
HAL Id: hal-02931401
https://hal.science/hal-02931401

Submitted on 7 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TESL: a Model with Metric Time for Modeling and
Simulation

Hai Nguyen Van, Frédéric Boulanger, Burkhart Wolff

To cite this version:
Hai Nguyen Van, Frédéric Boulanger, Burkhart Wolff. TESL: a Model with Metric Time for Modeling
and Simulation. 27th International Symposium on Temporal Representation and Reasoning, Sep 2020,
Bozen-Bolzano, Italy. �10.4230/LIPIcs.TIME.2020.15�. �hal-02931401�

https://hal.science/hal-02931401
https://hal.archives-ouvertes.fr

TESL: a Model with Metric Time for Modeling1

and Simulation2

Hai Nguyen Van3

Université Paris-Saclay, CNRS, LRI, 91405, Orsay, France4

perso.crans.org/nguyen-van5

Frédéric Boulanger6

Université Paris-Saclay, CNRS, LRI, CentraleSupélec, 91405, Orsay, France7

frederic.boulanger@lri.fr8

Burkhart Wolff9

Université Paris-Saclay, CNRS, LRI, 91405, Orsay, France10

burkhart.wolff@lri.fr11

Abstract12

Real-time and distributed systems are increasingly finding their way into critical embedded systems.13

On one side, computations need to be achieved within specific time constraints. On the other side,14

computations may be spread among various units which are not necessarily sharing a global clock.15

Our study is focused on a specification language – named TESL – used for coordinating concurrent16

models with timed constraints. We explore various questions related to time when modeling systems,17

and aim at showing that TESL can be introduced as a reasonable balance of expressiveness and18

decidability to tackle issues in complex systems. This paper introduces (1) an overview of the TESL19

language and its main properties (polychrony, stutter-invariance, coinduction for simulation), (2)20

extensions to the language and their applications.21

2012 ACM Subject Classification Theory of computation → Timed and hybrid models22

Keywords and phrases Timed Systems, Semantics, Models, Simulation23

Supplementary Material Artifacts and source code available at github.com/heron-solver/heron.24

1 Introduction25

Designing and modeling systems nowadays still raise open problems. A very expressive26

language or framework can be useful to model a complex system where events are not trivially27

interleaved. On the opposite, an excessively expressive language is the reason for prohibitive28

slow-downs or even undecidability. As such, a reasonable balance between expressiveness29

and decidability needs to be found. In the current industrial trend for critical embedded30

systems, grows an increasing need for two kinds of systems:31

Real-Time Systems where an external input is followed by an output delivered within a32

specified time, named deadline. The correct behavior of such systems must be ensured at33

both logical and temporal levels.34

Distributed Systems where autonomous nodes communicate and cooperate to perform a35

common computation.36

A distributed real-time system (DRTS) [34, 14] belongs to both categories and consists37

in autonomous computing nodes where specific timing constraints must be met. DRTS are38

essential as they describe more closely common real-time applications by providing fault39

tolerance and load sharing [35, 34, 14]. An example of a DTRS is a modern car using CAN40

buses [14]. In such a setting, a middle gateway connects two CAN buses. One of them is41

high-speed and connects the engine, the suspension and the gearbox control. The other one42

is low-speed and connects the lights, seat and door control units. The aviation industry also43

https://orcid.org/0000-0002-0585-1651
https://perso.crans.org/nguyen-van
https://orcid.org/0000-0003-3185-2807
mailto:frederic.boulanger@lri.fr
mailto:burkhart.wolff@lri.fr
https://github.com/heron-solver/heron

2 TESL: a Model with Metric Time for Modeling and Simulation

exhibits an increasing need for DTRS as shown by recent developments in interoperable44

gateways ED-247 [21].45

On the side of formal modeling, various environments have emerged to tackle the issue of46

modeling and verifying complex systems. Some are industrial products, such as Matlab/Sim-47

ulink [15], Wolfram SystemModeler [33], SCADE [7]. Some others are academic experiments,48

such as Ptolemy II [13], TimeSquare [12], ModHel’X [20]. Our study is centered around49

the inner formalisms that drive these environments, and in particular the TESL language.50

The main question this paper addresses is: Can we provide a uniform framework to model51

distributed and real-time systems?. The paper is organized as follows: Section 2 introduces the52

TESL language which we believe can answer the main problem. Section 3 introduces its main53

properties, in terms of polychronous clocks, stutter-invariance and coinductive unfolding.54

Finally, in Section 4 we present some extensions and aim at showing their relevance in the55

scope we address.56

2 The TESL language57

The Tagged Events Specification Language (TESL) [8] originates from the idea of coordinating58

the execution of heterogeneous inner-parts of a model as components of the ModHel’X59

modeling and simulation environment. The language is inspired by CCSL [16, 26], the60

Tagged Signal Model [25] and from the constructive semantics of Esterel [6, 5] for the original61

simulation solver. In this setting, an event is modeled by a clock, with an associated time scale.62

Considering a continuous system, its behavior is discretized into a sequence of observation63

instants. At each instant, a clock admits a timestamp (also called tag), that stands for the64

metric time measured on this clock. Besides, a clock also admits a tick which indicates an65

occurrence of the event at this instant. The domain for timestamps can possibly be any66

totally ordered set. We emphasize the fact that the language handles chronometric time67

constraints, which are different from logical time constraints. Chronometric time constraints68

are given on durations measured between timestamps. Two forms of constraints may be69

specified in TESL:70

Event-triggered causality. Events may occur due to the occurrence of other events. For71

instance “I have a coffee because my office mate prepares some coffee”.72

Time-triggered causality. Events may occur because a time threshold has been reached.73

