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Abstract 

Global estimates of river dynamics are needed in order to manage water resources, mainly in 

developing countries where in-situ observation is limited. Remote sensors such as nadir altimeters 

can complement ground data. Current altimeters miss however a large number of continental 

surface water bodies. This issue will be largely resolved by the future Surface Water and Ocean 

Topography (SWOT) mission, thanks to its wide swath altimeter. SWOT will provide almost 

globally two-dimensional water elevation maps for rivers over 100 m wide and water bodies over 

250 m x 250 m. During this research, we investigated the potential of SWOT to correct 

hydrological models on a global/continental scale, through data assimilation.  For this purpose, 

an Observing System Simulation Experiment (OSSE), also known as "twin experiment", has been 

implemented. Model forcings and parameters were perturbed to jointly achieve global 

hydrological models (GHMs) uncertainties, which is the expected scenario in which the SWOT 

community will mainly evaluate the future SWOT data. SWOT-like observations of water surface 

elevation (WSE), flooded water extent (FWE), and/or SWOT derived discharge (Q) were used to 

correct modelled Q, WSE and FWE from a large-scale hydrological and hydrodynamic model 

(MGB – portuguese acronym of “Modelo de Grandes Bacias”), using a Ensemble Kalman filter 

(EnKF). The results indicate that SWOT products could largely improve hydrological simulations 

on a global and continental scale. SWOT-like discharge can reduce ~40% of model errors in daily 

discharge. Furthermore, when anomalies of the WSE DA approach were implemented, the error 

reduction was even greater for all state variables compared to the absolute WSE DA, achieving 

average error reduction values of about ~30% compared to ~24%. Finally, the simultaneous DA 

of all the SWOT-like variables together reduces errors from ~14% to ~22% compared to the 

average of assimilating only one variable. 

Keywords: Continental Modeling; Global hydrological model; Data Assimilation; Observing 

System Simulation Experiment; Surface Water and Ocean Topography. 
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1. Introduction 

Continents play a key role in the water cycle yet, due to the vast heterogeneity of 

continent surface and soil composition, water storage and fluxes are difficult to estimate. 

Water mass is extremely dependent of soil properties in its different layers, surface 

topography, vegetation, past runoff which shapes current lakes, river networks and 

wetlands, human activity (e.g. dams, irrigation, weir), climate zones, and so forth. This 

complexity is present at different spatial scales, but it is especially crucial to take into 

account at a global scale, as it has a huge impact on the global water cycle (Sheil, 2018), 

through its interaction with the atmosphere (both inputs and outputs for the continents) 

and the ocean (outputs for the continental waters). In this context, estimating river’s 

dynamics is critical. It is used for assessing river basin water balance and its storage 

variability at monthly to multidecadal time scales, for understanding and forecasting flood 

and drought events, for climate change studies, etc. It is also important information for 

water managers, as it impacts a wide range of human activities (flood risk, food 

production, water supply and quality among others (Wood et al., 2011)). 

Global estimates of river dynamics, including, discharge (Q), water surface 

elevation (WSE) and flooded water extent (FWE) however still remains a challenge. A 

lot of basins in the world remains poorly gauged (Loukas and Vasiliades, 2014; Nijzink 

et al., 2018) especially in numerous developing countries where ground network is sparse 

and irregularly distributed. Usually, discharge series relative to a specific gauging station 

are estimated by converting measured water level into discharge using a rating-curve. 

Discharge errors associated to such kind of measurements range approximately from 6% 

to 20% (Clark et al., 2008; Herschy, 2002; Pelletier, 1988; Schmidt, 2002). Monitoring 

water extent, storage and flow variability in areas with complex channel networks (e.g. 

braided rivers, wetlands, etc.) are however difficult to monitor with traditional gauges 
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(Garambois et al., 2019). In addition, it has been noticed that a global decrease in 

measurements networks during the last decades (Alsdorf et al., 2003, 2007; Gleason et 

al., 2018; Sivapalan, 2003), and their availability for scientific purposes could be limited 

due to institutional or international policies, restricting the exchange of data (Alsdorf et 

al., 2007).  

To circumnavegate these limitations, hydrological models could be used to 

estimate river variability at global and large scales, with less precision than in situ gages. 

Over the last years, these models’ conceptual and physical framework, and computation 

time have improved, providing more accurate simulation of hydrologic and hydraulic 

processes at global scale (de Paiva et al., 2013; Gao et al., 2010; Sood and Smakhtin, 

2015; Yamazaki et al., 2013). Nevertheless, they still have uncertainties resulting from 

many sources, such as hydro-meteorological forcing, model structure, model parameters 

and observation data used to calibrate and validate the model (Döll et al., 2008; Gupta et 

al., 1998; Kauffeldt et al., 2016; Madsen, 2000; Siqueira et al., 2018; Thielen-Del Pozo 

et al., 2010; Wanders et al., 2014). Global hydrological models (GHM) could provide 

estimates of discharge with errors ranging from 52% to 103% (relative root-mean-square 

errors RRMSE) in South America based on our extended estimates of the comparison 

between HTESSEL, LISFLOOD and WaterGAP models made by Siqueira et al. (2018). 

In addition, Fleischmann et al. (2019) evaluated hydrologic-hydrodynamic experiments 

at different spatial scale. They found that modeled global water level has uncertainties, 

for the median of the sampled monitoring stations, of 7.4 m and 1.3 m for the absolute 

value and anomalies, respectively. The water level anomaly was calculated by subtracting 

the series average from the daily values. As for the discharge, the median of Nash-

Sutcliffe (NSE) index and the coefficient of variation reached values of 0.67 and 0.41, 

respectively. 
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In this context, collecting complementary observations to in situ measurements is 

fundamental in helping to improve these hydrological models and to get a finer spatialized 

estimation of water fluxes at the continent’s surfaces (Alsdorf et al., 2007; López et al., 

2017). That is why, during recent decades, remote sensing data have been used to provide 

such type of measurements thanks to their i) greater spatial coverage (Engman, 1995; 

Tang et al., 2009; van Dijk and Renzullo, 2011; Wanders et al., 2014) and ii) wide range 

of spatiotemporal, radiometric and spectral resolutions.  

Concurrently, data assimilation (DA) techniques have been developed to provide 

an effective way in which to combine information from models and measurements with 

an optimum analysis or estimation (Reichle, 2008). Many hydrological models and DA 

schemes have been widely used for the improvement of the estimations of their state 

variables using remote sensing observations, such as soil moisture (Baguis and Roulin, 

2017; Crow and Ryu, 2008; Massari et al., 2015), terrestrial water storage change (Khaki 

et al., 2019, 2018), flooded water extent (Lai et al., 2014). 

To observe elevation of open waters, multiple nadir radar altimeters missions have 

also been used in hydrologic studies by the assimilation of water surface elevations 

(WSE) (Michailovsky et al., 2013; Paiva et al., 2013) or discharge generated by rate 

curves altimetry based (Emery et al., 2018; Paris et al., 2016). Radar altimeters measure 

only along their ground track, which can have an intertrack distance at the equator 

between 300 km and 80 km, missing a large number of continental surface water bodies 

(Biancamaria et al., 2017; Legresy et al., 2005; Papa et al., 2003). Due to of their nadir 

measurements, the spatial and temporal resolution of present altimeters cannot fully 

observe the spatial features of flow wave propagation and flood dynamics for medium to 

large rivers (David et al., 2011). To overcome this issue and in order to provide 2D 

observation of WSE, the future wide swath altimetry mission Surface and Ocean 
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Topography (SWOT; Durand et al., 2010) is currently under development by NASA, 

CNES (Centre National d’Etudes Spatiales), CSA/ASC (Canadian Space Agency/Agence 

Spatiale Canadienne), and UKSA (United-Kingdom Space Agency). Its launch is 

currently scheduled around early 2022. The SWOT mission is planned to make high-

resolution measurements of the elevation of land surface water and ocean topography, 

with a quasi-global coverage between 78°S and 78°N. SWOT is designed, in principle, to 

be able to observe the seasonality of large portion of river and lakes globally (Biancamaria 

et al., 2016). SWOT will provide global estimates of WSE and flooded water extent 

(FWE) with expected accuracy of less than 10 cm and 15 %, respectively, for 1 km2 areas, 

i.e. 100m (width) x 10km (long) river reaches (Desai, 2018). In addition, several efforts 

have been made for estimate discharge from SWOT observations, using various 

algorithms whose uncertainties can reach, in better cases, 35% for the relative root-mean-

squared error (RRMSE) for the daily discharge (Durand et al., 2016). Although 

observations from SWOT will not be a replacement of in-situ stations (Biancamaria et 

al., 2016), the assimilation of SWOT measurements into hydrologic models can be an 

alternative for the improvement of the accuracy of such estimates. 

