
HAL Id: hal-02931666
https://hal.science/hal-02931666v1

Submitted on 7 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

KORP-PL: a coarse-grained knowledge-based scoring
function for protein-ligand interactions

Maria Kadukova, Karina dos Santos Machado, Pablo Chacón, Sergei Grudinin

To cite this version:
Maria Kadukova, Karina dos Santos Machado, Pablo Chacón, Sergei Grudinin. KORP-PL: a coarse-
grained knowledge-based scoring function for protein-ligand interactions. Bioinformatics, 2021, 37 (7),
pp.943-950. �10.1093/bioinformatics/btaa748�. �hal-02931666�

https://hal.science/hal-02931666v1
https://hal.archives-ouvertes.fr


i
i

“KORP-PL-final” — 2020/8/25 — 12:57 — page 1 — #1 i
i

i
i

i
i

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Subject Section

KORP-PL: a coarse-grained knowledge-based
scoring function for protein-ligand interactions
Maria Kadukova 1,2, Karina dos Santos Machado 1,3, Pablo Chacón 4,∗, and
Sergei Grudinin 1,∗

1Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, 38000 Grenoble, France and
2Moscow Institute of Physics and Technology, 141701 Dolgoprudniy, Russia and
3Centro de Ciências Computacionais, Universidade Federal do Rio Grande - FURG, Av. Itália, km 08, Rio Grande, RS, Brazil and
4Department of Biological Chemical Physics, Rocasolano Institute of Physical Chemistry C.S.I.C, Madrid, Spain.

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Despite the progress made in studying protein-ligand interactions and the widespread
application of docking and affinity prediction tools, improving their precision and efficiency still remains
a challenge. Computational approaches based on the scoring of docking conformations with statistical
potentials constitute a popular alternative to more accurate but costly physics-based thermodynamic
sampling methods. In this context, a minimalist and fast sidechain-free knowledge-based potential with a
high docking and screening power can be very useful when screening a big number of putative docking
conformations.
Results: Here we present a novel coarse-grained potential defined by a 3D joint probability distribution
function that only depends on the pairwise orientation and position between protein backbone and ligand
atoms. Despite its extreme simplicity, our approach yields very competitive results with the state-of-the-
art scoring functions, especially in docking and screening tasks. For example, we observed a two-fold
improvement in the median 5% enrichment factor on the DUD-E benchmark compared to Autodock Vina
results. Moreover, our results prove that a coarse sidechain-free potential is sufficient for a very successful
docking pose prediction.
Availability: The standalone version of KORP-PL with the corresponding tests and benchmarks are
available at https://team.inria.fr/nano-d/korp-pl/ and https://chaconlab.org/modeling/korp-pl.
Contact: pablo@chaconlab.org, sergei.grudinin@inria.fr
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Binding processes at physiological conditions are driven by thermodynamics
laws. Even though their physics is well understood at the theoretical
level, practical application of these laws to computational docking
problems requires exhaustive thermodynamic sampling. This makes most
of the corresponding approaches computationally prohibitive. A popular
alternative consists in avoiding exhaustive sampling and approximating
binding free energies with knowledge-based and statistical potentials
(Verdonk et al., 2003; Velec et al., 2005; Huang and Zou, 2006, 2010;

Neudert and Klebe, 2011; Debroise et al., 2017; Kadukova and Grudinin,
2017). These are directly parameterized against available experimental
data, rather than derived from the first principles. However, very often
these potentials are not physical. For example, it is easy to demonstrate
that the binding free energy cannot be decomposed into a sum of pairwise
interactions, as the desolvation term is not pairwise-additive (Ben-Naim,
1997). Also, the performance of statistical potentials is much better in
docking exercises and rather moderate in screening tests (Li et al., 2018;
Su et al., 2018). These observations, as well as a moderate performance of
classical statistical potentials on some of the popular docking benchmarks,
both protein-protein, and protein-ligand, have triggered further community
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research in multiple directions. They include the development of coarse-
grained and orientation-dependent scoring functions (Zhang and Zhang,
2010; Elhefnawy et al., 2015; Karasikov et al., 2019; Lopez-Blanco and
Chacon, 2019; Neudert and Klebe, 2011; Wang et al., 2013).