For instance “I have a coffee because it is 9am”.74

2.1 Illustrating the Language75

Let us model in TESL the simple behavior of a radiotherapy machine used in cancer treatment.76

The patient has a prescription of 2 Gy of radiation in low-dose-rate of 1.5 Gy.h−1.77

Listing 1 Radiotherapy machine
78

1 rational-clock hr // Time unit in hours79

2 rational-clock gy // Radiation unit in Gray80

3 unit-clock start sporadic () // Start emitting rays81

4 unit-clock stop // Stop emitting rays82

5 unit-clock emstop // Emergency stop83

6 time relation gy = 1.5 * hr84

7 start time delayed by 2.0 on gy implies stop85

8 emstop implies stop8687

H. Nguyen Van, F. Boulanger, B. Wolff 3

hr

gy

start

stop

emstop

0.0

0.0

()

1.33

2.0

()

0 1
(a) Normal situation

hr

gy

start

stop

emstop

0.0

0.0

()

0.5

0.75

()

()

1.33

2.0

()

0 1 2
(b) Emergency stop

Figure 1 Two partially satisfying runs

Lines 1 to 5 declare clocks hr and gy with rational timestamps, and clocks start, stop88

and emstop with the unit timestamp (so there is no chronometric scale associated to them).89

The constraint sporadic enforces the occurrence of a tick on start. Line 6 specifies that90

time on hr flows 1.5 times as fast as on gy. Line 7 specifies that each time clock start ticks,91

clock stop will tick after a delay of 2.0 measured on the time scale of clock gy. Line 892

requires that each time the emstop clock ticks, the stop clock instantaneously ticks as well.93

The syntax of such expressions is detailed in Subsection 2.3.94

Two behaviors are illustrated in Figure 1. They show possible execution traces or runs95

satisfying the TESL specification. A run consists in a sequence of synchronization instants96

(vertical dashed line with blue numbers). Each of them contains ticks (in red) along with97

timestamps (in green) on the time-scales of the clocks hr, gy, start, stop and emstop.98

2.2 Clocks, runs and timestamps99

I Definition 1. Let K be the set of clocks, B the set of booleans and T the ordered domain100

of timestamps. The set of runs is denoted Σ∝ and defined by101

Σ∝ = N→ K→ (B× T)102

Additionally, we define two projections that extract the components of an event occurrence:103

ticks(ρ n K) ticking predicate of clock K in run ρ at instant n (first projection)104

time(ρ n K) time value on clock K in run ρ at instant n (second projection)105

I Example 2. Let ρFig.1a be the run shown in Figure 1a, we have ticks(ρFig.1a 0 start) = true106

and time(ρFig.1a 1 gy) = 2.0.107

2.3 Quick overview of the syntax108

We briefly introduce some expressions of the language which serve the purpose of this paper.109

The reader may refer to the official website of TESL1 for an exhaustive description of all the110

features of the language. A TESL specification Φ is described by the following grammar:111

1 https://wdi.centralesupelec.fr/software/TESL/

https://wdi.centralesupelec.fr/software/TESL/

4 TESL: a Model with Metric Time for Modeling and Simulation

Φ ::= 〈atom〉 ∧ . . . ∧ 〈atom〉112

〈atom〉 ::= 〈clock〉 sporadic 〈timestamp〉 on 〈clock〉113

| 〈clock〉 implies 〈clock〉114

| time relation (〈clock〉, 〈clock〉) ∈ 〈relation〉115

| 〈clock〉 time delayed by 〈duration〉 on 〈clock〉 implies 〈clock〉116
117

where 〈clock〉 ∈ K, 〈timestamp〉 ∈ T, 〈duration〉 ∈ T and 〈relation〉 ⊆ T× T.118

To provide a quick understanding, we briefly and informally explain the semantics:119

K sporadic τ on Kmeas requires a tick on clock K at an instant where the timestamp120

on Kmeas is τ ;121

Kmaster implies Kslave models instantaneous causality by specifying that at each instant122

where Kmaster ticks, Kslave ticks as well ;123

time relation (K1, K2) ∈ R relates the time frames of clocks K1 and K2 by specifying124

that at each instant, the timestamps on K1 and K2 have to be in relation R ;125

Kmaster time delayed by δτ on Kmeas implies Kslave stands for delayed causality by126

duration. At each instant k where Kmaster ticks, it requires a tick on Kslave at an instant127

where the timestamp on Kmeas is τ ′, with τ ′ the sum of δτ and the timestamp on Kmeas128

at instant k. In other words, it states that each tick on Kmaster must be followed by a129

tick on Kslave after a delay δτ measured on the time scale of Kmeas.130

3 Properties of the language131

3.1 Polychronous clocks and time islands132

One of the most prominent properties of the TESL language lies in polychronous clocks [23],133

a global clock does not necessarily drive the system. In the context of distributed systems,134

there exists as many clocks as there are computing nodes: all run at different rates and their135

clocks may possibly drift along. This is why, an additional mechanism of synchronization is136

necessary to coordinate these subworkers to achieve a common desired computation.137