Previous studies developed DA techniques to ingest SWOT synthetic data 

(hereafter called SWOT-like observations) or observations from AirSWOT (an airborne 

variant of the SWOT instrument) into hydrodynamic models. Many of these studies 

mainly aimed to assimilate synthetic water surface elevations. They showed the benefits 

of improving model parameters (e.g. Pedinotti et al. (2014); Yoon et al. (2012)), state 

variables (Andreadis et al., 2017, 2007; Biancamaria et al., 2011; Durand et al., 2008; 

Fisher et al., 2018; Tuozzolo et al., 2019) or both together (e.g. Oubanas et al. (2018a, 

2018b)) in which the latter is certainly challenging. Most of them however were applied 

in a non-multiconnected river network (e.g. Oubanas et al. (2018a, 2018b); Tuozzolo et 
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al. (2019)) and/or with only a few SWOT-like observations errors, i.e. white noise, no 

correlation of the measurement errors along the swath; usually for studies that have been 

assessed on a large scale (e.g. Pedinotti et al. (2014); Yang et al. (2019); Yoon et al. 

(2013)). 

SWOT will however provide global measurements of WSE and is therefore 

particularly well suited for regional to global hydrology models which is why it is 

important to explore the benefits of SWOT data at the scale of the whole basin river 

network (and not just in a non-multiconnected river network). In particular, the 

assimilation of SWOT observations into global hydrological models to correct multiple 

state variables (WSE, FWE and Q) should be investigated, together with tests of the 

sensitivity of the assimilation system to different model and observation errors. Currently, 

only a few works investigated the use of wide swath altimetry WSE, altimetry-based 

discharge, river storage change or discharge at a basin scale (Emery et al., 2018; Pedinotti 

et al., 2014; Yang et al., 2019). These studies did not test however the assimilation of 

different variables altogether (WSE, FWE and Q) and only Yang et al. (2019) used 

estimates of complex model errors. 

The purpose of this paper is therefore to assess the integration of DA from SWOT-

like observations into a large-scale hydrologic-hydrodynamic model applied at basin 

scale. To do so, some experiments have been designed to address the following scientific 

questions: how can the assimilation of different SWOT-like observations improve global 

and continental hydrological models? how sensitive is the DA scheme to the uncertainties 

of the parameters of the model? is the assimilation of multiple variables necessary to 

further improve large-scale hydrological models? In this way, the aims of this study are: 

i) to implement and assess the DA of SWOT observations (WSE, FWE and Q) into a 

hydrologic-hydrodynamic large-scale model, ii) to assess the sensitivity of the model to 
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different ranges of parameters representative of GHMs’ source of errors, and iii) to 

evaluate multi-variables assimilation compared to single variable assimilation. Therefore, 

this study will be performed on a large basin (the Purus basin) as a proof-of-concept, and 

model uncertainties will be set up to be representative of GHM errors. 

Section 2 describes the general framework and the design of the SWOT Observing 

System Simulation Experiment (OSSE), the SWOT mission, the study area, the semi-

distributed hydrological-hydrodynamic model and the DA scheme developed in this 

research. In section 3, the characterization of the sources of errors in models at global 

scale are delineated. Section 4 presents how SWOT-like observations are generated and 

section 5 details the setup of the experiments. Section 6 shows the main results and 

discussions of the following experiments: i) simulations of uncertainty compliant with 

GHM ones, ii) sensitivity of the model to different scenarios and, iii) the improvements 

obtained by assimilating SWOT-like data using rather absolute values and their 

anomalies. Conclusions and perspectives are outlined in Section 7. 

 

2. Design of the SWOT Observing System Simulation Experiment 

Figure 1 shows the general framework of this research. In the figure, three main 

steps are described: “truth” simulation, open loop simulation, and simulation with DA. 

For the “truth” simulation, which consists of the calibrated version of the model, the 

superscript t is used. This setup is described in detail in section 2.2.2. The water masks 

from this simulation are used as inputs to the SWOT simulator to generate synthetic 

SWOT observations, as explained in section 4.2. These observations are then used, via an 

EnKF method, to update the state variables of the Open-loop simulation. For the open-

loop (background) and the updated simulations, the superscripts f and a are used. 
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Figure 1. General framework of the Observing System Simulation Experiment, which 

represents the stages of the simulation within the dotted rectangles for truth (blue), open-loop 

(red) and assimilation (black). The green dotted rectangles refer to the sections of the 

manuscript. 

 

2.1. Observing System Simulation Experiment 

As SWOT data are currently not yet available, this study is designed as an 

Observing System Simulation Experiment (OSSE), also known as twin experiment. 

OSSE are experiments designed to assess how a new observing system might benefit a 

current model framework. It is done using one model realization considered as the 

“reference” or “true” state and then some virtual measurements of this reference state by 

the new observing system are estimated. Finally, these new virtual observations are 

assimilated in the model, which has been “corrupted” to be representative of the expected 

model errors. OSSE could therefore assess the potential of the observing system in order 
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to correct the model outputs or parameters, by comparing the “true” state, the initial one 

from the “corrupted” model and the one after assimilation of virtual observations. Of 

course, the results of OSSE are extremely dependent on the level of accuracy of the virtual 

measurements (i.e. how realistic they are) and the accuracy of the model errors taken into 

account. Besides, in twin experiments, the same model is used for the reference state and 

the corrupted state. 

OSSE are used to assess the potential of future satellite observations to correct 

Atmosphere, ocean or hydrology-hydraulic models, as has already been the case for the 

SWOT mission (see for example Biancamaria et al. (2016a) for a review of such type of 

study). The current study is in line with such studies. For this OSSE, the hydrologic and 

hydrodynamic MGB (Modelo de Grandes Bacias) model was used to compute the “truth” 

and the “corrupted” versions. The corrupted version of the model was notably set up to 

represent the uncertainties of GHM. The whole Purus basin has been chosen as a case 

study, despite the fact that coverage gaps can be locally larger in this region (10°S and 

10°N) than at mid and high latitudes (Biancamaria et al., 2016). The Purus river represents 

a large basin with a more complex river network than several previous assessments of 

SWOT satellite, which mostly used non-multiconnected river networks. 

Among the DA methods derived from the Kalman Filter (KF) the EnKF have 

become popular in the field of hydrology and consequently widely used to combine large-

scale hydrological models and remote sensing data (Chen et al., 2013; Clark et al., 2008; 

Neal et al., 2007; Paiva et al., 2013; Revilla-Romero et al., 2016; Sun et al., 2016). EnKF 

allows implementing covariance matrix from an ensemble of corrupted model runs and 

therefore take into account more complex errors than the KF. Therefore, the EnKF DA 

scheme was chosen in this research to update the state variables of the model by 
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assimilating synthetic SWOT-like observations. These observations are generated with 

the SWOT simulator described in section 5.4. 

2.2. Case study 

2.2.1. The Purus basin 

The Purus basin has an extent of ~370,000 km2 (Fig. 2) and is one of the major 

tributaries of the Amazon River. The Purus River has a high concentration of suspended 

sediments, mainly composed by silt and clay that comes from the Andes (McClain and 

Naiman, 2008), which influences its geomorphology (Latrubesse, 2008). Due to its 

meandering nature, it has a large river length of ~3,380 km (Goulding et al., 2003). It has 

high interconnectivity between the main river and floodplains, of the basin containing 

lakes, unflooded and flooded forests, and floating-meadows. Besides, the river 

mainstream is affected by backwater effects close to its mouth which is why the Purus 

basin has large environmental and hydraulic complexity (Meade et al., 1991, Goulding et 

al., 2003).  

