Hanwei Zhang

Senior Member, IEEE Yannis Avrithis

Member, IEEE Laurent Amsaleg

Saida Hanwei Zhang

Teddy Furon
email: teddy.furon@inria.fr

Walking on the Edge: Fast, Low-Distortion Adversarial Examples

Keywords:

Adversarial examples of deep neural networks are receiving ever increasing attention because they help in understanding and reducing the sensitivity to their input. This is natural given the increasing applications of deep neural networks in our everyday lives. When white-box attacks are almost always successful, it is typically only the distortion of the perturbations that matters in their evaluation. In this work, we argue that speed is important as well, especially when considering that fast attacks are required by adversarial training. Given more time, iterative methods can always find better solutions. We investigate this speed-distortion trade-off in some depth and introduce a new attack called boundary projection (BP) that improves upon existing methods by a large margin. Our key idea is that the classification boundary is a manifold in the image space: we therefore quickly reach the boundary and then optimize distortion on this manifold.

I. INTRODUCTION

A DVERSARIAL examples [37] are small, usually imper- ceptible perturbations of images or other data [START_REF] Carlini | Audio adversarial examples: Targeted attacks on speech-to-text[END_REF] that can arbitrarily modify a classifier's prediction. They have been extended to other tasks like object detection or semantic segmentation [START_REF] Xie | Adversarial examples for semantic segmentation and object detection[END_REF], and image retrieval [START_REF] Li | Universal perturbation attack against image retrieval[END_REF], [START_REF] Tolias | Targeted mismatch adversarial attack: Query with a flower to retrieve the tower[END_REF]. They are typically generated in a white-box setting, where the attacker has full access to the classifier model and uses gradient signals through the model to optimize for the perturbation. They are becoming increasingly important because they reveal the sensitivity of neural networks to their input [START_REF] Amsaleg | The vulnerability of learning to adversarial perturbation increases with intrinsic dimensionality[END_REF], [START_REF] Fawzi | Robustness of classifiers: From adversarial to random noise[END_REF], [START_REF] Simon-Gabriel | First-order adversarial vulnerability of neural networks and input dimension[END_REF] including trivial cases [START_REF] Azulay | Why do deep convolutional networks generalize so poorly to small image transformations?[END_REF], [START_REF] Engstrom | A rotation and a translation suffice: Fooling CNNs with simple transformations[END_REF] and they easily transfer between different models [START_REF] Moosavi-Dezfooli | Universal adversarial perturbations[END_REF], [START_REF] Tramèr | The space of transferable adversarial examples[END_REF].

Adversarial examples are typically evaluated by probability of success and distortion. In many cases, white-box attacks have probability of success near one, then only distortion matters, as a (weak) measure of imperceptibility and also of the difficulty with which adversarial samples can be detected. The speed of an attack is less frequently discussed. The fast single-step FGSM attack [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF] produces high-distortion examples where adversarial patterns can easily be recognized.

At the other extreme, the Carlini & Wagner (C&W) attack [START_REF] Carlini | Towards evaluating the robustness of neural networks[END_REF], considered state of the art, is notoriously expensive. Decoupling direction and norm (DDN) [START_REF] Rony | Decoupling direction and norm for efficient gradientbased L2 adversarial attacks and defenses[END_REF] has recently shown impressive progress in distortion and mostly in speed.

Speed becomes more important when considering adversarial training [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF]. This defense, where adversarial examples are used for training, was in fact introduced in the same work as FGSM. This attack remains the most common choice for generating those examples because of its speed. However, adversarial training is easily broken [START_REF] Tramèr | Ensemble adversarial training: Attacks and defenses[END_REF] unless a more powerful attack like PGD is used [START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF].

In this work, we investigate in more depth the speeddistortion trade-off in the regime of probability of success near one. We observe that iterative attacks often oscillate across the classification boundary, taking long time to stabilize. We introduce a new attack that rather walks along the boundary, as discussed in Sect. I-B. As a result, we improve the state of the art in distortion while keeping the number of iterations at a minimum. Our key idea is that, once we reach the adversarial region near the boundary, the problem becomes optimization on a manifold [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF], in particular, minimization of the 2 distortion on a level set of the classification loss. When in the adversarial region, we project the distortion gradient on the tangent space of this manifold. We do this simply by targeting a particular reduction of the distortion while moving orthogonally to the gradient of the classification loss.

Quantization is another major issue in this literature. Most papers implicitly assume that the output of a white-box attack is a matrix where pixel values are real numbers in [0, 1]. Paper [START_REF] Rony | Decoupling direction and norm for efficient gradientbased L2 adversarial attacks and defenses[END_REF] is one of the rare works where the output is quantized. We agree with this definition of the problem. Indeed, an adversarial image is above all an image. The goal of an attacker is to publish images deluding the classifier (for instance on the web), and publishing implies compliance with pixels encoded in bytes.

Although adversarial training is not the focus of this work, we do experiment with it to validate that i) our attack is fast enough for this task, and ii) the network gains a better defense when being prepared for a worse attack. Recent improvements in adversarial training [START_REF] Wang | On the convergence and robustness of adversarial training[END_REF] are orthogonal to our work, by replacing the common choice of PGD with our attack.

A. Contributions

To our knowledge, we are the first to

• Study optimization on the manifold of the classification boundary for an adversarial attack, providing an analysis The objective is to find a point in the red (adversarial) region that is at the minimal distance to input x. Gray (black) paths correspond to low (high) distortion budget for PGD 2 [START_REF] Kurakin | Adversarial examples in the physical world[END_REF] (a, in green) or parameter λ for C&W [START_REF] Carlini | Towards evaluating the robustness of neural networks[END_REF] (b). The simulation is only meant to illustrate basic properties of the methods. In particular, it does not include Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] for C&W.

under the constraints of staying on the tangent space of the manifold and of reaching a distortion budget. • Investigate theoretically and experimentally the quantization impact on the perturbation. • Achieve at the same speed as I-FGSM [START_REF] Kurakin | Adversarial examples in the physical world[END_REF] (20 iterations) and under the constraint of a quantization, less distortion than state-of-the-art attacks including DDN, which needs 100 iterations on ImageNet. • Propose a benchmark fairly comparing distortion constrained and success constrained attacks (see definitions (3) and (2)).