Metric level. There are similarities with time dilation as in special relativity [19] where138

time seems to flow more slowly for a stationary observer than for a moving observer. The139

drift increases with the speed of the moving observer. For instance, GPS satellites suffer140

from time drifting and it is necessary to take into account these effects.141

Temporal level. Modern computing also exhibits this idea where temporal cycles may142

speed up or slow down. Current predominant processors adjust their clock speed with143

respect to environmental variables (energy, heat, noise), this is called throttling. Today’s144

multicore processors consist of multiple computing units which may run faster or slower145

for these reasons, while possibly being used to achieve a distributed computation.146

We illustrate this statement with the running example by adding an independent comput-147

ing unit used for auxiliary computation needs. Whenever its computation is finished, it will148

trigger an event to indicate that it is ready. Let us simply declare a clock aux whenever this149

computing unit yields its signal. Besides, we can also create a scenario where we require this150

to occur at timestamp 0.5. The following line can be added to the specification in Listing 1:151

152

153
rational-clock aux sporadic 0.5154155

H. Nguyen Van, F. Boulanger, B. Wolff 5

In this setting, clocks hr and gy are said to belong to the same time island as their156

timeframes are arithmetically related. On the other hand, clock aux belongs to another157

independent time island. There may also be other clocks living around as the specification is158

permissive and allows other clocks to exist even though they were not specified.159

aux
× 1.5 gyhr

Figure 2 Graphic representation of time islands

Let us consider the specification in Listing 1, with the additional aux clock as declared160

above. Figure 3 depicts three runs which satisfy this specification. For presentation purposes,161

only three clocks hr, gy and aux are displayed. On the leftmost figure, we observe that aux162

ticks at 0.5 when it is 0.0 on hr. On the center figure, aux ticks at 0.5 when it is between163

0.0 and 0.5 on hr. On the rightmost figure, aux ticks at 0.5 when it is 0.5 on hr. We see164

therefore that there exists an infinite number of satisfying runs as the timeframe on clock aux165

is left completely unrelated to the other time frames. However, we developed a simulation166

solver for TESL that supports symbolic runs, and hence captures this infinity of runs in a167

finite number of symbolic runs using symbolic timestamps.168

hr

gy

aux

0.0

0.0

0.5

0.5

0.75

1.33

2.0

0 1 2

hr

gy

aux

0.0

0.0

0.5

0.5

0.75

1.33

2.0

0 1 2 3

hr

gy

aux

0.0

0.0

0.5

0.75

0.5

1.33

2.0

0 1 2

Figure 3 Examples of satisfying runs with additional clock aux in an independent time island

3.2 Stutter Invariance169

A fundamental concept of concurrent and distributed systems is stutter invariance. In170

finite-state model checking, it is an essential requirement for partial-order reduction tech-171

niques. When composing automata, the addition of stutter, or silent instants, allows the172

accommodation for their different alphabets. From a point of view in language theory, the173

membership of any word in a language shall be preserved even if a letter is duplicated. In174

our setting to model and compose submodels, we need stutter invariance in order to provide175

compositionality. For instance, when composing two specifications, we may have to add176

observation instants to a run that satisfies a specification in order to observe events on177

clocks that belong to the other specification. In other words, stuttering in necessary to refine178

specifications [22]. Stutter invariance also allows one to observe a model more often than179

necessary without changing its behavior.180

In TESL, composing specifications is simply performed by the conjunction of TESL-181

formulae. To illustrate the idea of stutter-invariance with the running example, let us assume182

that we require the system to trigger some refresh mechanism every 10 minutes. We would183

add the following lines to the specification:184

6 TESL: a Model with Metric Time for Modeling and Simulation

185
186

refresh sporadic 0.0 on hr187

refresh time delayed by <10/60 > on hr implies refresh188189

If we consider the run from Figure 1b and wish to compose it with this refreshing190

mechanism, a satisfying run is shown in Figure 4. The top of the figure shows the original191

run as in Figure 1b, whereas the bottom depicts a run where new instants have been added.192

A one-to-one correspondence is observed between run instants in the top and the bottom193

figure. Both runs exhibit the same first instant where start is triggered, with refresh194

additionally ticking in the second run. However, the second instant of the second run exists195

due to the refreshing requirement at 0.166 on clock hr, which is not present on top.196

Stutter-invariance is illustrated by the fact that a run may be dilated and new instants197

added while still satisfying the specification.198

hr

gy

start

stop

emstop

refresh

0.0

0.0

()

0.166

0.25

0.333

0.5

0.5

0.75

0.666

1.0

0.833

1.25

1.0

1.5

1.166

1.75 2.0

1.333

1 2 3 4 5 6 7 80

hr

gy

start

stop

emstop

0.0

0.0 0.0

0.75 2.0

1.333

0 1 2

()

() () () () () () () ()

()

()

()

()

()

()

()

Figure 4 The example of radiotherapy run dilated

3.3 Unfolding Specifications199

The language allows the specification of runs that can be constructed and described by200

operational rules. In [29], we introduced an operational semantics of the language whose201

main ideas are summarized in Figure 5. The general concept of the operational semantics202

revolves around a 3-component pattern past-present-future. The past component contains203

the run we are constructing (which we also call the run context), the present component204

contains TESL-formulae to consume for the construction of the current instant, while the205

future component contains TESL-formulae to consume for future instants. The system206

considers each TESL formula as a consumable resource, and its consumption produces a207

“smaller” resource, which allows to constructively build the past component. Finally, the past208

component is a symbolic run and contains logical primitives which are sent to a SMT-solver209

in order to decide the satisfiability of the constructed run. Put differently, we reduced the210

problem of solving a TESL specification to a simpler constraint solving problem.211