In addition to the knowledge-based potentials that are most often
derived in a statistical and unsupervised manner, a considerable number
of scoring functions are based on other principles (Liu and Wang, 2015;
Shen et al., 2020). These include physics-based potentials (Brooks et al.,
1983; Ewing et al., 2001; Case et al., 2005) that approximate energy
terms and require very careful calibration, as well as a variety of scoring
functions obtained using the principles of supervised machine learning.
Starting from the classical empirical scoring functions that were trained
to fit experimental binding constants with a linear combination of several
physics-based descriptors (Böhm, 1994; Wang et al., 2002; Friesner et al.,
2006; Trott and Olson, 2010; Quiroga and Villarreal, 2016; Debroise et al.,
2017), more and more complex methods based on non-linear models and
diverse descriptors have been developed (Li et al., 2013; Wang and Zhang,
2017; Lu et al., 2019; Ashtawy and Mahapatra, 2017; Shen et al., 2020;
Wallach et al., 2015; Ragoza et al., 2017; Jiménez et al., 2018; Karlov
et al., 2020). Although some of these often demonstrate high performance
in affinity prediction and virtual screening, they are also subject to a
number of flaws. Indeed, while classical statistical potentials tend to be
biased towards the number of contacts between the two molecules, learning
on a relatively small number of available high-quality binding constants
introduces biases towards experimental affinities. Very complex models,
especially those from deep learning, may also introduce overfitting. For
example, some recent architectures demonstrate excellent results on the
DUD-E virtual screening benchmark if they are trained on a part of
it. However, their performance is rather average if they are trained on
other data sources (Chen et al., 2019). Surprisingly enough, the classical
empirical AutoDock Vina scoring function and its modifications, while
being physically interpretable, still achieve stable state-of-the-art results
in both pose and affinity predictions.

Protein-ligand methods usually describe molecules using the all-atom
representation. Therefore, incorrect positioning of sidechains inside the
binding pockets may introduce steric clashes with the ligands and produce
false-positive predictions of binding poses. Some of the methods can
include optimization of the sidechains in the conformation search (Trott
and Olson, 2010; DeLuca et al., 2015; Marze et al., 2018), but this makes
the docking process much more computationally expensive. Furthermore,
slight inaccuracies in the positioning of the backbone atoms may introduce
significant inaccuracies in the positions of the sidechains. A possible
way to circumvent this problem is to model a protein molecule without
explicit positioning of its sidechains. Indeed, such representations have
already been successfully used in various protein structure prediction
applications (Liwo et al., 2002; Karasikov et al., 2019; Lopez-Blanco
and Chacon, 2019; Senior et al., 2019; Zheng et al., 2019; Kryshtafovych
et al., 2019).

Motivated by the excellent results obtained in protein and loop
modeling with a sidechain-independent potential KORP (Lopez-Blanco
and Chacon, 2019), we propose to adapt its methodology to protein-
ligand interactions. The success of KORP is rooted in the consideration
of the full six-dimensional (6D) joint probability distribution function that
only depends on the relative orientation between protein residues. For
the protein-ligand interactions, we reduce the dependence of the pairwise
potential to a 3D joint probability of observing an interacting ligand atom
at a given relative position and orientation from a protein residue. The
proposed method, called KORP-PL, does not require protein sidechain
atoms, and only three backbone atoms of the protein residue are needed.
As a result, it is relatively fast, as each interaction involves only the
computation of two spherical angles and a single distance. Despite its
seeming simplicity, our approach yields state-of-the-art results.