B. Graphical Abstract Illustrating the Attacks

To better understand how our attack works, Figure 1 illustrates qualitatively a number of existing attacks technically described in Sect. II-B. On this toy 2d classification problem, the class boundary and the path followed by the optimizer starting at input x can be easily visualized.

PGD 2 , an 2 version of I-FGSM [START_REF] Kurakin | Adversarial examples in the physical world[END_REF], a.k.a. PGD [START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF], is controlled by a distortion budget and eventually follows a path on a ball of radius centered at x (cf . Fig. 1(a)). Section IV shows that testing different values is an expensive strategy for finding the optimal distortion budget per image.

C&W [START_REF] Carlini | Towards evaluating the robustness of neural networks[END_REF] depends on a parameter λ that controls the balance between distortion and classification loss. A low value leads to failure. A higher value indeed reaches the optimal perturbation, but with oscillations across the class boundary (Fig. 1(b)). Therefore, an expensive line search over λ is performed internally.

DDN [START_REF] Rony | Decoupling direction and norm for efficient gradientbased L2 adversarial attacks and defenses[END_REF] increases or decreases distortion on the fly depending on success and while pointing towards the gradient direction (Fig. 1(c)). It arrives quickly near the optimal perturbation but still suffers from oscillations across the boundary.

On the contrary, boundary projection (BP), introduced in this work (cf . Fig. 1(d)), cares more about quickly reaching the boundary, not necessarily near the optimal solution, and then walks along the boundary, staying mostly in the adversarial (red) region. It therefore makes steady progress towards the solution rather than going back and forth.

C. Related Works

Before developing the state-of-the-art of white-box attacks in Sect. II-B, we point out other related works.

1) Optimization on Manifolds:

In the context of deep learning, stochastic gradient descent on Riemanian manifolds has been studied, e.g. RSGD [START_REF] Bonnabel | Stochastic gradient descent on Riemannian manifolds[END_REF] and RSVRG [START_REF] Zhang | Riemannian SVRG: Fast stochastic optimization on Riemannian manifolds[END_REF]. It is usually applied to manifolds whose geometry is known in analytic form, for instance Grassmann [START_REF] Bonnabel | Stochastic gradient descent on Riemannian manifolds[END_REF] or Stiefel manifolds [START_REF] Harandi | Generalized BackPropagation, Étude De Cas: Orthogonality[END_REF]. In most cases, the motivation is to optimize a very complex function like a classification loss on a well-studied manifold, e.g. matrix manifold [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]. On the contrary, we optimize a simple quadratic function (the distortion) on a complex manifold not known in analytic form, i.e. a level set of the classification loss.

2) Information Forensics and Security (IFS): The connection between adversarial examples and the field of IFS has been made recently. Paper [START_REF] Quiring | Forgotten siblings: Unifying attacks on machine learning and digital watermarking[END_REF] provides a conceptual link between machine learning and watermarking allowing to transfer attacks and defenses known in one field to another. Paper [START_REF] Schottle | Detecting adversarial examples-a lesson from multimedia security[END_REF] adapts a steganalyzer to detect adversarial images. Nearest Neighbours Search (NNS) is another classical tool in IFS. Looking at adversarial examples through the lens of NNS provides a theoretical explanation of the vulnerability of networks producing high intrinsic dimensionality features [START_REF] Amsaleg | The vulnerability of learning to adversarial perturbation increases with intrinsic dimensionality[END_REF]. The study of their neighborhood has been exploited to design adversarial image detectors [START_REF] Caldelli | Exploiting CNN layer activations to improve adversarial image classification[END_REF], [START_REF] Carrara | Adversarial image detection in deep neural networks[END_REF]. The authors of [START_REF] Dritsoula | A game-theoretic analysis of adversarial classification[END_REF] look at this problem under the framework of game theory. The authors of [START_REF] Taran | Defending against adversarial attacks by randomized diversification[END_REF] introduce a secret key into the classifier to prevent white-box attacks. This gives an advantage to the defender following the Kerckhoffs principle. Security threats also hold at training time by poisoning the data to conceal backdoors [START_REF] Barni | A new backdoor attack in CNNS by training set corruption without label poisoning[END_REF].

Our work focuses on forging adversarial examples. Our intention is to fairly assess their power with or without defenses. Inspired by the methodology for assessing watermarking robustness [START_REF] Furon | Broken arrows[END_REF], our protocol introduces in Sect. IV-B the operating characteristic of an attack. It reveals the tradeoff between distortion and probability of success. We also pay attention to real life conditions obvious in watermarking and steganography but overlooked in adversarial literature: adversarial images are quantized.

II. PROBLEM, BACKGROUND AND STATE OF THE ART

A. Problem Formulation 1) Preliminaries: Let X := {0, , . . . , 1 -, 1} n with := 1/(L -1) denote the set of grayscale images of n pixels quantized to L levels, and let X := [0, 1] n denote the corresponding real-valued images. An image of more than one color channels is treated independently per channel; in this case n stands for the product of pixels and channels. A classifier f : X → R k maps an image x to a vector f (x) ∈ R c + representing probabilities per class over c given classes. The parameters of the classifier are not shown here because they remain fixed in this work. The classifier prediction π :

X → [c] := {1, . . . , c} maps x to the class label having the maximum probability:

π(x) := arg max k∈[c] f (x) k . (1
)
The prediction is correct if π(x) = t, the true label.

2) Problem: Let x ∈ X be a given image with known true label t. An adversarial example y ∈ X is an image such that the distortion xy is small and the probability f (y) t is also small. This problem takes two forms:

1) Distortion constrained:

min y∈X f (y) t subject to x -y ≤ , (2
)
where is a given distortion budget. The performance is then measured by the probability of success P suc := È(π(y) = t) as a function of .

2) Success constrained:

min y∈X x -y subject to π(y) = t. (3
)
The performance is then measured by the expected distortion D := (xy). This work focuses on the second form, but we present example attacks of both forms in section II-B.

3) Untargeted Attack: The constraint π(y) = t in (3) is referred to as an untargeted attack, meaning that y is misclassified regardless of the actual prediction. As an alternative, a targeted attack requires that the prediction π(y) = t is a target label t = t. We focus on the former.

