du)

ol s tu B dt
2 e — 2P -
! /0 ((t+u)2) PP o

4r 8=~ , _B8'-8
5 HgHCﬁ/r_Q_,}ﬂS 2 2

S llglles

L2(u—'du)

4r B =~
< g =2
~ Hchﬁ r2 _ 728 k +ﬁ ﬂ/”f”?‘-[/3 -8

Hchﬁ s
B k+/8 B/ Hf”’Hﬁl
for any 3’ € (v,5) and P € StGC* using that r > 1. For k > 1, one can take 3’ = § and get
SB;W
Ptf th) ~1
L2(u—'du)
For k = 0, we have
ol
*(Pif- Qg < f
|- 50D 3 PG5
hence taking 3’ = 7+B yields
B=r
s 1

/ QuQl* (P Qo)

ST o 2.
DR e e S

L3

Proposition B.3. Let s € (0,1) and a regularity exponent 8 < 2. Given g € C?, we have

5 B B=2
1(Ps =PHgllzz S s7= [ flle2llglles

for any f € L.

Proof: Given f € L?, we want to bound the 2 norm of (ﬁf — ﬁ?)g hence let Q € StGC" with
r > 2. It is a linear combination of terms

v, ~, \ dt
| @ (ns-@o)
with Q! € GC272, Q2 € StGC? and P € StGCI%Y. Given u € (0, 1], we have
< [ () Ims-aiol, &
2 s \(t+u)? el

1 r
tu 2 pdt
S Hf||L2||9||cﬂ/ (W) t Y

t

/ QuQ¥ (Pif - Q2g) &

M)y

using that ||P.f||zz < || f|lzz. This yields

*1H/ QuQl* (P Q20)

L3 L2(u—1du)

_1/1 tu \? sdt
U tz —
s \(t+u)? t

=2
Ss 2 | fllzzllglles

< llglles I

and the proof is complete.
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Proposition B.4. Let ag € (0,1) and oo, B € R. If
as+B3<0 and o1 +as+ B3>0,

then (a1, az,b) — C(ay,as,b) extends in a unique bilinear operator from C* x C®2 x CP to Co1ta2th
and from H™ x C*? x CP to Horto2tB,

Proof: We first consider (a;,as,b) € C®* x C** x C8. We want to compute the regularity of
C(al, as, b) = ﬂ(ﬁalag, b) — all'l(ag, b)

using a family @ of StGC" with r > |a; + a2 + 8. Recall that a term [(a,b) can be written as a
linear combination of terms of the form

1
. dt
| Pe@ia-ain

while ﬁba is a linear combination of terms of the form

1
JRCGRTE

with Q',Q2,Q* € StGC?, Q% € GC372 and P!, P? € StGC®Y. For P? € StGCIMY we already
have the correct regularity since

/01 /01 QuP'* (Qiéi- (pgal . @3@) -be) % %

1 1 5 3

ut ts ajtay g dsdt
< Jla a b // s T ot ——
Sl laslealtlls | | (i) (oo -~

ajtas+p8
S llarlla llazllas [10lls w2

[V
o

using that a7 € (0,1). We consider P? € StGC for the remainder of the proof. For all z € M, we
have

C(ay,az,b)(z) =T (ﬁa1a27b) (z) — a1 (z) - N(az, b)(z)
=0 <§a1a2 —aq(x) - ag,b) (2)

~ (Isal,al(m)a%b) (z),

since 1 is bilinear and a4 (z) is a scalar and ﬁlal = a7 up to smooth terms. Thus we only have to
consider a linear combination of terms of the form

1 1
o a4 ~ ds dt
| [ re(@@ (P - ) @) - ab )0 25
0 0 s t
b ~yds
using that / Q2*Qi— = Id up to smooth terms. This gives (Q,C(a1,a2,b))(z) as a linear
0 S
combination of terms of the form
ds dt

[ Kl ri (@13 (P20 - ) - Q) - @20 () % Flas)

= / Ko, (z,2") K pie (2, ") (Qg@;’" (( P2a; — ay(2")) - @;1%) , ng) (") % %

v(dx"yv(dz")
+ / /Ou Kq, (z,2")Kpie(2',2") (al(aj”) - al(x’)) (Qias - Q7b) (as”)%u(dz’)u(dx”)

+ // Kq, (z,2")Kpie(2',2") (al (") — al(gc’)> (Qiaz - Q7b) (m”)%u(dm')y(dx”)
= A+B+C.
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The term A is bounded using cancellations properties. We have

~ae ~ ds dt
41 = [ Ko.ppetoa) (@30 (P - ) - Qhaa) - @30 () 2 ()
o9 72 ﬁ ds dt
< a1 ozl 015 (/ [ (2 ) (s+0)FsFE LD
st 2 @1 a3 B ds dt
HNTgTtrz -2
// <t+u ) <(s+t)2) (s+8) 5 t)
oy tag+8
S llaalla llazlla lbllg v,
using that oy € (0,1), P? € StGC” and (a; + az + 3) > 0
For the term B, we have
Bl S Nl loallaalibls | [ Ko (o0 Kppe (@' (e )5 Sl da”)
xz/x' JO
Y aytag+s dt
S ool bl [ ¢85
0
ajtas+pB
< llaalles lazllas lIblls w2,
using again that oy € (0,1) and (aq + a2 + 8) > 0.
Finally for C, we also use cancellation properties to get
ag+p dt

t

1
1S lallolozloaltls] [ [ Kouoa) e ta'safar(e) - ana)|e Gotarwiae’

ag+p dt

1
+/ / Ko, (x,x’)Kptl.(m’,x")‘al(x') —aq (")t

e s |

ag+p dt

N ||a1||a1||a2|a2||b||5{/ / Kq, (z, 2" ) Kpye (2, 2" )d(x, ') 12 —v(da’ )y (da")

of [ o e a5 s}

1 1 3
a [ dt tu 2 ajtants dt
< b Tl t 22‘*’&7 / - t 2 -
Slalo ol {u® [ o225 [ (2 t

ajtas+B
< llaallay llazllas l1Blls w™ 2,

using that a; € (0,1) and (a2 + ) < 0. In the end, we have

o1tas+pB
2

|@ucar, a0, )| S llarlla lazllas bl

uniformly in u € (0,1], so the proof is complete for C. The adaptation of the proof to the case
a; € H is left to the reader and follows from the estimates of the Appendix A.

O
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