2 Methods

2.1 The KORP-PL model
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Fig. 1. Schematic view of the relative orientation of a ligand molecule to a protein residue.
The residue is represented with a 3D oriented frame built from three backbone atoms. The
relative orientation of a ligand atom is described by two spherical angles, θ, the polar angle
between the r and z vectors, and ϕ, the azimuthal angle between x and the projection of
r into the xy plane.

Our starting point was the 6D orientation-dependent knowledge-based
potential KORP (Lopez-Blanco and Chacon, 2019), which had been
successfully used in protein and loop modeling. The main idea behind
using the 6D statistics in KORP is that one can unambiguously define
local coordinate frames for each of the protein residues. However, this
model cannot be applied to small molecules owing to their higher chemical
diversity. Therefore, we keep the reduced representation for the protein
molecule, and use the all-atom representation for the ligand. As depicted
in Fig. 1, the relative position and orientation of a given interaction is
specified by the ligand atom coordinates and by a 3D oriented frame (i.e. a
local coordinate system) built from three backbone atoms C, Cα, and N
of the protein residue. Therefore, only two spherical angles θ and ϕ and
the distance r between the ligand atom and the center of the residue frame
located at Cα are required. The interaction Ẽi,j between a residue i and
a ligand atom j is then derived from the Boltzmann distribution,

Ẽi,j(θ, ϕ, r) = −RT ln
P obs
aa,lig

(
θ, ϕ, r

)
+ z

P ref
(
θ, ϕ, r

)
+ z

, (1)

whereRT is the Boltzmann factor, and P obs
aa,lig is the joint 3D probability

of observing a protein amino acid iof a typeaa and a ligand atom j of a type
lig at a given distance r and orientation (θ, ψ) in a set of crystallographic
structures. We should note that there is a full dependence between the
three variables inP obs

aa,lig

(
θ, ϕ, r

)
. In order to counterbalance nonspecific

residue-ligand interactions, we introduce the reference probability P ref

regardless of the type of interaction. It corresponds to the reference
state, defined as an average distribution over the different amino acid
and ligand types (Samudrala and Moult, 1998). Also, we add the z
constant to both the nominator and denominator of the above expression
to prevent numerical instability for low-count statistics. Following the
original KORP implementation, we zero-mean normalized individual
contributions Ẽij(θ, ϕ, r) at every distance to reduce distance-specific
biases. More precisely, from each value of the interaction potential at
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(θ, ϕ, r) we subtracted an average taken at the same distance r over all θ
and ϕ values,

Eij(θ, ϕ, r) = Ẽij(θ, ϕ, r)− 〈Ẽij(θ, ϕ, r)〉θ,ϕ. (2)

The total protein-ligand interaction potential will be then the sum of all
individual contributions Ek within a certain cutoff distance,

E =
∑
k

Ek
(
θk, ϕk, rk

)
. (3)

The total number of protein residue types is equal to 20 and corresponds
to the 20 standard amino acids. The set of 37 ligand atom types comprises
8 carbon types, 12 nitrogen types, 7 oxygen types, 4 sulfur types, 2
phosphorus types, and 4 types describing halogens (see Table S1 of
Supporting Information for more details). Each ligand atom type is
assigned using the Knodle library (Kadukova and Grudinin, 2016) in the
same manner as we did for the Convex-PL scoring function (Kadukova
and Grudinin, 2017).

2.2 Training data

We derived KORP-PL using structures of protein-ligand complexes
deposited in the PDBBind 2016 general dataset (Wang et al., 2005).
We excluded 373 structures intersecting with those from the CASF-2013
and CASF-2016 benchmarks. This resulted in 12,910 selected examples.
Also, there were no intersections between PDBBind 2016 and examples
from the D3R challenges that we use to compile our benchmark. We
did not specifically preprocess the input structures. We did not remove
homologous receptor structures since their bound ligands can be very
diverse. In fact, previously we did not find any effect of excluding
structures in the training set homologous to the ones in the test set on
the prediction accuracy (Kadukova and Grudinin, 2017). Nonetheless,
we provide additional computational experiments excluding the test set
structures from the training set at different levels of similarity.