H. Nguyen Van, F. Boulanger, B. Wolff 7

OPERATIONAL
RULES

PAST PRESENT FUTURE

satisfying run
non-satisfying run

CONSTRAINT
SOLVING

Figure 5 Usage of the operational semantics

4 Extensions212

In this section, we propose two extensions of the language. From the original implementation213

of TESL, we have experimentally broadened its scope by adding two features on formulae and214

clocks. The addition of such has increased the language expressiveness without compromising215

constraint solving. To provide an insight, we illustrate them with an application example.216

We designed and experimented their semantics by implementing them into an experimental217

solver, named Heron2 [29]. This implementation is a path-exhaustive multicore simulation218

solver built with MLton/MPL [36, 37]. It directly implements the operational semantics and219

the presented extensions. It can also be used for system testing and monitoring.220

4.1 Precedence formula (and timed automata)221

The first extension we propose is built around the precedence operator as found in CCSL.222

A appreciable motivation lies in modeling Synchronous Dataflows [24, 26]. In this model,223

each component provides an interface with inputs and outputs, and respectively a number of224

input tokens (to be read) and another of output tokens (to be written). When wiring two225

components, it is necessary that the n-th output writing event will precede the n-th input226

reading event. Precedence allows to specify this kind of indexed requirement over the order227

of event occurrence.228

We extend the syntax of TESL as shown in Subsection 2.3 with229

〈atom〉 ::= . . .230

| 〈clock〉 weakly precedes 〈clock〉231

| 〈clock〉 strictly precedes 〈clock〉232
233

Informally, K1 weakly precedes K2 means that each tick on clock K2 may be uniquely234

mapped to a tick on K1 in the past or current instants (as a one-to-one correspondence).235

K1 strictly precedes K2 is analogous but maps to instants that are strictly in the past.236

I Remark 3. Mallet et al. showed that the decidability of this type of formula could be237

handled with counter automata [27]. In our framework, we modeled this formula in a similar238

way by embedding run contexts with arithmetic constraints containing counter expressions.239

Again, we reduced this problem to a constraint solving problem.240

2 https://github.com/heron-solver/heron

https://github.com/heron-solver/heron

8 TESL: a Model with Metric Time for Modeling and Simulation

To illustrate our interest in this operator, we consider timed automata [2, 1] as introduced241

by Alur and Dill. An additional and distinct mechanism made of clocks (also referred as242

chronometers) is used to store and specify metric timing constraints. On the implementation243

side, they extend classical finite-state automata with timing constraints. This formalism244

allows time to progress inside states while transitions are instantaneous, meaning that245

transitioning from one state to another is fast enough to be abstracted. In this subsection, we246

describe how this model of computation can be encoded with TESL extended with precedence.247

Let us give in Figure 6 a simple timed automaton (extracted from [4]) which models a system248

in which an alarm is triggered whenever the delay between receiving two messages is less249

than 5 seconds.250

initstart verif alarm
msg, c := 0

c ≥ 5, msg, c := 0

c < 5, msg

Figure 6 An example of timed automata from [4]

To model the timed automaton in Figure 6, we declare TESL-clocks that will simulate251

the events occurring at a lower level (suffixed by _enter and _leave). Other clocks are also252

declared for transitions.253

254

255
// Set of states : {init , verif , alarm}256

unit-clock state_init_enter257

unit-clock state_init_leave258

unit-clock state_verif_enter259

unit-clock state_verif_leave260

unit-clock state_alarm_enter261

unit-clock state_alarm_leave262263

We also need to declare TESL-clocks related to the behavior of TA-clocks, in particular264

when resetting them.265

266
// Set of clocks : {c}267

unit-clock c_reset268

rational-clock c sporadic 0.0269270

Likewise, we need a TESL-clock to model the reading of a symbol (so-called action).271

272
// Set of actions : {msg}273

unit-clock read_msg274275

We proceed by encoding in TESL each transition of the timed automaton. We model the276

first transition from init to verif, which must read symbol msg and reset clock c, as:277

278
// Transition t1 = init -> verif: msg , c:= 0279

state_init_leave when read_msg implies trigger_t1280

trigger_t1 implies state_verif_enter281

trigger_t1 implies c_reset282283

The second transition from verif to itself can be triggered when reading msg if time on284

clock c is greater than or equal to 5, which will eventually lead to resetting c. This means285

H. Nguyen Van, F. Boulanger, B. Wolff 9

that the transition can be triggered if more than 5.0 units of time have elapsed on c since286

the last time c has been reset. When using this transition, one will remain in state verif287

while resetting c to 0 each time a message has been read.288

289
// Transition t2 = verif -> verif: c>=5, msg , c:= 0290

c_reset time delayed by 5.0 on c with reset on trigger_t3291

implies trigger_t2_min292

trigger_t2_min weakly precedes trigger_t2293

state_verif_leave ∧ read_msg implies trigger_t2 ∨ trigger_t3294

trigger_t2 implies state_verif_enter295

trigger_t2 implies c_reset296297

The third transition from verif to alarm is triggered when a new message has been298

received before 5.0 units of time have elapsed. We model this as:299

300
// Transition t3 = verif -> alarm: c<5, msg301

c_reset time delayed by 5.0 on c with reset on trigger_t2302

implies trigger_t3_max303

trigger_t3 strictly precedes trigger_t3_max304

state_verif_leave ∧ read_msg implies trigger_t2 ∨ trigger_t3305

trigger_t3 implies state_alarm_enter306307

Figure 7 shows a run prefix exhibiting the behavior of our encoding of the timed automaton.308