4) Loss Function:

We focus on a white-box attack in this work. Such an attack is specific to f , which is public. In this setting, attacks typically rely on exploiting the gradient of some loss function, using variants of gradient descent. A classification loss is defined on the probability vector p = f (y) with respect to the true label t. For an untargeted attack, this is typically the negative of cross-entropy (p, t) := log p t . We should warn that, while the cross-entropy is appropriate for bringing examples into the region of class t during classifier training, its negative is in general not appropriate for pulling them out during an attack. This is because this function is mostly flat in the class region. A common solution is to normalize the gradient of [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF], [START_REF] Rony | Decoupling direction and norm for efficient gradientbased L2 adversarial attacks and defenses[END_REF], assuming it is nonzero. We consider more options in this work. A targeted attack on the other hand may uselog p t , which works fine because it brings examples into class t region.

5) Distortion: This work focuses on the 2-norm • as a measure of distortion. Alternatives like 1-norm and ∞-norm are also common [START_REF] Carlini | Towards evaluating the robustness of neural networks[END_REF], [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF]. It is known that none is appropriate for measuring the imperceptibility of adversarial attacks, while more sophisticated measures like structural similarity (SSIM) [START_REF] Wang | Image quality assessment: From error visibility to structural similarity[END_REF] are limited too [START_REF] Sharif | On the suitability of L p -norms for creating and preventing adversarial examples[END_REF]. Measuring imperceptibility is arguably as difficult as classification itself.

6) Integral Constraint:

The constraint y ∈ X in (2) and (3) is typically relaxed to y ∈ X during optimization. Some works conclude the attack by loosely quantizing the optimal solution onto X , typically by truncation towards zero. To our knowledge, DDN [START_REF] Rony | Decoupling direction and norm for efficient gradientbased L2 adversarial attacks and defenses[END_REF] is the only work to do rounding instead, and at the end of each iteration. Quantization is becoming an important issue in adversarial examples because the distortions achieved in recent papers are so small that quantization impacts a lot the perturbations. Appendix A provides a more in-depth study of the impact of the quantization.

B. State-of-the-art Attacks

1) Distortion Constrained Attacks: Given a distortion budget , the fast gradient sign method (FGSM) [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF] performs a single step in the opposite direction of the (element-wise) sign of the loss gradient with ∞-norm ,

y := x -sign ∇ x (f (x), t). (4
)
This is the fastest method for problem (2). In the same work adversarial training was introduced, this method quickly generates adversarial examples for training. However, the perturbations are usually high-distortion and visible. The iterative-FGSM (I-FGSM) [START_REF] Kurakin | Adversarial examples in the physical world[END_REF] initializes y 0 := x and then iterates

y i+1 := proj B ∞ [x;] (y i -α sign ∇ x (f (y i), t)), (5)
where projection1 is element-wise to the closed ∞-norm ball B ∞ [x;] of radius and center x, and also to X (elementwise clipping to interval [0, 1]). This method is also known as basic iterative method (BIM) [START_REF] Papernot | Technical report on the CleverHans v2.1.0 adversarial examples library[END_REF] and as projected gradient descent (PGD) [START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF]. We refer to as PGD 2 a 2-norm version replacing [START_REF] Bonnabel | Stochastic gradient descent on Riemannian manifolds[END_REF] with

y i+1 := proj B 2 [x;] (y i -αη(∇ x (f (y i), t))), (6)
where η(x) := x/ x denotes 2-normalization, and projection is to the closed 2-norm ball B 2 [x;] of radius and center x, followed again by element-wise clipping to [0, 1]. Although this method is part of Cleverhans library [START_REF] Papernot | Technical report on the CleverHans v2.1.0 adversarial examples library[END_REF], it is not published according to our knowledge.

2) Success Constrained Attacks: This family of attacks is typically more expensive. DeepFool [START_REF] Moosavi-Dezfooli | DeepFool: A simple and accurate method to fool deep neural networks[END_REF] is a popular attack which, at each iteration, estimates the distortion needed to go to any class region k = t in order to infer which one is the closest.. Paper [START_REF] Szegedy | Intriguing properties of neural networks[END_REF] propose a Lagrangian formulation of problem (3), minimizing the cost function

J (y, λ) := x -y 2 + λ(f (y), t), (7
)
where variable λ is a Lagrange multiplier. They carry out this optimization by box-constrained L-BFGS. The attack of [START_REF] Carlini | Towards evaluating the robustness of neural networks[END_REF], denoted by C&W in the sequel, pertains to this approach. A change of variable eliminates the box constraint, replacing y ∈ X by σ (w), where w ∈ R n and σ is the element-wise sigmoid function. The classification loss encourages the logit log p t to be less than any other log p k for k = t by at least margin m ≥ 0,

m (p, t) := [log p t -max k =t log p k + m] + , (8)
where [•] + denotes the positive part. This function is similar to the multi-class SVM loss by Crammer and Singer [START_REF] Crammer | On the algorithmic implementation of multiclass kernel-based vector machines[END_REF], where m = 1, and, apart from the margin, it is a hard version of negative cross-entropy where softmax is producing the classifier probabilities. It does not have the problem of being flat in the region of class t. The C&W attack uses the Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] to minimize the cost function

J (w, λ) := σ (w) -x 2 + λ m (f (σ (w)), t). (9
)
for w ∈ R n . When the margin is reached, loss m vanishes and the distortion term pulls σ (w) back towards x, causing oscillations around the margin. This is repeated for different λ 2 by line search, which is expensive.

Decoupling direction and norm (DDN) [START_REF] Rony | Decoupling direction and norm for efficient gradientbased L2 adversarial attacks and defenses[END_REF] is iterating similarly to PGD 2 [START_REF] Brendel | Decision-based adversarial attacks: Reliable attacks against black-box machine learning models[END_REF],

y i+1 := proj S[x;ρ i] (y i -αη(∇ x (f (y i), t))), (10
)
but projection is to the sphere S[x; ρ i] of radius ρ i and center x, and the radius is adapted to the current distortion: It is set to

ρ i = (1-γ)y i -x if y i is adversarial and to (1+γ)y i -x
otherwise, where parameter γ ∈ (0, 1). Another difference is that each iteration is concluded by a projection onto X (rather than X) by element-wise clipping to [0, 1] and rounding.

3) Discussion: Optimizing around the class boundary is not a new idea. All of the above attacks do so in order to minimize distortion; implicitly, even distortion constrained attacks like PGD 2 do so, if the minimum parameter is sought (cf . Figure 1(a) and Section IV-B). Even black-box attacks do so [START_REF] Brendel | Decision-based adversarial attacks: Reliable attacks against black-box machine learning models[END_REF], without having access to the gradient function. The difference of our attack is that our updates are along the class boundary, i.e., in a direction normal to the gradient.