The mean annual discharge is estimated to be 9,500 m3.s-1 at Beaba (Cariuacanga) 

gauge station, near its confluence with the Solimões River. The Purus river main direction 

is south-west to northeast, with a channel pattern of tortuous meander (Latrubesse, 2008).  
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Figure 2. Map of Purus Basin, with in-situ discharge gauges (red triangles). The background 

image on the right panel corresponds to the digital elevation model of the SRTM. 

 

2.2.2. The hydrologic-hydrodynamic model 

In this research we use the large-scale hydrologic-hydrodynamic MGB model. 

The MGB model was selected due to (i) its satisfactory performance for large-scale 

applications (e.g., de Paiva et al. (2013); Pontes et al. (2017); Siqueira et al. (2018)), (ii) 

successful applications in the past in data assimilation (e.g., Paiva et al. (2013); 

Wongchuig et al. (2019)), which demonstrated the potential of this methodology to 

improve spatio-temporal estimates of hydraulic variables and (iii) its potential to reach 

levels of comparison with GHMs, i.e., LISFLOOD, WaterGAP3 and HTESSEL (Siqueira 

et al., 2018). 

The MGB is a semi-distributed hydrological model which uses physical and 

conceptual based equations to simulate the continental phase of the hydrological cycle 

(Collischonn et al., 2007). The watershed is discretized into irregular unit-catchments and 

further into hydrological response units (HRUs), where vertical water and energy budget 
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are computed individually. For the hydrodynamic component, each unit-catchment is 

composed by a river reach that includes both channel and floodplain units, the latter 

depicted as a simple storage with ineffective flow (Pontes et al., 2017; Siqueira et al., 

2018). The surface, sub-surface and groundwater runoff produced at each unit-catchment 

into the hydrologic module are routed to the stream network based on a linear reservoir 

concept. The main hydrological soil parameters of the model are related to the saturation 

excess concept based on the variable contributing area concept of the ARNO model 

(Todini, 1996). The flow routing in river channels is computed using the local inertial 

method (Bates et al., 2010; Pontes et al., 2017). This is an explicit finite difference 

approximation of the full 1D Saint-Venant equations by neglecting the convective 

acceleration term from the momentum equation. It is nonetheless able to represent 

backwater effects, floodplain attenuation and flood wave transport along rivers in both 

1D and 2D dimensions (Getirana et al., 2017; Yamazaki et al., 2013). The main hydraulic 

state variables which will be related with SWOT-like observations are discharge, water 

surface elevation and flooded water extent.  

Within MGB, the floodplain is represented as storage units without active flow. 

River and floodplain exchange water instantaneously, and water surface elevation is 

assumed the same along the river-floodplain system within each unit-catchment (Paiva et 

al., 2011). Channel cross sections are assumed to be rectangular, as typically adopted in 

large scale hydraulic modeling (de Paiva et al., 2013; Trigg et al., 2009). Required 

parameters for the river-floodplain routing are channel bed elevation, cross section 

bankfull width and depth, and Manning roughness coefficient. The hydrodynamic routing 

time step is determined by the Courant-Friedrichs-Levy condition with a multiplier 

parameter for ensuring numerical stability (Bates et al., 2010; Yamazaki et al., 2011). 
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Detailed information for hydraulic channel-floodplain computation is described in 

Supplementary material. 

The model setup used here over the Purus basin is a resampled application of   

(Siqueira et al., 2018), which was discretized into 1613 unit-catchments and river reaches 

of ~10 km. The model was forced using MSWEP v 1.2 precipitation dataset (Beck et al., 

2016), with spatial resolution of 0.25° x 0.25° and daily time step for a period spanning 

15 years (2000-2015) and monthly meteorological data obtained from the CRU CL 2.0 

dataset (New et al., 2002). The model parameters related to soil water budget were 

calibrated using discharge data from in situ stream gauges (17 stations) and a single set 

of hydrological parameters for all basins has been established. The hydraulic cross section 

bankfull width and depth were estimated from geomorphologic equations from Paiva et 

al. (2011) and the floodplain topography was from Bare Earth digital elevation model 

upscaled to 500 m spatial resolution (O’Loughlin et al., 2016). 

 

2.2.3. Data assimilation scheme 

Among data assimilation techniques, the Ensemble Kalman Filter (EnKF) 

(Burgers et al., 1998; Evensen, 1994) has become popular due to its relative simple 

conceptual formulation and computational implementation (Evensen, 2003). The EnKF-

based methods have been widely used by the SWOT scientific community such as 

Andreadis et al. (2007), Durand et al. (2008), Biancamaria et al. (2011), Yoon et al. 

(2012), Andreadis and Schumann (2014), Munier et al. (2015), Revel et al. (2019), among 

others. It uses a Monte Carlo formulation based on the concepts of the Kalman Filter 

(KF). The EnKF method, uses an ensemble of state variables to sample model error and 

compute covariance error matrix used to estimate the Kalman gain. To achieve this, it is 
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common to estimate these errors from the perturbation of the model’s forcing or 

parameters (Biancamaria et al., 2011; Liu et al., 2012; Paiva et al., 2013). From the 

background ensemble the sample mean and error covariances are calculated. During the 

analysis stage  the covariance matrices of the errors from the model and observations are 

then used to add to the background state vector a correction that corresponds to the so-

called Kalman gain apply to the difference between the observation and the background 

state vector projected into the observation space (Eq. 1 to 3). 

The implementation of the EnKF DA scheme in MGB was based on the algorithm 

developed by Evensen (2004). The main goal of EnKF is the optimization of the variance 

of the model errors based on model and observation uncertainties to provide a better 

estimation of the state variables of the model (called the analysis, noted xa hereafter).  

The matrix of the background ensemble of model states 𝑥𝑥𝑓𝑓, is represented as: 

𝐱𝐱𝑓𝑓 = �𝐱𝐱1
𝑓𝑓 ,𝐱𝐱2

𝑓𝑓 , … , 𝐱𝐱𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒
𝑓𝑓 � (1) 

where 𝑥𝑥𝑖𝑖
𝑓𝑓 represents each ensemble member of the model states until the total 

number of defined members (𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒). 

The analysis 𝑥𝑥𝑎𝑎 is estimated by the EnKF as follows: 

𝐱𝐱𝑎𝑎 = 𝐱𝐱𝑓𝑓 + 𝐊𝐊𝑒𝑒(𝒚𝒚 − 𝐇𝐇𝐱𝐱𝑓𝑓) (2) 

𝐊𝐊𝑒𝑒 = 𝐏𝐏𝑒𝑒
𝑓𝑓𝐇𝐇𝑇𝑇�𝐇𝐇𝐏𝐏𝑒𝑒

𝑓𝑓𝐇𝐇𝑇𝑇 + 𝐑𝐑𝑒𝑒�
−1

 (3) 

where 𝑥𝑥𝑎𝑎 is the estimated model state and x𝑓𝑓 the background ensemble of model 

states (Eq. 1), 𝐾𝐾 the Kalman Gain, 𝑃𝑃𝑓𝑓 and 𝑅𝑅 covariance matrices of model (𝑞𝑞) 

and observation (𝜀𝜀) uncertainties, respectively, H is a function that relates the 

model state variables 𝑥𝑥𝑓𝑓 to its corresponding observation 𝑦𝑦. The �𝒚𝒚 − 𝐇𝐇𝐱𝐱𝑓𝑓� 

expression is also called innovation matrix. 
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 Detailed description about the generation of the covariance matrix of the estate 

variables of the model (𝐏𝐏𝑒𝑒
𝑓𝑓) and the observation (𝐑𝐑𝑒𝑒) is showed in supplementary 

material. 

Several improvements to the EnKF scheme were made, for instance the 

Localization Analysis (LA) was proposed by Houtekamer and Mitchell (2001) who use 

the “covariance localization” method in order to limit the updating of state variable into 

a spatially area from the observation. It is important to avoid updates due to spurious 

correlations between two points mainly because i) the use of limited number of ensemble 

members, mostly to avoid large computational effort and ii) large distant or physically 

disconnected points, which could have a significant impact in large scale regions. 