At instant 0, time on clock c is 0.0 and we enter in state init. At instant 1, 5.0 units of time309

have elapsed. At instant 2, 5.0 additional units of time have elapsed and read_msg has been310

triggered, thus the transition is triggered (trigger_t1). The TA-clock c is reset and leaves311

state init to enter verif. Also, a minimum limit has been set on triggering transition t2 as312

it can only be fired after elapsing at least 5.0 units of time (as depicted by trigger_t2_min313

at instant 4). At instant 4, symbol msg is read and transition t2 is triggered to re-enter in314

the same state verif. Finally, at instant 5, the symbol msg is read again and transition t3 is315

triggered to enter alarm. A tick on trigger_t3 is possible as it precedes trigger_t3_max.316

Likewise, trigger_t3_max defines a maximum limit to ensure any t3-transition triggering317

only before.318

4.2 Previous operator (and PID controllers)319

Another useful operator is pre with similar syntax and semantics as in Lustre [18]. This320

operator simply allows to refer to the previous timestamp on a clock. Hence, a substantial321

part of feedback systems can be modeled accurately as they require registers to store previous322

values. The power of computation is significantly augmented and allows us to model more323

complex systems, such as mathematical sequences and series (e.g., Fibonacci), differential324

calculus (derivatives, Euler’s integrator), or digital filters.325

Since this operator refers to the value of a signal at a previous instant, we generalized326

TESL clocks as flows. A flow is a clock where timestamps are no longer required to be327

monotonic. As a matter of fact, these “timestamps” are simply called values.328

We extend the syntax of TESL as shown in Subsection 2.3, with:329

〈clock〉 ::= K ∈ K330

| pre 〈clock〉331
332

This extension is useful at modeling feedback systems. Let us illustrate this with the333

ubiquitous algorithm of automatic control theory: the Proportional-integral-derivative (PID)334

10 TESL: a Model with Metric Time for Modeling and Simulation

c

c_reset

state_init_enter

state_init_leave

state_verif_enter

state_verif_leave

state_alarm_enter

state_alarm_leave

read_msg

trigger_t1

trigger_t2_min

trigger_t2

trigger_t3

trigger_t3_max

0.0 5.0 10.0 15.0 17.0 20.0 22.0

0 1 2 3 4 5 6

Figure 7 A satisfying run prefix to encode a timed automaton

controller [39]. In this theory, a PID controller delivers a control signal to a process in order335

to bring a process output closer to a reference setpoint (e.g., cruise control in cars, autopilots336

in airplanes).337

PID Controller

Σ
err

Σ
setpt out meas

×(−1)

Proportional

Integral

Derivative

Plant

Figure 8 General diagram of a process using a PID controller

The block diagram in Figure 8 shows the structure of the controller. Basically, the system338

receives as input the error signal err, i.e. the difference between the reference setpoint339

setpt and the process output out, and computes a control signal based on the sum of a term340

proportional to the error, an integral term and a derivative term. Each of the three terms341

is parameterized by a multiplying factor, respectively Kp, Ki and Kd, which are commonly342

called gains. Thereafter, the controller output enters a transfer function which translates343

the control signal out into the process output meas. For instance in automotive control344

theory, this occurs when converting the position of the gas pedal into the generated car345

H. Nguyen Van, F. Boulanger, B. Wolff 11

velocity. This new output will be used to feed the error back at the next computing cycle. It346

is possible to describe this system straightforwardly in TESL as in Listing 2.347

348

Listing 2 The PID controller
349

// Time350

time relation dt = 1.0351

time relation t = [0.0] -> (pre t) + dt352

// Gain353

time relation Kp = 0.1354

time relation Ki = 0.2355

time relation Kd = 0.2356

// Setpoint357

time relation setpt = 40.0358

// Control signal359

time relation err = setpt - meas360

time relation integr = [0.0] -> (pre integr) + (err * dt)361

time relation derivat = [0.0] -> (err - (pre err)) / dt362

time relation out = (Kp * err) + (Ki * integr) + (Kd * derivat)363

// Simple actuation364

time relation meas = [0.0] -> (pre meas) + (pre out)365366

When running this example, the solver yields the output shown by the extract in Listing 3.367

368

Listing 3 An extract of the satisfying run found by Heron of the PID controller
369

Solver has successfully returned 1 model370

Simulation result [0 x1ADAB]:371

meas err integr derivat out372

[1] 0.0 40.0 0.0 0.0 4.0373

[2] 4.0 36.0 36.0 -4.0 10.0374

[3] 14.0 26.0 62.0 -10 .0 13.0375

[4] 27.0 13.0 75.0 -13 .0 13.0376

[5] 40.0 -1.0 74.0 -14 .0 12.0377

...378379

Additionally, the values of the flows meas, err and out are plotted in Figure 9. As380

expected, we observe that the process output meas is brought closer to the reference setpoint381

setpt = 40.0. Besides, the error signal and the control signal out gradually decrease to 0.0382

as the need to damp out oscillations progressively decreases.383

0 20 40 60 80 100

0

20

40

60
meas

0 20 40 60 80 100

−20

0

20

40 err
out

Figure 9 Plotting values for meas, err and out

12 TESL: a Model with Metric Time for Modeling and Simulation

5 Related Work384

In the family of synchronous programming languages [3], Lustre [18], Esterel [6, 5] and385

Signal [17] are known to provide polymorphic time (time domains of various type). However,386

their time model is purely logical, which is not suited when dealing with modeling non-387

discretizable systems. Prelude [32] and Zélus [9] overcome this with continuous dynamics.388

