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Abstract 
Dealing with structural robustness concept requires to investigate whether or not a 

structure can prevent a disproportionate collapse after the occurrence of a local failure due to 
an exceptional event. Numerical models can be used to simulate progressive collapse and help 
quantify the robustness level at a design stage. Non-linear static or dynamic finite element 
analyses are commonly used tools for structural performance assessment. However, 
computational time might be in most cases too large for complex structures where several 
local failure scenarios need to be investigated, and one may encounter convergence issues if 
the loads applied are close to the limit ones.  

In this context, this study proposes a framework for studying the progressive collapse of 
framed structures, which combines both the yield design approach and the non-linear analysis 
method. This proposed framework is applied to a steel-framed multi-storey building 
submitted to column(s) loss. 
 

Keywords: Structural robustness, local failure, progressive collapse, non-linear analysis, 
yield design approach. 

 

1 INTRODUCTION 

Many catastrophic events of structural progressive collapse highlight the importance of the 
structural design not to be limited to safety under normal conditions, but also to structural 
integrity under an exceptional event, not necessarily identified during design [1,2,3]. One of 
the first historical failures that led to a growing interest in structural robustness is the 
progressive and partial collapse of the Ronan Point tower in London (UK) in 1968. A gas 
explosion in a corner apartment on the 18th floor of this 22-storey precast concrete building 
dislodged one of the exterior walls, which led to the collapse of one entire corner of the 
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building [4]. Very recently, the Genoa Bridge collapse in Italy in August 2018, shed light on 
complex issues linked with structural robustness. 

Therefore, several design codes [5,6,7] mention that structures must be sufficiently robust 
to prevent localized damage leading to disproportionate and unacceptable collapse. In this 
respect, the Eurocodes define the structural robustness as “the ability of a structure to 
withstand events like fire, explosions, impact or the consequences of human error, without 
being damaged to an extent disproportionate to the original cause” [5]. 

To assess the level of robustness, a structural modeling can be used to simulate the 
propagation of failure. In a context of high uncertainty about the initial local failure, it is 
envisaged to study a large number of local failure scenarios, in order to identify the maximum 
capacity of the structure to withstand a local failure. The structural analysis of a large number 
of scenarios requires a simplified structural modeling method.  

Non-linear finite element analyses are popular tools to investigate the structural capacity, 
but some difficulties may arise on the non-convergence of the calculation (when one reaches 
ultimate limit states), and on the high computation cost especially for studying a large number 
of scenarios. 

This paper presents an original structural modeling method, which combines both the yield 
design approach and the non-linear analyses method, to analyze the progressive collapse of 
framed structures. The proposed approach is illustrated on a steel-framed multi-storey 
building. 

2 STRUCTURAL MODELING OF PROGRESSIVE COLLAPSE 

The progressive collapse analysis of structures exposed to an exceptional action involves 
complex phenomena, such as geometrical and material non-linearities due to large 
displacements and large strains, dynamic effects, and the propagation of failure. 

The finite element method is a widely used method in the numerical simulation of 
structures. The discretization in finite element can be considered at three different levels: 
local, global, and semi-global [8]. Choosing the level of discretization basically depends on 
the dimensions of the structure and the level of precision required. In a local approach, the 
elements are discretized with solid elements, and each material has a specific constitutive law. 
This approach gives a detailed representation of the structure, with local information on the 
state of plastification and damage of materials. Significant computation time is requested, 
especially when dealing with geometrical non-linearities. In a global approach, the structure is 
modelled with beam/shell elements, and each element has its own constitutive law depending 
on its geometry and materials. This method can significantly save some computation time, but 
there might be some difficulties to simulate the material non-linearities and to identify the 
state of damage in the element sections, especially in case of heterogeneous sections. The 
semi-global approach is an intermediate scale of discretization between local and global 
approaches, where the element section is discretized on multi-layer or multi-fiber elements. 
The constitutive law used for each layer or fiber insures local information of materials state, 
and the fields of displacements calculated by formulations of classic beam element. This 
approach integrates the benefits of local and global approaches: saving on computation time 
and ability to describe geometrical and material non-linearities. 