Detailed information is described in supplementary material. To provide improvements 

on hydrologic-hydrodynamic simulations by the use of SWOT-like observations, a DA 

scheme from multi-variables was also implemented. For its implementation, specifically 

three matrices that compose Equations 2 and 3, will increase their dimensions depending 

on whether on a specific day there is more than one observation. For this study, we assume 

the simplification that the observations are not correlated with each other. 

This multi-variable DA approach, but not necessarily the same mathematics 

proposed in this paper, has been recently evaluated in hydrology once several remote 

sensing data are now available; in addition, several authors have realized benefits due to 

the better representation of more hydrological-hydrodynamic processes (Khaki et al., 

2019). In addition, improvements by SWOT using a localization approach for DA already 

implemented in the MGB by Wongchuig et al. (2019) was assessed as supplementary 

technique. The multi-variable DA and localization techniques are detailed in the 

Supplementary material.  
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3. Modelling Global hydrological model errors 

This section describes the generation of the ensemble scenarios of the model by 

using different sources of error. As stated in section 1, this study aimed to investigate the 

benefits of assimilating SWOT data into GHMs, as SWOT almost global coverage will 

be particularly well suited for such type of models. An assessment of typical errors in 

global and continental models is therefore needed in order to represent uncertainties of 

models on these scales. The uncertainty on discharge was estimated from the average 

ensemble of three GHMs. We are assuming that GHMs’ errors come primarily from 

uncertainties on precipitation forcing, river bathymetry, floodplain topography and water 

balance parameters. An extensive literature review about errors of these parameters in 

global and continental scales was made, which will be used to corrupt the “truth” model 

to achieve similar results of uncertainty of GHMs which will be explained later in this 

section. In addition, the same metrics of errors assessed by Durand et al. (2016) were used 

in this research to mimic their evaluations on discharge performance, i.e. the RRMSE. 

The global models assessed were the Land surface model (LSM) HTESSEL coupled 

offline to CaMa-Flood (Balsamo et al., 2009; Yamazaki et al., 2011), LISFLOOD (Van 

Der Knijff et al., 2010), WATERGAP (Döll et al., 2009) and the ensemble average of 

these models (EGHMs). This analysis (Fig. 3) was performed by using 627 in-situ stations 

of discharge throughout the whole of South America for the period 1990 to 2009. Detailed 

information about these stations can be found at Siqueira et al. (2018). In this research 

therefore, the median for RRMSE on discharge (73%, see Fig. 3b) of the EGHMs will be 

the target of our model set up when all errors are combined. 

Figure 3 shows the performance of the assessed GHMs and also the MGB model 

that was plotted, which showed the best performance among them. These results are 

similar to Siqueira et al. (2018). 
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Figure 3. Boxplots of the performance of discharge for global and continental scale 

hydrological models, showing the ensemble of global models (EGHMs), HTESSEL, 

LISFLOOD and WaterGAP models and the MGB model. 

 

The performance of EGHMs was chosen as the reference as it represents the best 

estimator. Hence, the specific RRMSE index was considered to reach errors of discharge 

for global models, which is around 73% for the median of RRMSE.  

See section 1 of the supplementary material where a detailed description of the 

sources of error used in this study is provided. The main sources of errors (precipitation 

forcing, hydrological parameters, floodplain bathymetry and hydraulic parameters) of 

hydrological models were considered in this study, which are schematized in Figure 4 

and summarized in Table 1. 
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Figure 4. Schematic framework of the perturbation adopted for the model variables. (a) rainfall, 

(b) hydrological, (c) Manning roughness coefficient, (d) width and depth channel, and (e) 

floodplain topography. 

 

Systematic (β) and random errors (ε) were mainly considered to perturb the 

forcing and parameters in this study, once frequently used in water resource assessments 

(Neppel et al., 2010). 

Table 1. Summary of model variables and perturbation setup 
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 Truth Model Sources of error 
Model scenario Errors Reference 

Rainfall MSWEP v1.2 Adopted a multiplicative 
error perturbation 

𝛽𝛽𝑝𝑝  ~logN with relative 
error of ~25% 

𝜀𝜀𝑝𝑝 ~logN with relative 
error of ~70% 

Nijssen and Lettenmaier 
(2004), Sun et al. (2018) 

Hydrological 
parameters Calibrated 

Uniform random 
selection within the 
parameters’ interval 

- Siqueira et al. (2018) 

Floodplain 
Topo (DEM) 

SRTM Bare 
earth 

Perturb the hypsometric 
curve using a regional 
bias which follows a 
Gaussian normal 
distribution. 

𝑓𝑓𝑓𝑓𝑓𝑓′ = 𝑓𝑓𝑓𝑓𝑓𝑓 + 𝛽𝛽𝑓𝑓𝑓𝑓𝑓𝑓 

𝛽𝛽𝑓𝑓𝑓𝑓𝑓𝑓  ~N with error of 
~10m 

Farr et al. (2007), 
Yamazaki et al. (2017) 

Hydraulic 
parameters 
(channel 
width, depth 
and Manning 
coefficient) 

Geomorphologic 
equations (Paiva 

et al., 2011) 

𝑤𝑤′ = 𝑤𝑤 ∗ 𝛽𝛽𝑤𝑤 ∗ 𝜀𝜀𝑤𝑤 

𝑑𝑑′ = 𝑑𝑑 ∗ 𝛽𝛽𝑑𝑑 ∗ 𝜀𝜀𝑑𝑑 

𝑛𝑛′ = 𝑛𝑛 ∗ 𝜀𝜀𝑛𝑛 

𝛽𝛽𝑤𝑤  and 𝜀𝜀𝑤𝑤 ~logN (1, 
1.122) or with relative error 
of  39% 

𝛽𝛽𝑏𝑏and 𝜀𝜀𝑏𝑏~logN (1, 1.222) 
or with relative error of  
33% 

𝜀𝜀𝑛𝑛 ~logN (1, 1.692) or with 
relative error of  ~50% 

Andreadis et al. (2013) 

Moody and Troutman 
(2002) 

Anees et al. (2017) 

 

 

4. SWOT-like observations 

4.1. The SWOT mission 

The major payload carried on SWOT satellite is a Ka-band Radar Interferometer 

(KaRIN), which is a wide swath radar interferometer. The two ground swaths will cover 

50 km each, separated by a gap of 20 km (Alsdorf et al., 2007; Biancamaria et al., 2016). 

To obtain synthetic SWOT data, previous studies (Andreadis et al., 2007; Biancamaria et 

al., 2011; Durand et al., 2008; Munier et al., 2015; Paiva et al., 2015; Yoon et al., 2013) 

tested a simple method where spatio-temporal sampling was calculated through SWOT 

pre-defined orbits and swath tracks and only a white noise was added to the “true” water 

elevation within the swath tracks in order to simulate SWOT observation errors. Of 

course, SWOT errors will be much more complex than white noise, some errors will be 
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correlated along the track, some others across-track and some will even be systematic. 

These errors could be due to the instrument itself (instrument noise), to the physic of the 

signal, to some delays due to atmosphere crossing by the electromagnetic wave, to 

interaction of the electromagnetic signal with the ground (topography effects, interaction 

with vegetation, water roughness), radar signal processing among others. For a more in-

depth review of the SWOT mission error budget, see Fernandez et al. (2017). 

 

4.2. The SWOT simulator 

For the past few years, JPL (Jet Propulsion Laboratory) and CNES institutions 

have developed some SWOT measurements simulators which have been used by the 

scientific continental hydrology community. The most realistic one the High Resolution 

(HR) SWOT simulator developed by JPL (Peral et al., 2016) and already used in some 

previous studies (Bonnema and Hossain, 2019; Bonnema et al., 2016; Chevalier et al., 

2019; Domeneghetti et al., 2018; Frasson et al., 2017; Grippa et al., 2019; Langhorst et 

al., 2019; Oubanas et al., 2018b; Solander et al., 2016), is very difficult to use for large 

scale applications. It requires high spatial resolution inputs, such as a high-resolution 

Digital Elevation Model (DEM) with at least 10 meters or higher spatial resolution, along 

with water elevation maps at the same resolution, which are computationally prohibitive 

at basin scale. Therefore, the Large Scale Level 2 HR Pixel Cloud Simulator (LSPCS), 

developed by CNES, was used in this research. This simulator does not explicitly compute 

the interferogram and its inversion, but rather uses parametrization to compute SWOT-

like errors directly for WSE (Desroches et al., 2018). It computes the level 2 SWOT pixel 

cloud using the SWOT orbit and KaRIn observation geometry and resolution, with some 

spatially and temporally correlated random noises. It does not take into account layover 
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error (i.e. error due to the surrounding topography) or error due to the crossing of the 

atmosphere. Among the main advantages of this simplified version is the less restrictive 

required inputs (only a water mask is needed) in comparison to the SWOT HR simulator. 