We collected the statistics using interactions within the range of radial
distances r of (2 Å, 11 Å). This statistics were divided into 12 bins. The
angular statistics were collected into 180 equiareal bins using a uniform
angular sampling tessellation described elsewhere (Lopez-Blanco and
Chacon, 2019).

2.3 Reweighing the potential for binding affinity predictions

Initial tests demonstrated rather poor performance of KORP-PL in affinity
prediction exercises. This is mostly the result of the independence of
Eij terms from each other. Motivated by this observation, we devised
a reweighing scheme to balance the contributions of each componentEij
as

Ew =

Naa∑
i

Nlig∑
j

cirjEij , (4)

where ci and rj are the weighting factors for a given amino acid or ligand
atom type, respectively, Naa is the number of amino acid types, and
Nlig is the number of ligand atom types. We computed the weighting
factors by fitting experimental binding constants from the PDBBind 2016
general dataset. This was achieved by minimizing the squared error
loss using the L-BFGS-B algorithm (Zhu et al., 1997) implemented in
scipy (Virtanen et al., 2020). We then iteratively optimized the c and
r vectors following Algorithm 1 from SI. Details of the optimization
are available in SI, including the values of the obtained weights listed
in Table S2. Interestingly, higher weights correspond to hydrophobic
interactions, which will be mentioned below. Throughout the text, we
will refer to the reweighed version of KORP-PL as to KORP-PLw .

2.4 CASF benchmarks

We assessed KORP-PL on a recent CASF-2016 benchmark (Su et al.,
2018), and a smaller but more widely used CASF-2013 benchmark (Li
et al., 2018). These benchmarks are the sets of respectively 285 and 195
high-quality crystal structures with the corresponding binding affinities.
Four different metrics are used in these benchmarks defined as docking
power, scoring power, ranking power, and screening power. Docking
power corresponds to the ability of a scoring function to predict the native
or the best near-native docking pose among a set of computer-generated
configurations. Scoring functions are evaluated by the number of the top-
ranked predictions (top-1, top-2, and top-3) below a predefined cutoff
distance from the crystal structure (1.0, 2.0, and 3.0 Å). Scoring and
ranking powers measure the quality of affinity prediction of complexes
with known co-crystal structures. Scoring power assesses the correlation
of scoring function predictions with the experimental binding affinity data.
Ranking power is related to the capability of a scoring function to correctly
rank a set of known ligands for a target protein. In CASF-2016, where five
known ligands are available for each target protein, it is measured by
Spearman’s correlation coefficient. However, in CASF-2013 only three
ligands per protein are available and ranking power is represented with
two numbers characterizing success rates of either correct ranking of all
the given ligands, or finding the most affine one. Finally, screening power
is related to the ability of a scoring function to identify true binders for a
target protein among a set of small molecules. CASF benchmarks suggest
two metrics to evaluate this ability. Enrichment Factor (EF) is calculated
as a ratio between the total number of true binders observed among a
fraction of top-ranked candidates (1%, 5%, and 10%) and the total number
of true binders multiplied by this fraction. It represents the ability of a
scoring function to correctly find active compounds compared to a random
selection. ’Best binder success rate’ is a success rate of identifying the
highest-affinity binder among the 1%, 5%, or 10% of top-ranked ligands
over all the test cases.

2.5 D3R benchmarks

A number of community-wide blind protein-ligand docking challenges
were held throughout recent years. For example, the CSAR (Carlson et al.,
2016) initiative was carried out in 2010-2014. Later on, it was continued
and further developed by the Drug Design Data Resource (D3R) (Gathiaka
et al., 2016). The aim of these challenges was the evaluation of docking
protocols on previously unpublished structural data. After all participants
have submitted their predictions, co-crystal structures become revealed and
submissions get evaluated. A considerable effort was made by the D3R
community to host data from the previous challenges. In particular, this
resource contains all user submissions and answers, i.e. native structures
and binding constants, from the recent three blind challenges, namely
Grand Challenge 2 (Gaieb et al., 2018), Grand Challenge 3 (Gaieb et al.,
2019), and Grand Challenge 4 (Parks et al., 2020). Unfortunately, user
submission data from the first D3R challenges is not publicly available.