In addition to the issues linked with the choice of discretization, one needs to tackle non-
linearities phenomena and dynamic effects [9]. Non-linear analyses are often very time-
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consuming and vulnerable to non-convergence issues [10]. To prevent using full dynamic 
analyses, the structural response can be estimated from a non-linear static response under 
amplified gravity loading using a dynamic amplification factor [11] or a pseudo-static method 
[12], which estimates the non-linear dynamic response by a non-linear static analysis through 
the balance of energy against work done. 

With the aim of evaluating the capacity of structure to withstand actions, it is useful to 
identify the resistance capacity of the structure. In this context, the yield design approach is a 
good compromise, as it is a direct method, which avoids the non-linear analysis and thus the 
step-by-step computation of the structure along the full loading path [13]. In fact, only the 
compatibility between the equilibrium equations and the yield criterion is checked in every 
point of the structure. This method identifies the ultimate loads, as well as the failure 
mechanism and the most critical areas of the structure. Moreover, one can dramatically save 
on computing time compared to a non-linear analysis, and avoid problems of non-
convergence [14]. The essential assumptions of the process of yield design approach are that 
the materials are elastic perfectly plastic, and the assumption of small strains. Therefore, the 
main challenges to use this method is to take into account the geometrical non-linearities and 
to simulate the progressive collapse. 

3 PROPOSED STRUCTURAL MODELING STRATEGY 

An iterative yield design based approach is proposed to follow the propagation of failure. 
Furthermore, a non-linear static analysis is applied to calculate large displacements if a 
second line of defence can become effective when frames devolve from a flexure dominant 
system to a tensile membrane or catenary dominant system. This procedure is illustrated in 
Figure 1, with the following steps : 

1) yield design calculation is applied to identify the ultimate load and the failure 
mechanism,  

2) ultimate and applied loads are compared, 
3) in case the ultimate load is larger than the applied load, the current structural 

configuration can support the applied load, and the failure stops at this stage, 
4) in the opposite case, the current configuration of structure cannot support the applied 

load, and the failure propagates,  
5) the failure mechanism identified by the yield design calculation allows to identify the 

affected part, and to estimate if there is either a loss of stability or the possibility of a 
second line of defence, 

6) in case the failure mechanism indicates the mechanical instability of some elements, 
these elements are removed for the next iteration,  

7) in the opposite case, the failure mechanism indicates that the affected part may develop 
an alternative functioning stage after large displacement. A non-linear analysis is then 
applied to the affected part, in order to calculate the geometric displacements under the 
applied load. Then, a new iteration of yield design calculation is performed with the 
new geometric configuration, 

8) this iterative procedure continues until the end of collapse, for which the ultimate load 
on remaining elements is larger than the applied load, or until total collapse of the 
structure. 
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Based on the applied local failure scenarios, ܴܲܫܨ is equal to 2.5, so the most critical 
scenarios, with the largest extent of failure propagation, are [21 26 31], [22 27 32], [23 28 33] 
and [24 29 34], i.e. three central columns located on a given floor, where the collapse 
propagates to an area 2.5 times larger than the directly affected part. 

5 CONCLUSIONS 

The structural modeling method proposed in this paper enables to simulate the progressive 
collapse with saving in computation time and mitigation convergence issues due to the 
adoption a direct approach by means of the yield design method. The illustrative case study 
shows the capability of this method to study a large number of local failure scenarios, which 
allows a general assessment of structural robustness, and to identify the maximum capacity of 
the structure to withstand exceptional events. Besides, a structural robustness index is 
proposed (ܴܲܫܨ) and allows to evaluate the capacity of structures to prevent the propagation 
of failure, which accurately responds to the definition of structural robustness. 

To enhance the description of progressive collapse, further developments are still needed, 
to deal with aspects such as the 3D structural response, including the effects of slabs, and to 
adapt for a large range of materials and structures under different types of exceptional loads. 

Furthermore, a strong assumption in this paper has been made, where the materials are 
considered as elastic perfectly plastic (yield design approach). Therefore, to provide a more 
realistic behavior of materials, it is important to take into account the ultimate strain of 
materials, as it can dramatically change the results of the analysis. 
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