In addition, it allows a multi temporal simulation relatively easily. Detailed information 

about LSPCS can be found at (Desroches et al., 2018). 

In the Purus river basin, the SWOT-like observation frequency was estimated. For 

each river reach of 10 km, 97% of the river reaches larger than 50 m will be observed by 

the satellite and they will be observed between one to three times during each satellite 

repeat period. The simulation period for LSPCS stretches from September 2011 to 

September 2012, which covers a flood event (Marengo and Espinoza, 2016). 

The SWOT-like observations into the LSPCS were generated in two steps: i) the 

estimation of the orbits for the study area, and ii) generation of the pixel clouds by using 

a multitemporal simulation. The calibrated setup of MGB model for the Purus basin was 

used as the “truth” or “reference” (see section 2). The vectorized water masks of every 

day, computed from the reference version of MGB, were used as inputs to the LSPCS. 

SWOT-like observations were estimated from the reference model plus a measurement 

error from the LSPCS for WSE. The SWOT-like observation is obtained as follows: 

𝑦𝑦 = 𝑦𝑦𝑡𝑡 ∙ 𝜀𝜀 (4) 

where y represents the pseudo-observation (error-containing observation), yt the 

true observation (error-free observation) and 𝜀𝜀 the error in observations.  

For the WSE, the mean of the pixel cloud of SWOT WSE errors within each 

catchment were used to perturb the truth WSE, and the standard deviation of these errors 

was assumed as the uncertainty of the WSE observation.  
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In addition, because the SWOT simulator only provides errors on WSE, the 

pseudo-observations of Q and FWE corresponded to the same SWOT overpass dates 

obtained from the WSE, and uncertainty is incorporated by a multiplicative noise, which 

is assumed to follow a log-normal distribution based on errors resulting from analysis of 

the algorithm uncertainties for Q (Durand et al., 2016) and error budget requirements for 

FWE (Fernandez et al., 2017). The multiplicative noise means that 𝜀𝜀 (in Eq. 4) is 

calculated as  (1 + 𝛼𝛼 ∙ 𝑟𝑟) where 𝛼𝛼 represents a specific percentage factor and 𝑟𝑟 a 

Gaussian-distributed random number with zero mean and standard deviation of 1 (Xue et 

al., 2007). The specific percentage factor 𝛼𝛼 adds the uncertainty to the dispersion 

(standard deviation) of the observations.  

 

4.3. Perturbation for the SWOT-like observations 

 In the EnKF scheme, the innovation matrix [𝐲𝐲 + 𝜖𝜖𝑛𝑛 − 𝐇𝐇𝐱𝐱𝑛𝑛
𝑓𝑓] is estimated by the 

difference between the ensemble matrix of perturbed pseudo-observation and the 

ensemble matrix of state variables (𝐱𝐱𝑛𝑛
𝑓𝑓) mapped to the measurement space by the H 

operator, while 𝜖𝜖𝑛𝑛 represents an ensemble matrix random noise which follows a Gaussian 

distribution with mean equal to zero (Evensen, 2003) taking also into account the 

uncertainties of the observations. The perturbation of each “true” observation is therefore 

presented in this section, based on different source of uncertainty and model error 

approaches.  

The estimated standard deviation of WSE errors in the pixel cloud, provided by 

LSPCS (𝜎𝜎𝜀𝜀LSPCS), are large. However, some of the errors should decrease while pixels are 

aggregated (Fernandez et al., 2017). Therefore, pixels were averaged over 1 km2, 
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decreasing the error by the square root of the number of pixels aggregated (uncorrelated 

error), as shown in Equation 5. 

𝜀𝜀𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
𝜎𝜎𝜀𝜀𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
√𝑁𝑁

 (5) 

where 𝜎𝜎𝜀𝜀𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  is the standard deviation of the sampled pixel clouds and N is the 

sampled size represented by the number of pixel clouds within 1km2. 

Concerning Q, the multiplicative error is split into two type of errors: a systematic 

error (𝜀𝜀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)  and a stochastic error (𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡) , as shown in Equations 6¡Error! No se 

encuentra el origen de la referencia.  and 7. The resulting multiplicative error (𝜀𝜀) is 

therefore equal to 𝜀𝜀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∗ 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡 and corresponds to a log-normal distribution (Table 2), 

in order to avoid negative discharge. To define the uncertainty of discharge estimation by 

SWOT, the estimates of the discharge errors by Durand et al. (2016) were used in this 

research. Here we assume that SWOT-like Q retrievals are as accurate as the most 

optimistic of these values. We consider that discharge errors are expressed in terms of 

relative residuals of discharge (RR) which is defined as: 

𝑅𝑅𝑅𝑅𝑡𝑡 =
𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑡𝑡 − 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 (6) 

Based on the Equations 4 and 6, the corrupted variable is expressed in terms of 

RR as following: 

𝜀𝜀 − 1 =
𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
− 1 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∙ (1 + 𝑅𝑅𝑅𝑅) (7) 

The (1 + RR) is assumed as a log-normal distributed random number, therefore 

the mean (MRR) and the standard deviation (SDRR) of the discharge relative residual 

(RR) (Bjerklie et al., 2005; Durand et al., 2016) could be used in the way that: 



Published in Journal of Hydrology (2020), https://doi.org/10.1016/j.jhydrol.2020.125473 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡
𝑖𝑖 − 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑖𝑖

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(1 + 𝑅𝑅𝑅𝑅) = 1 + 𝑀𝑀𝑀𝑀𝑀𝑀 (8) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �1
𝑁𝑁
��

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡
𝑖𝑖 − 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑖𝑖

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀�

2𝑁𝑁

𝑖𝑖=1

 𝑠𝑠𝑠𝑠𝑠𝑠(1 + 𝑅𝑅𝑅𝑅) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (9) 

These values were already estimated by Baratelli et al. (2018) from Durand et al. 

(2016) who considered values around -18.8% and 15% as the median of MRR and SDRR 

respectively for all river algorithms. 

Lastly, for FWE perturbation only a random noise (𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡
𝐹𝐹𝐹𝐹𝐹𝐹 ) was added to the truth. 

For this purpose, the value of 15% of uncertainty established in the SWOT scientific 

requirements document (Fernandez et al., 2017) was used. The schematic representation 

of this section is shown in Figure 5. 

 

Figure 5. Schematic framework of the (a) Large Scale Level 2 HR Pixel Cloud Simulator 

(LSPCS) for specific day ti and the adopted perturbation to generate the SWOT-like 

observations for (b) Flooded Water Extent (FWE), (c) Discharge (Q), and (d) Water Surface 

Elevation (WSE). 
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Table 2. Summarize of the perturbation setup for SWOT-like observations 

SWOT-like 
observation 

Uncertainty 

(assimilation / corruption) 

Perturbed model by measurement errors 
(Gaussian distribution) 

# of 
realizations 

WSE 𝜀𝜀𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 min ~0.10 m 
for 1km2 𝑊𝑊𝑊𝑊𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑊𝑊𝑊𝑊𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜇𝜇𝜀𝜀LSPCS One 

Q 

Algorithm’s 
uncertainties, 

(Baratelli et al., 
2018; Durand et 

al., 2016) 

MRR and 
SDRR 

 -18.8% and 
15% 

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝜀𝜀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑄𝑄 𝑐𝑐

∗ 𝜀𝜀
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡
𝑄𝑄  25 

FWE 

Mission 
performance 

and error budget 
reference 

(Fernandez et 
al., 2017). 

𝜎𝜎𝐹𝐹𝐹𝐹𝐹𝐹 

15 % 
𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝜀𝜀𝑛𝑛𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡

𝐹𝐹𝐹𝐹𝐹𝐹  25 

  

In this study true variables (Q and FWE) are assumed to be corrupted at all-time 

steps by the random errors of the error terms (𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡
𝑄𝑄  and 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡

𝐹𝐹𝐹𝐹𝐹𝐹 ), while the systematic 

error (𝜀𝜀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑄𝑄 ) for Q is constant in time and spatially correlated between contiguous 

catchments within the river network to ensure continuity.  