Thus, we compiled a benchmark from the user submissions and
published answers of the three blind challenges. Similar to the CASF
benchmarks, it contains pose and affinity prediction exercises. However,
this benchmark is different from CASF in several aspects. Unlike the CASF
benchmarks, which were created from the data deposited in the Protein
Data Bank (Rose et al., 2017), experimental data for each of the D3R
challenge targets were provided by a single research group. Co-crystal
structures were also visually inspected by the challenge organizers and
participants. This allows us to expect higher quality and consistency of
this data, especially for the binding constants, which are less trustworthy
in the CASF benchmarks, and PDBBind in general. On the contrary, data
from the D3R Challenges provides smaller diversity of both proteins and
small molecules, since each of the three challenges was focused on one



i
i

“KORP-PL-final” — 2020/8/25 — 12:57 — page 4 — #4 i
i

i
i

i
i

4 Kadukova et al.

protein target binding with compounds of several chemical series. For
example, the affinity prediction test made from the D3R Challenge data is
closer to the CASF ranking test than to the scoring one.

For the pose prediction tests, we collected all available user
submissions from the pose prediction stages of the three challenges. RMSD
values were obtained from the D3R website when possible, otherwise, we
computed them using a modified version of symmetry-adapted RDKit’s
GetBestRMS() function, in which we disabled the ligand alignment, and
PyMol’s (Schrödinger, LLC, 2011) align function to superpose each
protein to its native structure. We excluded several submissions listed in
Table S15 of the Supporting Information because of various errors and
clustered the rest of submissions with a 0.1 Å threshold without the binding
pocket alignment. This clustering was mainly done to remove very similar
or equivalent docking poses that were often present in submissions from the
same users. Finally, we measured the pose prediction success rates on each
test separately with and without the inclusion of the native structures. For
the affinity prediction tests, we selected only the native structures and then
measured the Spearman’s correlation coefficients between predicted and
experimental binding constants for each of the Grand Challenges. When
the ligand was present in several chains of the co-crystal structure, we
scored all of the available complexes and took the average. The number of
available submissions and binding constants is summarized in Table S14
of SI.

2.6 DUD-E benchmark

The DUD-E benchmark (Mysinger et al., 2012), the successor of the
DUD benchmark (Huang et al., 2006), is a very popular approach for
assessing virtual screening abilities of various scoring functions and
docking protocols. It consists of 102 targets, a set of active compounds
per target known to bind it, and 50 inactive compounds, or decoys, per
each active one. The total number of active compounds for all 102 targets
equals to 22,886. For each target, one protein-ligand complex is provided
and can be used for the identification of the binding pocket and molecular
docking. The benchmark also contains 3D conformers of all the active and
inactive compounds. Unlike the CASF benchmarks and the D3R-based
benchmark that we have derived specifically for structure-based scoring
functions assessment, evaluation on DUD-E requires a pose sampling
stage. Therefore, we firstly performed molecular docking using AutoDock
Vina with default settings except for the exhaustiveness that was set to 10,
and then re-scored the obtained poses with KORP-PL and KORP-PLw .

We should note that the DUD-E benchmark contains several targets
with co-factors that seem to be crucial for binding. We have excluded
from the evaluation 12 complexes listed in Table S22 that contain HEM,
NAD, NAP, FAD, ADP, and FMN, since KORP-PL is not parametrized to
predict interactions with co-factors.

