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Abstract— Random projections became popular tools to pro-
cess big data. In particular, when applied to Nonnegative Matrix
Factorization (NMF), it was shown that structured random pro-
jections were far more efficient than classical strategies based on
Gaussian compression. However, they remain costly and might
not fully benefit from recent fast random projection techniques.
In this paper, we thus investigate an alternative to structured ran-
dom projections—named Gaussian compression stream—which (i)
is based on Gaussian compressions only, (ii) can benefit from the
above fast techniques, and (iii) is shown to be well-suited to NMF.

1 Introduction

Dimension reduction techniques are the linchpin for solving
problems involving high dimensional data. They can capture
most of the important features of the underlying high data while
providing the benefit of mapping onto a much lower dimen-
sional space, due to their computational intricacies and geomet-
ric properties. Among the numerous techniques proposed in the
literature, those based on randomized linear algebra [1, 2] have
been shown to be particularly efficient.

In particular, they were successfully combined to Non-
negative Matrix Factorization (NMF) [3–5] and its weighted
extension [6] and is sometimes named compressed NMF.
More precisely, it was shown in [3] that structured random
compression—based on Randomized Power Iteration (RPI)—
was far more efficient than classical Gaussian Compression
(GC) when applied to NMF. However, while several strategies
have been proposed to speed-up GC—e.g., CountGauss [7] or
specific hardware [8]—RPIs still suffer from a high compu-
tational cost. This analysis remains true when considering a
stable extension of RPIs named Randomized Subspace Itera-
tions (RSIs) [1]. In this paper, we propose an extension of GC
nammed GC Stream (GCS). We show that GCS allows a NMF
performance which is similar to RPIs/RSIs. We lastly discuss
conditions where GCS should outperform RPIs/RSIs when the
computational complexity is taken into consideration.

2 Compressed NMF

NMF is a popular signal & image processing / machine learn-
ing tool which consists of estimating two n × p and p × m
nonnegative matricesG and F , respectively, from a n×m non-
negative matrix X such that X ≈ G · F [9, 10]. While several
cost functions and additive constraints have been proposed to
that end, in its basic form involving the Frobenius norm ||·||F ,
NMF usually consists of solving alternating subproblems, i.e.,

Ĝ = arg min
G≥0
||X −G · F ||F , (1)

F̂ = arg min
F≥0
||X −G · F ||F , (2)

When X is large, several strategies have been proposed to
speed-up the updates, e.g., distributed [11] or online [12] com-
putations, fast solvers [13], or randomized techniques [3].

Actually, several randomized strategies were proposed in the
literature. In [14], the authors assumed that X is low-rank and
can be replaced by a product A · B which helps the NMF fac-
tors to be cheaper to update, and which can be efficiently com-
puted using randomized SVD. In [15], the authors introduced
the concept of dual random compression described in Algo-
rithm 1. The key idea consists in noticing that compressing
X by a projection on the left or the right side still allows to
estimate the full matrix F or G, respectively. The difficulty
then lies in designing efficient matrices L and R: the authors
in [15] used scaled Gaussian realizations as tentative compres-
sion matrices, thus following the general proof of the Johson-
Lidenstrauss Lemma (JLL) [16] on which is built the theory of
random projections. The authors in [3,4] then found that adding
some structure on the compression matrices allows a much bet-
ter NMF performance (with different tested solvers). To that
end, they used RPIs [1]. To compute L, RPIs are defined as

L , QR
(
(XXT )q ·X · ΩL

)T
, (3)

where ΩL ∈ Rm×(p+ν) is a Gaussian random matrix, p+ ν �
n, and q is a small integer (e.g., q = 4 in [3]). This was further
extended in [5] where the authors used RSIs, i.e., a round-off-
error stable alternative to RPIs [1]. Lastly, the authors in [17]
assumed to only observe XL. F and GL could then be esti-
mated from XL. Assuming the columns of G to be sparse w.r.t
a known dictionary, they could then be estimated from GL.

Algorithm 1 Compressed NMF strategy.

Require: initial and compression matrices G, F , L, and R.
Define XL , L ·X and XR , X ·R
repeat

Define FR , F ·R
Solve (1) by resp. replacing X and F by XR and FR
Define GL , L ·G
Solve (2) by resp. replacing X and G by XL and GL

until a stopping criterion

At this stage, it should be noticed that computing random
projections is costly. Indeed, deriving XL in Algorithm 1 re-
quires nm(p + ν) operations. Even worse, computing L in
Eq. (3) requires—using the Householder QR decomposition—
2q(p + ν)nm + 2n(p + ν)2 − 2/3(p + ν)3 operations. As a
consequence, the authors in [7] then proposed a cheaper strat-
egy than GC—named CountGauss—which combines the ideas
of both the CountSketch method [18] and GC. The former con-
sists of generating a matrix S with only one nonzero entry per
row, whose value is either +1 or −1 with equal probability.
The product S · X then provides a sketch of X which is very
cheap to compute. However, it requires more samples than GC



to reach the same approximation accuracy. Combining CountS-
ketch with Gaussian projection thus leverages the CountSketch
drawback while still being faster to compute than a standard
Gaussian projection. In that case, applied to NMF, the matrix
L reads L = ΩL · S where ΩL and S have dimensions of size
(p+ν)× (p+µ) and (p+µ)×n, respectively, with µ > ν and
(p+µ) ≤ n. Another faster way to compute GC consists of us-
ing a dedicated hardware, e.g., Optical Process Unit (OPU) [8].
OPUs optically perform random projections, so that they can
process very large matrices in a very short time. Still, all these
alternatives provide a similar performance to GC and should
thus be less accurate than RPIs/RSIs when applied to NMF.