𝜀𝜀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑄𝑄    ~𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁�1, 𝑒𝑒𝑀𝑀𝑀𝑀𝑀𝑀2� 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡

𝑄𝑄    ~𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁�1, 𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2� (10) 

𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡
𝐹𝐹𝐹𝐹𝐹𝐹    ~𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(1, 𝑒𝑒𝜎𝜎𝐹𝐹𝐹𝐹𝐹𝐹2) (11) 

The continuity assumption for discharge is an important issue for some algorithms 

tested by Durand et al. (2016) (e.g. AMHG and MetroMan). To ensure that, three 

contiguous reaches within the river network were considered as fully spatially 

correlated, which means that the same perturbation is used for each cluster of reaches 

(e.g. group of three reaches). To generate the random numbers by a multivariate normal 

distribution, the following equation was used here: 
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𝜀𝜀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑄𝑄 𝑐𝑐

= 𝜌𝜌 ∙ 𝜀𝜀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑄𝑄 1

+ �1 − 𝜌𝜌2 ∙ 𝜀𝜀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑄𝑄 2

 (12) 

where 𝜀𝜀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑄𝑄 1

 and 𝜀𝜀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑄𝑄 2

 are independent realizations and 𝜌𝜌 is the correlation 

matrix of one and zero, where one represents full correlation. 

 

5. Experiments setting 

Table 3 summarizes the experiments defined in this research, where different 

scenarios are assumed to assess the improvements in the states variables of the model 

using DA scheme and complementary localization and multi-variable techniques. The 

observations that will be used in the experiments are Q, WSE, FWE and all the three 

together (MV), also the anomalies of each one of these variables will be used, defined 

with the symbol (’). The anomalies were estimated by removing the time averaged values 

(from both, open-loop and SWOT-like observations) neglecting the first year (2000) that 

corresponds to the warm up period for the hydrological model, hence bias on the 

observations would be avoided. 

Table 3. Summary of the experiments and main characteristics and setup 

Experiment 
Assimilated 
SWOT-like 

observation * 
To assess: Realizations 

1 - 
To achieve the uncertainties of GHMs 

by perturbing forcing and parameters of 
the model 

25 

2 WSE, FWE, Q 
and MV 

Sensitivity based on individual and 
full-combined scenarios of the model 

from different source of errors 
25 

3 WSE’, FWE’ and 
Q’ 

Improving by assimilating the anomaly 
of the SWOT-like observations  25 

* WSE=Water Surface Elevation, FWE=Flooded Water Extent, Q=Discharge, MV=Multi-variable, “ ’ ” represents the 
variable’s anomaly 
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In addition, a localization approach was implemented to estimate the optimal radius 

of influence in the Purus Basin and to assess the improvements by using this technique. 

Due to the computational demand, it was only assessed by assimilating WSE. The 

improvements on RRMSE by using a localization method (Wongchuig et al., 2019) 

reaches up to ~60% in comparison with no-localization assessing. Enhancements were 

greater especially for smallest ensemble size (10 – 50) and for a radius of influence of 

500 km. Detailed results are shown in the supplementary material section. 

The forcing and parameters of the model were disturbed through perturbation 

strategies described in section 3 to obtain errors similar to GHM errors. For a better 

representation of uncertainties, 25 realizations were performed for each source of model 

errors. 

Table 4 shows the experiments designed to assess the potential of the assimilation 

of different variables SWOT observables to correct GHM and assess assimilation results 

sensitivity to model errors. As shown in Table 4, assimilation results are assessed 

separately for each source of model error and then with all model errors included, which 

corresponds to EGHM performance estimated in section three. A reference setup (truth) 

is therefore compared with 25 realizations of both corrupted scenarios and pseudo-

observations. No localization method approach is shown in the main document and the 

results of the localization approach are shown in the supplementary material. 

The main goal of the last part of the experiments is to improve the state variables 

of the model by assimilating the anomalies of the SWOT-like observations.  
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Table 4. Summary of the perturbed variables taken into account for the corrupted models regarding the 

experiments. 

SWOT-like obs 
Model errors 

Rainfall Hydrologic 
parameters 

Floodplain 
parameters 

Hydraulic parameters 
Depth Width Manning 

WSE / FWE / Q  

x      
 x     
  x    
   x x x 

x x x x x x 
WSE + FWE + Q 

(MV) x x x x x x 

WSE’ / FWE’ / Q’ x x x x x x 

WSE’ + FWE’ + Q’ 
(MV’) x x x x x x 

* + means the multi-variable assimilation approach, “ ’ ” represents the variable’s anomaly 

 

The performance of the simulations has been evaluated by the difference in the 

relative root mean square error (∆RRMSE), calculated for each updated state variable i.e. 

water level, discharge and flooded water extent. The root mean square error is calculated 

as follows: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
�∑ �𝑆𝑆𝑖𝑖 − 𝑇𝑇𝑖𝑖

𝑇𝑇𝑖𝑖
�
2

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 

 

(13) 

∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
 (14) 

where N is the number of days of the windows simulations, S represents the 

simulation (i.e. Open Loop, DA EnKF), T represents the true model. The ∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

compares (relatively) the performance (decreasing of errors) of the model 

simulation using the DA scheme with respect to the open-loop (free run 

simulation). 
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  We also used the same metrics by Durand et al. (2016) based on the relative 

residuals, the equational demonstration of which is shown in supplementary material: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2 = 𝑀𝑀𝑀𝑀𝑀𝑀2 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2 (15) 

 

 

6. Results and discussions 

6.1. Model uncertainties and their sensitivity to different sources of errors 

Figure 6 shows the model discharge RRMSE versus the considered source of 

errors. As found in previous studies (e.g. Clark et al. (2008)), rainfall is the most sensitive 

parameter in our evaluation. Besides, the full-sources error model achieves a median of 

RRMSE of 64%. It can be considered representative of GHMs uncertainties, as it is 

similar to the value of 73% that was found in section 3. 

 

Figure 6. Boxplot in semi-log scale of RRMSE of discharge for the model scenario due to each 

independent source of error, and for the full-sources error one. Magenta line represents RRMSE 

value for the ensemble of GHMs. Green dots represent the mean values. 

 

 For the scenario which only considers the floodplain as a source of error, the errors 

were lower than other parameters, which can be explained due to the fact that most parts 
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of the basin are not inundated during the year, therefore the lower basin region is the most 

sensitive to this parameter.  

In addition, Figures 7a and 7b show the RMSE and RRMSE for FWE, 

respectively. The errors are greater when rainfall or hydraulic parameter uncertainties are 

considered. These results can be explained by the strong influence of hydraulic 

parameters on both WSE and FWE. Fleischmann et al. (2019) found a median EGHM 

RMSE value for WSE of ~7.4m, on a global scale. This value is higher than the estimates 

reached here (~4.16 m). This difference is due to the fact that Fleischmann et al. (2019) 

made a global study, while in our study we are considering “only” the Purus basin. 

Fleischmann et al. (2019) covers a large range of slopes, which could have abrupt changes 

in riverbed elevations, leading to significant uncertainties. These cases are not present in 

the Purus basin.  
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Figure 7. Boxplot in semi-log scale of (a) RMSE of water surface elevation and (b) RRMSE of 

flooded water extent for the model scenario due to each independent source of error, and for the 

full-sources error one. Green dots represent the mean values. 

 

The spatial influence of rainfall, floodplain, hydrological and hydraulic errors on 

the estimates of Q, WSE and FWE is shown in Figure 8. Considering discharge (Q), 

RRMSE obtained after disruption of rainfall or hydrologic parameters are mainly in the 

range 10% to 50% for the whole basin. Although few catchments located in the main stem 

are prone to have the largest errors, this occurs probably due to the aggregation of errors 

from upstream to downstream, which is also happening for WSE. For the FWE variable, 

higher RRMSE values are mainly located in the lower part of the basin, which is flatter 

than upstream and holds a large part of the Purus’ floodplains, especially the Piagaçu-

Purus Sustainable Development Reserve (approximately 8,342.45 km2), 40% of which is 

periodically flooded (Albernaz and Venticinque, 2003). 
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Figure 8. Spatial distribution of the RRMSE of (a) Q, (b) WSE and (c) FWE when the rainfall, 

floodplain, hydrologic and hydraulic parameters are perturbed. For rainfall and hydrologic color 

of catchments’ area are filled, while for floodplain and hydraulic only river reaches are colored. 