3 Results and discussion

3.1 CASF benchmarks

Figure 2 shows the results obtained on the docking, scoring, ranking,
and virtual screening tests from the CASF-2016 benchmark. The results
obtained on the exercises from the CASF-2013 can be found in Figure S1
and Tables S3-S5 of SI. We can see that KORP-PL performs exceptionally
well in the pose prediction exercise, despite being a coarse-grained scoring
function. Indeed, for the CASF-2016 benchmark, its success rate in finding
a near-native pose within 2 Å RMSD as the best prediction is 85.6%. This
is better than the success rates of all other tested scoring functions.

Figures 2 (d-e) demonstrate the top-ranked performance of KORP-PL
in both screening tests. These results are especially notable if considering
the enrichment factor metric, where all other tested scoring functions

perform rather poorly. For example, CASF-2016 Top1% EF for KORP-PL
is 22.23, while the third-best Top1% EF is 11.91 for ChemPLP@GOLD.
Figure 2 (b) compares KORP-PL binding affinity predictions. They
turned out to be worse than average. As a consequence, ranking power
results (Fig. 2 (c)) are also worse or close to average when compared
with the other scoring functions. To investigate the reasons leading to
such rather poor performance, we plotted binding affinities predicted by
KORP-PL versus the experimental binding constants. Figure 3 shows
them colored according to the hydrophobic scale of the protein binding
pockets suggested by Su et al. (2018). We can see that KORP-PL often
underestimates affinity values for complexes with hydrophobic pockets.
We suppose that it happens due to the way we compute the reference state
inherited from the original KORP 6D potential. Indeed, the 6D residue-
residue interactions have a strong angular dependence, which is not the case
for the protein-ligand setting. For example, the subtraction of the angular
average in Eq. 2 will result in a near-zero potential for non-directional
contributions. This is precisely the case for some of the hydrophobic
interactions. It motivated us to introduce the reweighing scheme (see
Eq. 4), which allowed us to partially compensate for this effect. Indeed,
the KORP-PLw potential performed considerably better than KORP-PL
on the scoring tests. However, its performance is still far from perfect
and this is a subject for further investigation. We should also note that
moderate performance of various scoring functions in affinity prediction
tasks can be partially explained by the fact that experimental uncertainties
of binding affinity data in current databases are often larger than one order
of magnitude (Wätzig et al., 2015). Such significant scatter is the result of
different methodologies and accuracy of binding assays used in different
research groups. SI Table S13 contains further analysis of the correlation
between the KORP-PL scores and a number of ligand properties computed
for the CASF-2016 complexes.

CASF benchmarks are derived from the PDBBind database and thus
contain complexes similar to our training set. Thus, it is interesting
and important to learn how much our results can overfit the input data.
Therefore, we ran additional experiments and modified the training set by
augmenting it with the intersection with the test set, and also removing
a number of complexes based on the protein (Zhang and Skolnick, 2004;
Ritchie et al., 2012) and ligand (Landrum, 2006) shape similarity. After,
we recomputed the CASF docking and screening tests to investigate the
possible overfitting. These results are listed in Tables S6-S12 and discussed
in Supporting Information. Overall, removing the closest complexes
(pocket TM-score> 0.8 and ligand shape Jaccard distance< 0.2) affects
the metrics only marginally. Further elimination of about a thousand of
more distant complexes (pocket TM-score> 0.5 and ligand shape Jaccard
distance < 0.4) worsens the overall performance. Notably, high-quality
docking predictions (Q1) are affected more than the low-quality ones (Q2-
3). This indicates that for a successful high-resolution pose prediction,
the training set must contain complexes with interactions that somewhat
resemble those in the test set. Indeed, any statistical (Boltzmann in our
case) approximation is limited if some features are not present or their
distribution is unbalanced in the training set.

3.2 D3R benchmarks

Figure 4 demonstrates very good performance of KORP-PL in all pose
prediction exercises derived from the D3R Challenges. KORP-PL also
showed good results in the Grand Challenge 2 and Grand Challenge 4
affinity ranking tasks. However, we obtained near-zero correlations in
affinity prediction of the cathepsin S complexes from the Grand Challenge
3.