4) Other Attacks: Generative models like AdvGAN [START_REF] Xiao | Generating adversarial examples with adversarial networks[END_REF] can not be classified as success or distortion constrained attacks. This approach is a tour de force generating adversarial image impressively fast at testing. Yet, the runtime for training is not mentioned and this is an issue because each target class needs a dedicated generative network. The distortion is integrated in the loss at training, but it is not optimized sample by sample since there is no way to control it during testing. Indeed, the perturbation is highly visible in [44, Fig. 3] and has larger distortion than C&W (see their Table 8).

III. METHOD

Our attack is an iterative process with a fixed number K of iterations. Stage 1 aims at quickly producing an adversarial image, whereas Stage 2 is a refinement phase decreasing distortion. The key property of our method is that while in the adversarial region during refinement, it tries to walk along the classification boundary by projecting the distortion gradient onto the tangent hyperplane of the boundary. Hence we call it boundary projection (BP).

A. Stage 1

This stage begins at y 0 = x and iteratively updates in the direction of the gradient of the loss function as summarized 2 Referred to as c in [START_REF] Carlini | Towards evaluating the robustness of neural networks[END_REF].

Algorithm 1 Stage 1 Input: x: original image to be attacked Input: t: true label (untargeted) Output: y with π(y) = t or failure, iteration i

1: Initialize y 0 ← x, i ← 0 2: while (π(y i) = t) ∧ (i < K) do 3: ĝ ← η(∇ x (f (y i), t)) η: 2-normalization 4: y i+1 ← clip [0,1] (y i -αγ i ĝ)
5:

i ← i + 1 6: end while in Algorithm 1. The gradient is 2-normalized (line 3) and then scaled by two parameters (line 4): a fixed parameter α > 0 and a parameter γ i that is increasing linearly with iteration i ≤ K as follows

γ i := γ min + i K + 1 (1 -γ min) < 1, (11)
where γ min ∈ (0, γ max). This makes the updates slow at the beginning to keep distortion low, then faster until the attack succeeds. Parameter α is set empirically to a value large enough so that Stage 1 returns an adversarial image in less than K iterations with high probability. This schedule of γ i is meant to adjust the level of distortion to each original image, since a single value would be hard to fit all cases. After the update, Clipping is element-wise (line 4).

B. Stage 2

Once Stage 1 has succeeded, Stage 2 continues by iteratively considering two cases: if y i is adversarial, case OUT aims at minimizing distortion while staying in the adversarial region. Otherwise, case IN aims at decreasing the loss while controlling the distortion. Both work with a first order approximation of the loss around y i :

(f (y i + u), t) ≈ (f (y i), t) + u g, (12)
where g = ∇ x (f (y i), t). The perturbation at iteration i is

δ i := y i -x.
δ i ← y i -x perturbation 3: ĝ ← η(∇ x (f (y i), t)) direction 4: r ← δ i , ĝ 5: if π(y i) = t then OUT 6: ← γ i δ i distortion control 7: v ← x + r ĝ 8: z ← v + η(y i -v) [2 -r 2] + 9
:

y i+1 ← Q OUT (z, y i) quantization (17) 10:
else [START_REF] Crammer | On the algorithmic implementation of multiclass kernel-based vector machines[END_REF]:

← δ i /γ i distortion control 12: z ← y i -r + 2 -δ i 2 + r 2 ĝ
13:

y i+1 ← Q IN (z, y i) quantization (20) 14:
end if 15:

i ← i + 1 16: end while scheduling (11), = γ i δ i < δ i , such that updates decelerate to convergence once the attack has already succeeded. We also impose that z lies on

P := {v ∈ R n : v -y i , ĝ = 0}, (13)
the tangent hyperplane of the level set of the loss at y i , normal to ĝ. This second constraint aims at maintaining the value of the loss, up to the first order. Consider the projection v := x + r ĝ of x onto hyperplane P, where r := δ i , ĝ . If r < , the hypersphere intersects the hyperplane as shown in Fig. 2(a), and both constraints are met. From the infinity of points in this intersection, we pick the one closest to y i :

z = v + η(y i -v) 2 -r 2 . (14
)
If r ≥ , then S[x;]∩P = ∅. We prefer to relax the constraint on the distortion, and choose z = v , which is by definition the closest point of P to x. Note that v = y i if δ i , ĝ are collinear. This is formally summarized as follows:

z := arg min v∈V v -y i (15
) V := arg min v∈P |v -x -| . (16
)
Here, V is the set of points on P having distortion close to . If r < , V = S[x;] ∩ P = ∅ as illustrated in Fig. 2(a), otherwise V = {v }. The solution z has a unique closed form, implemented in line 8. Directly quantizing vector z onto X by Q(•), the component-wise rounding, modifies its norm (see App. A). This pulls down our effort to control the distortion. Instead, the process Q OUT (z, y i) in line 9 looks for the scale β OUT of the perturbation to be applied such that Q(y i +β(z-y i)) = z. This is done with a simple line search over β. Then,

Q OUT (z, y i) := Q(y i + β OUT (z -y i)). (17
)
2) Case IN: takes as input y i inside class t region, i.e. π(y i) = t (line 10). We control distortion = δ i /γ i > δ i [START_REF] Crammer | On the algorithmic implementation of multiclass kernel-based vector machines[END_REF] such that updates decelerate as in Case OUT. We then solve the problem:

z := arg min v∈S[x;] v, ĝ , (18)
i.e., find the point z at the intersection of sphere S[x;] and the ray through y i in the direction opposite of g as shown in Fig. 2(b). The solution is simple:

z = y i -r + 2 -δ i 2 + r 2 ĝ, (19)
Vector z moves away from y i along direction -ĝ by a step size so to reach S[x,]. Case IN is not guaranteed to succeed, but invoking it means that Stage 1 has succeeded. Again a direct rounding jeopardizes the norm of the update zy i . Especially, quantization likely results in Q(z) = Q(y i) if z-y i < β min = 0.1 (see App. A). Instead of a line search as in method OUT, line 13 just makes sure that this event will not happen:

Q IN (z, y i) = Q(y i + β IN (z -y i)), (20
)
with

β IN = max(1, β min /z -y i).