Gray color means not sensitive. 

 

6.2. Assimilation sensitivity to different sources of errors 

Figure 9 shows the reduction of RRMSE for WSE, FWE and Q versus error 

sources, when independent SWOT-like observations are assimilated. 

In general, the assimilation of WSE improves all other variables but with lower 

improvements for the FWE when the floodplain topography is the source of model errors. 

It could be due to the strong relationship between the floodplain and water level, depicted 

in the hypsometric curve that was perturbed. In addition, for the median any improvement 

was realized for Q when hydraulic parameters were the source of errors, maybe due to 

the direct relation of width, depth and Manning coefficient on discharge. 

Besides, the assimilation of FWE in all the versions of the model with sources of 

error shows improvements only for the same state variable (FWE). The worst impact was 

however realized for Q where performance was degraded when rainfall, floodplain and 

hydraulic scenarios were the source of errors. Finally, the assimilation of Q improved all 

scenarios for all state variables, although the worst improvements were found when 

hydraulic parameters were the sources of errors for the other variables (WSE and FWE) 

only. 
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Figure 9. Boxplot of reduction of RRMSE for WSE, FWE and Q for different scenarios of 

sources of model errors by assimilating correspondent SWOT-like observations. Gray boxes 

mean improvements on the median of catchments. 

 

From these first results, the following conclusions could be drawn considering the 

assimilation sensitivity to the state variables regarding all the model’s scenarios: 

1. Assimilating WSE clearly improves all variables and for all the model sources of 

errors. It shows however worse improvements in Q when the model assumes the 
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hydraulic parameter as a source of error, which could be explained by the strong 

relation between these parameters and Q and WSE estimates. 

2. When FWE is assimilated, only FWE is improved for all model errors scenarios. 

FWE assimilation degrades WSE estimates when the floodplain was the source of 

error. For Q the aggravation is shown for all scenarios except when hydrologic 

parameters were the source of errors, likely due to the poor relationship with the 

hydrodynamic processes.   

3. Finally, the assimilation of Q improves all variables and all scenarios. Lower 

improvements are shown for WSE and FWE when hydraulic parameters are the 

source of errors. Here we have to emphasize that we are considering an optimistic 

scenario of the uncertainties of SWOT-like Q, therefore improvements in the 

performance of the state variables of the model could certainly be overestimated. 

 

6.3. Improvements on performance on a continental and global scale 

In this section, all sources of errors are combined to obtain realistic uncertainties, 

close to GHM ones. Improvements in RRMSE are showed in Figure 10. In general, better 

performance of the DA framework is obtained for the state variable that is assimilated 

(e.g. discharge when Q is assimilated). Overall, assimilation of all observations are 

decreasing RRME, except for WSE, which degrades discharge estimation. This is likely 

related to errors due to hydraulic parameter, as described in section 6.2. This case shows 

the importance of improving hydraulic parameters as shown by (Brêda et al.(2019), 

before assimilating WSE to estimate discharge. 

Q is degraded when FWE is assimilated. This result was expected given the 

sensitivity tests concerning FWE assimilation shown in Figure 9. As described in section 
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6.1, sources of errors that are physically more related to the estimation of discharge in the 

MGB model shows more sensitivity in the lower and main stem region. These results 

demonstrate that, in principle, EnKF has the ability to get close to the true model’s 

variables even in cases of large errors, like those of GHMs. This is however not always 

the case as shown in Figure 10b. 

Results obtained when multiple-variables (MV) are assimilated are shown in 

Figure 10d. Assimilating all variables allowed improving WSE, Q and FWE. The 

improvement for each variable is however not as good as the result obtained when only 

this variable is assimilated. 

 

Figure 10. Boxplot of reduction of RRMSE index for WSE, FWE and Q for the model’s 

scenario with full-sources of errors by assimilating correspondent (a-c) SWOT-like observations 

and (d) MV approach. Gray boxes mean improvements on the median of catchments. 

 

Table 5 sums up the results shown on Figure 10. These results can be compared 

to previous studies findings. Wongchuig et al. (2019) assimilated in situ observation, 

which lead to an error decrease that ranges from ~15% to ~20% for a period of ~100 

years. Emery et al. (2018) reached an averaged improvement of ~21% by assimilating 

altimetry-based (ENVISAT) discharge. In contrast, in our assessment over the Purus 
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basin, assimilating synthetic SWOT observations leads to RRMSE decrease two times 

greater (~44%) than these previous studies. This can be explained by larger uncertainties 

in our model setup (that mimics GHMs uncertainties), leading to greater errors decrease, 

even when uncertainties of SWOT-like discharge (~24%) are greater than in-situ 

discharge observations (~15%). Indeed, reductions in relative errors may seem large, but 

in absolute terms this decrease ranges from median values for RRMSE of ~64% (open-

loop) to ~36% (DA), which could still be considered large errors for discharge estimation. 

Table 5. Values of median of improvements in RRMSE for all catchments when 

assimilating SWOT-like observations individually and all together. 

 SWOT-like observations 

 WSE FWE Q MV 

WSE -33.59 -4.09 -8.88 -15.83 

FWE -35.31 -43.25 -0.02 -10.44 

Q -3.84 42.53 -44.15 -42.29 
* Values in bold indicate less performance for each column 

 

Finally, Figure 11 shows the spatial distribution of RRMSE reduction. Q is the 

most challenging state variable to improve, due to the high sensitivity to the hydraulic 

parameters and floodplain topography. In addition, initial uncertainty of Q could be also 

influencing their performance. When assimilating WSE or FWE, Q is improved only in 

the lower part of the main stem where the impact of hydraulic parameter is more sensitive 

(see section 6.1) than in the upper part of the basin. On the contrary, WSE and FWE 

variables have a relatively homogeneous sensitivity to hydraulic parameters across the 

whole of the basin and can therefore be more homogeneously corrected in space, 

whatever the observed variable assimilated. 

It is also quite clear that the use of multi-variable DA could overcome these issues, 

even when high uncertainties were considered. It should be noted however that RRMSE 
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patterns when Q is assimilated or when multiple variables are assimilated are quite 

similar, showing the importance of Q even when multiple variables are assimilated. 

 

Figure 11. Maps of spatial distribution of the reduction on RRMSE by assimilating absolute 

values of SWOT-like observations, represented on the blue-red color scale. 

 

With the background and observation errors assumed therefore in this study, 

SWOT observations of WSE, FWE, and derived Q could be beneficial to correct global 

and continental scales models outputs. It should be recalled however that when only FWE 

is assimilated, Q could be quite degraded. Conversely, Q is a large integrative variable 

that could help to overcome errors even on parameters. In general, SWOT-like 

information seems useful for hydrological and hydrodynamic assessments, mainly when 

WSE, Q or multi-variable DA is performed. 
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To show the aggregation from the full-sources of error model to the SWOT-like 

observation, the hydrographs and water level series for some locations are also shown in 

Figures 12 and 13, respectively. These figures show the performance in a specific state 

variable (Q and WSE) when the same SWOT-like variable is assimilated. 

The reduction of uncertainties is clearly shown by DA scheme (gray envelope) 

during the presence of SWOT-like observations from October 2011 to October 2012. For 

Q time series, the SWOT-like observations are shown as blue dots that correspond to 

those belonging to their envelope border.  

 

Figure 12. Hydrographs for a few sites at main stem and tributaries when Q is assimilated. The 

spread of the full-sources error model and the assimilated are represented by red and gray 

envelopes respectively. Red and black lines represent the mean of the spread of the Open-loop 



Published in Journal of Hydrology (2020), https://doi.org/10.1016/j.jhydrol.2020.125473 

and of the EnKF simulations respectively. The true model is represented in sky blue dotted 

lines, and the boundary of the envelope of SWOT-like are represented by the blue dots. 