D3R Grand Challenge 3 pose prediction test turned out to be an
interesting case. In this exercise, the binding site is exposed to solvent
and is surrounded by water molecules in the co-crystal structure as well as
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Fig. 2. CASF-2016 benchmark results. (a) The success rate of finding a near-native pose within 2 Å RMSD in Top 1 (blue), Top 2 (green), and Top 3 (yellow) predictions. Native poses
are excluded. (b) Pearson’s correlation with confidential values between predicted scores and experimental logKa . Scoring functions sharing the same gray bar are not distinguishable
at α = 0.1 in the post-hoc Friedman test (Su et al., 2018). (c) Spearman’s rank correlation with confidential values among the 57 clusters. (d) Enrichment factors computed considering
1% (blue), 5% (green), and 10% (yellow) of the top-ranked compounds. (e) The success rate of identifying the highest-affinity binder among the 1% (blue), 5% (green), or 10% (yellow)
top-ranked ligands. All results except KORP-PL and Convex-PL were taken from the supplementary information of the CASF-2016 benchmark paper (Su et al., 2018). The results of
KORP-PL, KORP-PLw , and Convex-PL are available in Tables S3-S5 of SI.

in some of the user submissions. We should specifically mention that we do
not take explicit water molecules into account. KORP-PL showed excellent
results in the pose prediction exercise compared to AutoDock Vina and
Convex-PL scoring functions. Although we cannot directly compare the
pose prediction results with the full protocols evaluated in the challenge,
only a few of them were successful, especially if no visual inspection
and ligand-based methods were used (Gaieb et al., 2019). This means
that the selection of correct binding poses for the cathepsin S inhibitors
could be a challenge for many scoring functions. For example, as can
be seen in Figure 4, Convex-PL failed in many cases to detect the correct

binding mode, while AutoDock Vina and the simplistic ∆SAS were almost
completely incapable of doing it. This could be caused by a combination
of the following reasons. Firstly, we believe that by its design, KORP-
PL is able to better catch directed interactions from target complexes,
such as hydrogen and halogen bonding, and π-stacking (Salentin et al.,
2015). Secondly, all the incorrect poses are located deeper in the binding
pocket, forming more contacts than the native conformation. Most of the
scoring functions tend to be biased towards the total number of protein-
ligand contacts, which could lead to incorrect predictions for Convex-PL,
Vina, and ∆SAS. As we have already discussed, KORP-PL underestimates
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Fig. 3. Scatter plot of KORP-PL scores versus the logKa constants from CASF-2016
benchmark. Each point is colored according to the hydrophobicity of the protein binding
pocket (H-scale, in logD units) as defined in (Su et al., 2018). The Pearson correlation
coefficients between KORP-PL scores and logKa constants, computed for three different
H-scale groups, are: 0.63 for H-scales between -0.80 and -0.35, 0.45 for H-scales between
-0.35 and -0.15, and 0.31 for H-scales between -0.15 and 0.8.

some of the non-orientational hydrophobic interactions. However, in this
particular case of D3R Grand Challenge 3, it helps to predict ligand
positions that are not very buried in protein pockets.

3.3 DUD-E benchmark

To evaluate the performance of KORP-PL in large-scale virtual screening
tasks, we have assessed it on 90 targets from the DUD-E benchmark. As it
can be seen in Table 1 and Figure 5, KORP-PL and KORP-PLw outperform
AutoDock Vina in all the metrics, being almost twice better if considering
the enrichment factors. This makes KORP-PL comparable to some recent
structure-based deep-learning models that demonstrate excellent virtual
screening performance (Ragoza et al., 2017). However, according to Chen
et al. (2019) that we have mentioned in the introduction, such scoring
functions tend to achieve high performance on the DUD-E benchmark
only if they have been originally trained on it, and thus probably learn
hidden biases such as the decoy selection criteria that were used upon the
benchmark construction.