C. Discussion

The heuristic scheduling [START_REF] Crammer | On the algorithmic implementation of multiclass kernel-based vector machines[END_REF] builds on a simpler idea of DDN [START_REF] Rony | Decoupling direction and norm for efficient gradientbased L2 adversarial attacks and defenses[END_REF], where parameter γ is constant across iterations. This scheduling controls the distortion: In stage 1, updates are small at the beginning to keep distortion low, then larger until the attack succeeds. In stage 2, updates are decreasing as γ i tends to 1. It increases the distortion when the current image is correctly classified (IN) and decreases the distortion when the current image is adversarial (OUT).

The fact that (γ i) i is strictly increasing shows that, in Stage 2, an IN iteration (distortion grows by 1/γ i) followed by an OUT iteration (distortion decays by γ i+1 < 1) is indeed equivalent to a milder IN in the sense that the distortion grows γ i+1 /γ i > 1 smaller than 1/γ i . Similarly, OUT followed by IN is equivalent to a mild OUT in the sense that distortion decays by γ i /γ i+1 < 1. Both cases lead towards the class boundary by a factor that tends to 1. If the algorithm keeps alternating between OUT and IN and we only look at the OUT iterates (remember, all attacks output the successful iterate of least distortion), this is equivalent to strictly decreasing distortion. This behavior is more stable than having a constant parameter as in DDN.

From all the possible increasing sequences that go to 1 as i goes to the maximum number of iterations, we pick the simplest one: a linear sequence. All this behaviour is controlled by a single parameter, which simplifies the algorithm. That is the only heuristic.

IV. EXPERIMENTS

In this section we compare our method boundary projection (BP) to the attacks presented in Sect. II, namely: FGSM [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF], I-FGSM [START_REF] Kurakin | Adversarial examples in the physical world[END_REF], PGD 2 [START_REF] Brendel | Decision-based adversarial attacks: Reliable attacks against black-box machine learning models[END_REF], C&W [START_REF] Carlini | Towards evaluating the robustness of neural networks[END_REF], and DDN [START_REF] Rony | Decoupling direction and norm for efficient gradientbased L2 adversarial attacks and defenses[END_REF]. This benchmark is carried out on three well-known datasets, with a different neural network for each.

A. Parameters of the Attacks

Below we specify the attacks parameters for each dataset. Appendix C details the networks and training parameters.

For the distortion constrained attacks i.e. FGSM, I-FGSM and PGD 2 , we test a set of and calculate P suc and D according to our evaluation protocol (cf . section IV-B). For C&W, we test several parameter settings and pick up the optimum setting as specified below. For DDN, the parameter settings are the default [START_REF] Rony | Decoupling direction and norm for efficient gradientbased L2 adversarial attacks and defenses[END_REF], i.e. 0 = 1.0 and γ = 0.05.

MNIST [START_REF] Lecun | MNIST handwritten digit database[END_REF]: App. C details the network with accuracy 0.99. Parameters. α = 0.08 for I-FGSM, α = /2 for PGD 2 . For C&W: for 5 × 20 iterations, 3 learning rate η = 0.5 and initial constant λ = 1.0; for 1×100 iterations, η = 0.1 and λ = 10.0.

CIFAR10 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF]: App. C details the network with accuracy 0.93. Parameters. α = 0.08 for I-FGSM, α = /2 for PGD 2 . For C&W: for 5 × 20 iterations, learning rate η = 0.1 and initial constant λ = 0.1; for 1 × 100 iterations, η = 0.01, and λ = 1.0.

ImageNet [START_REF] Kurakin | Adversarial attacks and defences competition[END_REF]: comprises 1,000 images from Ima-geNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF]. We use InceptionV3 pre-trained [START_REF] Szegedy | Rethinking the inception architecture for computer vision[END_REF] whose accuracy is 0.96. Parameters. α = 0.08 for I-FGSM, α = 3 for PGD 2 . For C&W: for 5 × 20 iterations, learning rate η = 0.01 and initial constant λ = 20; for 1 × 100 iterations, η = 0.01 and λ = 1.0.

B. Evaluation Protocol

We evaluate an attack by its runtime, two global statistics P suc and D, and by an operating characteristic curve D → P(D) measuring distortion vs. probability of success as described below.

Since we focus on the speed-distortion trade-off, we measure the required time for all attacks. For the iterative attacks, the complexity of one iteration is largely dominated by the computation of the gradient, which requires one forward and one backward pass through the network. It is thus fair to gauge their complexity by this number, referred to as iterations or '# Grads'. Indeed, the actual timings of 100 iterations of I-FGSM, PGD 2 , C&W, DDN and BP are 1.08, 1.36, 1.53, 1.46 and 1.17 s/image on average respectively on ImageNet, using Tensorflow, Cleverhans implementation for I-FGSM and C&W, and authors' implementation for DDN.

We measure distortion when the adversarial images are quantized by rounding each element to the nearest element in X . This makes sense since adversarial images are meant to be stored or communicated as images rather than real-valued matrices. DDN and BP adversarial images are already quantized. For reference, we report distortion without quantization in Appendix IV-D.2.

Given a test set of N images, we only consider its subset X of N images that are classified correctly without attack. The accuracy of the classifier is N/N . Let X suc be the subset of X with N suc := |X suc | where the attack succeeds and let D(x) := xy be the distortion for image x ∈ X suc . The global statistics are the success probability P suc and

suc := N suc N , D := 1 N suc x∈X suc D(x). (21
)
Here, D is conditioned on success. Indeed, distortion makes no sense for a failure. We define the operating characteristic of a given attack over the set X as the function P : [0, D max] → [0, 1], where D max := max x∈X suc D(x). Given D ∈ [0, D max], P(D) is the probability of success subject to distortion being upper bounded by D,

P(D) := 1 N |{x ∈ X suc : D(x) ≤ D}|. (22
)
This function increases from P(0) = 0 to P(D max) = P suc . We sample one intermediate point: P upp := P(D upp) is the success rate within a distortion upper bounded by

D upp ∈ (0, D max).
It is difficult to define a fair comparison of distortion constrained attacks to success constrained attacks (see section II-B). For the first family, we run a given attack several times over the test set with different distortion budget . The attack succeeds on image x ∈ X if it succeeds on at least one of the runs, and the distortion D(x) is the minimum distortion over all successful runs. All statistics are then evaluated as above.