Magenta line represents the beginning of the DA performance. 

 

In the case of the time series of water level (Fig. 12), the SWOT-like observations 

are shown as the only realization coming from the LSPCS. These are close to the truth 

due to high accuracy. The uncertainties were also reduced by DA scheme (gray envelope) 

from the Open-loop (red envelope). Some noise was showed by the DA series mainly in 

tributary rivers where less accuracy was likely found. 

 

Figure 13. Time series of water level for a few sites at main stem and tributaries, when WSE is 

assimilated. The spread of the full-sources error model and the assimilated are represented by 

red and gray envelopes respectively. Red and black lines represent the mean of the spread of the 

Open-loop and of the EnKF simulations respectively. The true model is represented in sky blue 
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dotted lines, and the SWOT-like are represented by the blue dots. Magenta line represents the 

beginning of the DA performance. 

 

6.4. Performance by assimilating anomalies of SWOT-like observations  

In this section the performance of the improvements in RRMSE by assimilating 

SWOT-like anomalies is shown. All sources of model errors are used for this experiment. 

Figure 14a shows that best performances in the state variables were achieved by 

assimilating correspondent anomalies of SWOT-like observations, as for experiments in 

section 6.3. Assimilating WSE anomalies (referred to as WSE’ hereafter) leads, in 

general, to greater reduction of RRMSE than when WSE is assimilated, especially for Q. 

Besides the performance by assimilating FWE and Q anomalies (referred to as FWE’ and 

Q’, respectively, hereafter) clearly presents improvements in the other estate variables 

contrarily to the results obtained when absolute values are used (FWE and Q). It is due to 

the fact that anomalies do not have the bias present in the absolute values, especially for 

Q, for which the bias corresponds to ~18%. This bias corresponds to the MRR described 

in Section 4, while FWE was only corrupted with a random noise. Finally, assimilation 

of multi-variable anomalies (noted MV’) was also performed and shown in Figure 14d, 

where similar results were achieved for WSE and FWE than the ones using absolute 

values. However, Q is lees reduced (ΔRRMSE=-7%) with anomalies, than with absolute 

values (ΔRRMSE=-42%).  
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Figure 14. Boxplot of reduction of RRMSE index for WSE, FWE and Q for the full-sources 

error model version by assimilating correspondent anomalies of (a-c) SWOT-like observations 

and (d) MV’ approach. Gray boxes mean improvements on the median of catchments. 

 

Figure 15 shows the spatial distribution of improvements in RRMSE by 

assimilating anomalies. Clearly, the assimilation of WSE’ further improves the 

performance of WSE and Q than when absolute values where assimilated. Assimilating 

WSE’ is therefore recommended for GHMs instead of only WSE, at least with this 

assimilation set up. Besides, the assimilation of FWE’ and Q’ improved all state variables 

although it fared slightly better on average than the assimilation of absolute values. 

Contrarily to absolute value, the pattern of RRMSE between Q’ and MV’ is not the same. 

Finally, in general the assimilation of anomalies can improve results due to the removal 

of the bias in SWOT-like observations. If the bias between the observations and the open-

loop simulation is large, the improvements can prove larger by using the assimilation of 

anomalies, once the open-loop simulations represent uncertainties of GHMs. 
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Figure 15. Maps of spatial distribution of the reduction on RRMSE by assimilating anomalies 

of SWOT-like observations, represented on the blue-red color scale. 

 

To sum up all of these results, Figure 16 shows the improvements on each state 

variable (WSE, FWE and Q) when different SWOT-like observations are assimilated. 

Performance obtained by assimilating absolute values or anomalies are also compared in 

this figure. It is important to highlight that the major improvements occur when the same 

state variable is assimilated (e.g. improvements in Q when SWOT-like Q is assimilated) 

for both, absolute and anomalies assimilation set up. Besides, the assimilation of absolute 

values of FWE has the large amplitude on ΔRRMSE between variables. It is even 

degrading Q, as explained in section 6.3. The multi-variable assimilation is noticed to be 

the best set up when absolute values are assimilated. The assimilation of anomalies shows 

less dispersion on ΔRRMSE between all variables. Finally, anomaly of WSE (WSE’) 

seems to be the optimal set up for SWOT assimilation purposes. 
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Figure 16. Median values (dots) of improvements on each state variables when different 

SWOT-like observations are assimilated (color translucid bars).  

 

7. Conclusions and perspectives 

This research aimed to implement and assess DA of SWOT-like observations 

within a large-scale hydrological model that emulates the uncertainties of GHMs. In order 

to do this, the large-scale SWOT pixel cloud simulator and a basin with a complex 

drainage network were chosen. 

Perturbation strategies were performed so as to achieve the values of uncertainties 

of the GHMs. The main representative source of errors from forcings and parameters of 

the model were therefore considered. Analyses are therefore valid for other basins, as we 

emulate errors of GHMs. Results shows that the main sources of global model discharge 

errors are precipitation and water budget parameters uncertainty. These can achieve 

around 40% and 30% of RRMSE respectively, which is larger than the other sources of 

errors and could represent ~50-70% of all of the total uncertainty. Besides, the main 
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source of global model WSE error are the hydraulic parameters as bathymetry (depth, 

width and manning coefficient), which represent ~50% of the total uncertainty. 

 Once the performance of SWOT DA relies on sources of hydrological model 

errors, the sensitivity analysis of the improvements on the state variables of the model 

regarding individual error scenarios were assessed. It was observed that the hydraulic 

parameters and the floodplain topography were the worst scenarios for the performance 

in Q when WSE and FWE were assimilated; which depict the strong influence of these 

parameters in Q simulation. Besides, the only aggravation on WSE was figured out when 

the FWE was assimilated in the scenario of errors of floodplain topography that also 

relates the large relation among WSE, FWE and floodplain due to the hypsometric curve 

used in our hydraulic simulations. 

 Different approaches for ingest SWOT-like observations showed a suitable way 

in which to use these data in the future for GHMs. For instance, when the full-sources 

error model is assessed, which means an emulated GHM, improvements in some state 

variables of the model were not achieved by the assimilation of individual SWOT-like 

observations; as in the case when the assimilation of FWE degrades discharge. In 

addition, the improvements in discharge by assimilating SWOT-like Q on a global scale 

were larger than other assessments (assimilation WSE or FWE). Hence, assuming that 

SWOT products of Q are as accurate as the most optimistic values of uncertainty so far 

shown in the literature, they may be able to improve simulations by using global and 

continental scale hydrological models by approximately ~40%. For the assimilation of 

SWOT-like WSE, the importance of a better estimation of hydraulic parameters before 

the estimation of discharge (e.g. for hydrodynamic models) was noted. 
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The improvements of all state variables were only reached by the use of the multi-

variable DA scheme, which can be explained due to the assimilation of different SWOT-

like at the same time which can constrain their individual uncertainties. This is even the 

case when the uncorrelated observations were assumed as a simplification in this study. 

The improvements by the use of anomalies of SWOT-like observations were 

assessed. Experiments assimilating WSE’ showed the best improvements for all state 

variables. Its application may be restricted however to hydrological models which 

incorporate a hydrodynamic routing module. Besides, the assimilation of FWE’ and Q’ 

improved all state variables, although these were not greater than when absolute values 

were assimilated for the cases of the correspondent state variable (e.g. improvements on 

Q by assimilating SWOT-like Q).  

A smart combination of assimilation of SWOT-like observations should be 

considered regarding the uncertainties of GHMs. Hence, the correction of the model 

parameters that impact most on uncertainty (e.g. hydrologic, hydraulic) should also be 

taken into consideration. Given the large amount of information that SWOT will provide, 

other less computationally demanding assimilation schemes (e.g. ensemble square-root 

Kalman Filter) should be assessed. As well as more complex methods for estimating the 

covariance matrix of the background error. 

 Finally, other approaches should be implemented in the future when real SWOT 

data are available such as further exploration of the multi-variable DA technique through 

the use of less simplified assumptions, for example, to assume a certain correlation 

between different observations. Even under large uncertainties by GHMs however, 

SWOT data show that it could have a great impact on improvements in hydrological and 
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hydrodynamic simulations on a global and continental scale; this implies a promising 

utility for the SWOT scientific community. 
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