All these previous models derive clocks from a global root clock, which constrains models389

to flow from a single reaction clock. Polychrony (clocks possibly living in various independent390

timeframes) overcomes this restriction by allowing specifications with more relaxed and391

concurrent execution of systems. This feature can be observed in the Signal language or392

polychronous automata [23]. Compared to TESL, they do not allow metric time constraints.393

TESL is also inspired by CCSL which supports asynchronous constraints on events. It394

admits an executable [38] and denotational semantics [11, 28]. However, time in CCSL is395

purely logical and durations are counted as a number of ticks on a clock.396

On a more theoretical-side, timed automata [2, 1] support both discrete events and metric397

time. However, clocks are global and uniform, they necessarily progress at the same rate.398

All in all, TESL attempts to overcome these limitations and provides a general-purpose399

specification language of synchronous and asynchronous constraints with clocks over poly-400

morphic time while supporting polychrony, and mixing logical and metric time.401

6 Future work402

The outcome of our study leads us to various future opportunities:403

An effort is currently running towards a machine-checkable formalization of the operational404

and denotational semantics into the Isabelle/HOL proof assistant [31, 30]. We successfully405

proved that the operational semantics was correct and complete with respect to the406

denotational semantics. Proving both extensions of the paper is a future direction.407

Numerous questions about model-checking remain unanswered. In our experiments, we408

have observed that unfolded specifications could be refolded with abstract interpretation409

techniques. This would offer a finite-representation of these infinite-state systems, thereby410

providing means to decide safety and liveness properties of such systems.411

In addition, the TESL language seems to be suited for modeling and simulation of systems412

with time of various kind. With the new extensions we propose and their implementation413

in an existing efficient solver, we believe TESL can become a relevant asset as a simulation414

engine for simulation platforms, such as the GEMOC Studio [10].415

7 Conclusion416

This study introduces a language – named TESL – suited for the modeling and simulation417

of complex systems with multi-level time considerations. For this purpose, we illustrated418

how the language is suited for various applications of time in models. We first illustrated the419

main properties of the language (absence of a global root clock, stutter invariance). Then,420

we introduced two extensions of the language along with two applications depicted by (1) an421

encoding of timed automata, and (2) an implementation of a PID controller.422

Most of the widely used formalisms suffer from restrictions in their model of time, which423

we attempt to address. Some consider time as purely logical and may not be suited for424

real-time systems as computing cycles may not necessarily flow at a fixed rate. Some other425

consider time as global which is restrictive towards distributed systems where time does not426

flow at the same rate in the different components, and may not be synchronized. We believe427

H. Nguyen Van, F. Boulanger, B. Wolff 13

our approach is complementary to state-of-the-art environments and may help to circumvent428

their drawbacks by considering time in its whole nature.429

References430

1 Rajeev Alur. Timed automata. In Nicolas Halbwachs and Doron Peled, editors, Computer431

Aided Verification, pages 8–22, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.432

2 Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Sci-433

ence, 126(2):183 – 235, 1994. URL: http://www.sciencedirect.com/science/article/pii/434

0304397594900108, doi:https://doi.org/10.1016/0304-3975(94)90010-8.435

3 A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. The436

synchronous languages 12 years later. Proceedings of the IEEE, 91(1):64–83, 2003.437

4 Béatrice Bérard, Michel Bidoit, Alain Finkel, François Laroussinie, Antoine Petit, Laure438

Petrucci, Philippe Schnoebelen, and Pierre McKenzie. Systems and Software Verification.439

Springer Berlin Heidelberg, 2001. URL: https://doi.org/10.1007%2F978-3-662-04558-9,440

doi:10.1007/978-3-662-04558-9.441

5 G. Berry. The constructive semantics of pure Esterel, 1996.442

6 Gérard Berry. The foundations of Esterel. In Gordon Plotkin, Colin Stirling, and Mads Tofte,443

editors, Proof, Language, and Interaction, pages 425–454. MIT Press, Cambridge, MA, USA,444

2000.445

7 Gérard Berry. SCADE: Synchronous design and validation of embedded control software. In446

S. Ramesh and Prahladavaradan Sampath, editors, Next Generation Design and Verification447

Methodologies for Distributed Embedded Control Systems, pages 19–33, Dordrecht, 2007.448

Springer Netherlands.449

8 Frédéric Boulanger, Christophe Jacquet, Cécile Hardebolle, and Iuliana Prodan. TESL: a450

language for reconciling heterogeneous execution traces. In Twelfth ACM/IEEE International451

Conference on Formal Methods and Models for Codesign (MEMOCODE 2014), pages 114–123,452

Lausanne, Switzerland, Oct 2014. URL: http://ieeexplore.ieee.org/xpl/articleDetails.453

jsp?arnumber=6961849, doi:10.1109/MEMCOD.2014.6961849.454

9 Timothy Bourke and Marc Pouzet. Zélus: A synchronous language with odes. In Proceedings455

of the 16th International Conference on Hybrid Systems: Computation and Control, HSCC456

’13, page 113–118, New York, NY, USA, 2013. Association for Computing Machinery. URL:457

https://doi.org/10.1145/2461328.2461348, doi:10.1145/2461328.2461348.458

10 Benoit Combemale, Betty H.C. Cheng, Robert B. France, Jean-Marc Jezequel, and Bernhard459

Rumpe. Globalizing Domain-Specific Languages, volume 9400 of LNCS, Programming and460