C. Experimental Investigations

Before addressing the benchmark, this section investigates on the role of quantization and of the parameters in BP.

1) Quantization: Table I shows the critical role of quantization in our method BP. Since this attack is iterative and works with continuous vectors, one may quantize only at the end of the process, or at the end of each iteration. Another option is to anticipate the detrimental action of quantizing by adapting the length of each step accordingly, as done by Q IN (•) and Q OUT (•) in Algorithm 2. The experimental results show that the key is to quantize often so to let the next iterations compensate. Anticipating and adapting gives a substantial extra improvement.

2) Parameter Study: There are two parameters in BP: α and γ min . Both determine the step size of stage 1, while γ min also determines the step size of stage 2. We consider 4 values for α, i.e. 1, 2, 3, 4 and 9 values for γ min , i.e. 0.1, 0.2, . . . , 0.9. For each pair of values, we evaluate BP with 20 iterations on a validation set, which we define as a random subset sampled of the training set: 10000 images for MNIST and CIFAR10, and 1000 images for ImageNet. As shown in Fig. 3, success probability is close to one in all cases, while average distortion is in general stable up to γ min = 0.8. We choose α = 2 and γ min = 0.7 for all experiments.

D. Benchmark

This section compares different attacks mentioned in this article, with or without quantization, on various classifiers.

1) Attack Evaluation With Quantization: Table II summarizes the global statistics of the benchmark. Fig. 4 offers a more detailed view per dataset with operating characteristic.

In terms of average distortion, all iterative attacks perform much better than the single-step FGSM. The performances of C&W are on par with those of I-FGSM, which is unexpected for this more elaborated attack design. The reason is that C&W is put under stress in our benchmark. It usually requires a bigger number of iterations to deliver high quality images. Note that it is possible to avoid the line search on parameter λ as shown in row 1×100. However, it requires a fine tuning so that this single value works over all the images of the dataset. This is not possible for ImageNet.

DDN and our method BP are clearly ahead of the benchmark. DDN yields lower distortion on MNIST at fewer iterations, but its probability of success is not satisfying. DDN is indeed better than BP only on CIFAR10 at 100 iterations. Fig. 4 reveals that the two attacks have similar operating characteristic on all datasets but this is because it refers to 100 iterations.

In terms of success rate, FGSM fails on MNIST; on CIFAR10, I-FGSM and PGD 2 fail as well; finally on Ima-geNet, C&W fails too. DDN also fails on ImageNet at 20 iterations.

Increasing the number of iterations helps but not at the same rate for all the attacks. For instance, going from 20 to 100 iterations is waste of time for I-FGSM while it is essential for decreasing the distortion of DDN or making PGD 2 efficient on ImageNet. Most importantly, our attack BP brings a dramatic improvement in the speed vs. distortion trade-off. Just within 20 iterations, the distortion achieved on ImageNet is very low compared to the others. Section IV-D. [START_REF] Barni | A new backdoor attack in CNNS by training set corruption without label poisoning[END_REF] shows the speed vs. distortion trade-off in more detail.

Statistics of BP stages are as follows: On CIFAR-10 and MNIST, Stage 1 takes 7 iterations on average. On ImageNet, Stage 1 takes on average 3 iterations out of 20, or 8 iterations out of 100. Appendix B shows examples of images along with corresponding adversarial examples and perturbations for different methods.

2) Attack Evaluation Without Quantization: Table III is the equivalent of Table II but without the integral constraint: the attack is free to output any real matrix provided that the pixel values all belong to [0, 1]. When the distortion is large, there is almost no difference.

When an attack delivers low distortion on average with real matrices, the quantization may lower the probability of success. This is especially true with the iterative attacks finding adversarial examples just nearby the border between the two classes. Quantization jeopardizes this point and sometimes brings it back in the true class region. More importantly, the impact of the quantization on the distortion is no longer negligible. This is clearly visible when comparing Table III and Table II for DDN and BP over ImageNet. Similarly, Fig. 5 is the equivalent of Fig. 4 without the integral constraint. By comparing the two figures, it can be seen that PGD 2 and C&W, but also DDN and BP, are improving on ImageNet by having significantly lower distortion. This agrees with measurements of success rate in Table III, where PGD 2 and C&W are not failing as they do in Table II with quantization. Our BP is still the strongest attack over all datasets.

3) Attack Evaluation on Robust Models: Table IV is similar to Table II but is evaluating attacks on robust models. In particular, on MNIST and CIFAR10, we use the same models as described in Section IV-A, which we adversarially train according to [START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF]. On ImageNet, we use off-the shelf 4InceptionV3 obtained by ensemble adversarial training on four models [START_REF] Tramèr | Ensemble adversarial training: Attacks and defenses[END_REF].

In general, DDN and BP outperform all other attacks in terms of either average distortion D or success rate P upp . On ImageNet in particular, all other attacks have significantly higher distortion and fail in terms of success rate. DDN has significantly greater distortion than BP and fails in terms of success rate at 20 iterations, while at 100 iterations BP still has lower distortion. DDN and BP have similar performance on CIFAR10. On MNIST, DDN fails in terms of probability of success at 20 iterations, while at 100 iterations BP is superior. Fig. 6 shows a more detailed view of operating characteristics, similarly to Fig. 4 for models trained on natural images. We can see that BP is still ahead of the competition. It is close to DDN, but this is because Fig. 6 refers to 100 iterations. The two attacks outperform all others by a large margin.

4) Speed vs. Distortion Trade-off: Figure 7(a) is a graphical view of some results reported in Table II with more choices of number of iterations between 20 and 100, and only for ImageNet where our performance gain is the most significant. Just within 20 iterations, its distortion D is already so much lower than that of other attacks, that its decrease (-20% at 100 iterations) is not visible in Fig. 7. On the contrary, more iterations are useless for I-FGSM, and PGD 2 achieves low distortion only with more than 50 iterations. Figure 7(b) confirms that the probability of success is close to 1 for both DDN and BP for the numbers of iterations considered.

E. Defense Evaluation With Adversarial Training

We also test under adversarial training [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF]. The network is re-trained with a dataset composed of the original training set and the corresponding adversarial images. This training is special: at the end of each epoch, the network is updated and fixed, then the adversarial images for this new update are forged by some reference attack, and the next epoch starts with this new set. This is tractable only if the reference attack is fast. We use it with FGSM as the reference attack.