Scoring function ROC AUC EF5% BEDROC α=20

median average median average median average
AutoDock Vina 0.731 0.714 3.691 4.528 0.234 0.264
KORP-PL 0.816 0.785 9.083 8.637 0.502 0.472
KORP-PLw 0.818 0.786 8.839 8.423 0.458 0.465

Table 1. ROC AUC scores, 5% enrichment factors, and BEDROC (Truchon
and Bayly, 2007) values computed for the 90 targets from the DUD-E dataset.
Twelve targets with co-factors in the binding pocket were excluded from the 102
original targets. It is important to note here that our results for AutoDock Vina
are slightly lower than those reported in Ragoza et al. (2017), where the median
and average ROC AUC, and median and average EF5% are equal to 0.740,
0.717, 4.228, and 4.485, respectively. This could be caused by the differences
in the binding pocket detection or other docking protocol settings. Per-target
evaluation results can be found in Table S23 of SI.

3.4 Computational details

KORP-PL is implemented in C++ and available as a binary for macOS
and Linux operating systems. It takes about 25 milliseconds on a single
core of Linux Intel(R) Xeon(R) CPU E5-2609 @ 2.40GHz to score a
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Fig. 4. D3R pose prediction and scoring results. Success rates of finding a pose within
2 Å RMSD from the native conformation among the 1%, 5%, and 10% of top-ranked
poses are shown in blue, green, and yellow, respectively. Scoring power is represented
by the Spearman’s correlation coefficient between the predicted and experimental binding
constants. These success rates are computed with respect to the actual number of ligands, for
which the poses with the desired RMSD values were present in the user submissions. Due to
this fact, for example, the KORP-PL success rate in Grand Challenge 2 is higher when the
native poses are excluded. The results of KORP-PL, KORP-PLw , Convex-PL, AutoDock
Vina, and ∆SAS evaluation are listed in Tables S16-S21 of SI. The pose prediction stage
of all the three challenges was called ’Stage 1’, the affinity prediction stage was called
’Stage 2’. However, receptor flexibility turned out to be a considerable issue for many
approaches (Kadukova and Grudinin, 2018), and in both Grand Challenge 3 and Grand
Challenge 4, Stage 1 was subdivided into Stage 1a, where neither ligand, nor receptor 3D
structure was known, and Stage 1b, where the receptor 3D structure was revealed. We
evaluated these stages separately.

protein-ligand complex from the CASF-2013 core set containing a single
ligand pose of 25 heavy atoms on average. However, energy computation
itself takes only 2 milliseconds and the rest of the runtime is spent on
the complex file parsing. As the method does not require positions of
the sidechain atoms, it can be readily applied to scoring protein models
represented only by their backbones.

4 Conclusion
This paper presents KORP-PL – a novel knowledge-based scoring function
for protein-ligand interactions based on the backbone-only receptor
and full-atom ligand representations. The receptor representation is
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Fig. 5. ROC AUC scores and 5% enrichment factors computed for the 90 targets from the
DUD-E dataset with KORP-PL and AutoDock Vina.

adopted from the KORP scoring function, which was designed to model
interactions in a protein molecule with a set of oriented coordinate
frames built on each protein residue. KORP-PL interaction potential
is then derived using statistics of relative orientations and positions of
ligand atoms in the local coordinate systems of protein residues. We
have demonstrated for the first time that a coarse-grained sidechain-
free protein representation can be successfully used for very accurate
predictions of ligand binding poses. Indeed, KORP-PL shows excellent
pose prediction and screening results in CASF-2013 and CASF-2016
benchmarks, and even in pose prediction benchmarks compiled from
the D3R Grand Challenges. KORP-PL also demonstrates outstanding
results in the DUD-E virtual screening benchmark, where it considerably
outperforms AutoDock Vina. Our affinity prediction performance is,
however, lower than average, and much more work is required to advance
developments in this direction. Overall, this work proposes a very efficient
solution to circumvent the long-standing problem of sampling protein
sidechain conformations in molecular docking. This paves the way for
the development of a new generation of flexible docking approaches.
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