3 Gaussian Compression Stream

Principle We now introduce our proposed GCS concept. Let
us first recall the JLL which states that [16] given 0 < ε < 1,
a set X of n points in Rm, and a number k > 8 log(n)/ε2,
there is a linear map f : Rm → Rk such that ∀u, v ∈ X , (1 −
ε)‖u−v‖2 ≤ ‖f(u)−f(v)‖2 ≤ (1+ε)‖u−v‖2. Interestingly,
the dimension k of the low-dimensional space only depends on
the number n of points in the original high dimensional space
and on a distortion parameter ε. Applied to NMF, the linear
mapping f is a compression matrix, i.e., L or R. In [3], the
authors chose k , p + ν where ν was set to a small value,
i.e., ν = 10. This led to a poor NMF performance. However,
the JLL implies that by increasing k (or ν), we can reduce the
distortion parameter ε as we less compress the data. However,
this implies a reduced speed up of the computations.

Our proposed strategy thus reads as follows. We assume that
ν is extremely large (or even infinite), so that L and R—which
are draw according to a scaled Gaussian distribution—cannot
fit in memory. We thus assume these matrices to be observed
in a streaming fashion, i.e., during the i-th NMF iteration, we
only observe two (p+νi)×n andm×(p+νi) submatrices of L
and R, denoted L(i) and R(i), respectively. As a consequence,
at each NMF iteration, the update of G and F is done using
different compressed matrices X(i)

R and X(i)
L , respectively. In

the experiments below, we find our strategy to yield the same
accuracy as RSIs or vanilla NMF. Still, the approach is only
based on GC so that the faster compression strategies discussed
above can be applied. However, if we aim to use CPU only,
GCS might not be as computationally efficient as RPIs or RSIs
as we must compute X(i)

R and X(i)
L at each iteration. We thus

also propose an alternative where L(i) and R(i) are updated
every MaxIter iterations, as shown in Algorithm 2.

Algorithm 2 Proposed compressed NMF strategy with GCS.

Require: initial matrices G, F , i = 0
repeat

Update i = i+ 1 and get L(i) and R(i)

Define X(i)
R , X ·R(i) and X(i)

L , L(i) ·X
for counter = 1 to MaxIter do

Define F (i)
R , F ·R(i) and G(i)

L , L(i) ·G
Solve (1) by resp. replacing X and F by X(i)

R and F (i)
L

Solve (2) by resp. replacing X and G by X(i)
L and G(i)

L

end for
until a stopping criterion

MaxIter = 1 MaxIter = 2 MaxIter = 5
MaxIter = 10 MaxIter = 25 MaxIter = +∞ (GC)
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Figure 1: NMF performance for different parameters of the GCS strategy.

Experiments We now investigate the performance of our
proposed method. For that purpose, we consider 15 simula-
tions where we draw random nonnegative matrices G and F
such that n = m = 10000 and p = 5. As a consequence, their
product X is a 10000 × 10000 rank-5 matrix. To assess the
performance of the proposed method, we consider two different
NMF solvers, i.e., Active Set (AS-NMF) [19] and Nesterov gra-
dient (NeNMF) [13] and three different compression strategies,
i.e., RSIs, GC and GCS, that we compare to the performance
reached by the vanilla strategy. The performance criterion used
in this paper is a Relative Reconstruction Error (RRE), defined
as RRE , ||X −G · F ||2F / ||X||

2
F . In each simulation, we

consider the same random initialization and we compute the
RRE performance for each tested method at each NMF itera-
tion. Figure 1 shows the median RREs achieved by AS-NMF
and NeNMF combined with GCS with respect to MaxIter and νi.
We notice that (i) GCS always outperforms GC , (ii) the RREs
are not always decreasing along iterations when νi = 10, and
(iii) the best performance is achieved when MaxIter = 1 or 2.
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Figure 2: NMF performance with respect to compression techniques.

Figure 2 shows the evolution of the median RREs with no
compression, RSIs, and GCS (with MaxIter = 1 but for dif-
ferent values of νi). The latter provides a similar or better en-
hancement than the former except νi = 10.

Conclusion We proposed a new randomized compression
technique which is based on GC only and which is shown to
be accurate on the considered NMF simulations. However,
it requires the computation of the compressed matrices every
MaxIter iterations, which might be prohibitive w.r.t. structured
compression if the number of NMF iterations is high. This is-
sue might be solved using a dedicated hardware. We will in-
vestigate it in our future work and we will investigate the use
of GCS for mobile sensor calibration [20, 21].
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