It is more interesting to study DDN and BP as alternatives to FGSM: at 20 iterations, they are fast enough to play the attacks (i.e. whose P suc is close to 1), the worst attack now requires a distortion three times larger than the distortion of the worst attack without defense. In the same way, on MNIST, the distortion of the worst case attack doubles going from 1.37 (baseline) to 2.73 (BP defense). In most cases, BP is a better defense than DDN, forcing the attacker to have 20% more distortion. Note that for a given defense, the strongest attack is almost always BP.

V. CONCLUSION

The main idea of BP is to travel on the manifold defined by the class boundary while seeking to minimize distortion. This travel is operated by the refinement stage, which alternates on both sides of the boundary, but attempts to stay mostly in the adversarial region. Referring to section II-A, BP is in effect doing for the success constrained problem what PGD 2 is doing for the distortion constrained problem: BP minimizes distortion on the class boundary manifold (a level set of the classification loss), while PGD 2 minimizes the classification loss on a sphere (a level set of the distortion).

BP also takes into account the detrimental effect of quantization. By doing so, the amplitude of the perturbation is controlled from one iteration to another. The main advantage of our attack is the small number of iterations required to achieve both reliability (probability of success close to one) and high quality (low average distortion).

APPENDIX A PREDICTING DISTORTION AFTER QUANTIZATION

This appendix aims at predicting when the quantization cancels the perturbation, assuming that they are independent of each other. Iteration i starts with a quantized image y i ∈ X , adds update u ∈ R n , and then quantizes s.t. y i+1 = Q(y i + u). Quantization is done by rounding with step := 1/(L -1): y i+1, j = y i, j +e j if u j ∈ (e j -/2, e j +/2] with e j ∈ Z. Border effects where y i, j + e j / ∈ X are neglected. We now take a statistical point of view where the update is modelled by a random vector U uniformly distributed over the hypersphere of radius ρ, the norm of the perturbation before quantization. The quantization noise is now random, denoted by E j ∈ Z for pixel j , introducing a distortion

D 2 = n j =1 y i+1, j -y i, j 2 = n j =1 E 2 j . (23
)
The expectation of a sum is always the sum of the expectations, whatever the dependence between the summands:

(D 2) = n j =1 (E 2 j) = n (E 2 j
). This expectation is not

null if È(|E j | ≥) > 0 since (D 2) ≥ n 2 È(|E j | ≥).
This r.v. E j takes a value depending on the scalar product S j := U c j , where c j is the j -th canonical vector. This scalar product lies in [-ρ, ρ], so that È(E j ≥) = 0 if /2 > ρ.

Otherwise, |E j | ≥ when |S j | ≥ /2, which happens when U lies inside the dual hypercone of axis c j and semi-angle θ = arccos(c) with c := /2ρ. The probability of this event is equal to the ratio of the solid angles of this dual hypercone and the full space R n . This quantity can be expressed via the incomplete regularized beta function I : È(|E j | ≥) = 1 -I c 2 (1/2, (n -1)/2), if c ≤ 1 0, otherwise For large n, this probability approximately equals 2(-√ nc). In the end, the lower bound of (D 2) after quantization depends on , n, and ρ the norm of the perturbation before quantization. When n = 3 * 299 2 (i.e. ImageNet), this lower bound equals 2 (i.e. the smallest distortion if not null) for ρ = 0.1. When the update has a smaller norm, quantization is likely to kill it, y i+1 = y i , and we waste one iteration.

APPENDIX B ADVERSARIAL IMAGE EXAMPLES

Fig. 8 shows the worst-case ImageNet examples for BP along with the images generated by all methods and the corresponding normalized perturbations. FGSM has the highest distortion over all methods and BP the lowest. DDN has the highest ∞-norm distortion. Observe that for no method is the perturbation visible, although this is a worst-case example.

Fig. 1 .

 1 Fig. 1. Adversarial attacks on a binary classifier in two dimensions. The two class regions are shown in red and blue. Contours indicate class probabilities.The objective is to find a point in the red (adversarial) region that is at the minimal distance to input x. Gray (black) paths correspond to low (high) distortion budget for PGD 2[START_REF] Kurakin | Adversarial examples in the physical world[END_REF] (a, in green) or parameter λ for C&W[START_REF] Carlini | Towards evaluating the robustness of neural networks[END_REF] (b). The simulation is only meant to illustrate basic properties of the methods. In particular, it does not include Adam optimizer[START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] for C&W.

Fig. 2 .

 2 Fig. 2. Refinement stage of BP. Case OUT when |V | > 1 (a); case IN (b).

Fig. 4 .

 4 Fig. 4. Operating characteristics on MNIST, CIFAR10 and ImageNet. The number of iterations is 5 × 20 for C&W and 100 for I-FGSM, PGD 2 , DDN and our BP.

Fig. 7 .

 7 Fig. 7. (a) Average distortion vs. number of iterations on ImageNet. I-FGSM is not improving with iterations because it is constrained by . (b) Corresponding probability of success.

Fig. 8 .

 8 Fig.8. Original (left), adversarial (top row) and scaled perturbation (below) images against InceptionV3 on ImageNet. The five images are the worst 5 images for BP requiring the strongest distortions, yet these are smaller than the distortions necessary with all other methods (The red color means that the forged image is not adversarial). Perturbations are inverted (low is white; high is colored, per channel) and scaled in the same way for a fair comparison.

 Stage 2 is summarized in Algorithm 2. Cases OUT and IN illustrated in Fig. 2 are explained below. Stage 2 Input: t: true label (untargeted), i current iteration number Input: y i : current adversarial image, : distortion budget Output: y K 1: while i < K do

1) Case OUT: takes as input y i outside class t region, i.e. π(y i) = t (line 5). It outputs y i+1 which is a quantized version of vector z (line 9). The construction of z stems from two constraints. First, we control the distortion of the next perturbation imposing the constraint zx = , so that z will lie on the hypersphere S[x;]. This radius uses again the Algorithm 2 2:

TABLE I SUCCESS

 I PROBABILITY P SUC AND AVERAGE DISTORTION D OF OUR METHOD BP ON IMAGENET WITH DIFFERENT

	Quantization Strategies
	conditional average distortion D
	P

TABLE II SUCCESS

 II PROBABILITY P SUC AND AVERAGE DISTORTION D WITH QUANTIZATION. P UPP IS THE SUCCESS RATE UNDER DISTORTION BUDGET D UPP = 2 FOR MNIST, 0.7 FOR CIFAR10, AND 1 FOR IMAGENET 3. Success probability P and average distortion D for different values of parameters α and γ min of BP with 20 iterations.