Software Engineering. Springer International Publishing, 2015.461

11 Julien Deantoni, Charles André, and Régis Gascon. CCSL denotational semantics. Research462

Report RR-8628, Inria, November 2014. URL: https://hal.inria.fr/hal-01082274.463

12 Julien DeAntoni and Frédéric Mallet. Timesquare: Treat your models with logical time. In464

Carlo A. Furia and Sebastian Nanz, editors, Objects, Models, Components, Patterns - 50th465

International Conference, TOOLS 2012, Prague, Czech Republic, May 29-31, 2012. Proceedings,466

volume 7304 of Lecture Notes in Computer Science, pages 34–41. Springer, 2012. URL:467

https://doi.org/10.1007/978-3-642-30561-0_4, doi:10.1007/978-3-642-30561-0_4.468

13 J. Eker, J. W. Janneck, E. A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig, S. Neuendorffer, S. Sachs,469

and Yuhong Xiong. Taming heterogeneity - the ptolemy approach. Proceedings of the IEEE,470

91(1):127–144, 2003.471

14 K. Erciyes. Distributed Real-Time Systems. Springer International Publishing, 2019. URL:472

https://doi.org/10.1007%2F978-3-030-22570-4, doi:10.1007/978-3-030-22570-4.473

15 Sulaymon Eshkabilov. MATLAB®/Simulink® Essentials: MATLAB®/Simulink® for Engin-474

eering Problem Solving and Numerical Analysis. Lulu Publishing Services, 11 2016.475

16 Kelly Garcés, Julien Deantoni, and Frédéric Mallet. A Model-Based Approach for Reconciliation476

of Polychronous Execution Traces. In SEAA 2011 - 37th EUROMICRO Conference on477

http://www.sciencedirect.com/science/article/pii/0304397594900108
http://www.sciencedirect.com/science/article/pii/0304397594900108
http://www.sciencedirect.com/science/article/pii/0304397594900108
http://dx.doi.org/https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007%2F978-3-662-04558-9
http://dx.doi.org/10.1007/978-3-662-04558-9
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6961849
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6961849
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6961849
http://dx.doi.org/10.1109/MEMCOD.2014.6961849
https://doi.org/10.1145/2461328.2461348
http://dx.doi.org/10.1145/2461328.2461348
https://hal.inria.fr/hal-01082274
https://doi.org/10.1007/978-3-642-30561-0_4
http://dx.doi.org/10.1007/978-3-642-30561-0_4
https://doi.org/10.1007%2F978-3-030-22570-4
http://dx.doi.org/10.1007/978-3-030-22570-4

14 TESL: a Model with Metric Time for Modeling and Simulation

Software Engineering and Advanced Applications, Oulu, Finland, August 2011. IEEE. URL:478

https://hal.inria.fr/inria-00597981.479

17 P. Le Guernic, A. Benveniste, P. Bournai, and T. Gautier. Synchronous data flow programming480

with the language SIGNAL. IFAC Proceedings Volumes, 20(2):359 – 364, 1987. 2nd IFAC481

Workshop on Adaptive Systems in Control and Signal Processing 1986, Lund, Sweden, 30482

June-2 July 1986.483

18 N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow programming484

language Lustre. Proceedings of the IEEE, 79(9):1305–1320, September 1991.485

19 Michael J W Hall. Concepts in special relativity. In General Relativity: An Introduction to486

Black Holes, Gravitational Waves, and Cosmology, 2053-2571, pages 1–1 to 1–11. Morgan487

& Claypool Publishers, 2018. URL: http://dx.doi.org/10.1088/978-1-6817-4885-6ch1,488

doi:10.1088/978-1-6817-4885-6ch1.489

20 Cécile Hardebolle and Frédéric Boulanger. Exploring multi-paradigm modeling tech-490

niques. SIMULATION: Transactions of The Society for Modeling and Simulation Interna-491

tional, 85(11/12):688–708, November/December 2009. URL: /software/downloads/ModHelX/492

2009MPMSimulation.pdf, doi:http://dx.doi.org/10.1177/0037549709105240.493

21 Yannick Hildenbrand. Ed-247 (vistas) gateway for hybrid test systems. In Aerospace Systems494

and Technology Conference. SAE International, oct 2018. URL: https://doi.org/10.4271/495

2018-01-1949, doi:10.4271/2018-01-1949.496

22 Leslie Lamport. What good is temporal logic? Information Processing 83, R. E. A. Mason,497

ed., Elsevier Publishers, 83:657–668, May 1983. URL: https://www.microsoft.com/en-us/498

research/publication/good-temporal-logic/.499

23 Paul Le Guernic, Thierry Gautier, Jean-Pierre Talpin, and Loïc Besnard. Polychronous500

automata. In TASE 2015, 9th International Symposium on Theoretical Aspects of Software501

Engineering, pages 95–102, Nanjing, China, September 2015. IEEE Computer Society.502

24 E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings of the IEEE,503

75(9):1235–1245, 1987.504

25 Edward A. Lee and Alberto Sangiovanni-Vincentelli. A framework for comparing models of505

computation. IEEE Trans. CAD, 17(12), 1998.506

26 Frédéric Mallet, Julien Deantoni, Charles André, and Robert De Simone. The Clock Constraint507

Specification Language for building timed causality models. Innovations in Systems and508

Software Engineering, 6(1-2):99–106, March 2010.509

27 Frédéric Mallet and Robert de Simone. Correctness issues on MARTE/CCSL constraints.510

Science of Computer Programming, 106:78 – 92, 2015. Special Issue: Architecture-Driven511

Semantic Analysis of Embedded Systems. URL: http://www.sciencedirect.com/science/512

article/pii/S0167642315000519, doi:https://doi.org/10.1016/j.scico.2015.03.001.513

28 Mathieu Montin and Marc Pantel. Mechanizing the denotational semantics of the clock514

constraint specification language. In El Hassan Abdelwahed, Ladjel Bellatreche, Mattéo515

Golfarelli, Dominique Méry, and Carlos Ordonez, editors, Model and Data Engineering, pages516

385–400, Cham, 2018. Springer International Publishing.517

29 Hai Nguyen Van, Thibaut Balabonski, Frédéric Boulanger, Chantal Keller, Benoît Valiron,518

and Burkhart Wolff. A symbolic operational semantics for TESL. In Alessandro Abate and519

Gilles Geeraerts, editors, Formal Modeling and Analysis of Timed Systems, pages 318–334,520

Cham, 2017. Springer International Publishing.521

30 Tobias Nipkow and Gerwin Klein. Concrete Semantics: With Isabelle/HOL. Springer Publish-522

ing Company, Incorporated, 2014.523

31 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant524

for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.525

32 Claire Pagetti, Julien Forget, Frédéric Boniol, Mikel Cordovilla, and David Lesens. Multi-task526

implementation of multi-periodic synchronous programs. Discrete Event Dynamic Systems,527

21(3):307–338, 2011. URL: https://hal.inria.fr/inria-00638936.528

https://hal.inria.fr/inria-00597981
http://dx.doi.org/10.1088/978-1-6817-4885-6ch1
http://dx.doi.org/10.1088/978-1-6817-4885-6ch1
/software/downloads/ModHelX/2009MPMSimulation.pdf
/software/downloads/ModHelX/2009MPMSimulation.pdf
/software/downloads/ModHelX/2009MPMSimulation.pdf
http://dx.doi.org/http://dx.doi.org/10.1177/0037549709105240
https://doi.org/10.4271/2018-01-1949
https://doi.org/10.4271/2018-01-1949
https://doi.org/10.4271/2018-01-1949
http://dx.doi.org/10.4271/2018-01-1949
https://www.microsoft.com/en-us/research/publication/good-temporal-logic/
https://www.microsoft.com/en-us/research/publication/good-temporal-logic/
https://www.microsoft.com/en-us/research/publication/good-temporal-logic/
http://www.sciencedirect.com/science/article/pii/S0167642315000519
http://www.sciencedirect.com/science/article/pii/S0167642315000519
http://www.sciencedirect.com/science/article/pii/S0167642315000519
http://dx.doi.org/https://doi.org/10.1016/j.scico.2015.03.001
https://hal.inria.fr/inria-00638936

H. Nguyen Van, F. Boulanger, B. Wolff 15

33 Kirill Rozhdestvensky, Vladimir Ryzhov, Tatiana Fedorova, Kirill Safronov, Nikita Tryaskin,529

Shaharin Anwar Sulaiman, Mark Ovinis, and Suhaimi Hassan. Description of the Wolfram530

SystemModeler, pages 23–87. Springer Singapore, Singapore, 2020. URL: https://doi.org/531

10.1007/978-981-15-2803-3_2, doi:10.1007/978-981-15-2803-3_2.532

34 Werner Schutz. The Testability of Distributed Real-Time Systems. Kluwer Academic Publishers,533

USA, 1993.534

35 J. A. Stankovic. Misconceptions about real-time computing: a serious problem for next-535

generation systems. Computer, 21(10):10–19, 1988.536

36 Stephen Weeks. Whole-program compilation in mlton. In Proceedings of the 2006 Workshop537

on ML, ML ’06, page 1, New York, NY, USA, 2006. Association for Computing Machinery.538

URL: https://doi.org/10.1145/1159876.1159877, doi:10.1145/1159876.1159877.539

37 Sam Westrick, Rohan Yadav, Matthew Fluet, and Umut A. Acar. Disentanglement in540

nested-parallel programs. Proc. ACM Program. Lang., 4(POPL), December 2019. URL:541

https://doi.org/10.1145/3371115, doi:10.1145/3371115.542

38 M. Zhang and F. Mallet. An executable semantics of Clock Constraint Specification Language543

and its applications. In Formal Techniques for Safety-Critical Systems: 4th International544

Workshop, FTSCS 2015, pages 37–51, Cham, 2016. Springer.545

39 Karl Johan Åström and Richard M. Murray. Feedback Systems. Princeton University Press,546

Princeton, 2010. URL: https://www.degruyter.com/view/title/563028.547

https://doi.org/10.1007/978-981-15-2803-3_2
https://doi.org/10.1007/978-981-15-2803-3_2
https://doi.org/10.1007/978-981-15-2803-3_2
http://dx.doi.org/10.1007/978-981-15-2803-3_2
https://doi.org/10.1145/1159876.1159877
http://dx.doi.org/10.1145/1159876.1159877
https://doi.org/10.1145/3371115
http://dx.doi.org/10.1145/3371115
https://www.degruyter.com/view/title/563028

	Introduction
	The TESL language
	Illustrating the Language
	Clocks, runs and timestamps
	Quick overview of the syntax

	Properties of the language
	Polychronous clocks and time islands
	Stutter Invariance
	Unfolding Specifications

	Extensions
	Precedence formula (and timed automata)
	Previous operator (and PID controllers)

	Related Work
	Future work
	Conclusion