TABLE III SUCCESS

 III PROBABILITY P SUC AND AVERAGE DISTORTION D Without Quantization. P UPP MEASURED AT D UPP = 2 FOR MNIST, 0.7 FOR CIFAR10, AND 1 FOR IMAGENET Fig. 5. Operating characteristics on MNIST, CIFAR10 and ImageNet without quantization. The number of iterations is × 20 C&W and 100 for I-FGSM, PGD 2 , DDN and our BP.

TABLE IV SUCCESS

 IV PROBABILITY P SUC , AVERAGE DISTORTION D, AND SUCCESS RATE P UPP UNDER Adversarial Training WITH PGD AS THE REFERENCE ATTACK, FOLLOWING [27] FOR MNIST AND CIFAR10; AND Ensemble Adversarial Training [40] FOR IMAGENET. P UPP MEASURED AT D UPP = 2 FOR MNIST, 0.7 FOR CIFAR10, AND 1 FOR IMAGENET Fig. 6. Operating characteristics of attacks against robust models: adversarial training with PGD as the reference attack[START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF] for MNIST and CIFAR10, and ensemble adversarial training[START_REF] Tramèr | Ensemble adversarial training: Attacks and defenses[END_REF] for ImageNet. The number of iterations is 5 × 20 for C&W and 100 for I-FGSM, PGD 2 , DDN and our BP.

Table V ,

 V DDN and BP perform equally better than FGSM on CIFAR10, in terms of either average distortion or success rate. Among the reliable

TABLE V SUCCESS

 V PROBABILITY P SUC , AVERAGE DISTORTION D, AND SUCCESS RATE P UPP UNDER Adversarial Training DEFENSE WITH I-FGSM, DDN, OR BP AS THE REFERENCE ATTACK. P UPP MEASURED AT DISTORTION D UPP = 2 FOR MNIST, AND 0.7 FOR CIFAR10

We define proj A (u) := arg min v∈ A uv.

C&W performs line search on λ: "5×20" means 5 values of λ, 20 iterations for each.

https://github.com/tensorflow/models/tree/master/research/adv_imagenet_ models

NETWORKS AND TRAINING PARAMETERS

A. MNIST [START_REF] Lecun | MNIST handwritten digit database[END_REF] We use a simple network with three convolutional layers and one fully connected layer. The first convolutional layer has 64 features, kernel of size 8 and stride 2; the second has 128 features, kernel 6 and stride 2; the third has 128 features, kernel 5 and stride 1. It uses LeakyRelu activation [START_REF] Maas | Rectifier nonlinearities improve neural network acoustic models[END_REF]. The loss function is the cross-entropy.

We train the network with the 60, 000 images of the training set. After a random initialization, training lasts 6 epochs with batch size 128, learning rate 0.001, and the optimizer is Adam. Between epochs, the training data are shuffled.

B. CIFAR10 [21]

We use a simple CNN network with nine convolutional layers, two max-pooling layers, two dropout layers, ending in global average pooling and a fully connected layer. Batch normalization [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF] is applied after every convolutional layer. It also uses LeakyRelu. The loss function is the cross-entropy. All the kernels of the convolutional layers are initialized with HeReLuNormal initializer, and their kernel size is 3. For the first three convolutional layers, the number of filters is 128 and the padding mode is 'same'. For the following three convolutional layers, the number of filters is 256 and the padding mode is 'same'. For the last three convolutional layers, the padding mode is 'valid'. The seventh layer has 512 filters, while 256 filters for the eighth layer, and 128 filters for the last layer. The parameter α for LeakyRelu is 0.1, and the rate for dropout is 0.5. The pool size of the max pooling layer is 2, the strides shape is 2 and the padding mode is 'valid'. The pool size of the average pooling layer is 2 and the strides shape is 6 and the padding mode is 'valid'.

We trained the model with the 60, 000 images of the training set. After a random initialization, training lasts 200 epochs with batch size 128, learning rate 0.001, and the optimizer is Adam. Between epochs, the training data are shuffled.

C. ImageNet [23]

We use InceptionV3 [START_REF] Szegedy | Rethinking the inception architecture for computer vision[END_REF] with the pre-trained model from TensorFlow-Slim image classification library. 5

D. Robust Models -Attack Evaluation

We use the same network for MNIST and CIFAR10, but the training differs. We follow the adversarial training method [START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF] The robust model for ImageNet is ensemble adversarial training [START_REF] Tramèr | Ensemble adversarial training: Attacks and defenses[END_REF], which is directly taken from TensorFlow library. 6

E. Robust Models -Defense Evaluation

The networks on MNIST and CIFAR10 are the same as before.

On MNIST, it is trained from scratch with the same setup but with training data and their adversarial examples. FGSM defense model uses FGSM with = 0.3. DDN and BP defense model use these attacks with 20 iterations and the same parameters as described in the attack methods. 5 https://github.com/tensorflow/models/tree/master/research/slim 6 https://github.com/tensorflow/models/tree/master/research/adv_imagenet_ models On CIFAR10, only FGSM defense model is trained from scratch. For DDN and BP defense model, we follow the training suggested by [START_REF] Rony | Decoupling direction and norm for efficient gradientbased L2 adversarial attacks and defenses[END_REF]. The model is first trained on clean examples, then fine-tuned for 30 iterations with adversarial examples. The parameters are initialized randomly. The optimizer is Momentum Optimizer, the initial learning rate is 0.001 and the momentum is 0.9. It is trained with 200 epochs and the batch size 128. Between epochs, the training data are shuffled. FGSM defense model uses FGSM with = 0.3. DDN and BP defense model use these attacks with 20 iterations and same parameters as attack methods.

Experiments run on TensorFlow1.8.0-py2.7 over CUDA 9.0.176; Cleverhans [START_REF] Papernot | Technical report on the CleverHans v2.1.0 adversarial examples library[END_REF] v2.0.0 produces the existing attacks.